[3175] | 1 | subroutine condens_n2(ngrid,nlayer,nq,ptimestep, & |
---|
| 2 | pcapcal,pplay,pplev,ptsrf,pt, & |
---|
| 3 | pphi,pdt,pdu,pdv,pdtsrf,pu,pv,pq,pdq, & |
---|
| 4 | picen2,psolaralb,pemisurf, & |
---|
| 5 | pdtc,pdtsrfc,pdpsrf,pduc,pdvc, & |
---|
| 6 | pdqc,pdicen2) |
---|
| 7 | |
---|
| 8 | use radinc_h, only : naerkind |
---|
| 9 | use comgeomfi_h |
---|
| 10 | implicit none |
---|
| 11 | |
---|
| 12 | !================================================================== |
---|
| 13 | ! Purpose |
---|
| 14 | ! ------- |
---|
| 15 | ! Condense and/or sublime N2 ice on the ground and in the |
---|
| 16 | ! atmosphere, and sediment the ice. |
---|
| 17 | ! |
---|
| 18 | ! Inputs |
---|
| 19 | ! ------ |
---|
| 20 | ! ngrid Number of vertical columns |
---|
| 21 | ! nlayer Number of layers |
---|
| 22 | ! pplay(ngrid,nlayer) Pressure layers |
---|
| 23 | ! pplev(ngrid,nlayer+1) Pressure levels |
---|
| 24 | ! pt(ngrid,nlayer) Temperature (in K) |
---|
| 25 | ! ptsrf(ngrid) Surface temperature |
---|
| 26 | ! |
---|
| 27 | ! pdt(ngrid,nlayermx) Time derivative before condensation/sublimation of pt |
---|
| 28 | ! pdtsrf(ngrid) Time derivative before condensation/sublimation of ptsrf |
---|
| 29 | ! picen2(ngrid) n2 ice at the surface (kg/m2) |
---|
| 30 | ! |
---|
| 31 | ! Outputs |
---|
| 32 | ! ------- |
---|
| 33 | ! pdpsrf(ngrid) \ Contribution of condensation/sublimation |
---|
| 34 | ! pdtc(ngrid,nlayermx) / to the time derivatives of Ps, pt, and ptsrf |
---|
| 35 | ! pdtsrfc(ngrid) / |
---|
| 36 | ! pdicen2(ngrid) Tendancy n2 ice at the surface (kg/m2) |
---|
| 37 | ! |
---|
| 38 | ! Both |
---|
| 39 | ! ---- |
---|
| 40 | ! psolaralb(ngrid) Albedo at the surface |
---|
| 41 | ! pemisurf(ngrid) Emissivity of the surface |
---|
| 42 | ! |
---|
| 43 | ! Authors |
---|
| 44 | ! ------- |
---|
| 45 | ! Francois Forget (1996,2013) |
---|
| 46 | ! Converted to Fortran 90 and slightly modified by R. Wordsworth (2009) |
---|
| 47 | ! |
---|
| 48 | ! |
---|
| 49 | !================================================================== |
---|
| 50 | |
---|
| 51 | #include "dimensions.h" |
---|
| 52 | #include "dimphys.h" |
---|
| 53 | #include "comcstfi.h" |
---|
| 54 | #include "surfdat.h" |
---|
| 55 | #include "comvert.h" |
---|
| 56 | #include "callkeys.h" |
---|
| 57 | #include "tracer.h" |
---|
| 58 | |
---|
| 59 | !----------------------------------------------------------------------- |
---|
| 60 | ! Arguments |
---|
| 61 | |
---|
| 62 | INTEGER ngrid, nlayer, nq |
---|
| 63 | |
---|
| 64 | REAL ptimestep |
---|
| 65 | REAL pplay(ngrid,nlayer),pplev(ngrid,nlayer+1) |
---|
| 66 | REAL pcapcal(ngrid) |
---|
| 67 | REAL pt(ngrid,nlayer) |
---|
| 68 | REAL ptsrf(ngrid),flu1(ngrid),flu2(ngrid),flu3(ngrid) |
---|
| 69 | REAL pphi(ngrid,nlayer) |
---|
| 70 | REAL pdt(ngrid,nlayer),pdtsrf(ngrid),pdtc(ngrid,nlayer) |
---|
| 71 | REAL pdtsrfc(ngrid),pdpsrf(ngrid) |
---|
| 72 | REAL picen2(ngrid),psolaralb(ngrid),pemisurf(ngrid) |
---|
| 73 | |
---|
| 74 | |
---|
| 75 | REAL pu(ngrid,nlayer) , pv(ngrid,nlayer) |
---|
| 76 | REAL pdu(ngrid,nlayer) , pdv(ngrid,nlayer) |
---|
| 77 | REAL pduc(ngrid,nlayer) , pdvc(ngrid,nlayer) |
---|
| 78 | REAL pq(ngridmx,nlayer,nq),pdq(ngrid,nlayer,nq) |
---|
| 79 | REAL pdqc(ngrid,nlayer,nq) |
---|
| 80 | |
---|
| 81 | !----------------------------------------------------------------------- |
---|
| 82 | ! Local variables |
---|
| 83 | |
---|
| 84 | INTEGER l,ig,ilay,it,iq,ich4_gas |
---|
| 85 | |
---|
| 86 | REAL*8 zt(ngridmx,nlayermx) |
---|
| 87 | REAL tcond_n2 |
---|
| 88 | REAL pcond_n2 |
---|
| 89 | REAL glob_average2d ! function |
---|
| 90 | REAL zqn2(ngridmx,nlayermx) ! N2 MMR used to compute Tcond/zqn2 |
---|
| 91 | REAL ztcond (ngridmx,nlayermx) |
---|
| 92 | REAL ztcondsol(ngridmx),zfallheat |
---|
| 93 | REAL pdicen2(ngridmx) |
---|
| 94 | REAL zcondicea(ngridmx,nlayermx), zcondices(ngridmx) |
---|
| 95 | REAL zfallice(ngridmx,nlayermx+1) |
---|
| 96 | REAL zmflux(nlayermx+1) |
---|
| 97 | REAL zu(nlayermx),zv(nlayermx) |
---|
| 98 | REAL zq(nlayermx,nqmx),zq1(nlayermx) |
---|
| 99 | REAL ztsrf(ngridmx) |
---|
| 100 | REAL ztc(nlayermx), ztm(nlayermx+1) |
---|
| 101 | REAL zum(nlayermx+1) , zvm(nlayermx+1) |
---|
| 102 | REAL zqm(nlayermx+1,nqmx),zqm1(nlayermx+1) |
---|
| 103 | LOGICAL condsub(ngridmx) |
---|
| 104 | REAL subptimestep |
---|
| 105 | Integer Ntime |
---|
| 106 | real masse (nlayermx),w(nlayermx+1) |
---|
| 107 | real wq(ngridmx,nlayermx+1) |
---|
| 108 | real vstokes,reff |
---|
| 109 | real dWtotsn2 |
---|
| 110 | real condnconsn2(ngridmx) |
---|
| 111 | real nconsMAXn2 |
---|
| 112 | ! Special diagnostic variables |
---|
| 113 | real tconda1(ngridmx,nlayermx) |
---|
| 114 | real tconda2(ngridmx,nlayermx) |
---|
| 115 | real zdtsig (ngridmx,nlayermx) |
---|
| 116 | real zdtlatent (ngridmx,nlayermx) |
---|
| 117 | real zdt (ngridmx,nlayermx) |
---|
| 118 | REAL albediceF(ngridmx) |
---|
| 119 | SAVE albediceF |
---|
| 120 | INTEGER nsubtimestep,itsub !number of subtimestep when calling vl1d |
---|
| 121 | REAL subtimestep !ptimestep/nsubtimestep |
---|
| 122 | REAL dtmax |
---|
| 123 | |
---|
| 124 | REAL zplevhist(ngridmx) |
---|
| 125 | REAL zplevnew(ngridmx) |
---|
| 126 | REAL zplev(ngridmx) |
---|
| 127 | REAL zpicen2(ngridmx) |
---|
| 128 | REAL ztsrfhist(ngridmx) |
---|
| 129 | REAL zdtsrf(ngridmx) |
---|
| 130 | REAL globzplevnew |
---|
| 131 | |
---|
| 132 | REAL vmrn2(ngridmx) |
---|
| 133 | SAVE vmrn2 |
---|
| 134 | REAL stephan |
---|
| 135 | DATA stephan/5.67e-08/ ! Stephan Boltzman constant |
---|
| 136 | SAVE stephan |
---|
| 137 | !----------------------------------------------------------------------- |
---|
| 138 | ! Saved local variables |
---|
| 139 | |
---|
| 140 | ! REAL latcond |
---|
| 141 | REAL ccond |
---|
| 142 | REAL cpice ! for atm condensation |
---|
| 143 | SAVE cpice |
---|
| 144 | ! SAVE latcond,ccond |
---|
| 145 | SAVE ccond |
---|
| 146 | |
---|
| 147 | LOGICAL firstcall |
---|
| 148 | SAVE firstcall |
---|
| 149 | REAL SSUM |
---|
| 150 | EXTERNAL SSUM |
---|
| 151 | |
---|
| 152 | ! DATA latcond /2.5e5/ |
---|
| 153 | ! DATA latcond /1.98e5/ |
---|
| 154 | DATA cpice /1300./ |
---|
| 155 | DATA firstcall/.true./ |
---|
| 156 | |
---|
| 157 | INTEGER,SAVE :: i_n2ice=0 ! n2 ice |
---|
| 158 | CHARACTER(LEN=20) :: tracername ! to temporarily store text |
---|
| 159 | logical olkin ! option to prevent N2 ice effect in the south |
---|
| 160 | DATA olkin/.false./ |
---|
| 161 | save olkin |
---|
| 162 | |
---|
| 163 | CHARACTER(len=10) :: tname |
---|
| 164 | |
---|
| 165 | !----------------------------------------------------------------------- |
---|
| 166 | |
---|
| 167 | ! Initialisation |
---|
| 168 | IF (firstcall) THEN |
---|
| 169 | ccond=cpp/(g*lw_n2) |
---|
| 170 | print*,'In condens_n2cloud: ccond=',ccond,' latcond=',lw_n2 |
---|
| 171 | |
---|
| 172 | ! calculate global mean surface pressure for the fast mode |
---|
| 173 | IF (fast) THEN |
---|
| 174 | DO ig=1,ngridmx |
---|
| 175 | kp(ig) = exp(-phisfi(ig)/(r*38.)) |
---|
| 176 | ENDDO |
---|
| 177 | p00=glob_average2d(kp) ! mean pres at ref level |
---|
| 178 | ENDIF |
---|
| 179 | |
---|
| 180 | vmrn2(:) = 1. |
---|
| 181 | IF (ch4lag) then |
---|
| 182 | DO ig=1,ngridmx |
---|
| 183 | if (lati(ig)*180./pi.ge.latlag) then |
---|
| 184 | vmrn2(ig) = vmrlag |
---|
| 185 | endif |
---|
| 186 | ENDDO |
---|
| 187 | ENDIF |
---|
| 188 | IF (no_n2frost) then |
---|
| 189 | DO ig=1,ngridmx |
---|
| 190 | if (picen2(ig).eq.0.) then |
---|
| 191 | vmrn2(ig) = 1.e-15 |
---|
| 192 | endif |
---|
| 193 | ENDDO |
---|
| 194 | ENDIF |
---|
| 195 | firstcall=.false. |
---|
| 196 | ENDIF |
---|
| 197 | |
---|
| 198 | !----------------------------------------------------------------------- |
---|
| 199 | ! Calculation of n2 condensation / sublimation |
---|
| 200 | |
---|
| 201 | ! Variables used: |
---|
| 202 | ! picen2(ngrid) : amount of n2 ice on the ground (kg/m2) |
---|
| 203 | ! zcondicea(ngrid,nlayermx): condensation rate in layer l (kg/m2/s) |
---|
| 204 | ! zcondices(ngrid) : condensation rate on the ground (kg/m2/s) |
---|
| 205 | ! zfallice(ngrid,nlayermx) : amount of ice falling from layer l (kg/m2/s) |
---|
| 206 | ! zdtlatent(ngrid,nlayermx): dT/dt due to phase changes (K/s) |
---|
| 207 | |
---|
| 208 | ! Tendencies initially set to 0 |
---|
| 209 | zcondices(1:ngrid) = 0. |
---|
| 210 | pdtsrfc(1:ngrid) = 0. |
---|
| 211 | pdpsrf(1:ngrid) = 0. |
---|
| 212 | ztsrfhist(1:ngrid) = 0. |
---|
| 213 | condsub(1:ngrid) = .false. |
---|
| 214 | pdicen2(1:ngrid) = 0. |
---|
| 215 | zfallheat=0 |
---|
| 216 | pdqc(1:ngrid,1:nlayer,1:nq)=0 |
---|
| 217 | pdtc(1:ngrid,1:nlayer)=0 |
---|
| 218 | pduc(1:ngrid,1:nlayer)=0 |
---|
| 219 | pdvc(1:ngrid,1:nlayer)=0 |
---|
| 220 | zfallice(1:ngrid,1:nlayer+1)=0 |
---|
| 221 | zcondicea(1:ngrid,1:nlayer)=0 |
---|
| 222 | zdtlatent(1:ngrid,1:nlayer)=0 |
---|
| 223 | zt(1:ngrid,1:nlayer)=0. |
---|
| 224 | |
---|
| 225 | !----------------------------------------------------------------------- |
---|
| 226 | ! Atmospheric condensation |
---|
| 227 | |
---|
| 228 | ! Condensation / sublimation in the atmosphere |
---|
| 229 | ! -------------------------------------------- |
---|
| 230 | ! (calcul of zcondicea , zfallice and pdtc) |
---|
| 231 | |
---|
| 232 | zt(1:ngrid,1:nlayer)=pt(1:ngrid,1:nlayer)+ pdt(1:ngrid,1:nlayer)*ptimestep |
---|
| 233 | if (igcm_n2.ne.0) then |
---|
| 234 | zqn2(1:ngrid,1:nlayer) = 1. ! & temporaire |
---|
| 235 | ! zqn2(1:ngrid,1:nlayer)= pq(1:ngrid,1:nlayer,igcm_n2) + pdq(1:ngrid,1:nlayer,igcm_n2)*ptimestep |
---|
| 236 | else |
---|
| 237 | zqn2(1:ngrid,1:nlayer) = 1. |
---|
| 238 | end if |
---|
| 239 | |
---|
| 240 | if (.not.fast) then |
---|
| 241 | ! Forecast the atmospheric frost temperature 'ztcond' with function tcond_n2 |
---|
| 242 | DO l=1,nlayer |
---|
| 243 | DO ig=1,ngrid |
---|
| 244 | ztcond (ig,l) = tcond_n2(pplay(ig,l),zqn2(ig,l)) |
---|
| 245 | ENDDO |
---|
| 246 | ENDDO |
---|
| 247 | |
---|
| 248 | DO l=nlayer,1,-1 |
---|
| 249 | DO ig=1,ngrid |
---|
| 250 | pdtc(ig,l)=0. ! final tendancy temperature set to 0 |
---|
| 251 | |
---|
| 252 | IF((zt(ig,l).LT.ztcond(ig,l)).or.(zfallice(ig,l+1).gt.0))THEN |
---|
| 253 | condsub(ig)=.true. !condensation at level l |
---|
| 254 | IF (zfallice(ig,l+1).gt.0) then |
---|
| 255 | zfallheat=zfallice(ig,l+1)*& |
---|
| 256 | (pphi(ig,l+1)-pphi(ig,l) +& |
---|
| 257 | cpice*(ztcond(ig,l+1)-ztcond(ig,l)))/lw_n2 |
---|
| 258 | ELSE |
---|
| 259 | zfallheat=0. |
---|
| 260 | ENDIF |
---|
| 261 | zdtlatent(ig,l)=(ztcond(ig,l) - zt(ig,l))/ptimestep |
---|
| 262 | zcondicea(ig,l)=(pplev(ig,l)-pplev(ig,l+1))& |
---|
| 263 | *ccond*zdtlatent(ig,l)- zfallheat |
---|
| 264 | ! Case when the ice from above sublimes entirely |
---|
| 265 | ! """"""""""""""""""""""""""""""""""""""""""""""" |
---|
| 266 | IF ((zfallice(ig,l+1).lt.-zcondicea(ig,l)) & |
---|
| 267 | .AND. (zfallice(ig,l+1).gt.0)) THEN |
---|
| 268 | |
---|
| 269 | zdtlatent(ig,l)=(-zfallice(ig,l+1)+zfallheat)/& |
---|
| 270 | (ccond*(pplev(ig,l)-pplev(ig,l+1))) |
---|
| 271 | zcondicea(ig,l)= -zfallice(ig,l+1) |
---|
| 272 | END IF |
---|
| 273 | |
---|
| 274 | zfallice(ig,l) = zcondicea(ig,l)+zfallice(ig,l+1) |
---|
| 275 | |
---|
| 276 | END IF |
---|
| 277 | |
---|
| 278 | ENDDO |
---|
| 279 | ENDDO |
---|
| 280 | endif ! not fast |
---|
| 281 | |
---|
| 282 | !----------------------------------------------------------------------- |
---|
| 283 | ! Condensation/sublimation on the ground |
---|
| 284 | ! (calculation of zcondices and pdtsrfc) |
---|
| 285 | |
---|
| 286 | ! Adding subtimesteps : in fast version, pressures too low lead to |
---|
| 287 | ! instabilities. |
---|
| 288 | IF (fast) THEN |
---|
| 289 | IF (pplev(1,1).gt.0.3) THEN |
---|
| 290 | nsubtimestep= 1 |
---|
| 291 | ELSE |
---|
| 292 | nsubtimestep= nbsub !max(nint(ptimestep/dtmax),1) |
---|
| 293 | ENDIF |
---|
| 294 | ELSE |
---|
| 295 | nsubtimestep= 1 ! if more then kp and p00 have to be calculated |
---|
| 296 | ! for nofast mode |
---|
| 297 | ENDIF |
---|
| 298 | subtimestep=ptimestep/float(nsubtimestep) |
---|
| 299 | |
---|
| 300 | do itsub=1,nsubtimestep |
---|
| 301 | ! first loop : getting zplev, ztsurf |
---|
| 302 | IF (itsub.eq.1) then |
---|
| 303 | DO ig=1,ngrid |
---|
| 304 | zplev(ig)=pplev(ig,1) |
---|
| 305 | ztsrfhist(ig)=ptsrf(ig) + pdtsrf(ig)*ptimestep |
---|
| 306 | ztsrf(ig)=ptsrf(ig) + pdtsrf(ig)*subtimestep !! |
---|
| 307 | zpicen2(ig)=picen2(ig) |
---|
| 308 | ENDDO |
---|
| 309 | ELSE |
---|
| 310 | ! additional loop : |
---|
| 311 | ! 1) pressure updated |
---|
| 312 | ! 2) direct redistribution of pressure over the globe |
---|
| 313 | ! 3) modification pressure for unstable cases |
---|
| 314 | ! 4) pressure update to conserve mass |
---|
| 315 | ! 5) temperature updated with radiative tendancies |
---|
| 316 | DO ig=1,ngrid |
---|
| 317 | zplevhist(ig)=zplev(ig) |
---|
| 318 | zplevnew(ig)=zplev(ig)+pdpsrf(ig)*subtimestep ! 1) |
---|
| 319 | !IF (zplevnew(ig).le.0.0001) then |
---|
| 320 | ! zplevnew(ig)=0.0001*kp(ig)/p00 |
---|
| 321 | !ENDIF |
---|
| 322 | ENDDO |
---|
| 323 | ! intermediaire de calcul: valeur moyenne de zplevnew (called twice in the code) |
---|
| 324 | globzplevnew=glob_average2d(zplevnew) |
---|
| 325 | DO ig=1,ngrid |
---|
| 326 | zplev(ig)=kp(ig)*globzplevnew/p00 ! 2) |
---|
| 327 | ENDDO |
---|
| 328 | DO ig=1,ngrid ! 3) unstable case condensation and sublimation: zplev=zplevhist |
---|
| 329 | IF (((pdpsrf(ig).lt.0.).and.(tcond_n2(zplev(ig),zqn2(ig,1)).le.ztsrf(ig))).or. & |
---|
| 330 | ((pdpsrf(ig).gt.0.).and.(tcond_n2(zplev(ig),zqn2(ig,1)).ge.ztsrf(ig)))) then |
---|
| 331 | zplev(ig)=zplevhist(ig) |
---|
| 332 | ENDIF |
---|
| 333 | zplevhist(ig)=zplev(ig) |
---|
| 334 | ENDDO |
---|
| 335 | zplev=zplev*globzplevnew/glob_average2d(zplevhist) ! 4) |
---|
| 336 | DO ig=1,ngrid ! 5) |
---|
| 337 | zdtsrf(ig)=pdtsrf(ig) + (stephan/pcapcal(ig))*(ptsrf(ig)**4-ztsrf(ig)**4) |
---|
| 338 | ztsrf(ig)=ztsrf(ig)+pdtsrfc(ig)*subtimestep+zdtsrf(ig)*subtimestep |
---|
| 339 | zpicen2(ig)=zpicen2(ig)+pdicen2(ig)*subtimestep |
---|
| 340 | ENDDO |
---|
| 341 | ENDIF ! (itsub=1) |
---|
| 342 | |
---|
| 343 | DO ig=1,ngrid |
---|
| 344 | ! forecast of frost temperature ztcondsol |
---|
| 345 | !ztcondsol(ig) = tcond_n2(zplev(ig),zqn2(ig,1)) |
---|
| 346 | ztcondsol(ig) = tcond_n2(zplev(ig),vmrn2(ig)) |
---|
| 347 | |
---|
| 348 | ! Loop over where we have condensation / sublimation |
---|
| 349 | IF ((ztsrf(ig) .LT. ztcondsol(ig)) .OR. & ! ground cond |
---|
| 350 | ((ztsrf(ig) .GT. ztcondsol(ig)) .AND. & ! ground sublim |
---|
| 351 | (zpicen2(ig) .GT. 0.))) THEN |
---|
| 352 | condsub(ig) = .true. ! condensation or sublimation |
---|
| 353 | |
---|
| 354 | ! Condensation or partial sublimation of N2 ice |
---|
| 355 | if (ztsrf(ig) .LT. ztcondsol(ig)) then ! condensation |
---|
| 356 | ! Include a correction to account for the cooling of air near |
---|
| 357 | ! the surface before condensing: |
---|
| 358 | zcondices(ig)=pcapcal(ig)*(ztcondsol(ig)-ztsrf(ig)) & |
---|
| 359 | /((lw_n2+cpp*(zt(ig,1)-ztcondsol(ig)))*subtimestep) |
---|
| 360 | else ! sublimation |
---|
| 361 | zcondices(ig)=pcapcal(ig)*(ztcondsol(ig)-ztsrf(ig)) & |
---|
| 362 | /(lw_n2*subtimestep) |
---|
| 363 | end if |
---|
| 364 | |
---|
| 365 | pdtsrfc(ig) = (ztcondsol(ig) - ztsrf(ig))/subtimestep |
---|
| 366 | |
---|
| 367 | ! partial sublimation of N2 ice |
---|
| 368 | ! If the entire N_2 ice layer sublimes |
---|
| 369 | ! (including what has just condensed in the atmosphere) |
---|
| 370 | IF((zpicen2(ig)/subtimestep).LE. & |
---|
| 371 | -zcondices(ig))THEN |
---|
| 372 | zcondices(ig) = -zpicen2(ig)/subtimestep |
---|
| 373 | pdtsrfc(ig)=(lw_n2/pcapcal(ig))* & |
---|
| 374 | (zcondices(ig)) |
---|
| 375 | END IF |
---|
| 376 | |
---|
| 377 | ! Changing N2 ice amount and pressure |
---|
| 378 | |
---|
| 379 | pdicen2(ig) = zcondices(ig) |
---|
| 380 | pdpsrf(ig) = -pdicen2(ig)*g |
---|
| 381 | ! pdpsrf(ig) = 0. ! OPTION to check impact N2 sub/cond |
---|
| 382 | IF (zplev(ig)+pdpsrf(ig)*subtimestep.le.0.0000001) then |
---|
| 383 | pdpsrf(ig)=(0.0000001*kp(ig)/p00-zplev(ig))/subtimestep |
---|
| 384 | pdicen2(ig)=-pdpsrf(ig)/g |
---|
| 385 | ENDIF |
---|
| 386 | |
---|
| 387 | ELSE ! no condsub |
---|
| 388 | pdpsrf(ig)=0. |
---|
| 389 | pdicen2(ig)=0. |
---|
| 390 | pdtsrfc(ig)=0. |
---|
| 391 | ENDIF |
---|
| 392 | ENDDO ! ig |
---|
| 393 | enddo ! subtimestep |
---|
| 394 | |
---|
| 395 | ! Updating pressure, temperature and ice reservoir |
---|
| 396 | DO ig=1,ngrid |
---|
| 397 | pdpsrf(ig)=(zplev(ig)+pdpsrf(ig)*subtimestep-pplev(ig,1))/ptimestep |
---|
| 398 | ! Two options here : 1 ok, 2 is wrong |
---|
| 399 | pdicen2(ig)=(zpicen2(ig)+pdicen2(ig)*subtimestep-picen2(ig))/ptimestep |
---|
| 400 | !pdicen2(ig)=-pdpsrf(ig)/g |
---|
| 401 | |
---|
| 402 | pdtsrfc(ig)=((ztsrf(ig)+pdtsrfc(ig)*subtimestep)-(ztsrfhist(ig)))/ptimestep |
---|
| 403 | |
---|
| 404 | ! security |
---|
| 405 | if (picen2(ig) + pdicen2(ig)*ptimestep.lt.0.) then |
---|
| 406 | write(*,*) 'WARNING in condense_n2:' |
---|
| 407 | write(*,*) picen2(ig),pdicen2(ig)*ptimestep |
---|
| 408 | pdicen2(ig)= -picen2(ig)/ptimestep |
---|
| 409 | pdpsrf(ig)=-pdicen2(ig)*g |
---|
| 410 | endif |
---|
| 411 | |
---|
| 412 | if(.not.picen2(ig).ge.0.) THEN |
---|
| 413 | ! if(picen2(ig) + pdicen2(ig)*ptimestep.le.-1.e-8) then |
---|
| 414 | print*, 'WARNING NEG RESERVOIR in condense_n2: picen2(',ig,')=', picen2(ig) + pdicen2(ig)*ptimestep |
---|
| 415 | ! pdicen2(ig)= -picen2(ig)/ptimestep |
---|
| 416 | ! else |
---|
| 417 | picen2(ig)=0.0 |
---|
| 418 | ! endif |
---|
| 419 | endif |
---|
| 420 | ENDDO |
---|
| 421 | |
---|
| 422 | ! *************************************************************** |
---|
| 423 | ! Correction to account for redistribution between sigma or hybrid |
---|
| 424 | ! layers when changing surface pressure (and warming/cooling |
---|
| 425 | ! of the n2 currently changing phase). |
---|
| 426 | ! ************************************************************* |
---|
| 427 | if (.not.fast) then |
---|
| 428 | DO ig=1,ngrid |
---|
| 429 | if (condsub(ig)) then |
---|
| 430 | |
---|
| 431 | ! Mass fluxes through the sigma levels (kg.m-2.s-1) (>0 when up) |
---|
| 432 | ! """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" |
---|
| 433 | zmflux(1) = -zcondices(ig) |
---|
| 434 | DO l=1,nlayer |
---|
| 435 | zmflux(l+1) = zmflux(l) -zcondicea(ig,l) & |
---|
| 436 | + (bp(l)-bp(l+1))*(zfallice(ig,1)-zmflux(1)) |
---|
| 437 | ! zmflux set to 0 if very low to avoid: top layer is disappearing in v1ld |
---|
| 438 | if (abs(zmflux(l+1)).lt.1E-13.OR.bp(l+1).eq.0.) zmflux(l+1)=0. |
---|
| 439 | END DO |
---|
| 440 | |
---|
| 441 | ! Mass of each layer |
---|
| 442 | ! ------------------ |
---|
| 443 | DO l=1,nlayer |
---|
| 444 | masse(l)=(pplev(ig,l) - pplev(ig,l+1))/g |
---|
| 445 | END DO |
---|
| 446 | |
---|
| 447 | |
---|
| 448 | ! Corresponding fluxes for T,U,V,Q |
---|
| 449 | ! """""""""""""""""""""""""""""""" |
---|
| 450 | ! averaging operator for TRANSPORT |
---|
| 451 | ! """""""""""""""""""""""""""""""" |
---|
| 452 | |
---|
| 453 | ! Subtimestep loop to perform the redistribution gently and simultaneously with |
---|
| 454 | ! the other tendencies |
---|
| 455 | ! Estimation of subtimestep (using only the first layer, the most critical) |
---|
| 456 | dtmax=ptimestep |
---|
| 457 | if (zmflux(1).gt.1.e-20) then |
---|
| 458 | dtmax=min(dtmax,masse(1)*zqn2(ig,1)/abs(zmflux(1))) |
---|
| 459 | endif |
---|
| 460 | nsubtimestep= max(nint(ptimestep/dtmax),nint(2.)) |
---|
| 461 | subtimestep=ptimestep/float(nsubtimestep) |
---|
| 462 | |
---|
| 463 | ! New flux for each subtimestep |
---|
| 464 | do l=1,nlayer+1 |
---|
| 465 | w(l)=-zmflux(l)*subtimestep |
---|
| 466 | enddo |
---|
| 467 | ! initializing variables that will vary during subtimestep: |
---|
| 468 | do l=1,nlayer |
---|
| 469 | ztc(l) =pt(ig,l) |
---|
| 470 | zu(l) =pu(ig,l) |
---|
| 471 | zv(l) =pv(ig,l) |
---|
| 472 | do iq=1,nqmx |
---|
| 473 | zq(l,iq) = pq(ig,l,iq) |
---|
| 474 | enddo |
---|
| 475 | end do |
---|
| 476 | |
---|
| 477 | ! loop over nsubtimestep |
---|
| 478 | ! """""""""""""""""""""" |
---|
| 479 | do itsub=1,nsubtimestep |
---|
| 480 | ! Progressively adding tendancies from other processes. |
---|
| 481 | do l=1,nlayer |
---|
| 482 | ztc(l) =ztc(l) +(pdt(ig,l) + zdtlatent(ig,l))*subtimestep |
---|
| 483 | zu(l) =zu(l) +pdu( ig,l) * subtimestep |
---|
| 484 | zv(l) =zv(l) +pdv( ig,l) * subtimestep |
---|
| 485 | do iq=1,nqmx |
---|
| 486 | zq(l,iq) = zq(l,iq) + pdq(ig,l,iq)* subtimestep |
---|
| 487 | enddo |
---|
| 488 | end do |
---|
| 489 | |
---|
| 490 | ! Change of mass in each layer |
---|
| 491 | do l=1,nlayer |
---|
| 492 | masse(l)=masse(l)+pdpsrf(ig)*subtimestep*(pplev(ig,l) - pplev(ig,l+1))& |
---|
| 493 | /(g*pplev(ig,1)) |
---|
| 494 | end do |
---|
| 495 | |
---|
| 496 | ztm(2:nlayermx+1)=0. |
---|
| 497 | zum(2:nlayermx+1)=0. |
---|
| 498 | zvm(2:nlayermx+1)=0. |
---|
| 499 | zqm1(1:nlayermx+1)=0. |
---|
| 500 | |
---|
| 501 | ! Van Leer scheme: |
---|
| 502 | call vl1d(nlayer,ztc,2.,masse,w,ztm) |
---|
| 503 | call vl1d(nlayer,zu ,2.,masse,w,zum) |
---|
| 504 | call vl1d(nlayer,zv ,2.,masse,w,zvm) |
---|
| 505 | do iq=1,nqmx |
---|
| 506 | do l=1,nlayer |
---|
| 507 | zq1(l)=zq(l,iq) |
---|
| 508 | enddo |
---|
| 509 | zqm1(1)=zqm(1,iq) |
---|
| 510 | call vl1d(nlayer,zq1,2.,masse,w,zqm1) |
---|
| 511 | do l=2,nlayer |
---|
| 512 | zqm(l,iq)=zqm1(l) |
---|
| 513 | enddo |
---|
| 514 | enddo |
---|
| 515 | |
---|
| 516 | ! Correction to prevent negative value for qn2 |
---|
| 517 | if (igcm_n2.ne.0) then |
---|
| 518 | zqm(1,igcm_n2)=1. |
---|
| 519 | do l=1,nlayer-1 |
---|
| 520 | if (w(l)*zqm(l,igcm_n2).gt.zq(l,igcm_n2)*masse(l)) then |
---|
| 521 | zqm(l+1,igcm_n2)=max(zqm(l+1,igcm_n2), & |
---|
| 522 | (zqm(l,igcm_n2)*w(l) -zq(l,igcm_n2)*masse(l))/w(l+1) ) |
---|
| 523 | else |
---|
| 524 | exit |
---|
| 525 | endif |
---|
| 526 | end do |
---|
| 527 | end if |
---|
| 528 | |
---|
| 529 | ! Value transfert at the surface interface when condensation sublimation: |
---|
| 530 | |
---|
| 531 | if (zmflux(1).lt.0) then |
---|
| 532 | ! Surface condensation |
---|
| 533 | zum(1)= zu(1) |
---|
| 534 | zvm(1)= zv(1) |
---|
| 535 | ztm(1) = ztc(1) |
---|
| 536 | else |
---|
| 537 | ! Surface sublimation: |
---|
| 538 | ztm(1) = ztsrf(ig) + pdtsrfc(ig)*ptimestep |
---|
| 539 | zum(1) = 0 |
---|
| 540 | zvm(1) = 0 |
---|
| 541 | end if |
---|
| 542 | do iq=1,nqmx |
---|
| 543 | zqm(1,iq)=0. ! most tracer do not condense ! |
---|
| 544 | enddo |
---|
| 545 | ! Special case if the tracer is n2 gas |
---|
| 546 | if (igcm_n2.ne.0) zqm(1,igcm_n2)=1. |
---|
| 547 | |
---|
| 548 | !!! Source haze: 0.02 pourcent when n2 sublimes |
---|
| 549 | IF (source_haze) THEN |
---|
| 550 | IF (pdicen2(ig).lt.0) THEN |
---|
| 551 | DO iq=1,nq |
---|
| 552 | tname=noms(iq) |
---|
| 553 | if (tname(1:4).eq."haze") then |
---|
| 554 | !zqm(1,iq)=0.02 |
---|
| 555 | !zqm(1,iq)=-pdicen2(ig)*0.02 |
---|
| 556 | zqm(1,iq)=-pdicen2(ig)*ptimestep*0.02 |
---|
| 557 | !zqm(10,iq)=-pdicen2(ig)*ptimestep*100. |
---|
| 558 | !zqm(1,iq)=-pdicen2(ig)*1000000. |
---|
| 559 | |
---|
| 560 | endif |
---|
| 561 | ENDDO |
---|
| 562 | ENDIF |
---|
| 563 | ENDIF |
---|
| 564 | ztm(nlayer+1)= ztc(nlayer) ! should not be used, but... |
---|
| 565 | zum(nlayer+1)= zu(nlayer) ! should not be used, but... |
---|
| 566 | zvm(nlayer+1)= zv(nlayer) ! should not be used, but... |
---|
| 567 | do iq=1,nqmx |
---|
| 568 | zqm(nlayer+1,iq)= zq(nlayer,iq) |
---|
| 569 | enddo |
---|
| 570 | |
---|
| 571 | ! Tendencies on T, U, V, Q |
---|
| 572 | ! """"""""""""""""""""""" |
---|
| 573 | DO l=1,nlayer |
---|
| 574 | |
---|
| 575 | ! Tendencies on T |
---|
| 576 | zdtsig(ig,l) = (1/masse(l)) * & |
---|
| 577 | ( zmflux(l)*(ztm(l) - ztc(l)) & |
---|
| 578 | - zmflux(l+1)*(ztm(l+1) - ztc(l)) & |
---|
| 579 | + zcondicea(ig,l)*(ztcond(ig,l)-ztc(l)) ) |
---|
| 580 | |
---|
| 581 | ! Tendencies on U |
---|
| 582 | pduc(ig,l) = (1/masse(l)) * & |
---|
| 583 | ( zmflux(l)*(zum(l) - zu(l))& |
---|
| 584 | - zmflux(l+1)*(zum(l+1) - zu(l)) ) |
---|
| 585 | |
---|
| 586 | ! Tendencies on V |
---|
| 587 | pdvc(ig,l) = (1/masse(l)) * & |
---|
| 588 | ( zmflux(l)*(zvm(l) - zv(l)) & |
---|
| 589 | - zmflux(l+1)*(zvm(l+1) - zv(l)) ) |
---|
| 590 | |
---|
| 591 | END DO |
---|
| 592 | |
---|
| 593 | ! Tendencies on Q |
---|
| 594 | do iq=1,nqmx |
---|
| 595 | if (iq.eq.igcm_n2) then |
---|
| 596 | ! SPECIAL Case when the tracer IS N2 : |
---|
| 597 | DO l=1,nlayer |
---|
| 598 | pdqc(ig,l,iq)= (1/masse(l)) * & |
---|
| 599 | ( zmflux(l)*(zqm(l,iq) - zq(l,iq)) & |
---|
| 600 | - zmflux(l+1)*(zqm(l+1,iq) - zq(l,iq))& |
---|
| 601 | + zcondicea(ig,l)*(zq(l,iq)-1.) ) |
---|
| 602 | END DO |
---|
| 603 | else |
---|
| 604 | DO l=1,nlayer |
---|
| 605 | pdqc(ig,l,iq)= (1/masse(l)) * & |
---|
| 606 | ( zmflux(l)*(zqm(l,iq) - zq(l,iq)) & |
---|
| 607 | - zmflux(l+1)*(zqm(l+1,iq) - zq(l,iq)) & |
---|
| 608 | + zcondicea(ig,l)*zq(l,iq) ) |
---|
| 609 | END DO |
---|
| 610 | end if |
---|
| 611 | enddo |
---|
| 612 | ! Update variables at the end of each subtimestep. |
---|
| 613 | do l=1,nlayer |
---|
| 614 | ztc(l) =ztc(l) + zdtsig(ig,l) *subtimestep |
---|
| 615 | zu(l) =zu(l) + pduc(ig,l) *subtimestep |
---|
| 616 | zv(l) =zv(l) + pdvc(ig,l) *subtimestep |
---|
| 617 | do iq=1,nqmx |
---|
| 618 | zq(l,iq) = zq(l,iq) + pdqc(ig,l,iq)*subtimestep |
---|
| 619 | enddo |
---|
| 620 | end do |
---|
| 621 | enddo ! loop on nsubtimestep |
---|
| 622 | ! Recomputing Total tendencies |
---|
| 623 | do l=1,nlayer |
---|
| 624 | pdtc(ig,l) = (ztc(l) - zt(ig,l) )/ptimestep |
---|
| 625 | pduc(ig,l) = (zu(l) - (pu(ig,l) + pdu(ig,l)*ptimestep))/ptimestep |
---|
| 626 | pdvc(ig,l) = (zv(l) - (pv(ig,l) + pdv(ig,l)*ptimestep))/ptimestep |
---|
| 627 | do iq=1,nqmx |
---|
| 628 | pdqc(ig,l,iq) = (zq(l,iq) - (pq(ig,l,iq) + pdq(ig,l,iq)*ptimestep))/ptimestep |
---|
| 629 | |
---|
| 630 | |
---|
| 631 | ! Correction temporaire |
---|
| 632 | if (iq.eq.igcm_n2) then |
---|
| 633 | if((pq(ig,l,iq) +(pdqc(ig,l,iq)+ pdq(ig,l,iq))*ptimestep) & |
---|
| 634 | .lt.0.01) then ! if n2 < 1 % ! |
---|
| 635 | pdqc(ig,l,iq)=(0.01-pq(ig,l,iq))/ptimestep-pdq(ig,l,iq) |
---|
| 636 | end if |
---|
| 637 | end if |
---|
| 638 | |
---|
| 639 | enddo |
---|
| 640 | end do |
---|
| 641 | ! *******************************TEMPORAIRE ****************** |
---|
| 642 | if (ngrid.eq.1) then |
---|
| 643 | write(*,*) 'nsubtimestep=' ,nsubtimestep |
---|
| 644 | write(*,*) 'masse avant' , (pplev(ig,1) - pplev(ig,2))/g |
---|
| 645 | write(*,*) 'masse apres' , masse(1) |
---|
| 646 | write(*,*) 'zmflux*DT, l=1' , zmflux(1)*ptimestep |
---|
| 647 | write(*,*) 'zmflux*DT, l=2' , zmflux(2)*ptimestep |
---|
| 648 | write(*,*) 'pq, l=1,2,3' , pq(1,1,1), pq(1,2,1),pq(1,3,1) |
---|
| 649 | write(*,*) 'zq, l=1,2,3' , zq(1,1), zq(2,1),zq(3,1) |
---|
| 650 | write(*,*) 'dq*Dt l=1' , pdq(1,1,1)*ptimestep |
---|
| 651 | write(*,*) 'dqcond*Dt l=1' , pdqc(1,1,1)*ptimestep |
---|
| 652 | end if |
---|
| 653 | |
---|
| 654 | ! *********************************************************** |
---|
| 655 | end if ! if (condsub) |
---|
| 656 | END DO ! loop on ig |
---|
| 657 | endif ! not fast |
---|
| 658 | |
---|
| 659 | ! ************ Option Olkin to prevent N2 effect in the south******** |
---|
| 660 | 112 continue |
---|
| 661 | if (olkin) then |
---|
| 662 | DO ig=1,ngrid |
---|
| 663 | if (lati(ig).lt.0) then |
---|
| 664 | pdtsrfc(ig) = max(0.,pdtsrfc(ig)) |
---|
| 665 | pdpsrf(ig) = 0. |
---|
| 666 | pdicen2(ig) = 0. |
---|
| 667 | do l=1,nlayer |
---|
| 668 | pdtc(ig,l) = max(0.,zdtlatent(ig,l)) |
---|
| 669 | pduc(ig,l) = 0. |
---|
| 670 | pdvc(ig,l) = 0. |
---|
| 671 | do iq=1,nqmx |
---|
| 672 | pdqc(ig,l,iq) = 0 |
---|
| 673 | enddo |
---|
| 674 | end do |
---|
| 675 | end if |
---|
| 676 | END DO |
---|
| 677 | end if |
---|
| 678 | ! ******************************************************************* |
---|
| 679 | |
---|
| 680 | ! *************************************************************** |
---|
| 681 | ! Ecriture des diagnostiques |
---|
| 682 | ! *************************************************************** |
---|
| 683 | |
---|
| 684 | ! DO l=1,nlayer |
---|
| 685 | ! DO ig=1,ngrid |
---|
| 686 | ! Taux de cond en kg.m-2.pa-1.s-1 |
---|
| 687 | ! tconda1(ig,l)=zcondicea(ig,l)/(pplev(ig,l)-pplev(ig,l+1)) |
---|
| 688 | ! Taux de cond en kg.m-3.s-1 |
---|
| 689 | ! tconda2(ig,l)=tconda1(ig,l)*pplay(ig,l)*g/(r*pt(ig,l)) |
---|
| 690 | ! END DO |
---|
| 691 | ! END DO |
---|
| 692 | ! call WRITEDIAGFI(ngridmx,'tconda1', & |
---|
| 693 | ! 'Taux de condensation N2 atmospherique /Pa', & |
---|
| 694 | ! 'kg.m-2.Pa-1.s-1',3,tconda1) |
---|
| 695 | ! call WRITEDIAGFI(ngridmx,'tconda2', & |
---|
| 696 | ! 'Taux de condensation N2 atmospherique /m', & |
---|
| 697 | ! 'kg.m-3.s-1',3,tconda2) |
---|
| 698 | |
---|
| 699 | |
---|
| 700 | return |
---|
| 701 | end subroutine condens_n2 |
---|
| 702 | |
---|
| 703 | !------------------------------------------------------------------------- |
---|
| 704 | |
---|
| 705 | real function tcond_n2(p,vmr) |
---|
| 706 | ! Calculates the condensation temperature for N2 at pressure P and vmr |
---|
| 707 | implicit none |
---|
| 708 | real, intent(in):: p,vmr |
---|
| 709 | |
---|
| 710 | ! tcond_n2 = (1.)/(0.026315-0.0011877*log(.7143*p*vmr)) |
---|
| 711 | IF (p.ge.0.529995) then |
---|
| 712 | ! tcond Fray and Schmitt for N2 phase beta (T>35.6 K) FIT TB |
---|
| 713 | ! tcond_n2 = (1.)/(1./63.1470-296.925/(2.5e5*0.98)*log(1./(0.125570*1.e5)*p*vmr)) |
---|
| 714 | tcond_n2 = (1.)/(0.01583606505-1.211938776e-3*log(7.963685594e-5*p*vmr)) |
---|
| 715 | ELSE |
---|
| 716 | ! tcond Fray and Schmitt for N2 phase alpha(T<35.6 K) FIT BT |
---|
| 717 | ! tcond_n2 = (1.)/(1./35.6-296.925/(2.5e5*1.09)*log(1./(0.508059)*p*vmr)) |
---|
| 718 | tcond_n2 = (1.)/(1./35.6-1.089633028e-3*log(1.968275338*p*vmr)) |
---|
| 719 | ENDIF |
---|
| 720 | return |
---|
| 721 | end function tcond_n2 |
---|
| 722 | |
---|
| 723 | !------------------------------------------------------------------------- |
---|
| 724 | |
---|
| 725 | real function pcond_n2(t,vmr) |
---|
| 726 | ! Calculates the condensation pressure for N2 at temperature T and vmr |
---|
| 727 | implicit none |
---|
| 728 | real, intent(in):: t,vmr |
---|
| 729 | |
---|
| 730 | ! tcond_n2 = (1.)/(0.026315-0.0011877*log(.7143*p*vmr)) |
---|
| 731 | IF (t.ge.35.6) then |
---|
| 732 | ! tcond Fray and Schmitt for N2 phase beta (T>35.6 K) FIT TB |
---|
| 733 | ! pcond_n2 = 0.125570*1.e5/vmr*exp((2.5e5*0.98)/296.925*(1./63.1470-1./t)) |
---|
| 734 | pcond_n2 = 0.125570e5/vmr*exp(825.1241896*(1./63.147-1./t)) |
---|
| 735 | ELSE |
---|
| 736 | ! tcond Fray and Schmitt for N2 phase alpha(T<35.6 K) FIT TB |
---|
| 737 | ! pcond_n2 = 0.508059/vmr*exp((2.5e5*1.09)/296.925*(1./35.6-1./t)) |
---|
| 738 | pcond_n2 = 0.508059/vmr*exp(917.7401701*(1./35.6-1./t)) |
---|
| 739 | ENDIF |
---|
| 740 | return |
---|
| 741 | end function pcond_n2 |
---|
| 742 | |
---|
| 743 | !------------------------------------------------------------------------- |
---|
| 744 | |
---|
| 745 | real function glob_average2d(var) |
---|
| 746 | ! Calculates the global average of variable var |
---|
| 747 | use comgeomfi_h |
---|
| 748 | implicit none |
---|
| 749 | #include "dimensions.h" |
---|
| 750 | #include "dimphys.h" |
---|
| 751 | |
---|
| 752 | ! INTEGER ngrid |
---|
| 753 | REAL var(ngridmx) |
---|
| 754 | INTEGER ig |
---|
| 755 | |
---|
| 756 | glob_average2d = 0. |
---|
| 757 | DO ig=2,ngridmx-1 |
---|
| 758 | glob_average2d = glob_average2d + var(ig)*area(ig) |
---|
| 759 | END DO |
---|
| 760 | glob_average2d = glob_average2d + var(1)*area(1)*iim |
---|
| 761 | glob_average2d = glob_average2d + var(ngridmx)*area(ngridmx)*iim |
---|
| 762 | glob_average2d = glob_average2d/(totarea+(area(1)+area(ngridmx))*(iim-1)) |
---|
| 763 | |
---|
| 764 | end function glob_average2d |
---|
| 765 | |
---|
| 766 | ! ***************************************************************** |
---|
| 767 | |
---|
| 768 | subroutine vl1d(nlayer,q,pente_max,masse,w,qm) |
---|
| 769 | ! |
---|
| 770 | ! Operateur de moyenne inter-couche pour calcul de transport type |
---|
| 771 | ! Van-Leer " pseudo amont " dans la verticale |
---|
| 772 | ! q,w sont des arguments d'entree pour le s-pg .... |
---|
| 773 | ! masse : masse de la couche Dp/g |
---|
| 774 | ! w : masse d'atm ``transferee'' a chaque pas de temps (kg.m-2) |
---|
| 775 | ! pente_max = 2 conseillee |
---|
| 776 | ! -------------------------------------------------------------------- |
---|
| 777 | IMPLICIT NONE |
---|
| 778 | |
---|
| 779 | #include "dimensions.h" |
---|
| 780 | |
---|
| 781 | ! Arguments: |
---|
| 782 | ! ---------- |
---|
| 783 | integer nlayer |
---|
| 784 | real masse(nlayer),pente_max |
---|
| 785 | REAL q(nlayer),qm(nlayer+1) |
---|
| 786 | REAL w(nlayer+1) |
---|
| 787 | ! |
---|
| 788 | ! Local |
---|
| 789 | ! --------- |
---|
| 790 | ! |
---|
| 791 | INTEGER l |
---|
| 792 | ! |
---|
| 793 | real dzq(nlayer),dzqw(nlayer),adzqw(nlayer),dzqmax |
---|
| 794 | real sigw, Mtot, MQtot |
---|
| 795 | integer m |
---|
| 796 | |
---|
| 797 | |
---|
| 798 | ! On oriente tout dans le sens de la pression |
---|
| 799 | ! W > 0 WHEN DOWN !!!!!!!!!!!!! |
---|
| 800 | |
---|
| 801 | do l=2,nlayer |
---|
| 802 | dzqw(l)=q(l-1)-q(l) |
---|
| 803 | adzqw(l)=abs(dzqw(l)) |
---|
| 804 | enddo |
---|
| 805 | |
---|
| 806 | do l=2,nlayer-1 |
---|
| 807 | if(dzqw(l)*dzqw(l+1).gt.0.) then |
---|
| 808 | dzq(l)=0.5*(dzqw(l)+dzqw(l+1)) |
---|
| 809 | else |
---|
| 810 | dzq(l)=0. |
---|
| 811 | endif |
---|
| 812 | dzqmax=pente_max*min(adzqw(l),adzqw(l+1)) |
---|
| 813 | dzq(l)=sign(min(abs(dzq(l)),dzqmax),dzq(l)) |
---|
| 814 | enddo |
---|
| 815 | |
---|
| 816 | dzq(1)=0. |
---|
| 817 | dzq(nlayer)=0. |
---|
| 818 | |
---|
| 819 | do l = 1,nlayer-1 |
---|
| 820 | |
---|
| 821 | ! Regular scheme (transfered mass < layer mass) |
---|
| 822 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 823 | if(w(l+1).gt.0. .and. w(l+1).le.masse(l+1)) then |
---|
| 824 | sigw=w(l+1)/masse(l+1) |
---|
| 825 | qm(l+1)=(q(l+1)+0.5*(1.-sigw)*dzq(l+1)) |
---|
| 826 | else if(w(l+1).le.0. .and. -w(l+1).le.masse(l)) then |
---|
| 827 | sigw=w(l+1)/masse(l) |
---|
| 828 | qm(l+1)=(q(l)-0.5*(1.+sigw)*dzq(l)) |
---|
| 829 | |
---|
| 830 | ! Extended scheme (transfered mass > layer mass) |
---|
| 831 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 832 | else if(w(l+1).gt.0.) then |
---|
| 833 | m=l+1 |
---|
| 834 | Mtot = masse(m) |
---|
| 835 | MQtot = masse(m)*q(m) |
---|
| 836 | !if (m.lt.nlayer) then ! because some compilers will have problems |
---|
| 837 | ! ! evaluating masse(nlayer+1) |
---|
| 838 | do while ((m.lt.nlayer).and.(w(l+1).gt.(Mtot+masse(m+1)))) |
---|
| 839 | m=m+1 |
---|
| 840 | Mtot = Mtot + masse(m) |
---|
| 841 | MQtot = MQtot + masse(m)*q(m) |
---|
| 842 | ! if (m.eq.nlayer) exit |
---|
| 843 | end do |
---|
| 844 | !endif |
---|
| 845 | if (m.lt.nlayer) then |
---|
| 846 | sigw=(w(l+1)-Mtot)/masse(m+1) |
---|
| 847 | qm(l+1)= (1/w(l+1))*(MQtot + (w(l+1)-Mtot)* & |
---|
| 848 | (q(m+1)+0.5*(1.-sigw)*dzq(m+1)) ) |
---|
| 849 | else |
---|
| 850 | w(l+1) = Mtot |
---|
| 851 | qm(l+1) = Mqtot / Mtot |
---|
| 852 | write(*,*) 'top layer is disapearing !' |
---|
| 853 | stop |
---|
| 854 | end if |
---|
| 855 | else ! if(w(l+1).lt.0) |
---|
| 856 | m = l-1 |
---|
| 857 | Mtot = masse(m+1) |
---|
| 858 | MQtot = masse(m+1)*q(m+1) |
---|
| 859 | if (m.gt.0) then ! because some compilers will have problems |
---|
| 860 | ! evaluating masse(0) |
---|
| 861 | do while ((m.gt.0).and.(-w(l+1).gt.(Mtot+masse(m)))) |
---|
| 862 | m=m-1 |
---|
| 863 | Mtot = Mtot + masse(m+1) |
---|
| 864 | MQtot = MQtot + masse(m+1)*q(m+1) |
---|
| 865 | if (m.eq.0) exit |
---|
| 866 | end do |
---|
| 867 | endif |
---|
| 868 | if (m.gt.0) then |
---|
| 869 | sigw=(w(l+1)+Mtot)/masse(m) |
---|
| 870 | qm(l+1)= (-1/w(l+1))*(MQtot + (-w(l+1)-Mtot)* & |
---|
| 871 | (q(m)-0.5*(1.+sigw)*dzq(m)) ) |
---|
| 872 | else |
---|
| 873 | qm(l+1)= (-1/w(l+1))*(MQtot + (-w(l+1)-Mtot)*qm(1)) |
---|
| 874 | end if |
---|
| 875 | end if |
---|
| 876 | enddo |
---|
| 877 | |
---|
| 878 | return |
---|
| 879 | end subroutine vl1d |
---|
| 880 | |
---|