| 1 | MODULE waterice_tifeedback_mod |
|---|
| 2 | |
|---|
| 3 | !======================================================================================================================! |
|---|
| 4 | ! Subject: |
|---|
| 5 | !--------- |
|---|
| 6 | ! Module used to compute the thermal inertia of an icy soil (either pore filling or massive ice) |
|---|
| 7 | !----------------------------------------------------------------------------------------------------------------------! |
|---|
| 8 | ! Reference: |
|---|
| 9 | !----------- |
|---|
| 10 | ! For pure ice on the surface: J.-B. Madeleine, F. Forget, James W. Head, B. Levrard, F. Montmessin, E. Millour, |
|---|
| 11 | ! Amazonian northern mid-latitude glaciation on Mars: A proposed climate scenario, Icarus (10.1016/j.icarus.2009.04.037). |
|---|
| 12 | ! |
|---|
| 13 | ! For pore-filling ice: Siegler, M., O. Aharonson, E. Carey, M. Choukroun, T. Hudson, N. Schorghofer, and S. Xu (2012), Measurements of thermal properties of icy Mars regolith analogs, JGR (10.1029/2011JE003938). |
|---|
| 14 | ! |
|---|
| 15 | ! Originally written by JBM for pure ice (2008-2012), moved in to a module and .F90 by LL (2024). Pore filling ice included by LL (2024) |
|---|
| 16 | ! |
|---|
| 17 | !======================================================================================================================! |
|---|
| 18 | |
|---|
| 19 | |
|---|
| 20 | |
|---|
| 21 | IMPLICIT NONE |
|---|
| 22 | |
|---|
| 23 | CONTAINS |
|---|
| 24 | |
|---|
| 25 | SUBROUTINE waterice_tifeedback(ngrid,nsoil,nslope,icecover,poreice,newtherm_i) |
|---|
| 26 | |
|---|
| 27 | use tracer_mod, only: rho_ice |
|---|
| 28 | use comsoil_h, only: layer, inertiedat, porosity_reg |
|---|
| 29 | use surfdat_h, only: watercaptag, inert_h2o_ice |
|---|
| 30 | IMPLICIT NONE |
|---|
| 31 | include "callkeys.h" |
|---|
| 32 | !======================================================================= |
|---|
| 33 | ! Description : |
|---|
| 34 | ! Surface water ice / pore filling ice thermal inertia feedback. |
|---|
| 35 | ! |
|---|
| 36 | ! When surface water-ice is thick enough (flag surfaceice_tifeedback), this routine creates a new |
|---|
| 37 | ! soil thermal inertia with three different layers : |
|---|
| 38 | ! - One layer of surface water ice (the thickness is given |
|---|
| 39 | ! by the variable icecover (in kg of ice per m2) and the thermal |
|---|
| 40 | ! inertia is prescribed by inert_h2o_ice (see surfdat_h)); |
|---|
| 41 | ! - A transitional layer of mixed thermal inertia; |
|---|
| 42 | ! - A last layer of regolith below the ice cover whose thermal inertia |
|---|
| 43 | ! is equal to inertiedat. |
|---|
| 44 | ! |
|---|
| 45 | ! To use the model : |
|---|
| 46 | ! SET THE surfaceice_tifeedback LOGICAL TO ".true." in callphys.def. |
|---|
| 47 | ! |
|---|
| 48 | ! When pore filling ice is present, surface ice is computed as in Siegler et al., 2012 |
|---|
| 49 | ! \sqrt(surf_thermalinertia**2 + porosity*pore_filling*inertie_purewaterice**2) |
|---|
| 50 | ! |
|---|
| 51 | ! For now, the code can not run with both options |
|---|
| 52 | ! |
|---|
| 53 | ! |
|---|
| 54 | ! Author: J.-B. Madeleine Mars 2008 - Updated November 2012; Added porous ice by LL February 2024 |
|---|
| 55 | !======================================================================= |
|---|
| 56 | |
|---|
| 57 | ! Local variables |
|---|
| 58 | ! --------------- |
|---|
| 59 | |
|---|
| 60 | INTEGER :: ig ! Grid point (ngrid) |
|---|
| 61 | INTEGER :: islope ! SubGrid point (nslope) |
|---|
| 62 | INTEGER :: ik ! Grid point (nsoil) |
|---|
| 63 | INTEGER :: iref ! Ice/Regolith boundary index |
|---|
| 64 | REAL :: icedepth ! Ice cover thickness (m) |
|---|
| 65 | REAL :: inertie_purewaterice = 2100 ! Thermal inertia of pure water ice (J/m^2/K/s^1/2) |
|---|
| 66 | |
|---|
| 67 | ! Inputs |
|---|
| 68 | ! ------ |
|---|
| 69 | INTEGER :: ngrid ! Number of horizontal grid points |
|---|
| 70 | INTEGER :: nsoil ! Number of soil layers |
|---|
| 71 | INTEGER :: nslope ! Number of subgrid slopes |
|---|
| 72 | REAL icecover(ngrid,nslope) ! water iceon the surface (kg.m-2) |
|---|
| 73 | REAL poreice(ngrid,nsoil,nslope) ! pore ice filling fraction (1) |
|---|
| 74 | ! Outputs |
|---|
| 75 | ! ------- |
|---|
| 76 | |
|---|
| 77 | REAL newtherm_i(ngrid,nsoil,nslope) ! New soil thermal inertia |
|---|
| 78 | |
|---|
| 79 | ! Initialization |
|---|
| 80 | ! -------------- |
|---|
| 81 | |
|---|
| 82 | newtherm_i(1:ngrid,1:nsoil,1:nslope) = 0 |
|---|
| 83 | |
|---|
| 84 | IF (surfaceice_tifeedback) THEN |
|---|
| 85 | |
|---|
| 86 | ! Creating the new soil thermal inertia table because of the massive surface ice |
|---|
| 87 | ! ------------------------------------------------------------------------------ |
|---|
| 88 | DO islope = 1,nslope |
|---|
| 89 | DO ig=1,ngrid |
|---|
| 90 | ! Calculating the ice cover thickness |
|---|
| 91 | icedepth=icecover(ig,islope)/rho_ice |
|---|
| 92 | ! If the ice cover is too thick or watercaptag=true, |
|---|
| 93 | ! the entire column is changed : |
|---|
| 94 | IF ((icedepth.ge.layer(nsoil)).or.(watercaptag(ig))) THEN |
|---|
| 95 | DO ik=1,nsoil |
|---|
| 96 | newtherm_i(ig,ik,islope)=inert_h2o_ice |
|---|
| 97 | ENDDO |
|---|
| 98 | ! We neglect the effect of a very thin ice cover : |
|---|
| 99 | ELSE IF (icedepth.lt.layer(1)) THEN |
|---|
| 100 | DO ik=1,nsoil |
|---|
| 101 | newtherm_i(ig,ik,islope)=inertiedat(ig,ik) |
|---|
| 102 | ENDDO |
|---|
| 103 | ELSE |
|---|
| 104 | ! Ice/regolith boundary index : |
|---|
| 105 | iref=1 |
|---|
| 106 | ! Otherwise, we find the ice/regolith boundary: |
|---|
| 107 | DO ik=1,nsoil-1 |
|---|
| 108 | IF ((icedepth.ge.layer(ik)).and.icedepth.lt.layer(ik+1)) THEN |
|---|
| 109 | iref=ik+1 |
|---|
| 110 | EXIT |
|---|
| 111 | ENDIF |
|---|
| 112 | ENDDO |
|---|
| 113 | ! And we change the thermal inertia: |
|---|
| 114 | DO ik=1,iref-1 |
|---|
| 115 | newtherm_i(ig,ik,islope)=inert_h2o_ice |
|---|
| 116 | ENDDO |
|---|
| 117 | ! Transition (based on the equations of thermal conduction): |
|---|
| 118 | newtherm_i(ig,iref,islope)=sqrt( (layer(iref)-layer(iref-1))/(((icedepth-layer(iref-1))/inert_h2o_ice**2) + & |
|---|
| 119 | ((layer(iref)-icedepth)/inertiedat(ig,ik)**2) ) ) |
|---|
| 120 | ! Underlying regolith: |
|---|
| 121 | DO ik=iref+1,nsoil |
|---|
| 122 | newtherm_i(ig,ik,islope)=inertiedat(ig,ik) |
|---|
| 123 | ENDDO |
|---|
| 124 | ENDIF ! icedepth |
|---|
| 125 | ENDDO ! ig |
|---|
| 126 | ENDDO ! islope |
|---|
| 127 | |
|---|
| 128 | ELSE IF (poreice_tifeedback) THEN |
|---|
| 129 | |
|---|
| 130 | ! Updating soil thermal properties to includes the effect of porous ice |
|---|
| 131 | ! ------------------------------------------------------------------------------ |
|---|
| 132 | DO islope = 1,nslope |
|---|
| 133 | newtherm_i(:,:,islope) = sqrt(inertiedat(:,:)**2 + porosity_reg*poreice(:,:,islope)*inertie_purewaterice**2) |
|---|
| 134 | ENDDO |
|---|
| 135 | ENDIF |
|---|
| 136 | |
|---|
| 137 | !======================================================================= |
|---|
| 138 | |
|---|
| 139 | END SUBROUTINE waterice_tifeedback |
|---|
| 140 | END MODULE waterice_tifeedback_mod |
|---|