1 | #!/usr/bin/env python3 |
---|
2 | ############################################################ |
---|
3 | ### Python script to analyse a NetCDF file for debugging ### |
---|
4 | ############################################################ |
---|
5 | |
---|
6 | |
---|
7 | """ |
---|
8 | For each numeric variable, it outputs: |
---|
9 | - Dimensions and shape |
---|
10 | - Minimum & maximum values (ignoring NaNs) |
---|
11 | - Mean value (ignoring NaNs) |
---|
12 | - Warnings if the variable is entirely NaN or contains any NaNs/negative values |
---|
13 | |
---|
14 | Usage: |
---|
15 | 1) Command-line mode: |
---|
16 | python analyze_netcdf.py /path/to/your_file.nc |
---|
17 | |
---|
18 | 2) Interactive mode through the prompt: |
---|
19 | python analyze_netcdf.py |
---|
20 | """ |
---|
21 | |
---|
22 | |
---|
23 | import os |
---|
24 | import sys |
---|
25 | import glob |
---|
26 | import readline |
---|
27 | import argparse |
---|
28 | import numpy as np |
---|
29 | from netCDF4 import Dataset |
---|
30 | |
---|
31 | |
---|
32 | def complete_filename(text, state): |
---|
33 | """ |
---|
34 | Tab-completion function for readline: completes filesystem paths. |
---|
35 | Appends '/' if the match is a directory. |
---|
36 | """ |
---|
37 | # The text forms a partial path; glob for matching entries |
---|
38 | if "*" not in text: |
---|
39 | text_glob = text + "*" |
---|
40 | else: |
---|
41 | text_glob = text |
---|
42 | matches = glob.glob(os.path.expanduser(text_glob)) |
---|
43 | # Add a trailing slash for directories |
---|
44 | matches = [m + "/" if os.path.isdir(m) else m for m in matches] |
---|
45 | try: |
---|
46 | return matches[state] |
---|
47 | except IndexError: |
---|
48 | return None |
---|
49 | |
---|
50 | |
---|
51 | def analyze_variable(variable): |
---|
52 | """ |
---|
53 | Print summary statistics (min, max, mean) for a numeric NetCDF variable. |
---|
54 | Ignores NaNs when computing min/max/mean. Warns if any NaNs or negatives exist. |
---|
55 | """ |
---|
56 | name = variable.name |
---|
57 | dims = variable.dimensions |
---|
58 | shape = variable.shape |
---|
59 | |
---|
60 | try: |
---|
61 | # Read the entire array into memory; this may be large for huge datasets |
---|
62 | data = variable[:] |
---|
63 | except Exception as e: |
---|
64 | print(f"\nUnable to read variable '{name}': {e}") |
---|
65 | return |
---|
66 | |
---|
67 | # If the array is a masked array, convert to a NumPy array with masked values as np.nan |
---|
68 | if hasattr(data, "mask"): |
---|
69 | # Fill masked entries with NaN so that np.nanmin / np.nanmax works correctly |
---|
70 | data = np.where(data.mask, np.nan, data.data) |
---|
71 | |
---|
72 | # Determine if the variable has any valid (finite) data at all |
---|
73 | if np.all(np.isnan(data)): |
---|
74 | # Entirely NaN (or entirely masked) |
---|
75 | print(f"\nAnalysis of variable: {name}") |
---|
76 | print(f" Dimensions: {dims}") |
---|
77 | print(f" Shape : {shape}") |
---|
78 | print(" Entire variable is NaN or masked.") |
---|
79 | return |
---|
80 | |
---|
81 | # Compute min, max, mean ignoring NaNs |
---|
82 | data_min = np.nanmin(data) |
---|
83 | data_max = np.nanmax(data) |
---|
84 | data_mean = np.nanmean(data) |
---|
85 | |
---|
86 | # Check for presence of NaNs and negative values |
---|
87 | has_nan = np.isnan(data).any() |
---|
88 | has_negative = np.any(data < 0) |
---|
89 | |
---|
90 | # Output |
---|
91 | print(f"\nAnalysis of variable: {name}") |
---|
92 | print(f" Dimensions: {dims}") |
---|
93 | print(f" Shape : {shape}") |
---|
94 | print(f" Min value : {data_min:>12.6e}") |
---|
95 | print(f" Max value : {data_max:>12.6e}") |
---|
96 | print(f" Mean value: {data_mean:>12.6e}") |
---|
97 | if has_nan: |
---|
98 | print(f" \033[91mContains NaN values!\033[0m") |
---|
99 | if has_negative: |
---|
100 | print(f" \033[93mWarning: contains negative values!\033[0m") |
---|
101 | |
---|
102 | def analyze_netcdf_file(nc_path): |
---|
103 | """ |
---|
104 | Open the NetCDF file at nc_path and analyze each numeric variable. |
---|
105 | """ |
---|
106 | if not os.path.isfile(nc_path): |
---|
107 | print(f"Error: File '{nc_path}' not found.") |
---|
108 | return |
---|
109 | |
---|
110 | try: |
---|
111 | ds = Dataset(nc_path, mode='r') |
---|
112 | except Exception as e: |
---|
113 | print(f"Error: Unable to open '{nc_path}': {e}") |
---|
114 | return |
---|
115 | |
---|
116 | print(f"\nOpened NetCDF file: {nc_path}") |
---|
117 | print(f"Number of variables: {len(ds.variables)}") |
---|
118 | |
---|
119 | for var_name, variable in ds.variables.items(): |
---|
120 | # Attempt to check if the dtype is numeric |
---|
121 | try: |
---|
122 | dtype = variable.dtype |
---|
123 | except Exception: |
---|
124 | # If reading dtype fails, skip it |
---|
125 | print(f"\nSkipping variable with unknown type: {var_name}") |
---|
126 | continue |
---|
127 | |
---|
128 | if np.issubdtype(dtype, np.number): |
---|
129 | analyze_variable(variable) |
---|
130 | else: |
---|
131 | print(f"\nSkipping non-numeric variable: {var_name}") |
---|
132 | |
---|
133 | ds.close() |
---|
134 | print("\nFinished analysis.\n") |
---|
135 | |
---|
136 | |
---|
137 | def main(): |
---|
138 | parser = argparse.ArgumentParser( |
---|
139 | description="Analyze a NetCDF file and report min/max/mean for each numeric variable." |
---|
140 | ) |
---|
141 | parser.add_argument( |
---|
142 | "nc_file", |
---|
143 | nargs="?", |
---|
144 | help="Path to the NetCDF file (if omitted, you'll be prompted)." |
---|
145 | ) |
---|
146 | args = parser.parse_args() |
---|
147 | |
---|
148 | if args.nc_file: |
---|
149 | # Command-line mode: directly analyze the provided file path |
---|
150 | analyze_netcdf_file(args.nc_file) |
---|
151 | else: |
---|
152 | # Interactive mode: enable tab completion for filenames |
---|
153 | readline.set_completer(complete_filename) |
---|
154 | readline.parse_and_bind("tab: complete") |
---|
155 | try: |
---|
156 | user_input = input("Enter the path to the NetCDF file: ").strip() |
---|
157 | except (EOFError, KeyboardInterrupt): |
---|
158 | print("\nExiting.") |
---|
159 | return |
---|
160 | |
---|
161 | if not user_input: |
---|
162 | print("No file specified. Exiting.") |
---|
163 | return |
---|
164 | |
---|
165 | analyze_netcdf_file(user_input) |
---|
166 | |
---|
167 | |
---|
168 | if __name__ == "__main__": |
---|
169 | main() |
---|
170 | |
---|