| 1 | MODULE watercloud_mod |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | SUBROUTINE watercloud(ngrid,nlay,ptimestep, |
|---|
| 8 | & pplev,pplay,pdpsrf,pzlay,pt,pdt, |
|---|
| 9 | & pq,pdq,pdqcloud,pdtcloud, |
|---|
| 10 | & nq,tau,tauscaling,rdust,rice,nuice, |
|---|
| 11 | & rsedcloud,rhocloud,totcloudfrac) |
|---|
| 12 | USE ioipsl_getincom, ONLY: getin |
|---|
| 13 | USE updaterad, ONLY: updaterdust, updaterice_micro, |
|---|
| 14 | & updaterice_typ |
|---|
| 15 | USE improvedclouds_mod, ONLY: improvedclouds |
|---|
| 16 | USE watersat_mod, ONLY: watersat |
|---|
| 17 | use tracer_mod, only: nqmx, igcm_h2o_vap, igcm_h2o_ice, |
|---|
| 18 | & igcm_dust_mass, igcm_dust_number, |
|---|
| 19 | & igcm_ccn_mass, igcm_ccn_number, |
|---|
| 20 | & rho_dust, nuice_sed, nuice_ref |
|---|
| 21 | use dimradmars_mod, only: naerkind |
|---|
| 22 | IMPLICIT NONE |
|---|
| 23 | |
|---|
| 24 | |
|---|
| 25 | c======================================================================= |
|---|
| 26 | c Water-ice cloud formation |
|---|
| 27 | c |
|---|
| 28 | c Includes two different schemes: |
|---|
| 29 | c - A simplified scheme (see simpleclouds.F) |
|---|
| 30 | c - An improved microphysical scheme (see improvedclouds.F) |
|---|
| 31 | c |
|---|
| 32 | c There is a time loop specific to cloud formation |
|---|
| 33 | c due to timescales smaller than the GCM integration timestep. |
|---|
| 34 | c |
|---|
| 35 | c Authors: Franck Montmessin, Francois Forget, Ehouarn Millour, |
|---|
| 36 | c J.-B. Madeleine, Thomas Navarro |
|---|
| 37 | c |
|---|
| 38 | c 2004 - 2012 |
|---|
| 39 | c======================================================================= |
|---|
| 40 | |
|---|
| 41 | c----------------------------------------------------------------------- |
|---|
| 42 | c declarations: |
|---|
| 43 | c ------------- |
|---|
| 44 | |
|---|
| 45 | include "callkeys.h" |
|---|
| 46 | |
|---|
| 47 | c Inputs/outputs: |
|---|
| 48 | c ------ |
|---|
| 49 | |
|---|
| 50 | INTEGER, INTENT(IN) :: ngrid,nlay |
|---|
| 51 | INTEGER, INTENT(IN) :: nq ! nombre de traceurs |
|---|
| 52 | REAL, INTENT(IN) :: ptimestep ! pas de temps physique (s) |
|---|
| 53 | REAL, INTENT(IN) :: pplev(ngrid,nlay+1) ! pression aux inter-couches (Pa) |
|---|
| 54 | REAL, INTENT(IN) :: pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
|---|
| 55 | REAL, INTENT(IN) :: pdpsrf(ngrid) ! tendence surf pressure |
|---|
| 56 | REAL, INTENT(IN) :: pzlay(ngrid,nlay) ! altitude at the middle of the layers |
|---|
| 57 | REAL, INTENT(IN) :: pt(ngrid,nlay) ! temperature at the middle of the layers (K) |
|---|
| 58 | REAL, INTENT(IN) :: pdt(ngrid,nlay) ! tendence temperature des autres param. |
|---|
| 59 | |
|---|
| 60 | REAL, INTENT(IN) :: pq(ngrid,nlay,nq) ! traceur (kg/kg) |
|---|
| 61 | rEAL, INTENT(IN) :: pdq(ngrid,nlay,nq) ! tendence avant condensation (kg/kg.s-1) |
|---|
| 62 | |
|---|
| 63 | REAL, INTENT(IN) :: tau(ngrid,naerkind) ! Column dust optical depth at each point |
|---|
| 64 | REAL, INTENT(IN) :: tauscaling(ngrid) ! Convertion factor for dust amount |
|---|
| 65 | REAL, INTENT(INOUT) :: rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
|---|
| 66 | |
|---|
| 67 | REAL, INTENT(OUT) :: pdqcloud(ngrid,nlay,nq) ! tendence de la condensation H2O(kg/kg.s-1) |
|---|
| 68 | REAL, INTENT(OUT) :: pdtcloud(ngrid,nlay) ! tendence temperature due |
|---|
| 69 | ! a la chaleur latente |
|---|
| 70 | REAL, INTENT(INOUT) :: rice(ngrid,nlay) ! Ice mass mean radius (m) |
|---|
| 71 | ! (r_c in montmessin_2004) |
|---|
| 72 | REAL, INTENT(OUT) :: nuice(ngrid,nlay) ! Estimated effective variance |
|---|
| 73 | ! of the size distribution |
|---|
| 74 | REAL, INTENT(OUT) :: rsedcloud(ngrid,nlay) ! Cloud sedimentation radius |
|---|
| 75 | REAL, INTENT(OUT) :: rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
|---|
| 76 | |
|---|
| 77 | REAL, INTENT(INOUT):: totcloudfrac(ngrid) ! Cloud fraction (A. Pottier 2013) |
|---|
| 78 | |
|---|
| 79 | c Locals: |
|---|
| 80 | c ------ |
|---|
| 81 | |
|---|
| 82 | ! for ice radius computation |
|---|
| 83 | REAL Mo,No |
|---|
| 84 | REAl ccntyp |
|---|
| 85 | |
|---|
| 86 | ! for time loop |
|---|
| 87 | INTEGER microstep ! time subsampling step variable |
|---|
| 88 | INTEGER,SAVE :: imicro ! time subsampling for coupled water microphysics & sedimentation |
|---|
| 89 | REAL,SAVE :: microtimestep ! integration timestep for coupled water microphysics & sedimentation |
|---|
| 90 | REAL,SAVE :: microtimestep_prev=-999 |
|---|
| 91 | |
|---|
| 92 | ! tendency given by clouds (inside the micro loop) |
|---|
| 93 | REAL subpdqcloud(ngrid,nlay,nq) ! cf. pdqcloud |
|---|
| 94 | REAL subpdtcloud(ngrid,nlay) ! cf. pdtcloud |
|---|
| 95 | |
|---|
| 96 | ! global tendency (clouds+physics) |
|---|
| 97 | REAL sum_subpdq(ngrid,nlay,nq) ! cf. pdqcloud |
|---|
| 98 | REAL sum_subpdt(ngrid,nlay) ! cf. pdtcloud |
|---|
| 99 | |
|---|
| 100 | ! no supersaturation when option supersat is false |
|---|
| 101 | REAL zt(ngrid,nlay) ! local value of temperature |
|---|
| 102 | REAL zqsat(ngrid,nlay) ! saturation |
|---|
| 103 | |
|---|
| 104 | INTEGER iq,ig,l |
|---|
| 105 | LOGICAL,SAVE :: firstcall=.true. |
|---|
| 106 | |
|---|
| 107 | ! Representation of sub-grid water ice clouds A. Pottier 2013 |
|---|
| 108 | REAL :: ztclf(ngrid, nlay) |
|---|
| 109 | REAL :: zqclf(ngrid, nlay,nq) |
|---|
| 110 | REAL :: zdelt |
|---|
| 111 | REAL :: norm |
|---|
| 112 | REAL :: ponder |
|---|
| 113 | REAL :: tcond(ngrid,nlay) |
|---|
| 114 | REAL :: zqvap(ngrid,nlay) |
|---|
| 115 | REAL :: zqice(ngrid,nlay) |
|---|
| 116 | REAL :: spant ! delta T for the temperature distribution |
|---|
| 117 | ! REAL :: zqsat(ngrid,nlay) ! saturation |
|---|
| 118 | REAL :: pteff(ngrid, nlay)! effective temperature in the cloud,neb |
|---|
| 119 | REAL :: pqeff(ngrid, nlay, nq)! effective tracers quantities in the cloud |
|---|
| 120 | REAL :: cloudfrac(ngrid,nlay) ! cloud fraction |
|---|
| 121 | REAL :: mincloud ! min cloud frac |
|---|
| 122 | LOGICAL, save :: flagcloud=.true. |
|---|
| 123 | c ** un petit test de coherence |
|---|
| 124 | c -------------------------- |
|---|
| 125 | |
|---|
| 126 | IF (firstcall) THEN |
|---|
| 127 | |
|---|
| 128 | if (nq.gt.nqmx) then |
|---|
| 129 | write(*,*) 'stop in watercloud (nq.gt.nqmx)!' |
|---|
| 130 | write(*,*) 'nq=',nq,' nqmx=',nqmx |
|---|
| 131 | stop |
|---|
| 132 | endif |
|---|
| 133 | |
|---|
| 134 | write(*,*) "watercloud: igcm_h2o_vap=",igcm_h2o_vap |
|---|
| 135 | write(*,*) " igcm_h2o_ice=",igcm_h2o_ice |
|---|
| 136 | |
|---|
| 137 | write(*,*) "time subsampling for microphysic ?" |
|---|
| 138 | #ifdef MESOSCALE |
|---|
| 139 | imicro = 2 |
|---|
| 140 | #else |
|---|
| 141 | imicro = 30 |
|---|
| 142 | #endif |
|---|
| 143 | call getin("imicro",imicro) |
|---|
| 144 | write(*,*)"watercloud: imicro = ",imicro |
|---|
| 145 | |
|---|
| 146 | firstcall=.false. |
|---|
| 147 | ENDIF ! of IF (firstcall) |
|---|
| 148 | |
|---|
| 149 | !! AS: moved out of firstcall to allow nesting+evoluting timestep |
|---|
| 150 | !! TBD: consider possible diff imicro with domains? |
|---|
| 151 | microtimestep = ptimestep/real(imicro) |
|---|
| 152 | if (microtimestep/=microtimestep_prev) then |
|---|
| 153 | ! only tell the world if microtimestep has changed |
|---|
| 154 | write(*,*)"watercloud: Physical timestep is ",ptimestep |
|---|
| 155 | write(*,*)"watercloud: Microphysics timestep is ",microtimestep |
|---|
| 156 | microtimestep_prev=microtimestep |
|---|
| 157 | endif |
|---|
| 158 | |
|---|
| 159 | c-----Initialization |
|---|
| 160 | sum_subpdq(1:ngrid,1:nlay,1:nq) = 0 |
|---|
| 161 | sum_subpdt(1:ngrid,1:nlay) = 0 |
|---|
| 162 | |
|---|
| 163 | ! default value if no ice |
|---|
| 164 | rhocloud(1:ngrid,1:nlay) = rho_dust |
|---|
| 165 | |
|---|
| 166 | c------------------------------------------------------------------- |
|---|
| 167 | c 0. Representation of sub-grid water ice clouds |
|---|
| 168 | c------------------ |
|---|
| 169 | c-----Initialization |
|---|
| 170 | pteff(1:ngrid,1:nlay) = 0 |
|---|
| 171 | pqeff(1:ngrid,1:nlay,1:nq) = 0 |
|---|
| 172 | DO l=1,nlay |
|---|
| 173 | DO ig=1,ngrid |
|---|
| 174 | pteff(ig,l)=pt(ig,l) |
|---|
| 175 | END DO |
|---|
| 176 | END DO |
|---|
| 177 | DO l=1,nlay |
|---|
| 178 | DO ig=1,ngrid |
|---|
| 179 | DO iq=1,nq |
|---|
| 180 | pqeff(ig,l,iq)=pq(ig,l,iq) |
|---|
| 181 | ENDDO |
|---|
| 182 | ENDDO |
|---|
| 183 | ENDDO |
|---|
| 184 | c-----Tendencies |
|---|
| 185 | DO l=1,nlay |
|---|
| 186 | DO ig=1,ngrid |
|---|
| 187 | ztclf(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
|---|
| 188 | ENDDO |
|---|
| 189 | ENDDO |
|---|
| 190 | DO l=1,nlay |
|---|
| 191 | DO ig=1,ngrid |
|---|
| 192 | DO iq=1,nq |
|---|
| 193 | zqclf(ig,l,iq)=pq(ig,l,iq)+pdq(ig,l,iq)*ptimestep |
|---|
| 194 | ENDDO |
|---|
| 195 | ENDDO |
|---|
| 196 | ENDDO |
|---|
| 197 | c-----Effective temperature calculation |
|---|
| 198 | IF (CLFvarying) THEN |
|---|
| 199 | spant=3.0 ! delta T for the temprature distribution |
|---|
| 200 | mincloud=0.1 ! min cloudfrac when there is ice |
|---|
| 201 | IF (flagcloud) THEN |
|---|
| 202 | write(*,*) "Delta T", spant |
|---|
| 203 | write(*,*) "mincloud", mincloud |
|---|
| 204 | flagcloud=.false. |
|---|
| 205 | END IF |
|---|
| 206 | !CALL watersat(ngrid*nlay,ztclf,pplay,zqsat) !MV17: we dont need zqsat in the CLFvarying scheme |
|---|
| 207 | zqvap=zqclf(:,:,igcm_h2o_vap) |
|---|
| 208 | zqice=zqclf(:,:,igcm_h2o_ice) |
|---|
| 209 | CALL tcondwater(ngrid*nlay,pplay,zqvap+zqice,tcond) |
|---|
| 210 | DO l=1,nlay |
|---|
| 211 | DO ig=1,ngrid |
|---|
| 212 | zdelt=spant !MAX(spant*ztclf(ig,l),1.e-12), now totally in K. Fixed width |
|---|
| 213 | IF (tcond(ig,l) .ge. (ztclf(ig,l)+zdelt)) THEN |
|---|
| 214 | pteff(ig,l)=ztclf(ig,l) |
|---|
| 215 | cloudfrac(ig,l)=1. |
|---|
| 216 | ELSE IF (tcond(ig,l) .le. (ztclf(ig,l)-zdelt)) THEN |
|---|
| 217 | pteff(ig,l)=ztclf(ig,l)-zdelt |
|---|
| 218 | cloudfrac(ig,l)=mincloud |
|---|
| 219 | ELSE |
|---|
| 220 | cloudfrac(ig,l)=(tcond(ig,l)-ztclf(ig,l)+zdelt)/ |
|---|
| 221 | & (2.0*zdelt) |
|---|
| 222 | pteff(ig,l)=(tcond(ig,l)+ztclf(ig,l)-zdelt)/2. |
|---|
| 223 | END IF |
|---|
| 224 | pteff(ig,l)=pteff(ig,l)-pdt(ig,l)*ptimestep |
|---|
| 225 | IF (cloudfrac(ig,l).le.mincloud) THEN !MV17: replaced .le.0 by .le.mincloud |
|---|
| 226 | cloudfrac(ig,l)=mincloud |
|---|
| 227 | ELSE IF (cloudfrac(ig,l).gt.1) THEN |
|---|
| 228 | cloudfrac(ig,l)=1. |
|---|
| 229 | END IF |
|---|
| 230 | ENDDO |
|---|
| 231 | ENDDO |
|---|
| 232 | c-----Calculation of the total cloud coverage of the column |
|---|
| 233 | DO ig=1,ngrid |
|---|
| 234 | totcloudfrac(ig) = 0. |
|---|
| 235 | norm=0. |
|---|
| 236 | DO l=1,nlay |
|---|
| 237 | ponder=zqice(ig,l)*(pplev(ig,l) - pplev(ig,l+1)) |
|---|
| 238 | totcloudfrac(ig) = totcloudfrac(ig) |
|---|
| 239 | & + cloudfrac(ig,l)*ponder |
|---|
| 240 | norm=norm+ponder |
|---|
| 241 | ENDDO |
|---|
| 242 | totcloudfrac(ig)=MAX(totcloudfrac(ig)/norm,1.e-12) ! min value if NaNs |
|---|
| 243 | ENDDO |
|---|
| 244 | c-----Effective tracers quantities in the cloud fraction |
|---|
| 245 | IF (microphys) THEN |
|---|
| 246 | pqeff(:,:,igcm_ccn_mass)=pq(:,:,igcm_ccn_mass)/ |
|---|
| 247 | & cloudfrac(:,:) |
|---|
| 248 | pqeff(:,:,igcm_ccn_number)=pq(:,:,igcm_ccn_number)/ |
|---|
| 249 | & cloudfrac(:,:) |
|---|
| 250 | END IF ! end if (microphys) |
|---|
| 251 | pqeff(:,:,igcm_h2o_ice)=pq(:,:,igcm_h2o_ice)/ |
|---|
| 252 | & cloudfrac(:,:) |
|---|
| 253 | !! CLFvarying outputs |
|---|
| 254 | CALL WRITEDIAGFI(ngrid,'pqeffice','pqeffice', |
|---|
| 255 | & 'kg/kg',3,pqeff(:,:,igcm_h2o_ice)) |
|---|
| 256 | CALL WRITEDIAGFI(ngrid,'pteff','pteff', |
|---|
| 257 | & 'K',3,pteff(:,:)) |
|---|
| 258 | CALL WRITEDIAGFI(ngrid,'tcond','tcond', |
|---|
| 259 | & 'K',3,tcond(:,:)) |
|---|
| 260 | CALL WRITEDIAGFI(ngrid,'cloudfrac','cloudfrac', |
|---|
| 261 | & 'K',3,cloudfrac(:,:)) |
|---|
| 262 | END IF ! end if (CLFvarying) |
|---|
| 263 | c------------------------------------------------------------------ |
|---|
| 264 | c Time subsampling for microphysics |
|---|
| 265 | c------------------------------------------------------------------ |
|---|
| 266 | rhocloud(1:ngrid,1:nlay) = rho_dust |
|---|
| 267 | DO microstep=1,imicro |
|---|
| 268 | |
|---|
| 269 | c------------------------------------------------------------------- |
|---|
| 270 | c 1. Tendencies: |
|---|
| 271 | c------------------ |
|---|
| 272 | |
|---|
| 273 | |
|---|
| 274 | c------ Temperature tendency subpdt |
|---|
| 275 | ! Each microtimestep we give the cloud scheme a stepped entry subpdt instead of pdt |
|---|
| 276 | ! If imicro=1 subpdt is the same as pdt |
|---|
| 277 | DO l=1,nlay |
|---|
| 278 | DO ig=1,ngrid |
|---|
| 279 | sum_subpdt(ig,l) = sum_subpdt(ig,l) |
|---|
| 280 | & + pdt(ig,l) ! At each micro timestep we add pdt in order to have a stepped entry |
|---|
| 281 | ENDDO |
|---|
| 282 | ENDDO |
|---|
| 283 | c------ Tracers tendencies subpdq are additionned |
|---|
| 284 | c------ At each micro timestep we add pdq in order to have a stepped entry |
|---|
| 285 | IF (microphys) THEN |
|---|
| 286 | DO l=1,nlay |
|---|
| 287 | DO ig=1,ngrid |
|---|
| 288 | sum_subpdq(ig,l,igcm_dust_mass) = |
|---|
| 289 | & sum_subpdq(ig,l,igcm_dust_mass) |
|---|
| 290 | & + pdq(ig,l,igcm_dust_mass) |
|---|
| 291 | sum_subpdq(ig,l,igcm_dust_number) = |
|---|
| 292 | & sum_subpdq(ig,l,igcm_dust_number) |
|---|
| 293 | & + pdq(ig,l,igcm_dust_number) |
|---|
| 294 | sum_subpdq(ig,l,igcm_ccn_mass) = |
|---|
| 295 | & sum_subpdq(ig,l,igcm_ccn_mass) |
|---|
| 296 | & + pdq(ig,l,igcm_ccn_mass) |
|---|
| 297 | sum_subpdq(ig,l,igcm_ccn_number) = |
|---|
| 298 | & sum_subpdq(ig,l,igcm_ccn_number) |
|---|
| 299 | & + pdq(ig,l,igcm_ccn_number) |
|---|
| 300 | ENDDO |
|---|
| 301 | ENDDO |
|---|
| 302 | ENDIF |
|---|
| 303 | DO l=1,nlay |
|---|
| 304 | DO ig=1,ngrid |
|---|
| 305 | sum_subpdq(ig,l,igcm_h2o_ice) = |
|---|
| 306 | & sum_subpdq(ig,l,igcm_h2o_ice) |
|---|
| 307 | & + pdq(ig,l,igcm_h2o_ice) |
|---|
| 308 | sum_subpdq(ig,l,igcm_h2o_vap) = |
|---|
| 309 | & sum_subpdq(ig,l,igcm_h2o_vap) |
|---|
| 310 | & + pdq(ig,l,igcm_h2o_vap) |
|---|
| 311 | ENDDO |
|---|
| 312 | ENDDO |
|---|
| 313 | |
|---|
| 314 | c------------------------------------------------------------------- |
|---|
| 315 | c 2. Main call to the different cloud schemes: |
|---|
| 316 | c------------------------------------------------ |
|---|
| 317 | IF (microphys) THEN |
|---|
| 318 | CALL improvedclouds(ngrid,nlay,microtimestep, |
|---|
| 319 | & pplay,pteff,sum_subpdt, |
|---|
| 320 | & pqeff,sum_subpdq,subpdqcloud,subpdtcloud, |
|---|
| 321 | & nq,tauscaling) |
|---|
| 322 | |
|---|
| 323 | ELSE |
|---|
| 324 | CALL simpleclouds(ngrid,nlay,microtimestep, |
|---|
| 325 | & pplay,pzlay,pteff,sum_subpdt, |
|---|
| 326 | & pqeff,sum_subpdq,subpdqcloud,subpdtcloud, |
|---|
| 327 | & nq,tau,rice) |
|---|
| 328 | ENDIF |
|---|
| 329 | |
|---|
| 330 | c------------------------------------------------------------------- |
|---|
| 331 | c 3. Updating tendencies after cloud scheme: |
|---|
| 332 | c----------------------------------------------- |
|---|
| 333 | |
|---|
| 334 | IF (microphys) THEN |
|---|
| 335 | DO l=1,nlay |
|---|
| 336 | DO ig=1,ngrid |
|---|
| 337 | sum_subpdq(ig,l,igcm_dust_mass) = |
|---|
| 338 | & sum_subpdq(ig,l,igcm_dust_mass) |
|---|
| 339 | & + subpdqcloud(ig,l,igcm_dust_mass) |
|---|
| 340 | sum_subpdq(ig,l,igcm_dust_number) = |
|---|
| 341 | & sum_subpdq(ig,l,igcm_dust_number) |
|---|
| 342 | & + subpdqcloud(ig,l,igcm_dust_number) |
|---|
| 343 | sum_subpdq(ig,l,igcm_ccn_mass) = |
|---|
| 344 | & sum_subpdq(ig,l,igcm_ccn_mass) |
|---|
| 345 | & + subpdqcloud(ig,l,igcm_ccn_mass) |
|---|
| 346 | sum_subpdq(ig,l,igcm_ccn_number) = |
|---|
| 347 | & sum_subpdq(ig,l,igcm_ccn_number) |
|---|
| 348 | & + subpdqcloud(ig,l,igcm_ccn_number) |
|---|
| 349 | ENDDO |
|---|
| 350 | ENDDO |
|---|
| 351 | ENDIF |
|---|
| 352 | DO l=1,nlay |
|---|
| 353 | DO ig=1,ngrid |
|---|
| 354 | sum_subpdq(ig,l,igcm_h2o_ice) = |
|---|
| 355 | & sum_subpdq(ig,l,igcm_h2o_ice) |
|---|
| 356 | & + subpdqcloud(ig,l,igcm_h2o_ice) |
|---|
| 357 | sum_subpdq(ig,l,igcm_h2o_vap) = |
|---|
| 358 | & sum_subpdq(ig,l,igcm_h2o_vap) |
|---|
| 359 | & + subpdqcloud(ig,l,igcm_h2o_vap) |
|---|
| 360 | ENDDO |
|---|
| 361 | ENDDO |
|---|
| 362 | |
|---|
| 363 | IF (activice) THEN |
|---|
| 364 | DO l=1,nlay |
|---|
| 365 | DO ig=1,ngrid |
|---|
| 366 | sum_subpdt(ig,l) = |
|---|
| 367 | & sum_subpdt(ig,l) + subpdtcloud(ig,l) |
|---|
| 368 | ENDDO |
|---|
| 369 | ENDDO |
|---|
| 370 | ENDIF |
|---|
| 371 | |
|---|
| 372 | |
|---|
| 373 | ENDDO ! of DO microstep=1,imicro |
|---|
| 374 | |
|---|
| 375 | c------------------------------------------------------------------- |
|---|
| 376 | c 6. Compute final tendencies after time loop: |
|---|
| 377 | c------------------------------------------------ |
|---|
| 378 | |
|---|
| 379 | c------ Temperature tendency pdtcloud |
|---|
| 380 | DO l=1,nlay |
|---|
| 381 | DO ig=1,ngrid |
|---|
| 382 | pdtcloud(ig,l) = |
|---|
| 383 | & sum_subpdt(ig,l)/real(imicro)-pdt(ig,l) |
|---|
| 384 | ENDDO |
|---|
| 385 | ENDDO |
|---|
| 386 | |
|---|
| 387 | c------ Tracers tendencies pdqcloud |
|---|
| 388 | DO l=1,nlay |
|---|
| 389 | DO ig=1,ngrid |
|---|
| 390 | pdqcloud(ig,l,igcm_h2o_ice) = |
|---|
| 391 | & sum_subpdq(ig,l,igcm_h2o_ice)/real(imicro) |
|---|
| 392 | & - pdq(ig,l,igcm_h2o_ice) |
|---|
| 393 | pdqcloud(ig,l,igcm_h2o_vap) = |
|---|
| 394 | & sum_subpdq(ig,l,igcm_h2o_vap)/real(imicro) |
|---|
| 395 | & - pdq(ig,l,igcm_h2o_vap) |
|---|
| 396 | ENDDO |
|---|
| 397 | ENDDO |
|---|
| 398 | |
|---|
| 399 | IF(microphys) THEN |
|---|
| 400 | DO l=1,nlay |
|---|
| 401 | DO ig=1,ngrid |
|---|
| 402 | pdqcloud(ig,l,igcm_ccn_mass) = |
|---|
| 403 | & sum_subpdq(ig,l,igcm_ccn_mass)/real(imicro) |
|---|
| 404 | & - pdq(ig,l,igcm_ccn_mass) |
|---|
| 405 | pdqcloud(ig,l,igcm_ccn_number) = |
|---|
| 406 | & sum_subpdq(ig,l,igcm_ccn_number)/real(imicro) |
|---|
| 407 | & - pdq(ig,l,igcm_ccn_number) |
|---|
| 408 | ENDDO |
|---|
| 409 | ENDDO |
|---|
| 410 | ENDIF |
|---|
| 411 | |
|---|
| 412 | IF(scavenging) THEN |
|---|
| 413 | DO l=1,nlay |
|---|
| 414 | DO ig=1,ngrid |
|---|
| 415 | pdqcloud(ig,l,igcm_dust_mass) = |
|---|
| 416 | & sum_subpdq(ig,l,igcm_dust_mass)/real(imicro) |
|---|
| 417 | & - pdq(ig,l,igcm_dust_mass) |
|---|
| 418 | pdqcloud(ig,l,igcm_dust_number) = |
|---|
| 419 | & sum_subpdq(ig,l,igcm_dust_number)/real(imicro) |
|---|
| 420 | & - pdq(ig,l,igcm_dust_number) |
|---|
| 421 | ENDDO |
|---|
| 422 | ENDDO |
|---|
| 423 | ENDIF |
|---|
| 424 | |
|---|
| 425 | c------- Due to stepped entry, other processes tendencies can add up to negative values |
|---|
| 426 | c------- Therefore, enforce positive values and conserve mass |
|---|
| 427 | IF(microphys) THEN |
|---|
| 428 | DO l=1,nlay |
|---|
| 429 | DO ig=1,ngrid |
|---|
| 430 | IF ((pq(ig,l,igcm_ccn_number) + |
|---|
| 431 | & ptimestep* (pdq(ig,l,igcm_ccn_number) + |
|---|
| 432 | & pdqcloud(ig,l,igcm_ccn_number)) .le. 1.) |
|---|
| 433 | & .or. (pq(ig,l,igcm_ccn_mass) + |
|---|
| 434 | & ptimestep* (pdq(ig,l,igcm_ccn_mass) + |
|---|
| 435 | & pdqcloud(ig,l,igcm_ccn_mass)) .le. 1.e-20)) THEN |
|---|
| 436 | pdqcloud(ig,l,igcm_ccn_number) = |
|---|
| 437 | & - pq(ig,l,igcm_ccn_number)/ptimestep |
|---|
| 438 | & - pdq(ig,l,igcm_ccn_number) + 1. |
|---|
| 439 | pdqcloud(ig,l,igcm_dust_number) = |
|---|
| 440 | & -pdqcloud(ig,l,igcm_ccn_number) |
|---|
| 441 | pdqcloud(ig,l,igcm_ccn_mass) = |
|---|
| 442 | & - pq(ig,l,igcm_ccn_mass)/ptimestep |
|---|
| 443 | & - pdq(ig,l,igcm_ccn_mass) + 1.e-20 |
|---|
| 444 | pdqcloud(ig,l,igcm_dust_mass) = |
|---|
| 445 | & -pdqcloud(ig,l,igcm_ccn_mass) |
|---|
| 446 | ENDIF |
|---|
| 447 | ENDDO |
|---|
| 448 | ENDDO |
|---|
| 449 | ENDIF |
|---|
| 450 | |
|---|
| 451 | IF(scavenging) THEN |
|---|
| 452 | DO l=1,nlay |
|---|
| 453 | DO ig=1,ngrid |
|---|
| 454 | IF ((pq(ig,l,igcm_dust_number) + |
|---|
| 455 | & ptimestep* (pdq(ig,l,igcm_dust_number) + |
|---|
| 456 | & pdqcloud(ig,l,igcm_dust_number)) .le. 1.) |
|---|
| 457 | & .or. (pq(ig,l,igcm_dust_mass) + |
|---|
| 458 | & ptimestep* (pdq(ig,l,igcm_dust_mass) + |
|---|
| 459 | & pdqcloud(ig,l,igcm_dust_mass)) .le. 1.e-20)) THEN |
|---|
| 460 | pdqcloud(ig,l,igcm_dust_number) = |
|---|
| 461 | & - pq(ig,l,igcm_dust_number)/ptimestep |
|---|
| 462 | & - pdq(ig,l,igcm_dust_number) + 1. |
|---|
| 463 | pdqcloud(ig,l,igcm_ccn_number) = |
|---|
| 464 | & -pdqcloud(ig,l,igcm_dust_number) |
|---|
| 465 | pdqcloud(ig,l,igcm_dust_mass) = |
|---|
| 466 | & - pq(ig,l,igcm_dust_mass)/ptimestep |
|---|
| 467 | & - pdq(ig,l,igcm_dust_mass) + 1.e-20 |
|---|
| 468 | pdqcloud(ig,l,igcm_ccn_mass) = |
|---|
| 469 | & -pdqcloud(ig,l,igcm_dust_mass) |
|---|
| 470 | ENDIF |
|---|
| 471 | ENDDO |
|---|
| 472 | ENDDO |
|---|
| 473 | ENDIF |
|---|
| 474 | |
|---|
| 475 | DO l=1,nlay |
|---|
| 476 | DO ig=1,ngrid |
|---|
| 477 | IF (pq(ig,l,igcm_h2o_ice) + ptimestep* |
|---|
| 478 | & (pdq(ig,l,igcm_h2o_ice) + pdqcloud(ig,l,igcm_h2o_ice)) |
|---|
| 479 | & .le. 1.e-8) THEN |
|---|
| 480 | pdqcloud(ig,l,igcm_h2o_ice) = |
|---|
| 481 | & - pq(ig,l,igcm_h2o_ice)/ptimestep - pdq(ig,l,igcm_h2o_ice) |
|---|
| 482 | pdqcloud(ig,l,igcm_h2o_vap) = -pdqcloud(ig,l,igcm_h2o_ice) |
|---|
| 483 | ENDIF |
|---|
| 484 | IF (pq(ig,l,igcm_h2o_vap) + ptimestep* |
|---|
| 485 | & (pdq(ig,l,igcm_h2o_vap) + pdqcloud(ig,l,igcm_h2o_vap)) |
|---|
| 486 | & .le. 1.e-8) THEN |
|---|
| 487 | pdqcloud(ig,l,igcm_h2o_vap) = |
|---|
| 488 | & - pq(ig,l,igcm_h2o_vap)/ptimestep - pdq(ig,l,igcm_h2o_vap) |
|---|
| 489 | pdqcloud(ig,l,igcm_h2o_ice) = -pdqcloud(ig,l,igcm_h2o_vap) |
|---|
| 490 | ENDIF |
|---|
| 491 | ENDDO |
|---|
| 492 | ENDDO |
|---|
| 493 | |
|---|
| 494 | |
|---|
| 495 | c------Update the ice and dust particle size "rice" for output or photochemistry |
|---|
| 496 | c------Only rsedcloud is used for the water cycle |
|---|
| 497 | |
|---|
| 498 | IF(scavenging) THEN |
|---|
| 499 | DO l=1, nlay |
|---|
| 500 | DO ig=1,ngrid |
|---|
| 501 | |
|---|
| 502 | call updaterdust( |
|---|
| 503 | & pq(ig,l,igcm_dust_mass) + ! dust mass |
|---|
| 504 | & (pdq(ig,l,igcm_dust_mass) + ! dust mass |
|---|
| 505 | & pdqcloud(ig,l,igcm_dust_mass))*ptimestep, ! dust mass |
|---|
| 506 | & pq(ig,l,igcm_dust_number) + ! dust number |
|---|
| 507 | & (pdq(ig,l,igcm_dust_number) + ! dust number |
|---|
| 508 | & pdqcloud(ig,l,igcm_dust_number))*ptimestep, ! dust number |
|---|
| 509 | & rdust(ig,l)) |
|---|
| 510 | |
|---|
| 511 | ENDDO |
|---|
| 512 | ENDDO |
|---|
| 513 | ENDIF |
|---|
| 514 | |
|---|
| 515 | IF(microphys) THEN |
|---|
| 516 | |
|---|
| 517 | ! In case one does not want to allow supersatured water when using microphysics. |
|---|
| 518 | ! Not done by default. |
|---|
| 519 | IF(.not.supersat) THEN |
|---|
| 520 | zt = pt + (pdt+pdtcloud)*ptimestep |
|---|
| 521 | call watersat(ngrid*nlay,zt,pplay,zqsat) |
|---|
| 522 | DO l=1, nlay |
|---|
| 523 | DO ig=1,ngrid |
|---|
| 524 | IF (pq(ig,l,igcm_h2o_vap) |
|---|
| 525 | & + (pdq(ig,l,igcm_h2o_vap) + pdqcloud(ig,l,igcm_h2o_vap)) |
|---|
| 526 | & * ptimestep .ge. zqsat(ig,l)) THEN |
|---|
| 527 | pdqcloud(ig,l,igcm_h2o_vap) = |
|---|
| 528 | & (zqsat(ig,l) - pq(ig,l,igcm_h2o_vap))/ptimestep |
|---|
| 529 | & - pdq(ig,l,igcm_h2o_vap) |
|---|
| 530 | pdqcloud(ig,l,igcm_h2o_ice) = |
|---|
| 531 | & -pdqcloud(ig,l,igcm_h2o_vap) |
|---|
| 532 | ! no need to correct ccn_number, updaterad can handle this properly. |
|---|
| 533 | ENDIF |
|---|
| 534 | ENDDO |
|---|
| 535 | ENDDO |
|---|
| 536 | ENDIF |
|---|
| 537 | |
|---|
| 538 | DO l=1, nlay |
|---|
| 539 | DO ig=1,ngrid |
|---|
| 540 | |
|---|
| 541 | call updaterice_micro( |
|---|
| 542 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
|---|
| 543 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
|---|
| 544 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
|---|
| 545 | & pq(ig,l,igcm_ccn_mass) + ! ccn mass |
|---|
| 546 | & (pdq(ig,l,igcm_ccn_mass) + ! ccn mass |
|---|
| 547 | & pdqcloud(ig,l,igcm_ccn_mass))*ptimestep, ! ccn mass |
|---|
| 548 | & pq(ig,l,igcm_ccn_number) + ! ccn number |
|---|
| 549 | & (pdq(ig,l,igcm_ccn_number) + ! ccn number |
|---|
| 550 | & pdqcloud(ig,l,igcm_ccn_number))*ptimestep, ! ccn number |
|---|
| 551 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
|---|
| 552 | |
|---|
| 553 | ENDDO |
|---|
| 554 | ENDDO |
|---|
| 555 | |
|---|
| 556 | ELSE ! no microphys |
|---|
| 557 | |
|---|
| 558 | DO l=1,nlay |
|---|
| 559 | DO ig=1,ngrid |
|---|
| 560 | |
|---|
| 561 | call updaterice_typ( |
|---|
| 562 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
|---|
| 563 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
|---|
| 564 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
|---|
| 565 | & tau(ig,1),pzlay(ig,l),rice(ig,l)) |
|---|
| 566 | |
|---|
| 567 | ENDDO |
|---|
| 568 | ENDDO |
|---|
| 569 | |
|---|
| 570 | ENDIF ! of IF(microphys) |
|---|
| 571 | |
|---|
| 572 | |
|---|
| 573 | |
|---|
| 574 | c A correction if a lot of subliming CO2 fills the 1st layer FF04/2005 |
|---|
| 575 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 576 | c Then that should not affect the ice particle radius |
|---|
| 577 | do ig=1,ngrid |
|---|
| 578 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,2)))then |
|---|
| 579 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,3))) |
|---|
| 580 | & rice(ig,2)=rice(ig,3) |
|---|
| 581 | rice(ig,1)=rice(ig,2) |
|---|
| 582 | end if |
|---|
| 583 | end do |
|---|
| 584 | |
|---|
| 585 | |
|---|
| 586 | DO l=1,nlay |
|---|
| 587 | DO ig=1,ngrid |
|---|
| 588 | rsedcloud(ig,l)=max(rice(ig,l)* |
|---|
| 589 | & (1.+nuice_sed)*(1.+nuice_sed)*(1.+nuice_sed), |
|---|
| 590 | & rdust(ig,l)) |
|---|
| 591 | ! rsedcloud(ig,l)=min(rsedcloud(ig,l),1.e-4) |
|---|
| 592 | ENDDO |
|---|
| 593 | ENDDO |
|---|
| 594 | |
|---|
| 595 | ! used for rad. transfer calculations |
|---|
| 596 | ! nuice is constant because a lognormal distribution is prescribed |
|---|
| 597 | nuice(1:ngrid,1:nlay)=nuice_ref |
|---|
| 598 | |
|---|
| 599 | c------Update tendencies for sub-grid water ice clouds |
|---|
| 600 | IF (CLFvarying) THEN |
|---|
| 601 | DO ig=1,ngrid |
|---|
| 602 | DO l=1,nlay |
|---|
| 603 | pdqcloud(ig,l,igcm_dust_mass)=pdqcloud(ig,l,igcm_dust_mass) |
|---|
| 604 | & *cloudfrac(ig,l) |
|---|
| 605 | pdqcloud(ig,l,igcm_ccn_mass)=pdqcloud(ig,l,igcm_ccn_mass) |
|---|
| 606 | & *cloudfrac(ig,l) |
|---|
| 607 | pdqcloud(ig,l,igcm_dust_number)=pdqcloud(ig,l, |
|---|
| 608 | & igcm_dust_number) *cloudfrac(ig,l) |
|---|
| 609 | pdqcloud(ig,l,igcm_ccn_number)=pdqcloud(ig,l, |
|---|
| 610 | & igcm_ccn_number) *cloudfrac(ig,l) |
|---|
| 611 | pdqcloud(ig,l,igcm_h2o_vap)=pdqcloud(ig,l, |
|---|
| 612 | & igcm_h2o_vap) *cloudfrac(ig,l) |
|---|
| 613 | pdqcloud(ig,l,igcm_h2o_ice)=pdqcloud(ig,l, |
|---|
| 614 | & igcm_h2o_ice) *cloudfrac(ig,l) |
|---|
| 615 | ENDDO |
|---|
| 616 | ENDDO |
|---|
| 617 | pdtcloud(:,:)=pdtcloud(:,:)*cloudfrac(:,:) |
|---|
| 618 | ENDIF |
|---|
| 619 | #ifndef MESOSCALE |
|---|
| 620 | c======================================================================= |
|---|
| 621 | call WRITEDIAGFI(ngrid,"pdqice2","pdqcloudice apres microphysique" |
|---|
| 622 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay,igcm_h2o_ice)) |
|---|
| 623 | call WRITEDIAGFI(ngrid,"pdqvap2","pdqcloudvap apres microphysique" |
|---|
| 624 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
|---|
| 625 | & igcm_h2o_vap)) |
|---|
| 626 | call WRITEDIAGFI(ngrid,"pdqccn2","pdqcloudccn apres microphysique" |
|---|
| 627 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
|---|
| 628 | & igcm_ccn_mass)) |
|---|
| 629 | call WRITEDIAGFI(ngrid,"pdqccnN2","pdqcloudccnN apres |
|---|
| 630 | & microphysique","nb/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
|---|
| 631 | & igcm_ccn_number)) |
|---|
| 632 | call WRITEDIAGFI(ngrid,"pdqdust2", "pdqclouddust apres |
|---|
| 633 | & microphysique","kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
|---|
| 634 | & igcm_dust_mass)) |
|---|
| 635 | call WRITEDIAGFI(ngrid,"pdqdustN2", "pdqclouddustN apres |
|---|
| 636 | & microphysique","nb/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
|---|
| 637 | & igcm_dust_number)) |
|---|
| 638 | c======================================================================= |
|---|
| 639 | #endif |
|---|
| 640 | |
|---|
| 641 | END SUBROUTINE watercloud |
|---|
| 642 | |
|---|
| 643 | END MODULE watercloud_mod |
|---|