1 | PROGRAM SUPERFIT |
---|
2 | |
---|
3 | c ------------------------------------------------------------------ |
---|
4 | c #### Special version with ice depth and ice inertia ##### |
---|
5 | c Program used to compute best-fit cap albedo, ICE DEPTH and total CO2 |
---|
6 | c inventory |
---|
7 | c Make use of 2 annual GCM run performed with 2 different cap albedos. |
---|
8 | c Based on Hourdin et al. (JGR, 1995) |
---|
9 | c Modified to account for non-linear sensitivity of polar cap mass |
---|
10 | c To cap albedo (FF,2000) |
---|
11 | c Modified/cleaned-up to use 4 input files and minimise cap albedos, |
---|
12 | c MONS-derived ice depth and total pressure (EM,2008) |
---|
13 | c Modified to minimise wrt ice thermal inertia coefficients (EM, 2009) |
---|
14 | c ------------------------------------------------------------------ |
---|
15 | |
---|
16 | implicit none |
---|
17 | |
---|
18 | integer ngcm,nvl1,nsol,time_unit |
---|
19 | |
---|
20 | c ***** THE FOLLOWING LINES MUST BE ADAPTED FOR EACH CASES : ************** |
---|
21 | ! parameter(ngcm=10704) ! size of the 1 year raw GCM data |
---|
22 | ! parameter(ngcm=2672) ! "*4 & *6" files |
---|
23 | parameter(ngcm=8028) ! "*3 & *5" files |
---|
24 | parameter(nvl1=669) ! size of the Vl1 Ps Observation |
---|
25 | c ************************************************************* |
---|
26 | |
---|
27 | |
---|
28 | c size the smoothed data (1/sol) which are used for the simulation |
---|
29 | parameter(nsol=669) ! size the smoothed data (1/sol) |
---|
30 | c parameter(nsol=445) ! size the smoothed data (1/sol) |
---|
31 | |
---|
32 | c OBSERVED VL1 pressure |
---|
33 | c ~~~~~~~~~~~~~~~~~~~~~ |
---|
34 | real pvl_obs(nvl1), solvl(nvl1), lsvl(nvl1) |
---|
35 | |
---|
36 | c Raw Data from 4 simulations with 2 different albedo/iced : |
---|
37 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
38 | c runs are numbered 1-4 such than runs 1&2 are at same ice depth |
---|
39 | c and runs 3&4 are at same ice depth |
---|
40 | c and runs 1&3 are at same ice inertia |
---|
41 | c and runs 2&4 are at same ice inertia |
---|
42 | real iceigcmN(4) , iceigcmS(4) |
---|
43 | real icedgcm(4) |
---|
44 | integer refrun ! run number of the 'reference' run |
---|
45 | ! reference values for functions (e.g. values of run #1) |
---|
46 | real iceigcm_refN, icedgcm_ref |
---|
47 | real iceigcm_refS |
---|
48 | |
---|
49 | real ptot(4) |
---|
50 | real patm(ngcm,4), pcapn(ngcm,4),pcaps(ngcm,4) |
---|
51 | real pvl_gcm(ngcm,4) ! Simulated VL1 pressure |
---|
52 | real solgcm(ngcm) ! time in runs in sol |
---|
53 | real lsgcm(ngcm) ! time in runs in ls |
---|
54 | integer year_xvik ! year of xvik files to use for fit |
---|
55 | integer plot_test ! =1 if output file is to plot COST(DN,DS), =2 for COST(IN,IS)s |
---|
56 | |
---|
57 | c Smoothed Data from the 2 simulations with 2 different albedo : |
---|
58 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
59 | real box |
---|
60 | integer n ,i |
---|
61 | real sol(nsol) ! time in runs |
---|
62 | real ls(nsol) |
---|
63 | real solconv |
---|
64 | real pvl_sm(nsol,4) ! Simulated smooth VL1 pressure |
---|
65 | real patm_sm(nsol,4), pcapn_sm(nsol,4),pcaps_sm(nsol,4) |
---|
66 | real alphavl1(nsol) ! pvl/patm ratio |
---|
67 | c Mass cap sensitivity to thermal inertia (derivative) |
---|
68 | real dpdicein(nsol),dpdiceis(nsol) |
---|
69 | real dpdicein_fltr(nsol),dpdiceis_fltr(nsol) |
---|
70 | c Mass cap sensitivity to ice inertia (derivative) |
---|
71 | real dpden(nsol),dpdes(nsol) |
---|
72 | real dpden_fltr(nsol),dpdes_fltr(nsol) |
---|
73 | |
---|
74 | real iceis, icein, ptry ,pvl1 |
---|
75 | real iceds, icedn |
---|
76 | ! ice inertia range to explore, and maximum allowed difference between N&S ice inertias: |
---|
77 | real iceimin,iceimax,maxiceidiff |
---|
78 | real deltaicei ! step in ice thermal inertia |
---|
79 | ! ice depth range to explore, and maximum allowed difference between N&S ice depths: |
---|
80 | real icedmin,icedmax,maxiceddiff |
---|
81 | real deltaiced ! step in ice depth coefficient |
---|
82 | ! total pressure range to explore, and pressure step: |
---|
83 | real pmin,pmax,deltap |
---|
84 | real cost,cost4plot |
---|
85 | real iceis4plot,ps4plot,icein4plot !,iceds4plot |
---|
86 | real iceds4plot,icedn4plot |
---|
87 | real costmin, pfit, iceinfit, iceisfit |
---|
88 | real pcapn_new, pcaps_new |
---|
89 | real icednfit, icedsfit |
---|
90 | logical fit |
---|
91 | |
---|
92 | real fonc, fonc2n, fonc2s |
---|
93 | |
---|
94 | c Inputs files (from xvik) variables : |
---|
95 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
96 | character(len=33) filename1, filename2 |
---|
97 | character(len=99) dset_DminImin,dset_DmaxImin |
---|
98 | character(len=99) dset_DminImax,dset_DmaxImax |
---|
99 | integer ie |
---|
100 | |
---|
101 | |
---|
102 | c---------------------------------------------------------------------- |
---|
103 | c Initialisation : |
---|
104 | c ~~~~~~~~~~~~~~ |
---|
105 | c Implicit function : behavior of Pcap = fonc(alb) |
---|
106 | c (e.g. fonc(alb) = alb if linear) |
---|
107 | !! fonc(albn) = exp(3.46*albn) ! for albedo, both north & south |
---|
108 | fonc(icein) = icein |
---|
109 | c fonc2n(icedn) = log(icedn +10) |
---|
110 | fonc2n(icedn) = icedn ! for northern ice depth coefficient |
---|
111 | c fonc2s(iceds) = log(iceds +1) |
---|
112 | fonc2s(iceds) = iceds ! for southern ice depth coefficient |
---|
113 | |
---|
114 | c ***** THE FOLLOWING LINES MUST BE ADAPTED FOR EACH CASES : ************** |
---|
115 | |
---|
116 | write(*,*) 'Program written for xvik outputs files ''xpsol'' ', |
---|
117 | &'and ''xprestot'' from xvik.F' |
---|
118 | write(*,*) 'Enter extreme parameters values used in xvik.F' |
---|
119 | write(*,*) 'Minimum ice depth coefficient' |
---|
120 | read(*,*) icedmin |
---|
121 | write(*,*) icedmin |
---|
122 | write(*,*) 'Maximum ice depth coefficient' |
---|
123 | read(*,*) icedmax |
---|
124 | write(*,*) icedmax |
---|
125 | write(*,*) 'Minimum ice thermal inertia ' |
---|
126 | read(*,*) iceimin |
---|
127 | write(*,*) iceimin |
---|
128 | write(*,*) 'Maximum ice thermal inertia ' |
---|
129 | read(*,*) iceimax |
---|
130 | write(*,*) iceimax |
---|
131 | |
---|
132 | |
---|
133 | maxiceidiff = 3000 ! maximum allowed difference between N and S best fit ice thermal inertia |
---|
134 | deltaicei= 20 ! step in ice thermal inertia |
---|
135 | maxiceddiff = 30.e-4 ! maximum allowed difference between N and S best fit ice depth |
---|
136 | deltaiced= 0.5e-4 ! step in ice depth coefficient |
---|
137 | pmin = 690 ! minimum allowed best fit CO2 total pressure (Pa) |
---|
138 | pmax = 720 ! maximum allowed best fit CO2 total pressure (Pa) |
---|
139 | deltap=1.0 ! step in pressure |
---|
140 | |
---|
141 | c File to be read : |
---|
142 | c ~~~~~~~~~~~~~~~ |
---|
143 | c runs are numbered 1-4 such than runs 1&2 are at same ice depth |
---|
144 | c and runs 3&4 are at same ice depth |
---|
145 | c and runs 1&3 are at same ice inertia |
---|
146 | c and runs 2&4 are at same ice inertia |
---|
147 | ! First run: |
---|
148 | iceigcmN(1)= iceimin ! Northern Cap ice thermal inertia |
---|
149 | iceigcmS(1)= iceimin ! Southern Cap ice thermal inertia |
---|
150 | icedgcm(1) = icedmin ! Ice depth coefficient |
---|
151 | ! Second run: |
---|
152 | iceigcmN(2) = iceimax ! Northern Cap ice thermal inertia |
---|
153 | iceigcmS(2) = iceimax ! Southern Cap ice thermal inertia |
---|
154 | icedgcm(2) = icedmin ! Ice depth coefficient |
---|
155 | ! Third run: |
---|
156 | iceigcmN(3) = iceimin ! Northern Cap ice thermal inertia |
---|
157 | iceigcmS(3) = iceimin ! Southern Cap ice thermal inertia |
---|
158 | icedgcm(3) = icedmax ! Ice depth coefficient |
---|
159 | ! Fourth run: |
---|
160 | iceigcmN(4) = iceimax ! Northern Cap ice thermal inertia |
---|
161 | iceigcmS(4) = iceimax ! Southern Cap ice thermal inertia |
---|
162 | icedgcm(4) = icedmax ! Ice depth coefficient |
---|
163 | |
---|
164 | ! set reference values: those of one of the files (here file 1) |
---|
165 | refrun=1 |
---|
166 | ! ice inertia of the reference run used to simulate function |
---|
167 | iceigcm_refN=iceigcmN(refrun) |
---|
168 | ! ice inertia of the reference run used to simulate function |
---|
169 | iceigcm_refS=iceigcmS(refrun) |
---|
170 | ! icedepth coefficient of the reference run used to simulate function |
---|
171 | icedgcm_ref=icedgcm(refrun) |
---|
172 | |
---|
173 | write(*,*) 'Path to xvik outputs with minimum ice depth ', |
---|
174 | &'coefficient and minimum ice thermal inertia ?' |
---|
175 | read (*,'(a)') dset_DminImin |
---|
176 | write(*,*) dset_DminImin |
---|
177 | write(*,*) 'Path to xvik outputs with minimum ice depth ', |
---|
178 | &'coefficient and maximum ice thermal inertia ?' |
---|
179 | read (*,'(a)') dset_DminImax |
---|
180 | write(*,*) dset_DminImax |
---|
181 | write(*,*) 'Path to xvik outputs with maximum ice depth ', |
---|
182 | &'coefficient and minimum ice thermal inertia ?' |
---|
183 | read (*,'(a)') dset_DmaxImin |
---|
184 | write(*,*) dset_DmaxImin |
---|
185 | write(*,*) 'Path to xvik outputs with maximum ice depth ', |
---|
186 | &'coefficient and maximum ice thermal inertia ?' |
---|
187 | read (*,'(a)') dset_DmaxImax |
---|
188 | write(*,*) dset_DmaxImax |
---|
189 | |
---|
190 | write(*,*) 'Which year of xvik outputs do you want to use ?' |
---|
191 | read (*,*) year_xvik |
---|
192 | write(*,*) year_xvik |
---|
193 | |
---|
194 | write(*,*) 'Xvik files in sol (1), ls (2) or both (3)' |
---|
195 | read(*,*) time_unit |
---|
196 | write(*,*) time_unit |
---|
197 | |
---|
198 | |
---|
199 | write(*,*) 'COST being the model/obs difference' |
---|
200 | write(*,*) 'IN ans IS being the ice thermal inertia of ', |
---|
201 | &'Northern and Southern Cap' |
---|
202 | write(*,*) 'DN ans DS being the ice depth coefficient of ', |
---|
203 | &'of Northern and Southern Cap' |
---|
204 | write(*,*) 'Do you want to use output file ', |
---|
205 | &'''minimization.txt'' to plot COST(DN,DS) (1) or COST(IN,IS) (2)' |
---|
206 | read(*,*) plot_test |
---|
207 | write(*,*) plot_test |
---|
208 | |
---|
209 | c For four simulation, files : "time (VL1 sol) , Ps Vl1 (Pa)" |
---|
210 | c "time (VL1 sol), Patm,PcapN,PcapS (Pa)" |
---|
211 | |
---|
212 | |
---|
213 | |
---|
214 | write(filename1,fmt='(a6,i1)') 'xpsol1',year_xvik |
---|
215 | write(filename2,fmt='(a8,i1)') 'xprestot',year_xvik |
---|
216 | |
---|
217 | |
---|
218 | ! Dmin Imin files |
---|
219 | |
---|
220 | write(*,*) 'Opening ', trim(dset_DminImin)//'/'//trim(filename1) |
---|
221 | open(21,file=trim(dset_DminImin)//'/'//trim(filename1),iostat=ie) |
---|
222 | |
---|
223 | if (ie.ne.0) then |
---|
224 | write(*,*) 'Error opening file ',trim(dset_DminImin)//'/' |
---|
225 | &//trim(filename1) |
---|
226 | stop |
---|
227 | endif |
---|
228 | |
---|
229 | write(*,*) 'Opening ', trim(dset_DminImin)//'/'//trim(filename2) |
---|
230 | open(11,file=trim(dset_DminImin)//'/'//trim(filename2),iostat=ie) |
---|
231 | |
---|
232 | if (ie.ne.0) then |
---|
233 | write(*,*) 'Error opening file ',trim(dset_DminImin)//'/' |
---|
234 | &//trim(filename2) |
---|
235 | stop |
---|
236 | endif |
---|
237 | |
---|
238 | ! Dmin Imax files |
---|
239 | |
---|
240 | write(*,*) 'Opening ', trim(dset_DminImax)//'/'//trim(filename1) |
---|
241 | open(22,file=trim(dset_DminImax)//'/'//trim(filename1),iostat=ie) |
---|
242 | |
---|
243 | if (ie.ne.0) then |
---|
244 | write(*,*) 'Error opening file ',trim(dset_DminImax)//'/' |
---|
245 | &//trim(filename1) |
---|
246 | stop |
---|
247 | endif |
---|
248 | |
---|
249 | write(*,*) 'Opening ', trim(dset_DminImax)//'/'//trim(filename2) |
---|
250 | open(12,file=trim(dset_DminImax)//'/'//trim(filename2),iostat=ie) |
---|
251 | |
---|
252 | if (ie.ne.0) then |
---|
253 | write(*,*) 'Error opening file ',trim(dset_DminImax)//'/' |
---|
254 | &//trim(filename2) |
---|
255 | stop |
---|
256 | endif |
---|
257 | |
---|
258 | ! Dmax Imin files |
---|
259 | |
---|
260 | write(*,*) 'Opening ', trim(dset_DmaxImin)//'/'//trim(filename1) |
---|
261 | open(23,file=trim(dset_DmaxImin)//'/'//trim(filename1),iostat=ie) |
---|
262 | |
---|
263 | if (ie.ne.0) then |
---|
264 | write(*,*) 'Error opening file ',trim(dset_DmaxImin)//'/' |
---|
265 | &//trim(filename1) |
---|
266 | stop |
---|
267 | endif |
---|
268 | |
---|
269 | write(*,*) 'Opening ', trim(dset_DmaxImin)//'/'//trim(filename2) |
---|
270 | open(13,file=trim(dset_DmaxImin)//'/'//trim(filename2),iostat=ie) |
---|
271 | |
---|
272 | if (ie.ne.0) then |
---|
273 | write(*,*) 'Error opening file ',trim(dset_DmaxImin)//'/' |
---|
274 | &//trim(filename2) |
---|
275 | stop |
---|
276 | endif |
---|
277 | |
---|
278 | |
---|
279 | ! Dmax Imax files |
---|
280 | |
---|
281 | write(*,*) 'Opening ', trim(dset_DmaxImax)//'/'//trim(filename1) |
---|
282 | open(24,file=trim(dset_DmaxImax)//'/'//trim(filename1),iostat=ie) |
---|
283 | |
---|
284 | if (ie.ne.0) then |
---|
285 | write(*,*) 'Error opening file ',trim(dset_DmaxImax)//'/' |
---|
286 | &//trim(filename1) |
---|
287 | stop |
---|
288 | endif |
---|
289 | |
---|
290 | write(*,*) 'Opening ', trim(dset_DmaxImax)//'/'//trim(filename2) |
---|
291 | open(14,file=trim(dset_DmaxImax)//'/'//trim(filename2),iostat=ie) |
---|
292 | |
---|
293 | if (ie.ne.0) then |
---|
294 | write(*,*) 'Error opening file ',trim(dset_DmaxImax)//'/' |
---|
295 | &//trim(filename2) |
---|
296 | stop |
---|
297 | endif |
---|
298 | |
---|
299 | |
---|
300 | |
---|
301 | c ************************************************************* |
---|
302 | c Observed Smooth Viking Curves |
---|
303 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
304 | open(30,file='VL1') |
---|
305 | do n=1,nsol |
---|
306 | read(30,*) solvl(n), lsvl(n), pvl_obs(n) |
---|
307 | end do |
---|
308 | close(30) |
---|
309 | |
---|
310 | c Opening output file |
---|
311 | |
---|
312 | !open(33, file = 'minimization.txt') |
---|
313 | |
---|
314 | |
---|
315 | c reading Simulation results |
---|
316 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
317 | |
---|
318 | |
---|
319 | do n=1,ngcm |
---|
320 | |
---|
321 | c Reading Viking Lander 1 simulated pressure for 4 runs |
---|
322 | |
---|
323 | if (time_unit == 1) then |
---|
324 | read(21,*) solgcm(n), pvl_gcm(n,1) |
---|
325 | read(22,*) solgcm(n), pvl_gcm(n,2) |
---|
326 | read(23,*) solgcm(n), pvl_gcm(n,3) |
---|
327 | read(24,*) solgcm(n), pvl_gcm(n,4) |
---|
328 | |
---|
329 | c Reading atmospheric and "cap" total pressure for all runs |
---|
330 | read(11,*) solgcm(n), patm(n,1), pcapn(n,1),pcaps(n,1) |
---|
331 | read(12,*) solgcm(n), patm(n,2), pcapn(n,2),pcaps(n,2) |
---|
332 | read(13,*) solgcm(n), patm(n,3), pcapn(n,3),pcaps(n,3) |
---|
333 | read(14,*) solgcm(n), patm(n,4), pcapn(n,4),pcaps(n,4) |
---|
334 | |
---|
335 | elseif (time_unit == 2) then |
---|
336 | read(21,*) lsgcm(n), pvl_gcm(n,1) |
---|
337 | read(22,*) lsgcm(n), pvl_gcm(n,2) |
---|
338 | read(23,*) lsgcm(n), pvl_gcm(n,3) |
---|
339 | read(24,*) lsgcm(n), pvl_gcm(n,4) |
---|
340 | |
---|
341 | c Reading atmospheric and "cap" total pressure for all runs |
---|
342 | read(11,*) lsgcm(n), patm(n,1), pcapn(n,1),pcaps(n,1) |
---|
343 | read(12,*) lsgcm(n), patm(n,2), pcapn(n,2),pcaps(n,2) |
---|
344 | read(13,*) lsgcm(n), patm(n,3), pcapn(n,3),pcaps(n,3) |
---|
345 | read(14,*) lsgcm(n), patm(n,4), pcapn(n,4),pcaps(n,4) |
---|
346 | call ls2sol(lsgcm(n),solconv) |
---|
347 | solgcm(n) = solconv |
---|
348 | |
---|
349 | elseif (time_unit == 3) then |
---|
350 | read(21,*) solgcm(n), lsgcm(n), pvl_gcm(n,1) |
---|
351 | read(22,*) solgcm(n), lsgcm(n), pvl_gcm(n,2) |
---|
352 | read(23,*) solgcm(n), lsgcm(n), pvl_gcm(n,3) |
---|
353 | read(24,*) solgcm(n), lsgcm(n), pvl_gcm(n,4) |
---|
354 | |
---|
355 | c Reading atmospheric and "cap" total pressure for all runs |
---|
356 | read(11,*) solgcm(n), lsgcm(n), patm(n,1), pcapn(n,1),pcaps(n,1) |
---|
357 | read(12,*) solgcm(n), lsgcm(n), patm(n,2), pcapn(n,2),pcaps(n,2) |
---|
358 | read(13,*) solgcm(n), lsgcm(n), patm(n,3), pcapn(n,3),pcaps(n,3) |
---|
359 | read(14,*) solgcm(n), lsgcm(n), patm(n,4), pcapn(n,4),pcaps(n,4) |
---|
360 | |
---|
361 | else |
---|
362 | write(*,*) 'Wrong integer for xvik files format :', |
---|
363 | &' must be 1, 2 or 3' |
---|
364 | stop |
---|
365 | |
---|
366 | endif |
---|
367 | |
---|
368 | c Checking total CO2 inventory for all runs : |
---|
369 | do i=1,4 |
---|
370 | if(n.eq.1) then |
---|
371 | ptot(i) = patm(n,i)+pcapn(n,i)+pcaps(n,i) |
---|
372 | write(*,*) 'For run = ',i,' Ptot= ',ptot(i) |
---|
373 | else |
---|
374 | if(abs(patm(n,i)+pcapn(n,i)+pcaps(n,i)-ptot(i)).gt.3)then |
---|
375 | write(*,*)'total pressure not constant for run i= ',i |
---|
376 | write(*,*) 'n=',1,' ptot=',ptot(i) |
---|
377 | write(*,*)'n=',n,' ptot=',patm(n,i)+pcapn(n,i)+pcaps(n,i) |
---|
378 | end if |
---|
379 | end if |
---|
380 | end do |
---|
381 | end do |
---|
382 | |
---|
383 | close(11) |
---|
384 | close(12) |
---|
385 | close(13) |
---|
386 | close(14) |
---|
387 | close(21) |
---|
388 | close(22) |
---|
389 | close(23) |
---|
390 | close(24) |
---|
391 | |
---|
392 | |
---|
393 | c Smoothing simulated GCM Viking 1 pressure curves |
---|
394 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
395 | do n=1,nsol |
---|
396 | sol(n)=float(n) |
---|
397 | end do |
---|
398 | |
---|
399 | |
---|
400 | c Running average for both runs (with "boxsize" box in days) |
---|
401 | box=20. |
---|
402 | do i=1,4 |
---|
403 | call runave(solgcm,pvl_gcm(1,i),ngcm,669.,box, |
---|
404 | & sol,pvl_sm(1,i),nsol) |
---|
405 | call runave(solgcm,patm(1,i),ngcm,669.,box, |
---|
406 | & sol,patm_sm(1,i),nsol) |
---|
407 | call runave(solgcm,pcapn(1,i),ngcm,669.,box, |
---|
408 | & sol,pcapn_sm(1,i),nsol) |
---|
409 | call runave(solgcm,pcaps(1,i),ngcm,669.,box, |
---|
410 | & sol,pcaps_sm(1,i),nsol) |
---|
411 | end do |
---|
412 | |
---|
413 | |
---|
414 | c Computing mass cap sensitivity to albedo (derivative) and alphaVl1 |
---|
415 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
416 | c alphaVL1 = Pvl1/patm at a given time (see Hourdin et al., JGR, 1995) |
---|
417 | |
---|
418 | do n=1,nsol |
---|
419 | ! Evaluate derivative of pressure wrt Northern inertia, as the |
---|
420 | ! mean of the 2 values obtained using runs 1&2 and 3&4 |
---|
421 | dpdicein(n)=(((pcapn_sm(n,1)-pcapn_sm(n,2))/ |
---|
422 | & (fonc(iceigcmN(1))-fonc(iceigcmN(2))))+ |
---|
423 | & ((pcapn_sm(n,3)-pcapn_sm(n,4))/ |
---|
424 | & (fonc(iceigcmN(3))-fonc(iceigcmN(4)))))*(1./2.) |
---|
425 | ! Evaluate derivative of pressure wrt Southern inertia, as the |
---|
426 | ! mean of the 2 values obtained using runs 1&2 and 3&4 |
---|
427 | dpdiceis(n)=(((pcaps_sm(n,1)-pcaps_sm(n,2))/ |
---|
428 | & (fonc(iceigcmS(1))-fonc(iceigcmS(2))))+ |
---|
429 | & ((pcaps_sm(n,3)-pcaps_sm(n,4))/ |
---|
430 | & (fonc(iceigcmS(3))-fonc(iceigcmS(4)))))*(1./2.) |
---|
431 | ! Evaluate derivative of pressure wrt Northern ice depth coefficient, |
---|
432 | ! as the mean of the 2 values obtained using runs 1&3 and 2&4 |
---|
433 | dpden(n)=(((pcapn_sm(n,1)-pcapn_sm(n,3))/ |
---|
434 | & (fonc2n(icedgcm(1))-fonc2n(icedgcm(3))))+ |
---|
435 | & ((pcapn_sm(n,2)-pcapn_sm(n,4))/ |
---|
436 | & (fonc2n(icedgcm(2))-fonc2n(icedgcm(4)))))*(1./2.) |
---|
437 | ! Evaluate derivative of pressure wrt Southern ice depth coefficient, |
---|
438 | ! as the mean of the 2 values obtained using runs 1&3 and 2&4 |
---|
439 | dpdes(n)=(((pcaps_sm(n,1)-pcaps_sm(n,3))/ |
---|
440 | & (fonc2s(icedgcm(1))-fonc2s(icedgcm(3))))+ |
---|
441 | & ((pcaps_sm(n,2)-pcaps_sm(n,4))/ |
---|
442 | & (fonc2s(icedgcm(2))-fonc2s(icedgcm(4)))))*(1./2.) |
---|
443 | ! Evaluate alphaVL1 coefficient, as the mean of alphaVL1 coefficients |
---|
444 | ! of all 4 runs: |
---|
445 | alphavl1(n) = (1./4.)*(pvl_sm(n,1)/patm_sm(n,1) |
---|
446 | & +pvl_sm(n,2)/patm_sm(n,2)+pvl_sm(n,3)/patm_sm(n,3) |
---|
447 | & +pvl_sm(n,4)/patm_sm(n,4)) |
---|
448 | !write(91,*) sol(n), dpden(n), dpdes(n) |
---|
449 | c write(*,*) 'pcapn_sm(n,1),pcapn_sm(n,2)' |
---|
450 | c & ,pcapn_sm(n,1),pcapn_sm(n,2) |
---|
451 | c write(*,*)'fonc(albgcmN(1)),fonc(albgcmS(2))', |
---|
452 | c & fonc(albgcmN(1)),fonc(albgcmS(2)) |
---|
453 | c write(*,*)'albgcmN(1)),albgcmS(2)', |
---|
454 | c & albgcmN(1),albgcmS(2) |
---|
455 | !write(90,*)pvl_sm(n,1)/patm_sm(n,1),pvl_sm(n,2)/patm_sm(n,2), |
---|
456 | c & pvl_sm(n,3)/patm_sm(n,3),pvl_sm(n,4)/patm_sm(n,4) |
---|
457 | end do ! of do n=1,nsol |
---|
458 | |
---|
459 | c ------------------------------------------------- |
---|
460 | c Smooth the derivative like Frederic did ? : |
---|
461 | call runave(sol,dpdicein,nsol,669.,60., |
---|
462 | & sol,dpdicein_fltr,nsol) |
---|
463 | call runave(sol,dpdiceis,nsol,669.,60., |
---|
464 | & sol,dpdiceis_fltr,nsol) |
---|
465 | call runave(sol,dpden,nsol,669.,60., |
---|
466 | & sol,dpden_fltr,nsol) |
---|
467 | call runave(sol,dpdes,nsol,669.,60., |
---|
468 | & sol,dpdes_fltr,nsol) |
---|
469 | do n=1,nsol |
---|
470 | dpdiceis(n)=dpdiceis_fltr(n) |
---|
471 | dpdicein(n)=dpdicein_fltr(n) |
---|
472 | dpdes(n)=dpdes_fltr(n) |
---|
473 | dpden(n)=dpden_fltr(n) |
---|
474 | !write(92,*) sol(n), dpden_fltr(n), dpdes_fltr(n) |
---|
475 | end do |
---|
476 | c ------------------------------------------------- |
---|
477 | |
---|
478 | |
---|
479 | c Compute best fit parameters by minimizing Cost function |
---|
480 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
481 | c STUPID ultra-robust minimization method: waisting CPU to save human time... |
---|
482 | |
---|
483 | open(33, file = 'minimization.txt') |
---|
484 | c 'minimzation.txt' will contain data to plot COST(DN,DS) or COST(IN,IS) depending on plot_test |
---|
485 | |
---|
486 | |
---|
487 | c to plot COST(DN,DS) (plot_test=1), loops must be in this order : DN->DS->IN->IS |
---|
488 | |
---|
489 | costmin = 1.e30 ! initialization |
---|
490 | |
---|
491 | |
---|
492 | if(plot_test.eq.1) then |
---|
493 | c to plot COST(DN,DS) (plot_test=1), loops must be in this order : DN->DS->IN->IS |
---|
494 | write(*,*)' DN DS cost IN IS Ps' |
---|
495 | icedn=icedmin ! initialization |
---|
496 | do while (icedn.le.icedmax) ! loop on northern ice depth coefficient |
---|
497 | ! albn=albmin ! initialization |
---|
498 | ! do while (albn.le.albmax) ! loop on northern cap albedo |
---|
499 | iceds=max(icedn-maxiceddiff,icedmin) ! initialization |
---|
500 | do while (iceds.le.min(icedn+maxiceddiff,icedmax)) |
---|
501 | cost4plot = 1.e30 ! initializationqsub |
---|
502 | ! iceds=max(icedn-maxiceddiff,icedmin) ! initialization |
---|
503 | ! do while (iceds.le.min(icedn+maxiceddiff,icedmax)) |
---|
504 | icein=iceimin ! initialization |
---|
505 | do while (icein.le.iceimax) ! loop on northern ice inertia |
---|
506 | iceis=max(icein-maxiceidiff,iceimin) ! initialization |
---|
507 | do while (iceis.le.min(icein+maxiceidiff,iceimax)) |
---|
508 | ptry=pmin ! initialization |
---|
509 | do while (ptry.le.pmax) ! loop on total pressure |
---|
510 | cost =0. !initialization |
---|
511 | do n=1,nsol |
---|
512 | !write(*,*) n |
---|
513 | ! Pressure corresponding to Northern cap |
---|
514 | pcapn_new=pcapn_sm(n,refrun)+ |
---|
515 | & (fonc(icein) -fonc(iceigcm_refN)) * dpdicein(n) |
---|
516 | & + (fonc2n(icedn) -fonc2n(icedgcm_ref)) * dpden(n) |
---|
517 | pcapn_new= max(pcapn_new,0.) |
---|
518 | ! Pressure corresponding to Southern Cap |
---|
519 | pcaps_new=pcaps_sm(n,refrun)+ |
---|
520 | & (fonc(iceis) -fonc(iceigcm_refS)) * dpdiceis(n) |
---|
521 | & + (fonc2s(iceds) -fonc2s(icedgcm_ref)) * dpdes(n) |
---|
522 | pcaps_new= max(pcaps_new,0.) |
---|
523 | ! Pressure at VL1 site |
---|
524 | pvl1 = alphavl1(n)* |
---|
525 | & (ptry - pcapn_new - pcaps_new) |
---|
526 | ! cumulative squared differences between predicted |
---|
527 | ! and observed pressures at VL1 site |
---|
528 | cost= cost+ ( pvl_obs(n) - pvl1)**2 |
---|
529 | |
---|
530 | end do ! of do n=1,nsol |
---|
531 | ! store parameters which lead to minimum cost |
---|
532 | ! (i.e. best fit so far) |
---|
533 | if(cost.lt.costmin) then |
---|
534 | costmin = cost |
---|
535 | pfit=ptry |
---|
536 | iceinfit=icein |
---|
537 | iceisfit=iceis |
---|
538 | icednfit=icedn |
---|
539 | icedsfit=iceds |
---|
540 | end if |
---|
541 | |
---|
542 | if(cost.lt.cost4plot) then |
---|
543 | c RMS, best pressure and best albedos for these icedsivities value |
---|
544 | cost4plot = cost |
---|
545 | iceis4plot=iceis |
---|
546 | ! iceds4plot=iceds |
---|
547 | icein4plot=icein |
---|
548 | ps4plot=ptry |
---|
549 | end if |
---|
550 | ptry=ptry+deltap ! increment ptry |
---|
551 | end do ! of do while (ptry.le.pmax) |
---|
552 | iceis=iceis+deltaicei ! increment iceis |
---|
553 | end do ! of do while (iceis.le.min(icein+maxiceidiff,iceimax)) |
---|
554 | icein=icein+deltaicei ! increment icein |
---|
555 | enddo ! of do while (icein.le.iceimax) |
---|
556 | ! iceds=iceds+deltaiced ! increment iceds |
---|
557 | ! end do ! of do while (iceds.le.min(icedn+maxiceddiff,icedmax)) |
---|
558 | ! write(*,fmt='(1pe9.2,f5.2,f9.3,1pe9.2, |
---|
559 | ! & f5.2,f7.2)') |
---|
560 | write(*,fmt='(6(1pe10.3))') ! output to screen |
---|
561 | & icedn,iceds,sqrt(cost4plot/float(nsol)), |
---|
562 | & icein4plot,iceis4plot,ps4plot |
---|
563 | write(33,fmt='(6(1pe10.3))') ! output to file |
---|
564 | & icedn,iceds,sqrt(cost4plot/float(nsol)), |
---|
565 | & icein4plot,iceis4plot,ps4plot |
---|
566 | iceds=iceds+deltaiced ! increment iceds |
---|
567 | enddo ! of do while (iceds.le.min(icedn+maxiceddiff,icedmax)) |
---|
568 | write(33,*)' ' ! blank line in output file |
---|
569 | ! albn=albn+deltaalb ! increment albn |
---|
570 | ! end do ! of do while (albn.le.albmax) |
---|
571 | icedn=icedn+deltaiced |
---|
572 | end do ! do while (icedn.le.icedmax) |
---|
573 | |
---|
574 | elseif(plot_test.eq.2) then |
---|
575 | c to plot COST(IN,IS) (plot_test=2), loops must be in this order : IN->IS->DN->DS |
---|
576 | write(*,*)' DN DS cost IN IS Ps' |
---|
577 | write(33,*)' DN DS cost IN IS Ps' |
---|
578 | icein=iceimin ! initialization |
---|
579 | do while (icein.le.iceimax) ! loop on northern ice depth coefficient |
---|
580 | ! albn=albmin ! initialization |
---|
581 | ! do while (albn.le.albmax) ! loop on northern cap albedo |
---|
582 | iceis=max(icein-maxiceidiff,iceimin)! initialization |
---|
583 | do while (iceis.le.min(icein+maxiceidiff,iceimax)) |
---|
584 | cost4plot = 1.e30 ! initializationqsub |
---|
585 | ! iceds=max(icedn-maxiceddiff,icedmin) ! initialization |
---|
586 | ! do while (iceds.le.min(icedn+maxiceddiff,icedmax)) |
---|
587 | icedn=icedmin ! initialization |
---|
588 | do while (icedn.le.icedmax) ! loop on northern ice inertia |
---|
589 | iceds=max(icedn-maxiceddiff,icedmin) ! initialization |
---|
590 | do while (iceds.le.min(icedn+maxiceddiff,icedmax)) |
---|
591 | ptry=pmin ! initialization |
---|
592 | do while (ptry.le.pmax) ! loop on total pressure |
---|
593 | cost =0. !initialization |
---|
594 | do n=1,nsol |
---|
595 | !write(*,*) n |
---|
596 | ! Pressure corresponding to Northern cap |
---|
597 | pcapn_new=pcapn_sm(n,refrun)+ |
---|
598 | & (fonc(icein) -fonc(iceigcm_refN)) * dpdicein(n) |
---|
599 | & + (fonc2n(icedn) -fonc2n(icedgcm_ref)) * dpden(n) |
---|
600 | pcapn_new= max(pcapn_new,0.) |
---|
601 | ! Pressure corresponding to Southern Cap |
---|
602 | pcaps_new=pcaps_sm(n,refrun)+ |
---|
603 | & (fonc(iceis) -fonc(iceigcm_refS)) * dpdiceis(n) |
---|
604 | & + (fonc2s(iceds) -fonc2s(icedgcm_ref)) * dpdes(n) |
---|
605 | pcaps_new= max(pcaps_new,0.) |
---|
606 | ! Pressure at VL1 site |
---|
607 | pvl1 = alphavl1(n)* |
---|
608 | & (ptry - pcapn_new - pcaps_new) |
---|
609 | ! cumulative squared differences between predicted |
---|
610 | ! and observed pressures at VL1 site |
---|
611 | cost= cost+ ( pvl_obs(n) - pvl1)**2 |
---|
612 | |
---|
613 | end do ! of do n=1,nsol |
---|
614 | ! store parameters which lead to minimum cost |
---|
615 | ! (i.e. best fit so far) |
---|
616 | if(cost.lt.costmin) then |
---|
617 | costmin = cost |
---|
618 | pfit=ptry |
---|
619 | iceinfit=icein |
---|
620 | iceisfit=iceis |
---|
621 | icednfit=icedn |
---|
622 | icedsfit=iceds |
---|
623 | end if |
---|
624 | |
---|
625 | if(cost.lt.cost4plot) then |
---|
626 | c RMS, best pressure and best albedos for these icedsivities value |
---|
627 | cost4plot = cost |
---|
628 | iceds4plot=iceds |
---|
629 | ! iceds4plot=iceds |
---|
630 | icedn4plot=icedn |
---|
631 | ps4plot=ptry |
---|
632 | end if |
---|
633 | ptry=ptry+deltap ! increment ptry |
---|
634 | end do ! of do while (ptry.le.pmax) |
---|
635 | iceds=iceds+deltaiced ! increment iceis |
---|
636 | end do ! of do while (iceis.le.min(icein+maxiceidiff,iceimax)) |
---|
637 | icedn=icedn+deltaiced ! increment icein |
---|
638 | enddo ! of do while (icein.le.iceimax) |
---|
639 | ! iceds=iceds+deltaiced ! increment iceds |
---|
640 | ! end do ! of do while (iceds.le.min(icedn+maxiceddiff,icedmax)) |
---|
641 | ! write(*,fmt='(1pe9.2,f5.2,f9.3,1pe9.2, |
---|
642 | ! & f5.2,f7.2)') |
---|
643 | write(*,fmt='(6(1pe10.3))') ! output to screen |
---|
644 | & icedn4plot,iceds4plot,sqrt(cost4plot/float(nsol)), |
---|
645 | & icein,iceis,ps4plot |
---|
646 | write(33,fmt='(6(1pe10.3))') ! output to file |
---|
647 | & icedn4plot,iceds4plot,sqrt(cost4plot/float(nsol)), |
---|
648 | & icein,iceis,ps4plot |
---|
649 | iceis=iceis+deltaicei ! increment iceds |
---|
650 | enddo ! of do while (iceds.le.min(icedn+maxiceddiff,icedmax)) |
---|
651 | write(33,*)' ' ! blank line in output file |
---|
652 | ! albn=albn+deltaalb ! increment albn |
---|
653 | ! end do ! of do while (albn.le.albmax) |
---|
654 | icein=icein+deltaicei |
---|
655 | end do ! do while (icedn.le.icedmax) |
---|
656 | else |
---|
657 | write(*,*) 'Wrong integer for plot (must be 1 or 2)' |
---|
658 | stop |
---|
659 | |
---|
660 | endif |
---|
661 | |
---|
662 | close(33) |
---|
663 | |
---|
664 | write(*,*) 'Best fit Ptot=', pfit |
---|
665 | write(*,*) 'Best fit In=', iceinfit |
---|
666 | write(*,*) 'Best fit IS=', iceisfit |
---|
667 | write(*,*) 'Best fit Dn=', icednfit |
---|
668 | write(*,*) 'Best fit DS=', icedsfit |
---|
669 | write(*,*) 'RMS difference model/obs=',sqrt(costmin/float(nsol)) |
---|
670 | |
---|
671 | c Synthethic VL1 pressure curves for information |
---|
672 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
673 | open(41,file='pvlfit') |
---|
674 | open(42,file='xprestotfit') |
---|
675 | do n=1,nsol |
---|
676 | pcapn_new=pcapn_sm(n,refrun)+ |
---|
677 | & (fonc(iceinfit) -fonc(iceigcm_refN)) * dpdicein(n) |
---|
678 | & + (fonc2n(icednfit) -fonc2n(icedgcm_ref)) * dpden(n) |
---|
679 | pcapn_new= max(pcapn_new,0.) |
---|
680 | pcaps_new=pcaps_sm(n,refrun)+ |
---|
681 | & (fonc(iceisfit) -fonc(iceigcm_refS)) * dpdiceis(n) |
---|
682 | & + (fonc2s(icedsfit) -fonc2s(icedgcm_ref)) * dpdes(n) |
---|
683 | pcaps_new= max(pcaps_new,0.) |
---|
684 | |
---|
685 | call sol2ls(sol(n),solconv) |
---|
686 | |
---|
687 | write(41,*) sol(n), solconv, alphavl1(n)* |
---|
688 | & ( pfit - pcapn_new - pcaps_new) |
---|
689 | write(42,*) sol(n),solconv, pfit - pcapn_new - pcaps_new, |
---|
690 | & pcapn_new, pcaps_new, pfit |
---|
691 | end do |
---|
692 | close(41) |
---|
693 | close(42) |
---|
694 | |
---|
695 | end |
---|
696 | |
---|
697 | c ***************************************************************** |
---|
698 | SUBROUTINE RUNAVE (x,y,nmax,xperiod,xave,xsmooth,ysmooth,nsm) |
---|
699 | |
---|
700 | |
---|
701 | IMPLICIT NONE |
---|
702 | |
---|
703 | c ----------------------------------------------------------- |
---|
704 | c Computing runnig average ysmooth on xsmooth coordinate for a periodic |
---|
705 | c field y in coordinate x PERIODIC between 0 and xperiod |
---|
706 | c Averaging box size : xave |
---|
707 | c F.Forget 1999 |
---|
708 | c ----------------------------------------------------------- |
---|
709 | |
---|
710 | integer nmax,nsm |
---|
711 | real y(nmax), ysmooth(nsm) |
---|
712 | real x(nmax), xsmooth(nsm) |
---|
713 | real xperiod,xave |
---|
714 | integer n,i, nave, imin |
---|
715 | |
---|
716 | integer nbig |
---|
717 | parameter (nbig=99999999) |
---|
718 | real xx(nbig) |
---|
719 | |
---|
720 | c ----------------------------------------------------------- |
---|
721 | |
---|
722 | |
---|
723 | if (nbig.lt.3*nmax) then |
---|
724 | write(*,*) 'Must increase nbig in runave' |
---|
725 | stop |
---|
726 | endif |
---|
727 | |
---|
728 | c Reindexation des donnees |
---|
729 | do n=1,nmax |
---|
730 | xx(n) = x(n) - xperiod |
---|
731 | xx(n+nmax) = x(n) |
---|
732 | xx(n+2*nmax) = x(n) +xperiod |
---|
733 | end do |
---|
734 | |
---|
735 | c Moyenne glissante |
---|
736 | imin=1 |
---|
737 | do n=1,nsm |
---|
738 | ysmooth(n) =0. |
---|
739 | nave =0 |
---|
740 | do i=imin,3*nmax |
---|
741 | if (xx(i).ge.(xsmooth(n)-0.5*xave)) then |
---|
742 | if (xx(i).gt.(xsmooth(n)+0.5*xave)) goto 999 |
---|
743 | ysmooth(n) = ysmooth(n) + y(mod(i-1,nmax)+1) |
---|
744 | nave = nave +1 |
---|
745 | end if |
---|
746 | end do |
---|
747 | 999 continue |
---|
748 | imin = i -1 -nave |
---|
749 | ysmooth(n) = ysmooth(n)/ float (nave) |
---|
750 | end do |
---|
751 | end |
---|
752 | |
---|
753 | subroutine ls2sol(ls,sol) |
---|
754 | |
---|
755 | implicit none |
---|
756 | !================================================================ |
---|
757 | ! Arguments: |
---|
758 | !================================================================ |
---|
759 | real,intent(in) :: ls |
---|
760 | real,intent(out) :: sol |
---|
761 | |
---|
762 | !================================================================ |
---|
763 | ! Local: |
---|
764 | !================================================================ |
---|
765 | double precision xref,zx0,zteta,zz |
---|
766 | !xref: mean anomaly, zteta: true anomaly, zx0: eccentric anomaly |
---|
767 | double precision year_day |
---|
768 | double precision peri_day,timeperi,e_elips |
---|
769 | double precision pi,degrad |
---|
770 | parameter (year_day=668.6d0) ! number of sols in a martian year |
---|
771 | parameter (peri_day=485.35d0) ! date (in sols) of perihelion |
---|
772 | !timeperi: 2*pi*( 1 - Ls(perihelion)/ 360 ); Ls(perihelion)=250.99 |
---|
773 | parameter (timeperi=1.90258341759902d0) |
---|
774 | parameter (e_elips=0.0934d0) ! eccentricity of orbit |
---|
775 | parameter (pi=3.14159265358979d0) |
---|
776 | parameter (degrad=57.2957795130823d0) |
---|
777 | |
---|
778 | if (abs(ls).lt.1.0e-5) then |
---|
779 | if (ls.ge.0.0) then |
---|
780 | sol = 0.0 |
---|
781 | else |
---|
782 | sol = real(year_day) |
---|
783 | end if |
---|
784 | return |
---|
785 | end if |
---|
786 | |
---|
787 | zteta = ls/degrad + timeperi |
---|
788 | zx0 = 2.0*datan(dtan(0.5*zteta)/dsqrt((1.+e_elips)/(1.-e_elips))) |
---|
789 | xref = zx0-e_elips*dsin(zx0) |
---|
790 | zz = xref/(2.*pi) |
---|
791 | sol = real(zz*year_day + peri_day) |
---|
792 | if (sol.lt.0.0) sol = sol + real(year_day) |
---|
793 | if (sol.ge.year_day) sol = sol - real(year_day) |
---|
794 | |
---|
795 | |
---|
796 | end subroutine ls2sol |
---|
797 | |
---|
798 | subroutine sol2ls(sol,Ls) |
---|
799 | !============================================================================== |
---|
800 | ! Purpose: |
---|
801 | ! Convert a date/time, given in sol (martian day), |
---|
802 | ! into solar longitude date/time, in Ls (in degrees), |
---|
803 | ! where sol=0 is (by definition) the northern hemisphere |
---|
804 | ! spring equinox (where Ls=0). |
---|
805 | !============================================================================== |
---|
806 | ! Notes: |
---|
807 | ! Even though "Ls" is cyclic, if "sol" is greater than N (martian) year, |
---|
808 | ! "Ls" will be increased by N*360 |
---|
809 | ! Won't work as expected if sol is negative (then again, |
---|
810 | ! why would that ever happen?) |
---|
811 | !============================================================================== |
---|
812 | |
---|
813 | implicit none |
---|
814 | |
---|
815 | !============================================================================== |
---|
816 | ! Arguments: |
---|
817 | !============================================================================== |
---|
818 | real,intent(in) :: sol |
---|
819 | real,intent(out) :: Ls |
---|
820 | |
---|
821 | !============================================================================== |
---|
822 | ! Local variables: |
---|
823 | !============================================================================== |
---|
824 | real year_day,peri_day,timeperi,e_elips,twopi,degrad |
---|
825 | data year_day /669./ ! # of sols in a martian year |
---|
826 | data peri_day /485.0/ |
---|
827 | data timeperi /1.9082314/ |
---|
828 | data e_elips /0.093358/ |
---|
829 | data twopi /6.2831853/ ! 2.*pi |
---|
830 | data degrad /57.2957795/ ! pi/180 |
---|
831 | |
---|
832 | real zanom,xref,zx0,zdx,zteta,zz |
---|
833 | |
---|
834 | integer count_years |
---|
835 | integer iter |
---|
836 | |
---|
837 | !============================================================================== |
---|
838 | ! 1. Compute Ls |
---|
839 | !============================================================================== |
---|
840 | |
---|
841 | zz=(sol-peri_day)/year_day |
---|
842 | zanom=twopi*(zz-nint(zz)) |
---|
843 | xref=abs(zanom) |
---|
844 | |
---|
845 | ! The equation zx0 - e * sin (zx0) = xref, solved by Newton |
---|
846 | zx0=xref+e_elips*sin(xref) |
---|
847 | do iter=1,20 ! typically, 2 or 3 iterations are enough |
---|
848 | zdx=-(zx0-e_elips*sin(zx0)-xref)/(1.-e_elips*cos(zx0)) |
---|
849 | zx0=zx0+zdx |
---|
850 | if(abs(zdx).le.(1.e-7)) then |
---|
851 | ! write(*,*)'iter:',iter,' |zdx|:',abs(zdx) |
---|
852 | exit |
---|
853 | endif |
---|
854 | enddo |
---|
855 | |
---|
856 | if(zanom.lt.0.) zx0=-zx0 |
---|
857 | |
---|
858 | zteta=2.*atan(sqrt((1.+e_elips)/(1.-e_elips))*tan(zx0/2.)) |
---|
859 | Ls=zteta-timeperi |
---|
860 | |
---|
861 | if(Ls.lt.0.) then |
---|
862 | Ls=Ls+twopi |
---|
863 | else |
---|
864 | if(Ls.gt.twopi) then |
---|
865 | Ls=Ls-twopi |
---|
866 | endif |
---|
867 | endif |
---|
868 | |
---|
869 | Ls=degrad*Ls |
---|
870 | ! Ls is now in degrees |
---|
871 | |
---|
872 | !============================================================================== |
---|
873 | ! 1. Account for (eventual) years included in input date/time sol |
---|
874 | !============================================================================== |
---|
875 | |
---|
876 | count_years=0 ! initialize |
---|
877 | zz=sol ! use "zz" to store (and work on) the value of sol |
---|
878 | do while (zz.ge.year_day) |
---|
879 | count_years=count_years+1 |
---|
880 | zz=zz-year_day |
---|
881 | enddo |
---|
882 | |
---|
883 | ! Add 360 degrees to Ls for every year |
---|
884 | if (count_years.ne.0) then |
---|
885 | Ls=Ls+360.*count_years |
---|
886 | endif |
---|
887 | |
---|
888 | |
---|
889 | end subroutine sol2ls |
---|
890 | |
---|