[3175] | 1 | subroutine callcorrk(icount,ngrid,nlayer,pq,nq,qsurf, |
---|
| 2 | & albedo,emis,mu0,pplev,pplay,pt, |
---|
| 3 | & tsurf,fract,dist_star,igout,aerosol,cpp3D, |
---|
| 4 | & dtlw,dtsw,fluxsurf_lw, |
---|
| 5 | & fluxsurf_sw,fluxtop_lw,fluxtop_sw,fluxtop_dn, |
---|
| 6 | & reffrad,tau_col,ptime,pday,firstcall,lastcall,zzlay) |
---|
[3275] | 7 | |
---|
[3175] | 8 | use radinc_h |
---|
| 9 | use radcommon_h |
---|
[3275] | 10 | use ioipsl_getincom |
---|
[3175] | 11 | use radii_mod |
---|
| 12 | use aerosol_mod |
---|
| 13 | use datafile_mod, only: datadir |
---|
| 14 | |
---|
| 15 | implicit none |
---|
| 16 | |
---|
| 17 | !================================================================== |
---|
| 18 | ! |
---|
| 19 | ! Purpose |
---|
| 20 | ! ------- |
---|
| 21 | ! Solve the radiative transfer using the correlated-k method for |
---|
| 22 | ! the gaseous absorption and the Toon et al. (1989) method for |
---|
| 23 | ! scatttering due to aerosols. |
---|
| 24 | ! |
---|
| 25 | ! Authors |
---|
[3275] | 26 | ! ------- |
---|
[3175] | 27 | ! Emmanuel 01/2001, Forget 09/2001 |
---|
| 28 | ! Robin Wordsworth (2009) |
---|
| 29 | ! Modif Pluton Tanguy Bertrand 2017 |
---|
| 30 | !================================================================== |
---|
| 31 | |
---|
| 32 | #include "dimphys.h" |
---|
| 33 | #include "comcstfi.h" |
---|
| 34 | #include "callkeys.h" |
---|
| 35 | #include "tracer.h" |
---|
| 36 | |
---|
| 37 | !----------------------------------------------------------------------- |
---|
| 38 | ! Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid |
---|
[3275] | 39 | ! Layer #1 is the layer near the ground. |
---|
[3175] | 40 | ! Layer #nlayermx is the layer at the top. |
---|
| 41 | |
---|
| 42 | ! INPUT |
---|
| 43 | INTEGER icount |
---|
| 44 | INTEGER ngrid,nlayer |
---|
| 45 | INTEGER igout |
---|
[3275] | 46 | REAL aerosol(ngrid,nlayermx,naerkind) ! aerosol opacity tau |
---|
[3175] | 47 | REAL albedo(ngrid) ! SW albedo |
---|
| 48 | REAL emis(ngrid) ! LW emissivity |
---|
| 49 | REAL pplay(ngrid,nlayermx) ! pres. level in GCM mid of layer |
---|
| 50 | REAL zzlay(ngrid,nlayermx) ! altitude at the middle of the layers |
---|
| 51 | REAL pplev(ngrid,nlayermx+1) ! pres. level at GCM layer boundaries |
---|
| 52 | |
---|
| 53 | REAL pt(ngrid,nlayermx) ! air temperature (K) |
---|
| 54 | REAL tsurf(ngrid) ! surface temperature (K) |
---|
| 55 | REAL dist_star,mu0(ngrid) ! distance star-planet (AU) |
---|
| 56 | REAL fract(ngrid) ! fraction of day |
---|
| 57 | |
---|
| 58 | ! Globally varying aerosol optical properties on GCM grid |
---|
| 59 | ! Not needed everywhere so not in radcommon_h |
---|
| 60 | REAL :: QVISsQREF3d(ngridmx,nlayermx,L_NSPECTV,naerkind) |
---|
| 61 | REAL :: omegaVIS3d(ngridmx,nlayermx,L_NSPECTV,naerkind) |
---|
| 62 | REAL :: gVIS3d(ngridmx,nlayermx,L_NSPECTV,naerkind) |
---|
| 63 | |
---|
| 64 | REAL :: QIRsQREF3d(ngridmx,nlayermx,L_NSPECTI,naerkind) |
---|
| 65 | REAL :: omegaIR3d(ngridmx,nlayermx,L_NSPECTI,naerkind) |
---|
| 66 | REAL :: gIR3d(ngridmx,nlayermx,L_NSPECTI,naerkind) |
---|
| 67 | |
---|
| 68 | REAL :: QREFvis3d(ngridmx,nlayermx,naerkind) |
---|
| 69 | REAL :: QREFir3d(ngridmx,nlayermx,naerkind) |
---|
| 70 | |
---|
| 71 | ! REAL :: omegaREFvis3d(ngridmx,nlayermx,naerkind) |
---|
| 72 | ! REAL :: omegaREFir3d(ngridmx,nlayermx,naerkind) ! not sure of the point of these... |
---|
| 73 | |
---|
| 74 | REAL reffrad(ngrid,nlayer,naerkind) |
---|
| 75 | REAL nueffrad(ngrid,nlayer,naerkind) |
---|
| 76 | REAL profhaze(ngrid,nlayer) ! TB17 fixed profile of haze mmr |
---|
| 77 | |
---|
| 78 | ! OUTPUT |
---|
| 79 | REAL dtsw(ngridmx,nlayermx) ! heating rate (K/s) due to SW |
---|
| 80 | REAL dtlw(ngridmx,nlayermx) ! heating rate (K/s) due to LW |
---|
| 81 | REAL fluxsurf_lw(ngridmx) ! incident LW flux to surf (W/m2) |
---|
| 82 | REAL fluxtop_lw(ngridmx) ! outgoing LW flux to space (W/m2) |
---|
| 83 | REAL fluxsurf_sw(ngridmx) ! incident SW flux to surf (W/m2) |
---|
| 84 | REAL fluxtop_sw(ngridmx) ! outgoing LW flux to space (W/m2) |
---|
| 85 | REAL fluxtop_dn(ngridmx) ! incident top of atmosphere SW flux (W/m2) |
---|
| 86 | |
---|
| 87 | !----------------------------------------------------------------------- |
---|
| 88 | ! Declaration of the variables required by correlated-k subroutines |
---|
| 89 | ! Numbered from top to bottom unlike in the GCM! |
---|
| 90 | |
---|
| 91 | REAL*8 tmid(L_LEVELS),pmid(L_LEVELS) |
---|
| 92 | REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS) |
---|
| 93 | |
---|
| 94 | ! Optical values for the optci/cv subroutines |
---|
| 95 | REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV) |
---|
| 96 | REAL*8 dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 97 | REAL*8 dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 98 | REAL*8 cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 99 | REAL*8 cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 100 | REAL*8 wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 101 | REAL*8 wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 102 | REAL*8 tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
| 103 | REAL*8 taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
| 104 | REAL*8 taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
| 105 | |
---|
| 106 | REAL*8 tauaero(L_LEVELS+1,naerkind) |
---|
| 107 | REAL*8 nfluxtopv,nfluxtopi,nfluxtop |
---|
| 108 | real*8 NFLUXTOPV_nu(L_NSPECTV) |
---|
| 109 | real*8 NFLUXTOPI_nu(L_NSPECTI) |
---|
| 110 | real*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) ! for 1D diagnostic |
---|
| 111 | REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD) |
---|
[3275] | 112 | real*8 fmneti_nu(L_NLAYRAD,L_NSPECTI) ! |
---|
| 113 | real*8 fmnetv_nu(L_NLAYRAD,L_NSPECTV) ! |
---|
[3175] | 114 | REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD) |
---|
| 115 | REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD) |
---|
| 116 | REAL*8 albi,albv,acosz |
---|
| 117 | |
---|
| 118 | INTEGER ig,l,k,nw,iaer,irad |
---|
| 119 | |
---|
| 120 | real fluxtoplanet |
---|
| 121 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1) |
---|
| 122 | real*8 taugsurfi(L_NSPECTI,L_NGAUSS-1) |
---|
| 123 | |
---|
| 124 | real*8 qvar(L_LEVELS) ! mixing ratio of variable component |
---|
| 125 | REAL pq(ngridmx,nlayer,nq) |
---|
| 126 | REAL qsurf(ngridmx,nqmx) ! tracer on surface (e.g. kg.m-2) |
---|
| 127 | integer nq |
---|
| 128 | |
---|
| 129 | ! Local aerosol optical properties for each column on RADIATIVE grid |
---|
| 130 | real*8 QXVAER(L_LEVELS+1,L_NSPECTV,naerkind) |
---|
| 131 | real*8 QSVAER(L_LEVELS+1,L_NSPECTV,naerkind) |
---|
| 132 | real*8 GVAER(L_LEVELS+1,L_NSPECTV,naerkind) |
---|
| 133 | real*8 QXIAER(L_LEVELS+1,L_NSPECTI,naerkind) |
---|
| 134 | real*8 QSIAER(L_LEVELS+1,L_NSPECTI,naerkind) |
---|
| 135 | real*8 GIAER(L_LEVELS+1,L_NSPECTI,naerkind) |
---|
| 136 | |
---|
| 137 | save qxvaer, qsvaer, gvaer |
---|
| 138 | save qxiaer, qsiaer, giaer |
---|
[3275] | 139 | save QREFvis3d, QREFir3d |
---|
[3175] | 140 | |
---|
| 141 | REAL tau_col(ngrid) ! diagnostic from aeropacity |
---|
| 142 | |
---|
| 143 | ! Misc. |
---|
| 144 | logical firstcall, lastcall, nantest |
---|
| 145 | real*8 tempv(L_NSPECTV) |
---|
| 146 | real*8 tempi(L_NSPECTI) |
---|
| 147 | real*8 temp,temp1,temp2,pweight |
---|
| 148 | character(len=10) :: tmp1 |
---|
| 149 | character(len=10) :: tmp2 |
---|
| 150 | |
---|
| 151 | ! for fixed vapour profiles |
---|
| 152 | real RH |
---|
| 153 | real*8 pq_temp(nlayer) |
---|
| 154 | real ptemp, Ttemp, qsat |
---|
| 155 | |
---|
| 156 | ! for OLR spec |
---|
| 157 | integer OLRcount |
---|
| 158 | save OLRcount |
---|
| 159 | integer OLRcount2 |
---|
| 160 | save OLRcount2 |
---|
| 161 | character(len=2) :: tempOLR |
---|
| 162 | character(len=30) :: filenomOLR |
---|
| 163 | real ptime, pday |
---|
| 164 | |
---|
| 165 | REAL epsi_ch4 |
---|
| 166 | SAVE epsi_ch4 |
---|
| 167 | |
---|
| 168 | logical diagrad_OLRz,diagrad_OLR,diagrad_surf,diagrad_rates |
---|
| 169 | real OLR_nu(ngrid,L_NSPECTI) |
---|
| 170 | |
---|
| 171 | ! Allow variations in cp with location |
---|
| 172 | REAL cpp3D(ngridmx,nlayermx) ! specific heat capacity at const. pressure |
---|
| 173 | |
---|
| 174 | ! NLTE factor for CH4 |
---|
| 175 | real eps_nlte_sw23(ngridmx,nlayermx) ! CH4 NLTE efficiency factor for zdtsw |
---|
| 176 | real eps_nlte_sw33(ngridmx,nlayermx) ! CH4 NLTE efficiency factor for zdtsw |
---|
| 177 | real eps_nlte_lw(ngridmx,nlayermx) ! CH4 NLTE efficiency factor for zdtsw |
---|
| 178 | REAL dtlw_nu(nlayermx,L_NSPECTI) ! heating rate (K/s) due to LW in spectral bands |
---|
| 179 | REAL dtsw_nu(nlayermx,L_NSPECTV) ! heating rate (K/s) due to SW in spectral bands |
---|
| 180 | |
---|
| 181 | REAL dpp ! intermediate |
---|
| 182 | |
---|
| 183 | REAL dtlw_co(ngridmx, nlayermx) ! cooling rate (K/s) due to CO (diagnostic) |
---|
| 184 | REAL dtlw_hcn_c2h2(ngridmx, nlayermx) ! cooling rate (K/s) due to C2H2/HCN (diagnostic) |
---|
| 185 | |
---|
| 186 | !!read altitudes and vmrch4 |
---|
| 187 | integer Nfine,ifine |
---|
| 188 | parameter(Nfine=701) |
---|
| 189 | character(len=100) :: file_path |
---|
| 190 | real,save :: levdat(Nfine),vmrdat(Nfine) |
---|
| 191 | real :: vmrch4(ngridmx,nlayermx) ! vmr ch4 from vmrch4_proffix |
---|
| 192 | |
---|
| 193 | !======================================================================= |
---|
| 194 | ! Initialization on first call |
---|
| 195 | |
---|
| 196 | CALL zerophys((L_LEVELS+1)*L_NSPECTV*naerkind,qxvaer) |
---|
| 197 | CALL zerophys((L_LEVELS+1)*L_NSPECTV*naerkind,qsvaer) |
---|
| 198 | CALL zerophys((L_LEVELS+1)*L_NSPECTV*naerkind,gvaer) |
---|
| 199 | |
---|
| 200 | CALL zerophys((L_LEVELS+1)*L_NSPECTI*naerkind,qxiaer) |
---|
| 201 | CALL zerophys((L_LEVELS+1)*L_NSPECTI*naerkind,qsiaer) |
---|
| 202 | CALL zerophys((L_LEVELS+1)*L_NSPECTI*naerkind,giaer) |
---|
| 203 | |
---|
| 204 | |
---|
| 205 | if(firstcall) then |
---|
| 206 | |
---|
| 207 | print*, "callcorrk: Correlated-k data folder:",trim(datadir) |
---|
| 208 | call getin("corrkdir",corrkdir) |
---|
| 209 | print*, "corrkdir = ",corrkdir |
---|
| 210 | write( tmp1, '(i3)' ) L_NSPECTI |
---|
| 211 | write( tmp2, '(i3)' ) L_NSPECTV |
---|
| 212 | banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2)) |
---|
| 213 | banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir)) |
---|
| 214 | |
---|
| 215 | print*,'starting sugas' |
---|
| 216 | call sugas_corrk ! set up gaseous absorption properties |
---|
| 217 | print*,'starting setspi' |
---|
| 218 | call setspi ! basic infrared properties |
---|
| 219 | print*,'starting setspv' |
---|
| 220 | call setspv ! basic visible properties |
---|
| 221 | |
---|
[3275] | 222 | ! Radiative Hazes |
---|
[3175] | 223 | if (aerohaze) then |
---|
| 224 | |
---|
| 225 | print*,'aerohaze: starting suaer_corrk' |
---|
| 226 | call suaer_corrk ! set up aerosol optical properties |
---|
| 227 | print*,'ending suaer_corrk' |
---|
| 228 | |
---|
| 229 | !-------------------------------------------------- |
---|
| 230 | ! Effective radius and variance of the aerosols |
---|
| 231 | !-------------------------------------------------- |
---|
| 232 | do iaer=1,naerkind |
---|
[3275] | 233 | if ((iaer.eq.iaero_haze)) then |
---|
| 234 | call haze_reffrad(ngrid,nlayer,reffrad(1,1,iaer), |
---|
[3175] | 235 | & nueffrad(1,1,iaer)) |
---|
| 236 | endif |
---|
| 237 | end do !iaer=1,naerkind. |
---|
| 238 | if (haze_radproffix) then |
---|
| 239 | print*, 'haze_radproffix=T : fixed profile for haze rad' |
---|
[3275] | 240 | else |
---|
[3175] | 241 | print*,'reffrad haze:',reffrad(1,1,iaero_haze) |
---|
| 242 | print*,'nueff haze',nueffrad(1,1,iaero_haze) |
---|
| 243 | endif |
---|
| 244 | endif ! radiative haze |
---|
| 245 | |
---|
| 246 | Cmk= 0.01 * 1.0 / (g * mugaz * 1.672621e-27) ! q_main=1.0 assumed |
---|
| 247 | |
---|
| 248 | epsi_ch4=mmol(igcm_ch4_gas)/mmol(igcm_n2) |
---|
| 249 | |
---|
| 250 | ! If fixed profile of CH4 gas |
---|
| 251 | IF (vmrch4_proffix) then |
---|
| 252 | file_path=trim(datadir)//'/gas_prop/vmr_ch4.txt' |
---|
| 253 | open(115,file=file_path,form='formatted') |
---|
| 254 | do ifine=1,Nfine |
---|
| 255 | read(115,*) levdat(ifine), vmrdat(ifine) |
---|
| 256 | enddo |
---|
| 257 | close(115) |
---|
| 258 | ENDIF |
---|
| 259 | |
---|
| 260 | end if ! firstcall |
---|
| 261 | |
---|
| 262 | !======================================================================= |
---|
| 263 | |
---|
| 264 | ! L_NSPECTV is the number of Visual(or Solar) spectral intervals |
---|
| 265 | ! how much light we get |
---|
| 266 | fluxtoplanet=0 |
---|
| 267 | DO nw=1,L_NSPECTV |
---|
| 268 | stel(nw)=stellarf(nw)/(dist_star**2) !flux |
---|
| 269 | fluxtoplanet=fluxtoplanet + stel(nw) |
---|
| 270 | END DO |
---|
| 271 | |
---|
| 272 | !----------------------------------------------------------------------- |
---|
| 273 | ! Get 3D aerosol optical properties. |
---|
[3275] | 274 | ! ici on selectionne les proprietes opt correspondant a reffrad |
---|
[3175] | 275 | if (aerohaze) then |
---|
| 276 | !-------------------------------------------------- |
---|
| 277 | ! Effective radius and variance of the aerosols if profil non |
---|
| 278 | ! uniform. Called only if aerohaze=true. |
---|
| 279 | !-------------------------------------------------- |
---|
| 280 | if (haze_radproffix) then |
---|
| 281 | call haze_reffrad_fix(ngrid,nlayer,zzlay, |
---|
| 282 | & reffrad,nueffrad) |
---|
| 283 | endif |
---|
| 284 | |
---|
[3275] | 285 | call aeroptproperties(ngrid,nlayer,reffrad,nueffrad, |
---|
| 286 | & QVISsQREF3d,omegaVIS3d,gVIS3d, |
---|
| 287 | & QIRsQREF3d,omegaIR3d,gIR3d, |
---|
[3175] | 288 | & QREFvis3d,QREFir3d) |
---|
| 289 | |
---|
| 290 | ! Get aerosol optical depths. |
---|
[3275] | 291 | call aeropacity(ngrid,nlayer,nq,pplay,pplev,pq,aerosol, |
---|
| 292 | & reffrad,QREFvis3d,QREFir3d, |
---|
[3175] | 293 | & tau_col) |
---|
| 294 | endif |
---|
| 295 | |
---|
| 296 | !----------------------------------------------------------------------- |
---|
| 297 | ! Prepare CH4 mixing ratio for radiative transfer |
---|
| 298 | IF (methane) then |
---|
| 299 | vmrch4(:,:)=0. |
---|
[3275] | 300 | |
---|
[3175] | 301 | if (ch4fix) then |
---|
| 302 | if (vmrch4_proffix) then |
---|
| 303 | !! Interpolate on the model vertical grid |
---|
| 304 | do ig=1,ngridmx |
---|
[3275] | 305 | ! CALL interp_line(levdat,vmrdat,Nfine, |
---|
| 306 | ! & zzlay(ig,:)/1000.,vmrch4(ig,:),nlayer) |
---|
[3175] | 307 | enddo |
---|
| 308 | else |
---|
| 309 | vmrch4(:,:)=vmrch4fix |
---|
| 310 | endif |
---|
| 311 | else |
---|
| 312 | vmrch4(:,:)=pq(:,:,igcm_ch4_gas)*100.* |
---|
| 313 | & mmol(igcm_n2)/mmol(igcm_ch4_gas) |
---|
| 314 | endif |
---|
| 315 | ENDIF |
---|
| 316 | |
---|
| 317 | ! Prepare NON LTE correction in Pluto atmosphere |
---|
| 318 | IF (nlte) then |
---|
[3373] | 319 | CALL nlte_ch4(ngrid,nlayer,nq,pplay,pplev,pt,vmrch4, |
---|
| 320 | & eps_nlte_sw23,eps_nlte_sw33,eps_nlte_lw) |
---|
[3175] | 321 | ENDIF |
---|
| 322 | c Net atmospheric radiative cooling rate from C2H2 (K.s-1): |
---|
| 323 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 324 | dtlw_hcn_c2h2=0. |
---|
| 325 | if (cooling) then |
---|
| 326 | CALL cooling_hcn_c2h2(ngrid,nlayer,pplay, |
---|
| 327 | & pt,dtlw_hcn_c2h2) |
---|
| 328 | endif |
---|
| 329 | |
---|
| 330 | !----------------------------------------------------------------------- |
---|
| 331 | !======================================================================= |
---|
| 332 | !----------------------------------------------------------------------- |
---|
| 333 | ! starting big loop over every GCM column |
---|
| 334 | do ig=1,ngridmx |
---|
| 335 | |
---|
| 336 | !======================================================================= |
---|
| 337 | ! Transformation of the GCM variables |
---|
| 338 | |
---|
| 339 | !----------------------------------------------------------------------- |
---|
| 340 | ! Aerosol optical properties Qext, Qscat and g on each band |
---|
| 341 | ! The transformation in the vertical is the same as for temperature |
---|
| 342 | if (aerohaze) then |
---|
| 343 | ! shortwave |
---|
| 344 | do iaer=1,naerkind |
---|
[3275] | 345 | DO nw=1,L_NSPECTV |
---|
[3175] | 346 | do l=1,nlayermx |
---|
| 347 | |
---|
[3275] | 348 | temp1=QVISsQREF3d(ig,nlayermx+1-l,nw,iaer) |
---|
[3175] | 349 | $ *QREFvis3d(ig,nlayermx+1-l,iaer) |
---|
| 350 | |
---|
[3275] | 351 | temp2=QVISsQREF3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
[3175] | 352 | $ *QREFvis3d(ig,max(nlayermx-l,1),iaer) |
---|
| 353 | qxvaer(2*l,nw,iaer) = temp1 |
---|
| 354 | qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 355 | |
---|
| 356 | temp1=temp1*omegavis3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 357 | temp2=temp2*omegavis3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 358 | |
---|
| 359 | qsvaer(2*l,nw,iaer) = temp1 |
---|
| 360 | qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 361 | |
---|
| 362 | temp1=gvis3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 363 | temp2=gvis3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 364 | |
---|
| 365 | gvaer(2*l,nw,iaer) = temp1 |
---|
| 366 | gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 367 | |
---|
| 368 | end do |
---|
| 369 | qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer) |
---|
| 370 | qxvaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 371 | |
---|
| 372 | qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer) |
---|
| 373 | qsvaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 374 | |
---|
| 375 | gvaer(1,nw,iaer)=gvaer(2,nw,iaer) |
---|
| 376 | gvaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 377 | end do |
---|
| 378 | |
---|
| 379 | ! longwave |
---|
[3275] | 380 | DO nw=1,L_NSPECTI |
---|
[3175] | 381 | do l=1,nlayermx |
---|
| 382 | |
---|
[3275] | 383 | temp1=QIRsQREF3d(ig,nlayermx+1-l,nw,iaer) |
---|
[3175] | 384 | $ *QREFir3d(ig,nlayermx+1-l,iaer) |
---|
| 385 | |
---|
[3275] | 386 | temp2=QIRsQREF3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
[3175] | 387 | $ *QREFir3d(ig,max(nlayermx-l,1),iaer) |
---|
| 388 | |
---|
| 389 | qxiaer(2*l,nw,iaer) = temp1 |
---|
| 390 | qxiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 391 | |
---|
| 392 | temp1=temp1*omegair3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 393 | temp2=temp2*omegair3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 394 | |
---|
| 395 | qsiaer(2*l,nw,iaer) = temp1 |
---|
| 396 | qsiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 397 | |
---|
| 398 | temp1=gir3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 399 | temp2=gir3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 400 | |
---|
| 401 | giaer(2*l,nw,iaer) = temp1 |
---|
| 402 | giaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 403 | |
---|
| 404 | end do |
---|
| 405 | |
---|
| 406 | qxiaer(1,nw,iaer)=qxiaer(2,nw,iaer) |
---|
| 407 | qxiaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 408 | |
---|
| 409 | qsiaer(1,nw,iaer)=qsiaer(2,nw,iaer) |
---|
| 410 | qsiaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 411 | |
---|
| 412 | giaer(1,nw,iaer)=giaer(2,nw,iaer) |
---|
| 413 | giaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 414 | end do |
---|
| 415 | end do ! naerkind |
---|
| 416 | |
---|
| 417 | ! Test / Correct for freaky s. s. albedo values. |
---|
| 418 | do iaer=1,naerkind |
---|
| 419 | do k=1,L_LEVELS |
---|
| 420 | |
---|
| 421 | do nw=1,L_NSPECTV |
---|
| 422 | if(qsvaer(k,nw,iaer).gt.1.05*qxvaer(k,nw,iaer))then |
---|
[3275] | 423 | print*,'Serious problems with qsvaer values' |
---|
[3175] | 424 | print*,'in callcorrk' |
---|
| 425 | call abort |
---|
| 426 | endif |
---|
| 427 | if(qsvaer(k,nw,iaer).gt.qxvaer(k,nw,iaer))then |
---|
| 428 | qsvaer(k,nw,iaer)=qxvaer(k,nw,iaer) |
---|
| 429 | endif |
---|
| 430 | end do |
---|
| 431 | |
---|
[3275] | 432 | do nw=1,L_NSPECTI |
---|
[3175] | 433 | if(qsiaer(k,nw,iaer).gt.1.05*qxiaer(k,nw,iaer))then |
---|
| 434 | print*,'Serious problems with qsiaer values' |
---|
| 435 | print*,'in callcorrk' |
---|
| 436 | call abort |
---|
| 437 | endif |
---|
| 438 | if(qsiaer(k,nw,iaer).gt.qxiaer(k,nw,iaer))then |
---|
| 439 | qsiaer(k,nw,iaer)=qxiaer(k,nw,iaer) |
---|
| 440 | endif |
---|
| 441 | end do |
---|
| 442 | end do ! levels |
---|
| 443 | |
---|
| 444 | end do ! naerkind |
---|
| 445 | |
---|
| 446 | endif ! aerohaze |
---|
| 447 | |
---|
| 448 | !----------------------------------------------------------------------- |
---|
| 449 | ! Aerosol optical depths |
---|
[3275] | 450 | IF (aerohaze) THEN |
---|
| 451 | do iaer=1,naerkind ! heritage generic |
---|
[3175] | 452 | do k=0,nlayer-1 |
---|
| 453 | pweight= |
---|
| 454 | $ (pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/ |
---|
| 455 | $ (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1)) |
---|
[3275] | 456 | if (QREFvis3d(ig,L_NLAYRAD-k,iaer).ne.0) then |
---|
[3175] | 457 | temp=aerosol(ig,L_NLAYRAD-k,iaer)/ |
---|
| 458 | $ QREFvis3d(ig,L_NLAYRAD-k,iaer) |
---|
| 459 | else |
---|
| 460 | print*, 'stop corrk',k,QREFvis3d(ig,L_NLAYRAD-k,iaer) |
---|
| 461 | stop |
---|
| 462 | end if |
---|
| 463 | tauaero(2*k+2,iaer)=max(temp*pweight,0.d0) |
---|
| 464 | tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.d0) ! tauaero en L_LEVELS soit deux fois plus que nlayer |
---|
| 465 | end do |
---|
| 466 | |
---|
| 467 | ! generic New boundary conditions |
---|
| 468 | tauaero(1,iaer) = tauaero(2,iaer) |
---|
| 469 | !tauaero(L_LEVELS+1,iaer) = tauaero(L_LEVELS,iaer) |
---|
| 470 | !tauaero(1,iaer) = 0. |
---|
| 471 | !tauaero(L_LEVELS+1,iaer) = 0. |
---|
| 472 | |
---|
| 473 | end do ! naerkind |
---|
| 474 | ELSE |
---|
| 475 | tauaero(:,:)=0 |
---|
| 476 | ENDIF |
---|
| 477 | !----------------------------------------------------------------------- |
---|
| 478 | |
---|
| 479 | ! Albedo and emissivity |
---|
| 480 | albi=1-emis(ig) ! longwave |
---|
[3275] | 481 | albv=albedo(ig) ! shortwave |
---|
[3175] | 482 | acosz=mu0(ig) ! cosine of sun incident angle |
---|
| 483 | |
---|
| 484 | !----------------------------------------------------------------------- |
---|
[3275] | 485 | ! Methane vapour |
---|
[3175] | 486 | |
---|
| 487 | c qvar = mixing ratio |
---|
| 488 | c L_LEVELS (51) different de GCM levels (25) . L_LEVELS = 2*(llm-1)+3=2*(ngridmx-1)+3 |
---|
| 489 | c L_REFVAR The number of different mixing ratio values in |
---|
| 490 | c datagcm/composition.in for the k-coefficients. |
---|
| 491 | qvar(:)=0. |
---|
[3275] | 492 | IF (methane) then |
---|
[3175] | 493 | |
---|
| 494 | do l=1,nlayer |
---|
| 495 | qvar(2*l) = vmrch4(ig,nlayer+1-l)/100.* |
---|
| 496 | & mmol(igcm_ch4_gas)/mmol(igcm_n2) |
---|
| 497 | qvar(2*l+1) = ((vmrch4(ig,nlayer+1-l)+vmrch4(ig, |
---|
| 498 | & max(nlayer-l,1)))/2.)/100.* |
---|
| 499 | & mmol(igcm_ch4_gas)/mmol(igcm_n2) |
---|
| 500 | end do |
---|
| 501 | qvar(1)=qvar(2) |
---|
| 502 | |
---|
| 503 | |
---|
| 504 | ! Keep values inside limits for which we have radiative transfer coefficients |
---|
| 505 | if(L_REFVAR.gt.1)then ! there was a bug here! |
---|
| 506 | do k=1,L_LEVELS |
---|
| 507 | if(qvar(k).lt.wrefvar(1))then |
---|
| 508 | qvar(k)=wrefvar(1)+1.0e-8 |
---|
| 509 | elseif(qvar(k).gt.wrefvar(L_REFVAR))then |
---|
| 510 | qvar(k)=wrefvar(L_REFVAR)-1.0e-8 |
---|
| 511 | endif |
---|
| 512 | end do |
---|
| 513 | endif |
---|
| 514 | |
---|
| 515 | ! IMPORTANT: Now convert from kg/kg to mol/mol |
---|
| 516 | do k=1,L_LEVELS |
---|
| 517 | qvar(k) = qvar(k)/(epsi_ch4+qvar(k)*(1.-epsi_ch4)) |
---|
| 518 | end do |
---|
| 519 | ENDIF ! methane |
---|
| 520 | |
---|
| 521 | !----------------------------------------------------------------------- |
---|
| 522 | ! Pressure and temperature |
---|
| 523 | |
---|
| 524 | ! generic updated: |
---|
| 525 | DO l=1,nlayer |
---|
| 526 | plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep |
---|
| 527 | plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep |
---|
| 528 | tlevrad(2*l) = pt(ig,nlayer+1-l) |
---|
| 529 | tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2 |
---|
| 530 | END DO |
---|
| 531 | |
---|
| 532 | plevrad(1) = 0. |
---|
| 533 | plevrad(2) = 0. !! Trick to have correct calculations of fluxes |
---|
| 534 | ! in gflux(i/v).F, but the pmid levels are not impacted by this change. |
---|
| 535 | |
---|
| 536 | tlevrad(1) = tlevrad(2) |
---|
| 537 | tlevrad(2*nlayer+1)=tsurf(ig) |
---|
| 538 | |
---|
| 539 | pmid(1) = max(pgasmin,0.0001*plevrad(3)) |
---|
| 540 | pmid(2) = pmid(1) |
---|
| 541 | |
---|
| 542 | tmid(1) = tlevrad(2) |
---|
| 543 | tmid(2) = tmid(1) |
---|
| 544 | |
---|
| 545 | ! INI |
---|
| 546 | ! DO l=1,nlayer |
---|
| 547 | ! plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep |
---|
| 548 | ! plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep |
---|
| 549 | ! tlevrad(2*l) = pt(ig,nlayer+1-l) |
---|
| 550 | ! tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig, |
---|
| 551 | ! $ max(nlayer-l,1)))/2 |
---|
| 552 | ! END DO |
---|
| 553 | |
---|
| 554 | !! following lines changed in 03/2015 to solve upper atmosphere bug |
---|
| 555 | ! plevrad(1) = 0. |
---|
[3275] | 556 | ! plevrad(2) = max(pgasmin,0.0001*plevrad(3)) |
---|
[3175] | 557 | ! |
---|
| 558 | ! tlevrad(1) = tlevrad(2) |
---|
| 559 | ! tlevrad(2*nlayermx+1)=tsurf(ig) |
---|
| 560 | ! |
---|
| 561 | ! tmid(1) = tlevrad(2) |
---|
| 562 | ! tmid(2) = tlevrad(2) |
---|
| 563 | ! |
---|
| 564 | ! pmid(1) = plevrad(2) |
---|
[3275] | 565 | ! pmid(2) = plevrad(2) |
---|
[3175] | 566 | |
---|
| 567 | DO l=1,L_NLAYRAD-1 |
---|
| 568 | tmid(2*l+1) = tlevrad(2*l+1) |
---|
| 569 | tmid(2*l+2) = tlevrad(2*l+1) |
---|
| 570 | pmid(2*l+1) = plevrad(2*l+1) |
---|
| 571 | pmid(2*l+2) = plevrad(2*l+1) |
---|
| 572 | END DO |
---|
| 573 | ! end of changes |
---|
| 574 | pmid(L_LEVELS) = plevrad(L_LEVELS) |
---|
| 575 | tmid(L_LEVELS) = tlevrad(L_LEVELS) |
---|
[3275] | 576 | |
---|
[3175] | 577 | !TB |
---|
| 578 | if ((PMID(2).le.1.e-5).and.(ig.eq.1)) then |
---|
| 579 | if ((TMID(2).le.30.).and.(ig.eq.1)) then |
---|
| 580 | write(*,*) 'Caution! Pres/temp of upper levels lower than' |
---|
| 581 | write(*,*) 'ref pressure/temp: kcoef fixed for upper levels' |
---|
| 582 | !! cf tpindex.F |
---|
| 583 | endif |
---|
| 584 | endif |
---|
| 585 | |
---|
| 586 | ! test for out-of-bounds pressure |
---|
| 587 | if(plevrad(3).lt.pgasmin)then |
---|
| 588 | print*,'Minimum pressure is outside the radiative' |
---|
| 589 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 590 | ! call abort |
---|
| 591 | elseif(plevrad(L_LEVELS).gt.pgasmax)then |
---|
| 592 | print*,'Maximum pressure is outside the radiative' |
---|
| 593 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 594 | ! call abort |
---|
| 595 | endif |
---|
| 596 | |
---|
| 597 | ! test for out-of-bounds temperature |
---|
| 598 | do k=1,L_LEVELS |
---|
| 599 | if(tlevrad(k).lt.tgasmin)then |
---|
| 600 | print*,'Minimum temperature is outside the radiative' |
---|
| 601 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 602 | print*,tlevrad(k),k,tgasmin |
---|
| 603 | ! call abort |
---|
| 604 | elseif(tlevrad(k).gt.tgasmax)then |
---|
| 605 | print*,'Maximum temperature is outside the radiative' |
---|
| 606 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 607 | ! call abort |
---|
| 608 | endif |
---|
| 609 | enddo |
---|
[3275] | 610 | |
---|
[3175] | 611 | !======================================================================= |
---|
| 612 | ! Calling the main radiative transfer subroutines |
---|
| 613 | |
---|
| 614 | !----------------------------------------------------------------------- |
---|
| 615 | ! Shortwave |
---|
[3275] | 616 | |
---|
[3175] | 617 | IF(fract(ig) .GE. 1.0e-4) THEN ! only during daylight IPM?! flux UV... |
---|
| 618 | |
---|
| 619 | fluxtoplanet=0. |
---|
| 620 | DO nw=1,L_NSPECTV |
---|
| 621 | stel_fract(nw)= stel(nw) * fract(ig) |
---|
| 622 | fluxtoplanet=fluxtoplanet + stel_fract(nw) |
---|
| 623 | END DO |
---|
| 624 | |
---|
[3275] | 625 | !print*, 'starting optcv' |
---|
[3175] | 626 | call optcv(dtauv,tauv,taucumv,plevrad, |
---|
| 627 | $ qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero, |
---|
| 628 | $ tmid,pmid,taugsurf,qvar) |
---|
| 629 | |
---|
| 630 | call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv, |
---|
| 631 | $ acosz,stel_fract,gweight,nfluxtopv,nfluxtopv_nu, |
---|
| 632 | $ fmnetv,fmnetv_nu,fluxupv,fluxdnv,fzerov,taugsurf) |
---|
| 633 | |
---|
| 634 | ELSE ! during the night, fluxes = 0 |
---|
| 635 | nfluxtopv=0.0 |
---|
| 636 | DO l=1,L_NLAYRAD |
---|
| 637 | fmnetv(l)=0.0 |
---|
| 638 | fluxupv(l)=0.0 |
---|
| 639 | fluxdnv(l)=0.0 |
---|
| 640 | END DO |
---|
| 641 | END IF |
---|
| 642 | |
---|
| 643 | !----------------------------------------------------------------------- |
---|
| 644 | ! Longwave |
---|
| 645 | |
---|
| 646 | call optci(plevrad,tlevrad,dtaui,taucumi, |
---|
| 647 | $ qxiaer,qsiaer,giaer,cosbi,wbari,tauaero,tmid,pmid, |
---|
| 648 | $ taugsurfi,qvar) |
---|
| 649 | call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi, |
---|
| 650 | $ wnoi,dwni,cosbi,wbari,gweight,nfluxtopi,nfluxtopi_nu, |
---|
| 651 | $ fmneti,fmneti_nu,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi) |
---|
| 652 | |
---|
| 653 | |
---|
| 654 | !----------------------------------------------------------------------- |
---|
| 655 | ! Transformation of the correlated-k code outputs |
---|
| 656 | ! (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw) |
---|
| 657 | |
---|
| 658 | fluxtop_lw(ig) = fluxupi(1) |
---|
| 659 | fluxsurf_lw(ig) = fluxdni(L_NLAYRAD) |
---|
| 660 | fluxtop_sw(ig) = fluxupv(1) |
---|
| 661 | fluxsurf_sw(ig) = fluxdnv(L_NLAYRAD) |
---|
| 662 | |
---|
| 663 | ! Flux incident at the top of the atmosphere |
---|
| 664 | fluxtop_dn(ig)=fluxdnv(1) |
---|
| 665 | |
---|
| 666 | ! IR spectral output from top of the atmosphere |
---|
| 667 | if(specOLR)then |
---|
[3275] | 668 | do nw=1,L_NSPECTI |
---|
[3175] | 669 | OLR_nu(ig,nw)=nfluxtopi_nu(nw) |
---|
| 670 | end do |
---|
| 671 | endif |
---|
| 672 | |
---|
| 673 | ! ********************************************************** |
---|
| 674 | ! Finally, the heating rates |
---|
[3275] | 675 | ! g/cp*DF/DP |
---|
[3175] | 676 | ! ********************************************************** |
---|
| 677 | |
---|
| 678 | DO l=2,L_NLAYRAD |
---|
| 679 | dpp = g/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
| 680 | |
---|
| 681 | ! DTSW : |
---|
| 682 | !dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1))*dpp !averaged dtlw on each wavelength |
---|
| 683 | do nw=1,L_NSPECTV |
---|
[3275] | 684 | dtsw_nu(L_NLAYRAD+1-l,nw)= |
---|
[3175] | 685 | & (fmnetv_nu(l,nw)-fmnetv_nu(l-1,nw))*dpp |
---|
| 686 | end do |
---|
| 687 | |
---|
| 688 | ! DTLW : detailed with wavelength so that we can apply NLTE |
---|
| 689 | !dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1))*dpp !averaged dtlw on each wavelength |
---|
| 690 | do nw=1,L_NSPECTI |
---|
[3275] | 691 | dtlw_nu(L_NLAYRAD+1-l,nw)= |
---|
| 692 | & (fmneti_nu(l,nw)-fmneti_nu(l-1,nw))*dpp |
---|
[3175] | 693 | end do |
---|
[3275] | 694 | END DO |
---|
| 695 | |
---|
[3175] | 696 | ! values at top of atmosphere |
---|
| 697 | dpp = g/(cpp*scalep*(plevrad(3)-plevrad(1))) |
---|
| 698 | |
---|
[3275] | 699 | ! SW |
---|
[3175] | 700 | !dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv)*dpp |
---|
| 701 | do nw=1,L_NSPECTV |
---|
| 702 | dtsw_nu(L_NLAYRAD,nw)= |
---|
| 703 | & (fmnetv_nu(1,nw)-nfluxtopv_nu(nw))*dpp |
---|
| 704 | end do |
---|
| 705 | |
---|
[3275] | 706 | ! LW |
---|
| 707 | c dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi) *dpp |
---|
[3175] | 708 | do nw=1,L_NSPECTI |
---|
| 709 | dtlw_nu(L_NLAYRAD,nw)= |
---|
| 710 | & (fmneti_nu(1,nw)-nfluxtopi_nu(nw))*dpp |
---|
| 711 | end do |
---|
| 712 | |
---|
| 713 | ! ********************************************************** |
---|
| 714 | ! NON NLTE correction in Pluto atmosphere |
---|
| 715 | ! And conversion of LW spectral heating rates to total rates |
---|
| 716 | ! ********************************************************** |
---|
| 717 | |
---|
| 718 | if (.not.nlte) then |
---|
[3275] | 719 | eps_nlte_sw23(ig,:) =1. ! IF no NLTE |
---|
| 720 | eps_nlte_sw33(ig,:) =1. ! IF no NLTE |
---|
| 721 | eps_nlte_lw(ig,:) =1. ! IF no NLTE |
---|
[3175] | 722 | endif |
---|
[3275] | 723 | |
---|
[3175] | 724 | do l=1,nlayer |
---|
| 725 | |
---|
| 726 | !LW |
---|
[3275] | 727 | dtlw(ig,l) =0. |
---|
[3175] | 728 | ! dtlw_co(ig,l) =0. ! only for diagnostic |
---|
| 729 | do nw=1,L_NSPECTI |
---|
| 730 | ! wewei : wavelength in micrometer |
---|
[3275] | 731 | if ((wavei(nw).gt.6.).and.(wavei(nw).lt.9)) then |
---|
[3175] | 732 | dtlw_nu(l,nw)=dtlw_nu(l,nw)*eps_nlte_lw(ig,l) |
---|
[3275] | 733 | else |
---|
[3175] | 734 | !dtlw_nu(l,nw)=1.*dtlw_nu(l,nw) ! no CO correction (Strobbel 1996) |
---|
| 735 | dtlw_nu(l,nw)=0.33*dtlw_nu(l,nw) ! CO correction (Strobbel 1996) |
---|
| 736 | ! dtlw_co(ig,l)=dtlw_co(ig,l)+ dtlw_nu(l,nw) ! diagnostic |
---|
| 737 | end if |
---|
[3275] | 738 | dtlw(ig,l)=dtlw(ig,l)+ dtlw_nu(l,nw) !average now on each wavelength |
---|
[3175] | 739 | end do |
---|
| 740 | ! adding c2h2 if cooling active |
---|
| 741 | dtlw(ig,l)=dtlw(ig,l)+dtlw_hcn_c2h2(ig,l) |
---|
| 742 | |
---|
| 743 | !SW |
---|
| 744 | dtsw(ig,l) =0. |
---|
[3275] | 745 | |
---|
[3175] | 746 | if (strobel) then |
---|
| 747 | |
---|
| 748 | do nw=1,L_NSPECTV |
---|
[3275] | 749 | if ((wavev(nw).gt.2).and.(wavev(nw).lt.2.6)) then |
---|
[3175] | 750 | dtsw_nu(l,nw)=dtsw_nu(l,nw)*eps_nlte_sw23(ig,l) |
---|
[3275] | 751 | elseif ((wavev(nw).gt.3).and.(wavev(nw).lt.3.6)) then |
---|
[3175] | 752 | dtsw_nu(l,nw)=dtsw_nu(l,nw)*eps_nlte_sw33(ig,l) |
---|
| 753 | else |
---|
| 754 | dtsw_nu(l,nw)=dtsw_nu(l,nw) |
---|
| 755 | end if |
---|
[3275] | 756 | dtsw(ig,l)=dtsw(ig,l)+ dtsw_nu(l,nw) |
---|
[3175] | 757 | end do |
---|
| 758 | |
---|
| 759 | else ! total heating rates multiplied by nlte coef |
---|
| 760 | |
---|
| 761 | do nw=1,L_NSPECTV |
---|
| 762 | dtsw_nu(l,nw)=dtsw_nu(l,nw)*eps_nlte_sw23(ig,l) |
---|
| 763 | dtsw(ig,l)=dtsw(ig,l)+ dtsw_nu(l,nw) |
---|
| 764 | enddo |
---|
| 765 | |
---|
[3275] | 766 | endif |
---|
[3175] | 767 | |
---|
| 768 | |
---|
| 769 | end do |
---|
| 770 | ! ********************************************************** |
---|
| 771 | |
---|
| 772 | ! Diagnotics for last call for each grid point |
---|
[3275] | 773 | !if (lastcall) then |
---|
[3175] | 774 | |
---|
| 775 | !print*,'albedi vis=',albv |
---|
| 776 | !print*,'albedo ir=',albi |
---|
| 777 | !print*,'fluxup ir (:)=',fluxupi |
---|
| 778 | !print*,'flux ir net (:)=',fluxdni-fluxupi |
---|
| 779 | !print*,'cumulative flux net ir (:)=',fmneti |
---|
| 780 | !print*,'cumulative flux net vis (:)=',fmnetv |
---|
| 781 | !print*,'fluxdn vis (:)=',fluxdnv |
---|
| 782 | !print*,'fluxtop vis=',fluxtop_sw |
---|
| 783 | !print*,'fluxsurf vis=',fluxsurf_sw |
---|
| 784 | !print*,'fluxtop ir=',fluxtop_lw |
---|
| 785 | !print*,'fluxsurf ir=',fluxsurf_lw |
---|
| 786 | |
---|
| 787 | c write(*,*) 'pressure, eps_nlte_sw, eps_nlte_lw' |
---|
| 788 | c do l=1,nlayer |
---|
| 789 | c write(*,*)pplay(1,l),eps_nlte_sw(1,l),eps_nlte_lw(1,l) |
---|
| 790 | c end do |
---|
| 791 | |
---|
| 792 | !endif |
---|
| 793 | |
---|
| 794 | ! --------------------------------------------------------------- |
---|
| 795 | end do ! end of big loop over every GCM column (ig = 1:ngrid) |
---|
| 796 | |
---|
| 797 | !----------------------------------------------------------------------- |
---|
| 798 | ! Additional diagnostics |
---|
| 799 | |
---|
| 800 | ! IR spectral output, for exoplanet observational comparison |
---|
| 801 | if(specOLR)then |
---|
| 802 | if(ngrid.ne.1)then |
---|
| 803 | call writediagspec(ngrid,"OLR3D", |
---|
| 804 | & "OLR(lon,lat,band)","W m^-2",3,OLR_nu) |
---|
| 805 | endif |
---|
| 806 | endif |
---|
| 807 | |
---|
[3275] | 808 | if(lastcall)then |
---|
[3175] | 809 | |
---|
| 810 | ! 1D Output |
---|
| 811 | if(ngrid.eq.1)then |
---|
| 812 | |
---|
| 813 | ! surface diagnotics |
---|
| 814 | diagrad_surf=.true. |
---|
| 815 | if(diagrad_surf)then |
---|
| 816 | open(116,file='surf_vals.out') |
---|
| 817 | write(116,*) tsurf(1),pplev(1,1), |
---|
[3275] | 818 | & fluxtop_dn(1) - fluxtop_sw(1),fluxtop_lw(1) |
---|
[3175] | 819 | do nw=1,L_NSPECTV |
---|
| 820 | write(116,*) wavev(nw),fmnetv_nu(L_NLAYRAD,nw) |
---|
| 821 | enddo |
---|
| 822 | do nw=1,L_NSPECTI |
---|
| 823 | write(116,*) wavei(nw),fmneti_nu(L_NLAYRAD,nw) |
---|
| 824 | enddo |
---|
| 825 | close(116) |
---|
| 826 | endif |
---|
| 827 | |
---|
| 828 | ! OLR by band |
---|
| 829 | diagrad_OLR=.true. |
---|
| 830 | if(diagrad_OLR)then |
---|
| 831 | open(117,file='OLRnu.out') |
---|
[3275] | 832 | write(117,*) 'IR wavel - band width - OLR' |
---|
[3175] | 833 | do nw=1,L_NSPECTI |
---|
| 834 | write(117,*) wavei(nw), |
---|
| 835 | & abs(1.e4/bwnv(nw)-1.e4/bwnv(nw+1)),OLR_nu(1,nw) |
---|
[3275] | 836 | enddo |
---|
[3175] | 837 | close(117) |
---|
| 838 | endif |
---|
| 839 | |
---|
| 840 | ! OLR vs altitude: in a .txt file |
---|
| 841 | diagrad_OLRz=.true. |
---|
| 842 | if(diagrad_OLRz)then |
---|
| 843 | open(118,file='OLRz_plevs.out') |
---|
| 844 | open(119,file='OLRz.out') |
---|
| 845 | do l=1,L_NLAYRAD |
---|
| 846 | write(118,*) plevrad(2*l) |
---|
| 847 | do nw=1,L_NSPECTI |
---|
[3275] | 848 | write(119,*) fluxupi_nu(l,nw) |
---|
[3175] | 849 | enddo |
---|
[3275] | 850 | enddo |
---|
[3175] | 851 | close(118) |
---|
| 852 | close(119) |
---|
| 853 | endif |
---|
| 854 | |
---|
| 855 | ! Heating rates vs altitude in a .txt file |
---|
| 856 | diagrad_rates=.true. |
---|
| 857 | if(diagrad_rates)then |
---|
| 858 | open(120,file='heating_rates.out') |
---|
| 859 | write(120,*) "Pressure - Alt - HR tot - Rates (wavel SW)" |
---|
| 860 | do l=1,nlayermx |
---|
| 861 | write(120,*) pplay(1,l),zzlay(1,l),dtsw(1,l),dtsw_nu(l,:) |
---|
| 862 | enddo |
---|
| 863 | close(120) |
---|
| 864 | |
---|
| 865 | open(121,file='cooling_rates.out') |
---|
| 866 | write(121,*) "Pressure - Alt - CR tot - Rates (wavel LW)" |
---|
| 867 | do l=1,nlayermx |
---|
| 868 | write(121,*) pplay(1,l),zzlay(1,l),dtlw(1,l),dtlw_nu(l,:) |
---|
| 869 | enddo |
---|
| 870 | close(121) |
---|
| 871 | |
---|
| 872 | open(122,file='bands.out') |
---|
| 873 | write(122,*) "wavel - bands boundaries (microns)" |
---|
| 874 | do nw=1,L_NSPECTV |
---|
| 875 | write(122,*) wavev(nw),1.e4/bwnv(nw+1),1.e4/bwnv(nw) |
---|
| 876 | enddo |
---|
| 877 | do nw=1,L_NSPECTI |
---|
| 878 | write(122,*) wavei(nw),1.e4/bwni(nw+1),1.e4/bwni(nw) |
---|
| 879 | enddo |
---|
| 880 | close(122) |
---|
| 881 | |
---|
| 882 | open(123,file='c2h2_rates.out') |
---|
| 883 | write(123,*) "Pressure - Alt - CR c2h2" |
---|
| 884 | do l=1,nlayermx |
---|
| 885 | write(123,*) pplay(1,l),zzlay(1,l),dtlw_hcn_c2h2(1,l) |
---|
| 886 | enddo |
---|
| 887 | close(123) |
---|
| 888 | |
---|
| 889 | endif |
---|
| 890 | |
---|
| 891 | endif ! ngrid.eq.1 |
---|
| 892 | |
---|
| 893 | endif ! lastcall |
---|
| 894 | |
---|
| 895 | end |
---|