source: trunk/LMDZ.MARS/util/analyse_netcdf.py @ 3585

Last change on this file since 3585 was 3465, checked in by jbclement, 3 months ago

Mars PCM:

  • Small update in "analyse_netcdf.py".
  • Putting the 1D launching scripts back to the "deftank" folder.

JBC

  • Property svn:executable set to *
File size: 2.8 KB
RevLine 
[3459]1############################################################
2### Python script to analyse a NetCDF file for debugging ###
3############################################################
4
5### This script gives useful information about a NetCDF file
6### to help for debugging. For each variable, it outputs the
7### dimensions, the min & max values, the average value and
8### warns the user in case of NaN or negative values.
9### The file name is asked to the user in the terminal.
10
11import os
12import readline
13import glob
14from netCDF4 import Dataset
15import numpy as np
16
17############################################################
18### Setup readline for file name autocompletion
19def complete(text,state):
20    line = readline.get_line_buffer().split()
21    # Use glob to find all matching files/directories for the current text
22    if '*' not in text:
23        text += '*'
24    matches = glob.glob(os.path.expanduser(text))
25    # Add '/' if the match is a directory
26    matches = [match + '/' if os.path.isdir(match) else match for match in matches]
27   
28    try:
29        return matches[state]
30    except IndexError:
31        return None
32
33### Function to analyze a variable in a NetCDF file
34def analyze_variable(variable):
35    # Get the data for the variable
36    data = variable[:]
37   
38    # Calculate min, max and mean
[3465]39    if np.isnan(data).all():
40        min_val = np.nan
41        max_val = np.nan
42        mean_val = np.nan
43    else:
44        data_min = np.nanmin(data) # Min value ignoring NaN
45        data_max = np.nanmax(data) # Max value ignoring NaN
46        data_mean = np.nanmean(data) # Mean value ignoring NaN
[3459]47   
48    # Check if there are any NaN values
49    has_nan = np.isnan(data).any()
50
51    # Check for negative values
52    has_negative = (data < 0).any()
53   
54    # Print the results
55    print(f"\nAnalysis of variable: {variable.name}")
56    print(f"  Dimensions: {variable.dimensions}")
57    print(f"  Min value : {data_min:>12.6e}")
58    print(f"  Max value : {data_max:>12.6e}")
59    print(f"  Mean value: {data_mean:>12.6e}")
60    if has_nan:
61        print(f\033[91mContains NaN values!\033[0m")
62    if has_negative:
63        print(f\033[93mWarning: contains negative values!\033[0m")
64
65### Main function
66def analyze_netcdf():
67    # Ask for the file name
68    readline.set_completer(complete)
69    readline.parse_and_bind('tab: complete')
70    file = input("Enter the name of the NetCDF file: ")
71   
72    # Open the NetCDF file
73    try:
74        dataset = Dataset(file,mode='r')
75    except FileNotFoundError:
76        print(f"File '{file}' not found.")
77        return
78   
79    # Iterate through all variables in the dataset to analyze them
80    for variable_name in dataset.variables:
81        variable = dataset.variables[variable_name]
82        analyze_variable(variable)
83   
84    # Close the NetCDF file
85    dataset.close()
86
87### Call the main function
88analyze_netcdf()
89
Note: See TracBrowser for help on using the repository browser.