[1711] | 1 | MODULE watercloud_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
[2162] | 5 | REAL,SAVE,ALLOCATABLE :: zdqcloud(:,:,:) ! tendencies on pq due to condensation of H2O(kg/kg.s-1) |
---|
| 6 | REAL,SAVE,ALLOCATABLE :: zdqscloud(:,:) ! tendencies on qsurf (calculated only by calchim but declared here) |
---|
| 7 | |
---|
[2578] | 8 | !$OMP THREADPRIVATE(zdqcloud,zdqscloud) |
---|
| 9 | |
---|
[1711] | 10 | CONTAINS |
---|
| 11 | |
---|
[633] | 12 | SUBROUTINE watercloud(ngrid,nlay,ptimestep, |
---|
| 13 | & pplev,pplay,pdpsrf,pzlay,pt,pdt, |
---|
[626] | 14 | & pq,pdq,pdqcloud,pdtcloud, |
---|
[358] | 15 | & nq,tau,tauscaling,rdust,rice,nuice, |
---|
[1711] | 16 | & rsedcloud,rhocloud,totcloudfrac) |
---|
[2311] | 17 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
[1964] | 18 | USE updaterad, ONLY: updaterdust, updaterice_micro, |
---|
| 19 | & updaterice_typ |
---|
| 20 | USE improvedclouds_mod, ONLY: improvedclouds |
---|
[1996] | 21 | USE watersat_mod, ONLY: watersat |
---|
[1036] | 22 | use tracer_mod, only: nqmx, igcm_h2o_vap, igcm_h2o_ice, |
---|
[2312] | 23 | & igcm_hdo_vap, igcm_hdo_ice, |
---|
[1036] | 24 | & igcm_dust_mass, igcm_dust_number, |
---|
| 25 | & igcm_ccn_mass, igcm_ccn_number, |
---|
[2516] | 26 | & rho_dust, nuice_sed, nuice_ref, |
---|
| 27 | & qperemin |
---|
[1246] | 28 | use dimradmars_mod, only: naerkind |
---|
[2966] | 29 | use conc_mod, only: mmean |
---|
[2932] | 30 | use write_output_mod, only: write_output |
---|
[38] | 31 | IMPLICIT NONE |
---|
| 32 | |
---|
[633] | 33 | |
---|
[38] | 34 | c======================================================================= |
---|
[358] | 35 | c Water-ice cloud formation |
---|
| 36 | c |
---|
| 37 | c Includes two different schemes: |
---|
| 38 | c - A simplified scheme (see simpleclouds.F) |
---|
| 39 | c - An improved microphysical scheme (see improvedclouds.F) |
---|
[38] | 40 | c |
---|
[633] | 41 | c There is a time loop specific to cloud formation |
---|
| 42 | c due to timescales smaller than the GCM integration timestep. |
---|
| 43 | c |
---|
[358] | 44 | c Authors: Franck Montmessin, Francois Forget, Ehouarn Millour, |
---|
[522] | 45 | c J.-B. Madeleine, Thomas Navarro |
---|
[38] | 46 | c |
---|
[633] | 47 | c 2004 - 2012 |
---|
[2966] | 48 | c |
---|
[2984] | 49 | c 2023: J. Naar, now with adaptative timestep for improvedclouds |
---|
| 50 | c (done in improvedclouds_mod). |
---|
[38] | 51 | c======================================================================= |
---|
| 52 | |
---|
| 53 | c----------------------------------------------------------------------- |
---|
| 54 | c declarations: |
---|
| 55 | c ------------- |
---|
| 56 | |
---|
[1964] | 57 | include "callkeys.h" |
---|
[38] | 58 | |
---|
[1976] | 59 | c Inputs/outputs: |
---|
[38] | 60 | c ------ |
---|
| 61 | |
---|
[1976] | 62 | INTEGER, INTENT(IN) :: ngrid,nlay |
---|
| 63 | INTEGER, INTENT(IN) :: nq ! nombre de traceurs |
---|
| 64 | REAL, INTENT(IN) :: ptimestep ! pas de temps physique (s) |
---|
| 65 | REAL, INTENT(IN) :: pplev(ngrid,nlay+1) ! pression aux inter-couches (Pa) |
---|
| 66 | REAL, INTENT(IN) :: pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
| 67 | REAL, INTENT(IN) :: pdpsrf(ngrid) ! tendence surf pressure |
---|
| 68 | REAL, INTENT(IN) :: pzlay(ngrid,nlay) ! altitude at the middle of the layers |
---|
| 69 | REAL, INTENT(IN) :: pt(ngrid,nlay) ! temperature at the middle of the layers (K) |
---|
| 70 | REAL, INTENT(IN) :: pdt(ngrid,nlay) ! tendence temperature des autres param. |
---|
[38] | 71 | |
---|
[1976] | 72 | REAL, INTENT(IN) :: pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
| 73 | rEAL, INTENT(IN) :: pdq(ngrid,nlay,nq) ! tendence avant condensation (kg/kg.s-1) |
---|
[38] | 74 | |
---|
[1976] | 75 | REAL, INTENT(IN) :: tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
| 76 | REAL, INTENT(IN) :: tauscaling(ngrid) ! Convertion factor for dust amount |
---|
| 77 | REAL, INTENT(INOUT) :: rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
[38] | 78 | |
---|
[1976] | 79 | REAL, INTENT(OUT) :: pdqcloud(ngrid,nlay,nq) ! tendence de la condensation H2O(kg/kg.s-1) |
---|
| 80 | REAL, INTENT(OUT) :: pdtcloud(ngrid,nlay) ! tendence temperature due |
---|
[633] | 81 | ! a la chaleur latente |
---|
[1976] | 82 | REAL, INTENT(INOUT) :: rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
[38] | 83 | ! (r_c in montmessin_2004) |
---|
[1976] | 84 | REAL, INTENT(OUT) :: nuice(ngrid,nlay) ! Estimated effective variance |
---|
[38] | 85 | ! of the size distribution |
---|
[1976] | 86 | REAL, INTENT(OUT) :: rsedcloud(ngrid,nlay) ! Cloud sedimentation radius |
---|
| 87 | REAL, INTENT(OUT) :: rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
[38] | 88 | |
---|
[1711] | 89 | REAL, INTENT(INOUT):: totcloudfrac(ngrid) ! Cloud fraction (A. Pottier 2013) |
---|
[1976] | 90 | |
---|
| 91 | c Locals: |
---|
[38] | 92 | c ------ |
---|
[1976] | 93 | |
---|
[633] | 94 | ! for ice radius computation |
---|
| 95 | REAL Mo,No |
---|
| 96 | REAl ccntyp |
---|
| 97 | |
---|
| 98 | ! for time loop |
---|
| 99 | INTEGER microstep ! time subsampling step variable |
---|
[1969] | 100 | INTEGER,SAVE :: imicro ! time subsampling for coupled water microphysics & sedimentation |
---|
| 101 | REAL,SAVE :: microtimestep ! integration timestep for coupled water microphysics & sedimentation |
---|
| 102 | REAL,SAVE :: microtimestep_prev=-999 |
---|
[633] | 103 | |
---|
[2616] | 104 | !$OMP THREADPRIVATE(imicro,microtimestep) |
---|
| 105 | !$OMP THREADPRIVATE(microtimestep_prev) |
---|
[633] | 106 | ! tendency given by clouds (inside the micro loop) |
---|
| 107 | REAL subpdqcloud(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 108 | REAL subpdtcloud(ngrid,nlay) ! cf. pdtcloud |
---|
[38] | 109 | |
---|
[633] | 110 | ! global tendency (clouds+physics) |
---|
[2966] | 111 | ! JN : keeping this for simpleclouds scheme |
---|
[1909] | 112 | REAL sum_subpdq(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 113 | REAL sum_subpdt(ngrid,nlay) ! cf. pdtcloud |
---|
[633] | 114 | |
---|
[1467] | 115 | ! no supersaturation when option supersat is false |
---|
| 116 | REAL zt(ngrid,nlay) ! local value of temperature |
---|
| 117 | REAL zqsat(ngrid,nlay) ! saturation |
---|
[633] | 118 | |
---|
| 119 | INTEGER iq,ig,l |
---|
[38] | 120 | LOGICAL,SAVE :: firstcall=.true. |
---|
[2616] | 121 | |
---|
| 122 | !$OMP THREADPRIVATE(firstcall) |
---|
[2800] | 123 | ! HDO cycle |
---|
| 124 | REAL :: alpha(ngrid,nlay) ! fractionation coefficient for HDO |
---|
[2801] | 125 | REAL :: zq0(ngrid,nlay,nq) ! Initial mixing ratio: intermediate variable for HDO |
---|
[1711] | 126 | ! Representation of sub-grid water ice clouds A. Pottier 2013 |
---|
[1880] | 127 | REAL :: ztclf(ngrid, nlay) |
---|
| 128 | REAL :: zqclf(ngrid, nlay,nq) |
---|
[1711] | 129 | REAL :: zdelt |
---|
| 130 | REAL :: norm |
---|
| 131 | REAL :: ponder |
---|
| 132 | REAL :: tcond(ngrid,nlay) |
---|
[1880] | 133 | REAL :: zqvap(ngrid,nlay) |
---|
[1711] | 134 | REAL :: zqice(ngrid,nlay) |
---|
| 135 | REAL :: spant ! delta T for the temperature distribution |
---|
| 136 | ! REAL :: zqsat(ngrid,nlay) ! saturation |
---|
[1909] | 137 | REAL :: pteff(ngrid, nlay)! effective temperature in the cloud,neb |
---|
[1711] | 138 | REAL :: pqeff(ngrid, nlay, nq)! effective tracers quantities in the cloud |
---|
| 139 | REAL :: cloudfrac(ngrid,nlay) ! cloud fraction |
---|
| 140 | REAL :: mincloud ! min cloud frac |
---|
| 141 | LOGICAL, save :: flagcloud=.true. |
---|
[2616] | 142 | |
---|
| 143 | !$OMP THREADPRIVATE(flagcloud) |
---|
[2966] | 144 | |
---|
| 145 | ! Scheme for adaptative timestep J. Naar 2023 |
---|
| 146 | c LOGICAL :: computed_micro(ngrid,nlay) ! Check if microphy was done in this cell |
---|
[2984] | 147 | REAL :: count_micro(ngrid,nlay) ! Initially computed microtimestep |
---|
[2966] | 148 | REAL :: zt_micro(ngrid,nlay) ! Temperature during microphysics (K) |
---|
| 149 | REAL :: zq_micro(ngrid,nlay,nq) ! Tracers during microphysics (kg/kg) |
---|
| 150 | REAL :: zqsat_micro(ngrid,nlay) ! Theoritical q(h2o_vap) at saturation (kg/kg) |
---|
| 151 | INTEGER :: zimicro(ngrid,nlay) ! Number of ptimestep divisions |
---|
| 152 | REAL :: zpotcond_inst(ngrid,nlay) ! condensable water at the beginning of physics (kg/kg) |
---|
| 153 | REAL :: zpotcond_full(ngrid,nlay) ! condensable water with integrated tendancies (kg/kg) |
---|
| 154 | REAL :: zpotcond(ngrid,nlay) ! maximal condensable water, used to |
---|
| 155 | compute adaptative subdivision of ptimestep |
---|
[2984] | 156 | REAL :: spenttime ! timespent |
---|
| 157 | REAL :: zdq ! used to compute adaptative timestep |
---|
[2312] | 158 | |
---|
[2966] | 159 | |
---|
[38] | 160 | c ** un petit test de coherence |
---|
| 161 | c -------------------------- |
---|
| 162 | |
---|
| 163 | IF (firstcall) THEN |
---|
| 164 | |
---|
| 165 | if (nq.gt.nqmx) then |
---|
| 166 | write(*,*) 'stop in watercloud (nq.gt.nqmx)!' |
---|
| 167 | write(*,*) 'nq=',nq,' nqmx=',nqmx |
---|
[2311] | 168 | call abort_physic("watercloud","nq.gt.nqmx",1) |
---|
[38] | 169 | endif |
---|
| 170 | |
---|
[358] | 171 | write(*,*) "watercloud: igcm_h2o_vap=",igcm_h2o_vap |
---|
| 172 | write(*,*) " igcm_h2o_ice=",igcm_h2o_ice |
---|
[633] | 173 | |
---|
| 174 | write(*,*) "time subsampling for microphysic ?" |
---|
| 175 | #ifdef MESOSCALE |
---|
| 176 | imicro = 2 |
---|
| 177 | #else |
---|
[951] | 178 | imicro = 30 |
---|
[633] | 179 | #endif |
---|
[2311] | 180 | call getin_p("imicro",imicro) |
---|
[1969] | 181 | write(*,*)"watercloud: imicro = ",imicro |
---|
[633] | 182 | |
---|
[38] | 183 | firstcall=.false. |
---|
| 184 | ENDIF ! of IF (firstcall) |
---|
[1774] | 185 | |
---|
| 186 | !! AS: moved out of firstcall to allow nesting+evoluting timestep |
---|
| 187 | !! TBD: consider possible diff imicro with domains? |
---|
| 188 | microtimestep = ptimestep/real(imicro) |
---|
[1969] | 189 | if (microtimestep/=microtimestep_prev) then |
---|
| 190 | ! only tell the world if microtimestep has changed |
---|
| 191 | write(*,*)"watercloud: Physical timestep is ",ptimestep |
---|
| 192 | write(*,*)"watercloud: Microphysics timestep is ",microtimestep |
---|
| 193 | microtimestep_prev=microtimestep |
---|
| 194 | endif |
---|
[522] | 195 | |
---|
[633] | 196 | c-----Initialization |
---|
[1909] | 197 | sum_subpdq(1:ngrid,1:nlay,1:nq) = 0 |
---|
| 198 | sum_subpdt(1:ngrid,1:nlay) = 0 |
---|
[633] | 199 | |
---|
| 200 | ! default value if no ice |
---|
| 201 | rhocloud(1:ngrid,1:nlay) = rho_dust |
---|
[38] | 202 | |
---|
[1711] | 203 | c------------------------------------------------------------------- |
---|
| 204 | c 0. Representation of sub-grid water ice clouds |
---|
| 205 | c------------------ |
---|
[1880] | 206 | c-----Initialization |
---|
[1909] | 207 | pteff(1:ngrid,1:nlay) = 0 |
---|
[1880] | 208 | pqeff(1:ngrid,1:nlay,1:nq) = 0 |
---|
| 209 | DO l=1,nlay |
---|
| 210 | DO ig=1,ngrid |
---|
[1909] | 211 | pteff(ig,l)=pt(ig,l) |
---|
[1880] | 212 | END DO |
---|
| 213 | END DO |
---|
| 214 | DO l=1,nlay |
---|
| 215 | DO ig=1,ngrid |
---|
| 216 | DO iq=1,nq |
---|
| 217 | pqeff(ig,l,iq)=pq(ig,l,iq) |
---|
| 218 | ENDDO |
---|
| 219 | ENDDO |
---|
| 220 | ENDDO |
---|
[1711] | 221 | c-----Tendencies |
---|
| 222 | DO l=1,nlay |
---|
[1880] | 223 | DO ig=1,ngrid |
---|
| 224 | ztclf(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
| 225 | ENDDO |
---|
[1711] | 226 | ENDDO |
---|
| 227 | DO l=1,nlay |
---|
| 228 | DO ig=1,ngrid |
---|
| 229 | DO iq=1,nq |
---|
[1880] | 230 | zqclf(ig,l,iq)=pq(ig,l,iq)+pdq(ig,l,iq)*ptimestep |
---|
[1711] | 231 | ENDDO |
---|
| 232 | ENDDO |
---|
| 233 | ENDDO |
---|
| 234 | c-----Effective temperature calculation |
---|
| 235 | IF (CLFvarying) THEN |
---|
| 236 | spant=3.0 ! delta T for the temprature distribution |
---|
| 237 | mincloud=0.1 ! min cloudfrac when there is ice |
---|
| 238 | IF (flagcloud) THEN |
---|
| 239 | write(*,*) "Delta T", spant |
---|
| 240 | write(*,*) "mincloud", mincloud |
---|
| 241 | flagcloud=.false. |
---|
| 242 | END IF |
---|
[1880] | 243 | !CALL watersat(ngrid*nlay,ztclf,pplay,zqsat) !MV17: we dont need zqsat in the CLFvarying scheme |
---|
| 244 | zqvap=zqclf(:,:,igcm_h2o_vap) |
---|
| 245 | zqice=zqclf(:,:,igcm_h2o_ice) |
---|
[1711] | 246 | CALL tcondwater(ngrid*nlay,pplay,zqvap+zqice,tcond) |
---|
| 247 | DO l=1,nlay |
---|
| 248 | DO ig=1,ngrid |
---|
[1880] | 249 | zdelt=spant !MAX(spant*ztclf(ig,l),1.e-12), now totally in K. Fixed width |
---|
| 250 | IF (tcond(ig,l) .ge. (ztclf(ig,l)+zdelt)) THEN |
---|
[1909] | 251 | pteff(ig,l)=ztclf(ig,l) |
---|
[1711] | 252 | cloudfrac(ig,l)=1. |
---|
[1880] | 253 | ELSE IF (tcond(ig,l) .le. (ztclf(ig,l)-zdelt)) THEN |
---|
[1909] | 254 | pteff(ig,l)=ztclf(ig,l)-zdelt |
---|
[1711] | 255 | cloudfrac(ig,l)=mincloud |
---|
| 256 | ELSE |
---|
[1880] | 257 | cloudfrac(ig,l)=(tcond(ig,l)-ztclf(ig,l)+zdelt)/ |
---|
[1711] | 258 | & (2.0*zdelt) |
---|
[1909] | 259 | pteff(ig,l)=(tcond(ig,l)+ztclf(ig,l)-zdelt)/2. |
---|
[1711] | 260 | END IF |
---|
[1909] | 261 | pteff(ig,l)=pteff(ig,l)-pdt(ig,l)*ptimestep |
---|
[1880] | 262 | IF (cloudfrac(ig,l).le.mincloud) THEN !MV17: replaced .le.0 by .le.mincloud |
---|
[1711] | 263 | cloudfrac(ig,l)=mincloud |
---|
| 264 | ELSE IF (cloudfrac(ig,l).gt.1) THEN |
---|
| 265 | cloudfrac(ig,l)=1. |
---|
| 266 | END IF |
---|
| 267 | ENDDO |
---|
| 268 | ENDDO |
---|
| 269 | c-----Calculation of the total cloud coverage of the column |
---|
| 270 | DO ig=1,ngrid |
---|
| 271 | totcloudfrac(ig) = 0. |
---|
| 272 | norm=0. |
---|
| 273 | DO l=1,nlay |
---|
| 274 | ponder=zqice(ig,l)*(pplev(ig,l) - pplev(ig,l+1)) |
---|
| 275 | totcloudfrac(ig) = totcloudfrac(ig) |
---|
| 276 | & + cloudfrac(ig,l)*ponder |
---|
| 277 | norm=norm+ponder |
---|
| 278 | ENDDO |
---|
| 279 | totcloudfrac(ig)=MAX(totcloudfrac(ig)/norm,1.e-12) ! min value if NaNs |
---|
| 280 | ENDDO |
---|
[1880] | 281 | c-----Effective tracers quantities in the cloud fraction |
---|
| 282 | IF (microphys) THEN |
---|
| 283 | pqeff(:,:,igcm_ccn_mass)=pq(:,:,igcm_ccn_mass)/ |
---|
| 284 | & cloudfrac(:,:) |
---|
| 285 | pqeff(:,:,igcm_ccn_number)=pq(:,:,igcm_ccn_number)/ |
---|
| 286 | & cloudfrac(:,:) |
---|
| 287 | END IF ! end if (microphys) |
---|
| 288 | pqeff(:,:,igcm_h2o_ice)=pq(:,:,igcm_h2o_ice)/ |
---|
| 289 | & cloudfrac(:,:) |
---|
[1909] | 290 | !! CLFvarying outputs |
---|
[2934] | 291 | ! CALL write_output('pqeffice','pqeffice', |
---|
| 292 | ! & 'kg/kg',pqeff(:,:,igcm_h2o_ice)) |
---|
| 293 | ! CALL write_output('pteff','pteff', |
---|
| 294 | ! & 'K',pteff(:,:)) |
---|
| 295 | ! CALL write_output('tcond','tcond', |
---|
| 296 | ! & 'K',tcond(:,:)) |
---|
| 297 | ! CALL write_output('cloudfrac','cloudfrac', |
---|
| 298 | ! & 'K',cloudfrac(:,:)) |
---|
[1909] | 299 | END IF ! end if (CLFvarying) |
---|
[633] | 300 | c------------------------------------------------------------------ |
---|
[2984] | 301 | c Cloud physics (nucleation, condensation / sublimation) |
---|
[1880] | 302 | c------------------------------------------------------------------ |
---|
[1711] | 303 | rhocloud(1:ngrid,1:nlay) = rho_dust |
---|
[2966] | 304 | |
---|
[2984] | 305 | c Initialisation of all the stuff (JN,2023) |
---|
[2966] | 306 | zt_micro(:,:)=pt(:,:) |
---|
| 307 | zq_micro(:,:,:)=pq(:,:,:) |
---|
[38] | 308 | |
---|
[633] | 309 | c------------------------------------------------------------------- |
---|
[2966] | 310 | c 1. Main call to the different cloud schemes: |
---|
[633] | 311 | c------------------------------------------------ |
---|
[2984] | 312 | c ds. |
---|
| 313 | IF (microphys) THEN |
---|
| 314 | CALL improvedclouds(ngrid,nlay,ptimestep, |
---|
| 315 | & pplay,pt,pdt,pq,pdq,nq,tauscaling,imicro, |
---|
| 316 | & zt_micro,zq_micro) |
---|
[633] | 317 | |
---|
[2984] | 318 | ELSE |
---|
| 319 | |
---|
| 320 | c Specific loop for simpleclouds. |
---|
| 321 | DO l=1,nlay |
---|
| 322 | DO ig=1,ngrid |
---|
| 323 | CALL simpleclouds(ngrid,nlay,ptimestep, |
---|
[1909] | 324 | & pplay,pzlay,pteff,sum_subpdt, |
---|
| 325 | & pqeff,sum_subpdq,subpdqcloud,subpdtcloud, |
---|
[645] | 326 | & nq,tau,rice) |
---|
[633] | 327 | c------------------------------------------------------------------- |
---|
[2966] | 328 | c 2. Updating tracers and temperature after cloud scheme: |
---|
[2984] | 329 | c For improved clouds (with microphysics) this is done directly |
---|
| 330 | c in the microphysics, during the subtimestep |
---|
| 331 | c I put it like that to be retrocompatible (JN) |
---|
[633] | 332 | c----------------------------------------------- |
---|
| 333 | |
---|
[2966] | 334 | zq_micro(ig,l,igcm_h2o_ice) = |
---|
| 335 | & zq_micro(ig,l,igcm_h2o_ice)+ |
---|
| 336 | & (pdq(ig,l,igcm_h2o_ice) |
---|
[2984] | 337 | & + subpdqcloud(ig,l,igcm_h2o_ice))*ptimestep |
---|
[2966] | 338 | zq_micro(ig,l,igcm_h2o_vap) = |
---|
| 339 | & zq_micro(ig,l,igcm_h2o_vap)+ |
---|
| 340 | & (pdq(ig,l,igcm_h2o_vap) |
---|
[2984] | 341 | & + subpdqcloud(ig,l,igcm_h2o_vap))*ptimestep |
---|
[2312] | 342 | |
---|
| 343 | IF (hdo) THEN |
---|
[2966] | 344 | zq_micro(ig,l,igcm_hdo_ice) = |
---|
| 345 | & zq_micro(ig,l,igcm_hdo_ice)+ |
---|
| 346 | & (pdq(ig,l,igcm_hdo_ice) |
---|
[2984] | 347 | & + subpdqcloud(ig,l,igcm_hdo_ice))*ptimestep |
---|
[2966] | 348 | zq_micro(ig,l,igcm_hdo_vap) = |
---|
| 349 | & zq_micro(ig,l,igcm_hdo_vap)+ |
---|
| 350 | & (pdq(ig,l,igcm_hdo_vap) |
---|
[2984] | 351 | & + subpdqcloud(ig,l,igcm_hdo_vap))*ptimestep |
---|
[2312] | 352 | ENDIF ! hdo |
---|
| 353 | |
---|
[2966] | 354 | c Could also set subpdtcloud to 0 if not activice to make it simpler |
---|
[2984] | 355 | c or change name of the flag |
---|
| 356 | IF (activice) THEN |
---|
| 357 | zt_micro(ig,l) = zt_micro(ig,l)+ |
---|
| 358 | & subpdtcloud(ig,l)*ptimestep |
---|
| 359 | ENDIF |
---|
[2966] | 360 | |
---|
[2984] | 361 | ENDDO !ig=1,ngrid |
---|
| 362 | ENDDO !l=1,nlay |
---|
| 363 | ENDIF |
---|
| 364 | |
---|
| 365 | |
---|
[633] | 366 | |
---|
| 367 | c------------------------------------------------------------------- |
---|
[2966] | 368 | c 3. Compute final tendencies after time loop: |
---|
[633] | 369 | c------------------------------------------------ |
---|
| 370 | |
---|
| 371 | c------ Temperature tendency pdtcloud |
---|
| 372 | DO l=1,nlay |
---|
| 373 | DO ig=1,ngrid |
---|
[2966] | 374 | pdtcloud(ig,l) = -pdt(ig,l)+ |
---|
| 375 | & (zt_micro(ig,l)-pt(ig,l)) / ptimestep |
---|
| 376 | ENDDO |
---|
[633] | 377 | ENDDO |
---|
[2966] | 378 | |
---|
[633] | 379 | c------ Tracers tendencies pdqcloud |
---|
[703] | 380 | DO l=1,nlay |
---|
[633] | 381 | DO ig=1,ngrid |
---|
[2966] | 382 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 383 | & -pdq(ig,l,igcm_h2o_ice)+ |
---|
| 384 | & (zq_micro(ig,l,igcm_h2o_ice) - |
---|
| 385 | & pq(ig,l,igcm_h2o_ice)) / ptimestep |
---|
| 386 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 387 | & -pdq(ig,l,igcm_h2o_vap)+ |
---|
| 388 | & (zq_micro(ig,l,igcm_h2o_vap) - |
---|
| 389 | & pq(ig,l,igcm_h2o_vap)) / ptimestep |
---|
[2312] | 390 | IF (hdo) THEN |
---|
[2966] | 391 | pdqcloud(ig,l,igcm_hdo_ice) = |
---|
| 392 | & -pdq(ig,l,igcm_hdo_ice)+ |
---|
| 393 | & (zq_micro(ig,l,igcm_hdo_ice) - |
---|
| 394 | & pq(ig,l,igcm_hdo_ice)) / ptimestep |
---|
| 395 | pdqcloud(ig,l,igcm_hdo_vap) = |
---|
| 396 | & -pdq(ig,l,igcm_hdo_vap)+ |
---|
| 397 | & (zq_micro(ig,l,igcm_hdo_vap) - |
---|
| 398 | & pq(ig,l,igcm_hdo_vap)) / ptimestep |
---|
[2312] | 399 | ENDIF !hdo |
---|
[740] | 400 | ENDDO |
---|
[2966] | 401 | ENDDO |
---|
| 402 | |
---|
[740] | 403 | IF(microphys) THEN |
---|
| 404 | DO l=1,nlay |
---|
| 405 | DO ig=1,ngrid |
---|
[2966] | 406 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 407 | & -pdq(ig,l,igcm_ccn_mass)+ |
---|
| 408 | & (zq_micro(ig,l,igcm_ccn_mass) - |
---|
| 409 | & pq(ig,l,igcm_ccn_mass)) / ptimestep |
---|
| 410 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 411 | & -pdq(ig,l,igcm_ccn_number)+ |
---|
| 412 | & (zq_micro(ig,l,igcm_ccn_number) - |
---|
| 413 | & pq(ig,l,igcm_ccn_number)) / ptimestep |
---|
[633] | 414 | ENDDO |
---|
[740] | 415 | ENDDO |
---|
| 416 | ENDIF |
---|
[2966] | 417 | |
---|
[740] | 418 | IF(scavenging) THEN |
---|
| 419 | DO l=1,nlay |
---|
| 420 | DO ig=1,ngrid |
---|
[2966] | 421 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 422 | & -pdq(ig,l,igcm_dust_mass)+ |
---|
| 423 | & (zq_micro(ig,l,igcm_dust_mass) - |
---|
| 424 | & pq(ig,l,igcm_dust_mass)) / ptimestep |
---|
| 425 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 426 | & -pdq(ig,l,igcm_dust_number)+ |
---|
| 427 | & (zq_micro(ig,l,igcm_dust_number) - |
---|
| 428 | & pq(ig,l,igcm_dust_number)) / ptimestep |
---|
[740] | 429 | ENDDO |
---|
| 430 | ENDDO |
---|
| 431 | ENDIF |
---|
[633] | 432 | |
---|
| 433 | c------- Due to stepped entry, other processes tendencies can add up to negative values |
---|
| 434 | c------- Therefore, enforce positive values and conserve mass |
---|
| 435 | IF(microphys) THEN |
---|
| 436 | DO l=1,nlay |
---|
| 437 | DO ig=1,ngrid |
---|
[654] | 438 | IF ((pq(ig,l,igcm_ccn_number) + |
---|
[633] | 439 | & ptimestep* (pdq(ig,l,igcm_ccn_number) + |
---|
[654] | 440 | & pdqcloud(ig,l,igcm_ccn_number)) .le. 1.) |
---|
| 441 | & .or. (pq(ig,l,igcm_ccn_mass) + |
---|
| 442 | & ptimestep* (pdq(ig,l,igcm_ccn_mass) + |
---|
| 443 | & pdqcloud(ig,l,igcm_ccn_mass)) .le. 1.e-20)) THEN |
---|
[633] | 444 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 445 | & - pq(ig,l,igcm_ccn_number)/ptimestep |
---|
[654] | 446 | & - pdq(ig,l,igcm_ccn_number) + 1. |
---|
[633] | 447 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 448 | & -pdqcloud(ig,l,igcm_ccn_number) |
---|
| 449 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 450 | & - pq(ig,l,igcm_ccn_mass)/ptimestep |
---|
[654] | 451 | & - pdq(ig,l,igcm_ccn_mass) + 1.e-20 |
---|
[633] | 452 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 453 | & -pdqcloud(ig,l,igcm_ccn_mass) |
---|
| 454 | ENDIF |
---|
| 455 | ENDDO |
---|
| 456 | ENDDO |
---|
| 457 | ENDIF |
---|
| 458 | |
---|
[740] | 459 | IF(scavenging) THEN |
---|
[633] | 460 | DO l=1,nlay |
---|
| 461 | DO ig=1,ngrid |
---|
[740] | 462 | IF ((pq(ig,l,igcm_dust_number) + |
---|
| 463 | & ptimestep* (pdq(ig,l,igcm_dust_number) + |
---|
| 464 | & pdqcloud(ig,l,igcm_dust_number)) .le. 1.) |
---|
| 465 | & .or. (pq(ig,l,igcm_dust_mass) + |
---|
| 466 | & ptimestep* (pdq(ig,l,igcm_dust_mass) + |
---|
| 467 | & pdqcloud(ig,l,igcm_dust_mass)) .le. 1.e-20)) THEN |
---|
| 468 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 469 | & - pq(ig,l,igcm_dust_number)/ptimestep |
---|
| 470 | & - pdq(ig,l,igcm_dust_number) + 1. |
---|
| 471 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 472 | & -pdqcloud(ig,l,igcm_dust_number) |
---|
| 473 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 474 | & - pq(ig,l,igcm_dust_mass)/ptimestep |
---|
| 475 | & - pdq(ig,l,igcm_dust_mass) + 1.e-20 |
---|
| 476 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 477 | & -pdqcloud(ig,l,igcm_dust_mass) |
---|
| 478 | ENDIF |
---|
| 479 | ENDDO |
---|
| 480 | ENDDO |
---|
| 481 | ENDIF |
---|
| 482 | |
---|
| 483 | DO l=1,nlay |
---|
| 484 | DO ig=1,ngrid |
---|
[2312] | 485 | |
---|
[633] | 486 | IF (pq(ig,l,igcm_h2o_ice) + ptimestep* |
---|
| 487 | & (pdq(ig,l,igcm_h2o_ice) + pdqcloud(ig,l,igcm_h2o_ice)) |
---|
[2516] | 488 | & .le. qperemin) THEN |
---|
[633] | 489 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 490 | & - pq(ig,l,igcm_h2o_ice)/ptimestep - pdq(ig,l,igcm_h2o_ice) |
---|
| 491 | pdqcloud(ig,l,igcm_h2o_vap) = -pdqcloud(ig,l,igcm_h2o_ice) |
---|
[2312] | 492 | if (hdo) then |
---|
| 493 | pdqcloud(ig,l,igcm_hdo_ice) = |
---|
| 494 | & - pq(ig,l,igcm_hdo_ice)/ptimestep - pdq(ig,l,igcm_hdo_ice) |
---|
| 495 | pdqcloud(ig,l,igcm_hdo_vap) = -pdqcloud(ig,l,igcm_hdo_ice) |
---|
| 496 | endif |
---|
[633] | 497 | ENDIF |
---|
| 498 | IF (pq(ig,l,igcm_h2o_vap) + ptimestep* |
---|
| 499 | & (pdq(ig,l,igcm_h2o_vap) + pdqcloud(ig,l,igcm_h2o_vap)) |
---|
[2516] | 500 | & .le. qperemin) THEN |
---|
[633] | 501 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 502 | & - pq(ig,l,igcm_h2o_vap)/ptimestep - pdq(ig,l,igcm_h2o_vap) |
---|
| 503 | pdqcloud(ig,l,igcm_h2o_ice) = -pdqcloud(ig,l,igcm_h2o_vap) |
---|
[2312] | 504 | if (hdo) then |
---|
| 505 | pdqcloud(ig,l,igcm_hdo_vap) = |
---|
| 506 | & - pq(ig,l,igcm_hdo_vap)/ptimestep - pdq(ig,l,igcm_hdo_vap) |
---|
| 507 | pdqcloud(ig,l,igcm_hdo_ice) = -pdqcloud(ig,l,igcm_hdo_vap) |
---|
| 508 | endif |
---|
[633] | 509 | ENDIF |
---|
[2312] | 510 | |
---|
[633] | 511 | ENDDO |
---|
| 512 | ENDDO |
---|
| 513 | |
---|
| 514 | c------Update the ice and dust particle size "rice" for output or photochemistry |
---|
| 515 | c------Only rsedcloud is used for the water cycle |
---|
| 516 | |
---|
| 517 | IF(scavenging) THEN |
---|
| 518 | DO l=1, nlay |
---|
| 519 | DO ig=1,ngrid |
---|
| 520 | |
---|
[740] | 521 | call updaterdust( |
---|
| 522 | & pq(ig,l,igcm_dust_mass) + ! dust mass |
---|
| 523 | & (pdq(ig,l,igcm_dust_mass) + ! dust mass |
---|
| 524 | & pdqcloud(ig,l,igcm_dust_mass))*ptimestep, ! dust mass |
---|
| 525 | & pq(ig,l,igcm_dust_number) + ! dust number |
---|
| 526 | & (pdq(ig,l,igcm_dust_number) + ! dust number |
---|
| 527 | & pdqcloud(ig,l,igcm_dust_number))*ptimestep, ! dust number |
---|
| 528 | & rdust(ig,l)) |
---|
[633] | 529 | |
---|
| 530 | ENDDO |
---|
| 531 | ENDDO |
---|
[740] | 532 | ENDIF |
---|
[1467] | 533 | |
---|
[740] | 534 | IF(microphys) THEN |
---|
[1467] | 535 | |
---|
| 536 | ! In case one does not want to allow supersatured water when using microphysics. |
---|
| 537 | ! Not done by default. |
---|
[2801] | 538 | IF(.not.supersat) THEN |
---|
| 539 | ! !! initial mixing ratios for initial D/H ratio calculation |
---|
| 540 | zq0(:,:,:) = pq(:,:,:) + pdq(:,:,:)*ptimestep |
---|
[1467] | 541 | zt = pt + (pdt+pdtcloud)*ptimestep |
---|
| 542 | call watersat(ngrid*nlay,zt,pplay,zqsat) |
---|
| 543 | DO l=1, nlay |
---|
| 544 | DO ig=1,ngrid |
---|
| 545 | IF (pq(ig,l,igcm_h2o_vap) |
---|
| 546 | & + (pdq(ig,l,igcm_h2o_vap) + pdqcloud(ig,l,igcm_h2o_vap)) |
---|
| 547 | & * ptimestep .ge. zqsat(ig,l)) THEN |
---|
| 548 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 549 | & (zqsat(ig,l) - pq(ig,l,igcm_h2o_vap))/ptimestep |
---|
| 550 | & - pdq(ig,l,igcm_h2o_vap) |
---|
| 551 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 552 | & -pdqcloud(ig,l,igcm_h2o_vap) |
---|
[2800] | 553 | ! !! HDO ice flux has to be modified in consequence |
---|
| 554 | IF (hdo) THEN |
---|
| 555 | ! !! Logically only condensation can happen in this case |
---|
| 556 | IF (pdqcloud(ig,l,igcm_h2o_ice) .gt. 0.0) THEN |
---|
| 557 | IF ( zq0(ig,l,igcm_h2o_vap) .gt. qperemin ) THEN |
---|
[2801] | 558 | ! !! Lamb et al. 2017 |
---|
[2800] | 559 | alpha(ig,l) = exp(13525./zt(ig,l)**2.-5.59d-2) |
---|
| 560 | pdqcloud(ig,l,igcm_hdo_ice) = |
---|
| 561 | & pdqcloud(ig,l,igcm_h2o_ice)*alpha(ig,l)* |
---|
| 562 | & ( zq0(ig,l,igcm_hdo_vap) |
---|
| 563 | & /zq0(ig,l,igcm_h2o_vap) ) |
---|
| 564 | pdqcloud(ig,l,igcm_hdo_ice) = |
---|
| 565 | & min(pdqcloud(ig,l,igcm_hdo_ice), |
---|
| 566 | & zq0(ig,l,igcm_hdo_vap)/ptimestep) |
---|
| 567 | ELSE |
---|
| 568 | pdqcloud(ig,l,igcm_hdo_ice) = 0. |
---|
| 569 | ENDIF |
---|
| 570 | !! sublimation |
---|
| 571 | ELSE |
---|
| 572 | IF ( zq0(ig,l,igcm_h2o_ice) .gt. qperemin ) THEN |
---|
| 573 | pdqcloud(ig,l,igcm_hdo_ice) = |
---|
| 574 | & pdqcloud(ig,l,igcm_h2o_ice)* |
---|
| 575 | & ( zq0(ig,l,igcm_hdo_ice) |
---|
| 576 | & /zq0(ig,l,igcm_h2o_ice) ) |
---|
| 577 | pdqcloud(ig,l,igcm_hdo_ice) = |
---|
| 578 | & max(pdqcloud(ig,l,igcm_hdo_ice), |
---|
| 579 | & -zq0(ig,l,igcm_hdo_ice)/ptimestep) |
---|
| 580 | ELSE |
---|
| 581 | pdqcloud(ig,l,igcm_hdo_ice) = 0. |
---|
| 582 | ENDIF |
---|
| 583 | ENDIF !IF (pdqcloud(ig,l,igcm_h2o_ice).gt.0.) |
---|
| 584 | pdqcloud(ig,l,igcm_hdo_vap) = |
---|
| 585 | & -pdqcloud(ig,l,igcm_hdo_ice) |
---|
| 586 | ENDIF !IF (hdo) |
---|
[1467] | 587 | ! no need to correct ccn_number, updaterad can handle this properly. |
---|
| 588 | ENDIF |
---|
| 589 | ENDDO |
---|
| 590 | ENDDO |
---|
| 591 | ENDIF |
---|
[740] | 592 | |
---|
| 593 | DO l=1, nlay |
---|
| 594 | DO ig=1,ngrid |
---|
| 595 | |
---|
| 596 | call updaterice_micro( |
---|
| 597 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 598 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 599 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
| 600 | & pq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
| 601 | & (pdq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
| 602 | & pdqcloud(ig,l,igcm_ccn_mass))*ptimestep, ! ccn mass |
---|
| 603 | & pq(ig,l,igcm_ccn_number) + ! ccn number |
---|
| 604 | & (pdq(ig,l,igcm_ccn_number) + ! ccn number |
---|
| 605 | & pdqcloud(ig,l,igcm_ccn_number))*ptimestep, ! ccn number |
---|
| 606 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
| 607 | |
---|
[645] | 608 | ENDDO |
---|
[740] | 609 | ENDDO |
---|
[645] | 610 | |
---|
[740] | 611 | ELSE ! no microphys |
---|
| 612 | |
---|
[645] | 613 | DO l=1,nlay |
---|
| 614 | DO ig=1,ngrid |
---|
[740] | 615 | |
---|
| 616 | call updaterice_typ( |
---|
| 617 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 618 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 619 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
[746] | 620 | & tau(ig,1),pzlay(ig,l),rice(ig,l)) |
---|
[740] | 621 | |
---|
[633] | 622 | ENDDO |
---|
[740] | 623 | ENDDO |
---|
[633] | 624 | |
---|
[740] | 625 | ENDIF ! of IF(microphys) |
---|
[633] | 626 | |
---|
[740] | 627 | |
---|
| 628 | |
---|
[358] | 629 | c A correction if a lot of subliming CO2 fills the 1st layer FF04/2005 |
---|
| 630 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 631 | c Then that should not affect the ice particle radius |
---|
[1047] | 632 | do ig=1,ngrid |
---|
[358] | 633 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,2)))then |
---|
| 634 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,3))) |
---|
| 635 | & rice(ig,2)=rice(ig,3) |
---|
| 636 | rice(ig,1)=rice(ig,2) |
---|
| 637 | end if |
---|
| 638 | end do |
---|
[740] | 639 | |
---|
| 640 | |
---|
| 641 | DO l=1,nlay |
---|
| 642 | DO ig=1,ngrid |
---|
| 643 | rsedcloud(ig,l)=max(rice(ig,l)* |
---|
| 644 | & (1.+nuice_sed)*(1.+nuice_sed)*(1.+nuice_sed), |
---|
| 645 | & rdust(ig,l)) |
---|
| 646 | ! rsedcloud(ig,l)=min(rsedcloud(ig,l),1.e-4) |
---|
| 647 | ENDDO |
---|
| 648 | ENDDO |
---|
| 649 | |
---|
| 650 | ! used for rad. transfer calculations |
---|
| 651 | ! nuice is constant because a lognormal distribution is prescribed |
---|
| 652 | nuice(1:ngrid,1:nlay)=nuice_ref |
---|
[38] | 653 | |
---|
[1711] | 654 | c------Update tendencies for sub-grid water ice clouds |
---|
| 655 | IF (CLFvarying) THEN |
---|
| 656 | DO ig=1,ngrid |
---|
| 657 | DO l=1,nlay |
---|
| 658 | pdqcloud(ig,l,igcm_dust_mass)=pdqcloud(ig,l,igcm_dust_mass) |
---|
| 659 | & *cloudfrac(ig,l) |
---|
| 660 | pdqcloud(ig,l,igcm_ccn_mass)=pdqcloud(ig,l,igcm_ccn_mass) |
---|
| 661 | & *cloudfrac(ig,l) |
---|
| 662 | pdqcloud(ig,l,igcm_dust_number)=pdqcloud(ig,l, |
---|
| 663 | & igcm_dust_number) *cloudfrac(ig,l) |
---|
| 664 | pdqcloud(ig,l,igcm_ccn_number)=pdqcloud(ig,l, |
---|
| 665 | & igcm_ccn_number) *cloudfrac(ig,l) |
---|
| 666 | pdqcloud(ig,l,igcm_h2o_vap)=pdqcloud(ig,l, |
---|
| 667 | & igcm_h2o_vap) *cloudfrac(ig,l) |
---|
| 668 | pdqcloud(ig,l,igcm_h2o_ice)=pdqcloud(ig,l, |
---|
| 669 | & igcm_h2o_ice) *cloudfrac(ig,l) |
---|
| 670 | ENDDO |
---|
| 671 | ENDDO |
---|
| 672 | pdtcloud(:,:)=pdtcloud(:,:)*cloudfrac(:,:) |
---|
| 673 | ENDIF |
---|
[1758] | 674 | #ifndef MESOSCALE |
---|
[1711] | 675 | c======================================================================= |
---|
[2934] | 676 | call write_output("watercloud_pdqh2oice","pdqcloud_h2o_ice "// |
---|
| 677 | & "after microphysics","kg/kg.s-1",pdqcloud(:,:,igcm_h2o_ice)) |
---|
| 678 | call write_output("watercloud_pdqh2ovap","pdqcloud_h2o_vap "// |
---|
| 679 | & "after microphysics","kg/kg.s-1",pdqcloud(:,:,igcm_h2o_vap)) |
---|
[2312] | 680 | if (hdo) then |
---|
[2934] | 681 | call write_output("watercloud_pdqhdoice","pdqcloud_hdo_ice "// |
---|
| 682 | & "after microphysics","kg/kg.s-1",pdqcloud(:,:,igcm_hdo_ice)) |
---|
| 683 | call write_output("watercloud_pdqhdovap","pdqcloud_hdo_vap "// |
---|
| 684 | & "after microphysics","kg/kg.s-1",pdqcloud(:,:,igcm_hdo_vap)) |
---|
[2312] | 685 | endif |
---|
[2934] | 686 | ! call write_output("pdqccn2","pdqcloudccn apres microphysique" |
---|
| 687 | ! & ,"kg/kg.s-1",pdqcloud(:,:, |
---|
| 688 | ! & igcm_ccn_mass)) |
---|
| 689 | ! call write_output("pdqccnN2","pdqcloudccnN apres "// |
---|
| 690 | ! & "microphysique","nb/kg.s-1",pdqcloud(:,:, |
---|
| 691 | ! & igcm_ccn_number)) |
---|
| 692 | ! call write_output("pdqdust2", "pdqclouddust apres "// |
---|
| 693 | ! & "microphysique","kg/kg.s-1",pdqcloud(:,:, |
---|
| 694 | ! & igcm_dust_mass)) |
---|
| 695 | ! call write_output("pdqdustN2", "pdqclouddustN apres "// |
---|
| 696 | ! & "microphysique","nb/kg.s-1",pdqcloud(:,:, |
---|
| 697 | ! & igcm_dust_number)) |
---|
[633] | 698 | c======================================================================= |
---|
[1758] | 699 | #endif |
---|
[633] | 700 | |
---|
[1711] | 701 | END SUBROUTINE watercloud |
---|
| 702 | |
---|
[2162] | 703 | subroutine ini_watercloud_mod(ngrid,nlayer,nq) |
---|
| 704 | implicit none |
---|
| 705 | |
---|
| 706 | integer,intent(in) :: ngrid ! number of atmospheric columns |
---|
| 707 | integer,intent(in) :: nlayer ! number of atmospheric layers |
---|
| 708 | integer,intent(in) :: nq ! number of tracers |
---|
| 709 | |
---|
| 710 | allocate(zdqcloud(ngrid,nlayer,nq)) |
---|
| 711 | zdqcloud(:,:,:)=0 |
---|
| 712 | allocate(zdqscloud(ngrid,nq)) |
---|
| 713 | zdqscloud(:,:)=0 |
---|
| 714 | |
---|
| 715 | end subroutine ini_watercloud_mod |
---|
| 716 | |
---|
| 717 | |
---|
| 718 | subroutine end_watercloud_mod |
---|
| 719 | implicit none |
---|
| 720 | |
---|
| 721 | if (allocated(zdqcloud)) deallocate(zdqcloud) |
---|
| 722 | if (allocated(zdqscloud)) deallocate(zdqscloud) |
---|
| 723 | |
---|
| 724 | end subroutine end_watercloud_mod |
---|
| 725 | |
---|
[2966] | 726 | |
---|
| 727 | |
---|
[1711] | 728 | END MODULE watercloud_mod |
---|