[1711] | 1 | MODULE watercloud_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
[2162] | 5 | REAL,SAVE,ALLOCATABLE :: zdqcloud(:,:,:) ! tendencies on pq due to condensation of H2O(kg/kg.s-1) |
---|
| 6 | REAL,SAVE,ALLOCATABLE :: zdqscloud(:,:) ! tendencies on qsurf (calculated only by calchim but declared here) |
---|
| 7 | |
---|
[1711] | 8 | CONTAINS |
---|
| 9 | |
---|
[633] | 10 | SUBROUTINE watercloud(ngrid,nlay,ptimestep, |
---|
| 11 | & pplev,pplay,pdpsrf,pzlay,pt,pdt, |
---|
[626] | 12 | & pq,pdq,pdqcloud,pdtcloud, |
---|
[358] | 13 | & nq,tau,tauscaling,rdust,rice,nuice, |
---|
[1711] | 14 | & rsedcloud,rhocloud,totcloudfrac) |
---|
[2311] | 15 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
[1964] | 16 | USE updaterad, ONLY: updaterdust, updaterice_micro, |
---|
| 17 | & updaterice_typ |
---|
| 18 | USE improvedclouds_mod, ONLY: improvedclouds |
---|
[1996] | 19 | USE watersat_mod, ONLY: watersat |
---|
[1036] | 20 | use tracer_mod, only: nqmx, igcm_h2o_vap, igcm_h2o_ice, |
---|
[2312] | 21 | & igcm_hdo_vap, igcm_hdo_ice, |
---|
[1036] | 22 | & igcm_dust_mass, igcm_dust_number, |
---|
| 23 | & igcm_ccn_mass, igcm_ccn_number, |
---|
[2516] | 24 | & rho_dust, nuice_sed, nuice_ref, |
---|
| 25 | & qperemin |
---|
[1246] | 26 | use dimradmars_mod, only: naerkind |
---|
[38] | 27 | IMPLICIT NONE |
---|
| 28 | |
---|
[633] | 29 | |
---|
[38] | 30 | c======================================================================= |
---|
[358] | 31 | c Water-ice cloud formation |
---|
| 32 | c |
---|
| 33 | c Includes two different schemes: |
---|
| 34 | c - A simplified scheme (see simpleclouds.F) |
---|
| 35 | c - An improved microphysical scheme (see improvedclouds.F) |
---|
[38] | 36 | c |
---|
[633] | 37 | c There is a time loop specific to cloud formation |
---|
| 38 | c due to timescales smaller than the GCM integration timestep. |
---|
| 39 | c |
---|
[358] | 40 | c Authors: Franck Montmessin, Francois Forget, Ehouarn Millour, |
---|
[522] | 41 | c J.-B. Madeleine, Thomas Navarro |
---|
[38] | 42 | c |
---|
[633] | 43 | c 2004 - 2012 |
---|
[38] | 44 | c======================================================================= |
---|
| 45 | |
---|
| 46 | c----------------------------------------------------------------------- |
---|
| 47 | c declarations: |
---|
| 48 | c ------------- |
---|
| 49 | |
---|
[1964] | 50 | include "callkeys.h" |
---|
[38] | 51 | |
---|
[1976] | 52 | c Inputs/outputs: |
---|
[38] | 53 | c ------ |
---|
| 54 | |
---|
[1976] | 55 | INTEGER, INTENT(IN) :: ngrid,nlay |
---|
| 56 | INTEGER, INTENT(IN) :: nq ! nombre de traceurs |
---|
| 57 | REAL, INTENT(IN) :: ptimestep ! pas de temps physique (s) |
---|
| 58 | REAL, INTENT(IN) :: pplev(ngrid,nlay+1) ! pression aux inter-couches (Pa) |
---|
| 59 | REAL, INTENT(IN) :: pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
| 60 | REAL, INTENT(IN) :: pdpsrf(ngrid) ! tendence surf pressure |
---|
| 61 | REAL, INTENT(IN) :: pzlay(ngrid,nlay) ! altitude at the middle of the layers |
---|
| 62 | REAL, INTENT(IN) :: pt(ngrid,nlay) ! temperature at the middle of the layers (K) |
---|
| 63 | REAL, INTENT(IN) :: pdt(ngrid,nlay) ! tendence temperature des autres param. |
---|
[38] | 64 | |
---|
[1976] | 65 | REAL, INTENT(IN) :: pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
| 66 | rEAL, INTENT(IN) :: pdq(ngrid,nlay,nq) ! tendence avant condensation (kg/kg.s-1) |
---|
[38] | 67 | |
---|
[1976] | 68 | REAL, INTENT(IN) :: tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
| 69 | REAL, INTENT(IN) :: tauscaling(ngrid) ! Convertion factor for dust amount |
---|
| 70 | REAL, INTENT(INOUT) :: rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
[38] | 71 | |
---|
[1976] | 72 | REAL, INTENT(OUT) :: pdqcloud(ngrid,nlay,nq) ! tendence de la condensation H2O(kg/kg.s-1) |
---|
| 73 | REAL, INTENT(OUT) :: pdtcloud(ngrid,nlay) ! tendence temperature due |
---|
[633] | 74 | ! a la chaleur latente |
---|
[1976] | 75 | REAL, INTENT(INOUT) :: rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
[38] | 76 | ! (r_c in montmessin_2004) |
---|
[1976] | 77 | REAL, INTENT(OUT) :: nuice(ngrid,nlay) ! Estimated effective variance |
---|
[38] | 78 | ! of the size distribution |
---|
[1976] | 79 | REAL, INTENT(OUT) :: rsedcloud(ngrid,nlay) ! Cloud sedimentation radius |
---|
| 80 | REAL, INTENT(OUT) :: rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
[38] | 81 | |
---|
[1711] | 82 | REAL, INTENT(INOUT):: totcloudfrac(ngrid) ! Cloud fraction (A. Pottier 2013) |
---|
[1976] | 83 | |
---|
| 84 | c Locals: |
---|
[38] | 85 | c ------ |
---|
[1976] | 86 | |
---|
[633] | 87 | ! for ice radius computation |
---|
| 88 | REAL Mo,No |
---|
| 89 | REAl ccntyp |
---|
| 90 | |
---|
| 91 | ! for time loop |
---|
| 92 | INTEGER microstep ! time subsampling step variable |
---|
[1969] | 93 | INTEGER,SAVE :: imicro ! time subsampling for coupled water microphysics & sedimentation |
---|
| 94 | REAL,SAVE :: microtimestep ! integration timestep for coupled water microphysics & sedimentation |
---|
| 95 | REAL,SAVE :: microtimestep_prev=-999 |
---|
[633] | 96 | |
---|
| 97 | ! tendency given by clouds (inside the micro loop) |
---|
| 98 | REAL subpdqcloud(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 99 | REAL subpdtcloud(ngrid,nlay) ! cf. pdtcloud |
---|
[38] | 100 | |
---|
[633] | 101 | ! global tendency (clouds+physics) |
---|
[1909] | 102 | REAL sum_subpdq(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 103 | REAL sum_subpdt(ngrid,nlay) ! cf. pdtcloud |
---|
[633] | 104 | |
---|
[1467] | 105 | ! no supersaturation when option supersat is false |
---|
| 106 | REAL zt(ngrid,nlay) ! local value of temperature |
---|
| 107 | REAL zqsat(ngrid,nlay) ! saturation |
---|
[633] | 108 | |
---|
| 109 | INTEGER iq,ig,l |
---|
[38] | 110 | LOGICAL,SAVE :: firstcall=.true. |
---|
| 111 | |
---|
[1711] | 112 | ! Representation of sub-grid water ice clouds A. Pottier 2013 |
---|
[1880] | 113 | REAL :: ztclf(ngrid, nlay) |
---|
| 114 | REAL :: zqclf(ngrid, nlay,nq) |
---|
[1711] | 115 | REAL :: zdelt |
---|
| 116 | REAL :: norm |
---|
| 117 | REAL :: ponder |
---|
| 118 | REAL :: tcond(ngrid,nlay) |
---|
[1880] | 119 | REAL :: zqvap(ngrid,nlay) |
---|
[1711] | 120 | REAL :: zqice(ngrid,nlay) |
---|
| 121 | REAL :: spant ! delta T for the temperature distribution |
---|
| 122 | ! REAL :: zqsat(ngrid,nlay) ! saturation |
---|
[1909] | 123 | REAL :: pteff(ngrid, nlay)! effective temperature in the cloud,neb |
---|
[1711] | 124 | REAL :: pqeff(ngrid, nlay, nq)! effective tracers quantities in the cloud |
---|
| 125 | REAL :: cloudfrac(ngrid,nlay) ! cloud fraction |
---|
| 126 | REAL :: mincloud ! min cloud frac |
---|
| 127 | LOGICAL, save :: flagcloud=.true. |
---|
[2312] | 128 | |
---|
[38] | 129 | c ** un petit test de coherence |
---|
| 130 | c -------------------------- |
---|
| 131 | |
---|
| 132 | IF (firstcall) THEN |
---|
| 133 | |
---|
| 134 | if (nq.gt.nqmx) then |
---|
| 135 | write(*,*) 'stop in watercloud (nq.gt.nqmx)!' |
---|
| 136 | write(*,*) 'nq=',nq,' nqmx=',nqmx |
---|
[2311] | 137 | call abort_physic("watercloud","nq.gt.nqmx",1) |
---|
[38] | 138 | endif |
---|
| 139 | |
---|
[358] | 140 | write(*,*) "watercloud: igcm_h2o_vap=",igcm_h2o_vap |
---|
| 141 | write(*,*) " igcm_h2o_ice=",igcm_h2o_ice |
---|
[633] | 142 | |
---|
| 143 | write(*,*) "time subsampling for microphysic ?" |
---|
| 144 | #ifdef MESOSCALE |
---|
| 145 | imicro = 2 |
---|
| 146 | #else |
---|
[951] | 147 | imicro = 30 |
---|
[633] | 148 | #endif |
---|
[2311] | 149 | call getin_p("imicro",imicro) |
---|
[1969] | 150 | write(*,*)"watercloud: imicro = ",imicro |
---|
[633] | 151 | |
---|
[38] | 152 | firstcall=.false. |
---|
| 153 | ENDIF ! of IF (firstcall) |
---|
[1774] | 154 | |
---|
| 155 | !! AS: moved out of firstcall to allow nesting+evoluting timestep |
---|
| 156 | !! TBD: consider possible diff imicro with domains? |
---|
| 157 | microtimestep = ptimestep/real(imicro) |
---|
[1969] | 158 | if (microtimestep/=microtimestep_prev) then |
---|
| 159 | ! only tell the world if microtimestep has changed |
---|
| 160 | write(*,*)"watercloud: Physical timestep is ",ptimestep |
---|
| 161 | write(*,*)"watercloud: Microphysics timestep is ",microtimestep |
---|
| 162 | microtimestep_prev=microtimestep |
---|
| 163 | endif |
---|
[522] | 164 | |
---|
[633] | 165 | c-----Initialization |
---|
[1909] | 166 | sum_subpdq(1:ngrid,1:nlay,1:nq) = 0 |
---|
| 167 | sum_subpdt(1:ngrid,1:nlay) = 0 |
---|
[633] | 168 | |
---|
| 169 | ! default value if no ice |
---|
| 170 | rhocloud(1:ngrid,1:nlay) = rho_dust |
---|
[38] | 171 | |
---|
[1711] | 172 | c------------------------------------------------------------------- |
---|
| 173 | c 0. Representation of sub-grid water ice clouds |
---|
| 174 | c------------------ |
---|
[1880] | 175 | c-----Initialization |
---|
[1909] | 176 | pteff(1:ngrid,1:nlay) = 0 |
---|
[1880] | 177 | pqeff(1:ngrid,1:nlay,1:nq) = 0 |
---|
| 178 | DO l=1,nlay |
---|
| 179 | DO ig=1,ngrid |
---|
[1909] | 180 | pteff(ig,l)=pt(ig,l) |
---|
[1880] | 181 | END DO |
---|
| 182 | END DO |
---|
| 183 | DO l=1,nlay |
---|
| 184 | DO ig=1,ngrid |
---|
| 185 | DO iq=1,nq |
---|
| 186 | pqeff(ig,l,iq)=pq(ig,l,iq) |
---|
| 187 | ENDDO |
---|
| 188 | ENDDO |
---|
| 189 | ENDDO |
---|
[1711] | 190 | c-----Tendencies |
---|
| 191 | DO l=1,nlay |
---|
[1880] | 192 | DO ig=1,ngrid |
---|
| 193 | ztclf(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
| 194 | ENDDO |
---|
[1711] | 195 | ENDDO |
---|
| 196 | DO l=1,nlay |
---|
| 197 | DO ig=1,ngrid |
---|
| 198 | DO iq=1,nq |
---|
[1880] | 199 | zqclf(ig,l,iq)=pq(ig,l,iq)+pdq(ig,l,iq)*ptimestep |
---|
[1711] | 200 | ENDDO |
---|
| 201 | ENDDO |
---|
| 202 | ENDDO |
---|
| 203 | c-----Effective temperature calculation |
---|
| 204 | IF (CLFvarying) THEN |
---|
| 205 | spant=3.0 ! delta T for the temprature distribution |
---|
| 206 | mincloud=0.1 ! min cloudfrac when there is ice |
---|
| 207 | IF (flagcloud) THEN |
---|
| 208 | write(*,*) "Delta T", spant |
---|
| 209 | write(*,*) "mincloud", mincloud |
---|
| 210 | flagcloud=.false. |
---|
| 211 | END IF |
---|
[1880] | 212 | !CALL watersat(ngrid*nlay,ztclf,pplay,zqsat) !MV17: we dont need zqsat in the CLFvarying scheme |
---|
| 213 | zqvap=zqclf(:,:,igcm_h2o_vap) |
---|
| 214 | zqice=zqclf(:,:,igcm_h2o_ice) |
---|
[1711] | 215 | CALL tcondwater(ngrid*nlay,pplay,zqvap+zqice,tcond) |
---|
| 216 | DO l=1,nlay |
---|
| 217 | DO ig=1,ngrid |
---|
[1880] | 218 | zdelt=spant !MAX(spant*ztclf(ig,l),1.e-12), now totally in K. Fixed width |
---|
| 219 | IF (tcond(ig,l) .ge. (ztclf(ig,l)+zdelt)) THEN |
---|
[1909] | 220 | pteff(ig,l)=ztclf(ig,l) |
---|
[1711] | 221 | cloudfrac(ig,l)=1. |
---|
[1880] | 222 | ELSE IF (tcond(ig,l) .le. (ztclf(ig,l)-zdelt)) THEN |
---|
[1909] | 223 | pteff(ig,l)=ztclf(ig,l)-zdelt |
---|
[1711] | 224 | cloudfrac(ig,l)=mincloud |
---|
| 225 | ELSE |
---|
[1880] | 226 | cloudfrac(ig,l)=(tcond(ig,l)-ztclf(ig,l)+zdelt)/ |
---|
[1711] | 227 | & (2.0*zdelt) |
---|
[1909] | 228 | pteff(ig,l)=(tcond(ig,l)+ztclf(ig,l)-zdelt)/2. |
---|
[1711] | 229 | END IF |
---|
[1909] | 230 | pteff(ig,l)=pteff(ig,l)-pdt(ig,l)*ptimestep |
---|
[1880] | 231 | IF (cloudfrac(ig,l).le.mincloud) THEN !MV17: replaced .le.0 by .le.mincloud |
---|
[1711] | 232 | cloudfrac(ig,l)=mincloud |
---|
| 233 | ELSE IF (cloudfrac(ig,l).gt.1) THEN |
---|
| 234 | cloudfrac(ig,l)=1. |
---|
| 235 | END IF |
---|
| 236 | ENDDO |
---|
| 237 | ENDDO |
---|
| 238 | c-----Calculation of the total cloud coverage of the column |
---|
| 239 | DO ig=1,ngrid |
---|
| 240 | totcloudfrac(ig) = 0. |
---|
| 241 | norm=0. |
---|
| 242 | DO l=1,nlay |
---|
| 243 | ponder=zqice(ig,l)*(pplev(ig,l) - pplev(ig,l+1)) |
---|
| 244 | totcloudfrac(ig) = totcloudfrac(ig) |
---|
| 245 | & + cloudfrac(ig,l)*ponder |
---|
| 246 | norm=norm+ponder |
---|
| 247 | ENDDO |
---|
| 248 | totcloudfrac(ig)=MAX(totcloudfrac(ig)/norm,1.e-12) ! min value if NaNs |
---|
| 249 | ENDDO |
---|
[1880] | 250 | c-----Effective tracers quantities in the cloud fraction |
---|
| 251 | IF (microphys) THEN |
---|
| 252 | pqeff(:,:,igcm_ccn_mass)=pq(:,:,igcm_ccn_mass)/ |
---|
| 253 | & cloudfrac(:,:) |
---|
| 254 | pqeff(:,:,igcm_ccn_number)=pq(:,:,igcm_ccn_number)/ |
---|
| 255 | & cloudfrac(:,:) |
---|
| 256 | END IF ! end if (microphys) |
---|
| 257 | pqeff(:,:,igcm_h2o_ice)=pq(:,:,igcm_h2o_ice)/ |
---|
| 258 | & cloudfrac(:,:) |
---|
[1909] | 259 | !! CLFvarying outputs |
---|
[1880] | 260 | CALL WRITEDIAGFI(ngrid,'pqeffice','pqeffice', |
---|
| 261 | & 'kg/kg',3,pqeff(:,:,igcm_h2o_ice)) |
---|
[1909] | 262 | CALL WRITEDIAGFI(ngrid,'pteff','pteff', |
---|
| 263 | & 'K',3,pteff(:,:)) |
---|
[1880] | 264 | CALL WRITEDIAGFI(ngrid,'tcond','tcond', |
---|
| 265 | & 'K',3,tcond(:,:)) |
---|
| 266 | CALL WRITEDIAGFI(ngrid,'cloudfrac','cloudfrac', |
---|
| 267 | & 'K',3,cloudfrac(:,:)) |
---|
[1909] | 268 | END IF ! end if (CLFvarying) |
---|
[633] | 269 | c------------------------------------------------------------------ |
---|
[1880] | 270 | c Time subsampling for microphysics |
---|
| 271 | c------------------------------------------------------------------ |
---|
[1711] | 272 | rhocloud(1:ngrid,1:nlay) = rho_dust |
---|
[633] | 273 | DO microstep=1,imicro |
---|
[522] | 274 | |
---|
[633] | 275 | c------------------------------------------------------------------- |
---|
| 276 | c 1. Tendencies: |
---|
| 277 | c------------------ |
---|
[38] | 278 | |
---|
[633] | 279 | |
---|
| 280 | c------ Temperature tendency subpdt |
---|
| 281 | ! Each microtimestep we give the cloud scheme a stepped entry subpdt instead of pdt |
---|
| 282 | ! If imicro=1 subpdt is the same as pdt |
---|
| 283 | DO l=1,nlay |
---|
| 284 | DO ig=1,ngrid |
---|
[1909] | 285 | sum_subpdt(ig,l) = sum_subpdt(ig,l) |
---|
[633] | 286 | & + pdt(ig,l) ! At each micro timestep we add pdt in order to have a stepped entry |
---|
| 287 | ENDDO |
---|
| 288 | ENDDO |
---|
[1909] | 289 | c------ Tracers tendencies subpdq are additionned |
---|
[633] | 290 | c------ At each micro timestep we add pdq in order to have a stepped entry |
---|
| 291 | IF (microphys) THEN |
---|
| 292 | DO l=1,nlay |
---|
| 293 | DO ig=1,ngrid |
---|
[1909] | 294 | sum_subpdq(ig,l,igcm_dust_mass) = |
---|
| 295 | & sum_subpdq(ig,l,igcm_dust_mass) |
---|
[633] | 296 | & + pdq(ig,l,igcm_dust_mass) |
---|
[1909] | 297 | sum_subpdq(ig,l,igcm_dust_number) = |
---|
| 298 | & sum_subpdq(ig,l,igcm_dust_number) |
---|
[633] | 299 | & + pdq(ig,l,igcm_dust_number) |
---|
[1909] | 300 | sum_subpdq(ig,l,igcm_ccn_mass) = |
---|
| 301 | & sum_subpdq(ig,l,igcm_ccn_mass) |
---|
[633] | 302 | & + pdq(ig,l,igcm_ccn_mass) |
---|
[1909] | 303 | sum_subpdq(ig,l,igcm_ccn_number) = |
---|
| 304 | & sum_subpdq(ig,l,igcm_ccn_number) |
---|
[633] | 305 | & + pdq(ig,l,igcm_ccn_number) |
---|
| 306 | ENDDO |
---|
| 307 | ENDDO |
---|
| 308 | ENDIF |
---|
| 309 | DO l=1,nlay |
---|
| 310 | DO ig=1,ngrid |
---|
[1909] | 311 | sum_subpdq(ig,l,igcm_h2o_ice) = |
---|
| 312 | & sum_subpdq(ig,l,igcm_h2o_ice) |
---|
[633] | 313 | & + pdq(ig,l,igcm_h2o_ice) |
---|
[1909] | 314 | sum_subpdq(ig,l,igcm_h2o_vap) = |
---|
| 315 | & sum_subpdq(ig,l,igcm_h2o_vap) |
---|
[633] | 316 | & + pdq(ig,l,igcm_h2o_vap) |
---|
[2312] | 317 | IF (hdo) THEN |
---|
| 318 | sum_subpdq(ig,l,igcm_hdo_ice) = |
---|
| 319 | & sum_subpdq(ig,l,igcm_hdo_ice) |
---|
| 320 | & + pdq(ig,l,igcm_hdo_ice) |
---|
| 321 | sum_subpdq(ig,l,igcm_hdo_vap) = |
---|
| 322 | & sum_subpdq(ig,l,igcm_hdo_vap) |
---|
| 323 | & + pdq(ig,l,igcm_hdo_vap) |
---|
| 324 | ENDIF !hdo |
---|
[633] | 325 | ENDDO |
---|
[1880] | 326 | ENDDO |
---|
[633] | 327 | |
---|
| 328 | c------------------------------------------------------------------- |
---|
| 329 | c 2. Main call to the different cloud schemes: |
---|
| 330 | c------------------------------------------------ |
---|
| 331 | IF (microphys) THEN |
---|
| 332 | CALL improvedclouds(ngrid,nlay,microtimestep, |
---|
[1909] | 333 | & pplay,pteff,sum_subpdt, |
---|
| 334 | & pqeff,sum_subpdq,subpdqcloud,subpdtcloud, |
---|
[633] | 335 | & nq,tauscaling) |
---|
| 336 | |
---|
| 337 | ELSE |
---|
| 338 | CALL simpleclouds(ngrid,nlay,microtimestep, |
---|
[1909] | 339 | & pplay,pzlay,pteff,sum_subpdt, |
---|
| 340 | & pqeff,sum_subpdq,subpdqcloud,subpdtcloud, |
---|
[645] | 341 | & nq,tau,rice) |
---|
[633] | 342 | ENDIF |
---|
| 343 | |
---|
| 344 | c------------------------------------------------------------------- |
---|
| 345 | c 3. Updating tendencies after cloud scheme: |
---|
| 346 | c----------------------------------------------- |
---|
| 347 | |
---|
| 348 | IF (microphys) THEN |
---|
| 349 | DO l=1,nlay |
---|
| 350 | DO ig=1,ngrid |
---|
[1909] | 351 | sum_subpdq(ig,l,igcm_dust_mass) = |
---|
| 352 | & sum_subpdq(ig,l,igcm_dust_mass) |
---|
[633] | 353 | & + subpdqcloud(ig,l,igcm_dust_mass) |
---|
[1909] | 354 | sum_subpdq(ig,l,igcm_dust_number) = |
---|
| 355 | & sum_subpdq(ig,l,igcm_dust_number) |
---|
[633] | 356 | & + subpdqcloud(ig,l,igcm_dust_number) |
---|
[1909] | 357 | sum_subpdq(ig,l,igcm_ccn_mass) = |
---|
| 358 | & sum_subpdq(ig,l,igcm_ccn_mass) |
---|
[633] | 359 | & + subpdqcloud(ig,l,igcm_ccn_mass) |
---|
[1909] | 360 | sum_subpdq(ig,l,igcm_ccn_number) = |
---|
| 361 | & sum_subpdq(ig,l,igcm_ccn_number) |
---|
[633] | 362 | & + subpdqcloud(ig,l,igcm_ccn_number) |
---|
| 363 | ENDDO |
---|
| 364 | ENDDO |
---|
| 365 | ENDIF |
---|
| 366 | DO l=1,nlay |
---|
| 367 | DO ig=1,ngrid |
---|
[1909] | 368 | sum_subpdq(ig,l,igcm_h2o_ice) = |
---|
| 369 | & sum_subpdq(ig,l,igcm_h2o_ice) |
---|
[633] | 370 | & + subpdqcloud(ig,l,igcm_h2o_ice) |
---|
[1909] | 371 | sum_subpdq(ig,l,igcm_h2o_vap) = |
---|
| 372 | & sum_subpdq(ig,l,igcm_h2o_vap) |
---|
[633] | 373 | & + subpdqcloud(ig,l,igcm_h2o_vap) |
---|
[2312] | 374 | |
---|
| 375 | IF (hdo) THEN |
---|
| 376 | sum_subpdq(ig,l,igcm_hdo_ice) = |
---|
| 377 | & sum_subpdq(ig,l,igcm_hdo_ice) |
---|
| 378 | & + subpdqcloud(ig,l,igcm_hdo_ice) |
---|
| 379 | sum_subpdq(ig,l,igcm_hdo_vap) = |
---|
| 380 | & sum_subpdq(ig,l,igcm_hdo_vap) |
---|
| 381 | & + subpdqcloud(ig,l,igcm_hdo_vap) |
---|
| 382 | ENDIF ! hdo |
---|
| 383 | |
---|
[633] | 384 | ENDDO |
---|
| 385 | ENDDO |
---|
[882] | 386 | |
---|
| 387 | IF (activice) THEN |
---|
| 388 | DO l=1,nlay |
---|
| 389 | DO ig=1,ngrid |
---|
[1909] | 390 | sum_subpdt(ig,l) = |
---|
| 391 | & sum_subpdt(ig,l) + subpdtcloud(ig,l) |
---|
[882] | 392 | ENDDO |
---|
| 393 | ENDDO |
---|
| 394 | ENDIF |
---|
[2437] | 395 | |
---|
| 396 | ! !! Example of how to use writediagmicrofi useful to |
---|
| 397 | ! !! get outputs at each microphysical sub-timestep (better to be used in 1D) |
---|
| 398 | ! CALL WRITEDIAGMICROFI(ngrid,imicro,microstep, |
---|
| 399 | ! & microtimestep,'subpdtcloud', |
---|
| 400 | ! & 'subpdtcloud','K/s',1,subpdtcloud(:,:)) |
---|
[633] | 401 | |
---|
| 402 | ENDDO ! of DO microstep=1,imicro |
---|
| 403 | |
---|
| 404 | c------------------------------------------------------------------- |
---|
| 405 | c 6. Compute final tendencies after time loop: |
---|
| 406 | c------------------------------------------------ |
---|
| 407 | |
---|
| 408 | c------ Temperature tendency pdtcloud |
---|
| 409 | DO l=1,nlay |
---|
| 410 | DO ig=1,ngrid |
---|
| 411 | pdtcloud(ig,l) = |
---|
[1909] | 412 | & sum_subpdt(ig,l)/real(imicro)-pdt(ig,l) |
---|
[633] | 413 | ENDDO |
---|
| 414 | ENDDO |
---|
[740] | 415 | |
---|
[633] | 416 | c------ Tracers tendencies pdqcloud |
---|
[703] | 417 | DO l=1,nlay |
---|
[633] | 418 | DO ig=1,ngrid |
---|
[703] | 419 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
[1909] | 420 | & sum_subpdq(ig,l,igcm_h2o_ice)/real(imicro) |
---|
[703] | 421 | & - pdq(ig,l,igcm_h2o_ice) |
---|
| 422 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
[1909] | 423 | & sum_subpdq(ig,l,igcm_h2o_vap)/real(imicro) |
---|
[703] | 424 | & - pdq(ig,l,igcm_h2o_vap) |
---|
[2312] | 425 | IF (hdo) THEN |
---|
| 426 | pdqcloud(ig,l,igcm_hdo_ice) = |
---|
| 427 | & sum_subpdq(ig,l,igcm_hdo_ice)/real(imicro) |
---|
| 428 | & - pdq(ig,l,igcm_hdo_ice) |
---|
| 429 | pdqcloud(ig,l,igcm_hdo_vap) = |
---|
| 430 | & sum_subpdq(ig,l,igcm_hdo_vap)/real(imicro) |
---|
| 431 | & - pdq(ig,l,igcm_hdo_vap) |
---|
| 432 | ENDIF !hdo |
---|
[740] | 433 | ENDDO |
---|
| 434 | ENDDO |
---|
| 435 | |
---|
| 436 | IF(microphys) THEN |
---|
| 437 | DO l=1,nlay |
---|
| 438 | DO ig=1,ngrid |
---|
[703] | 439 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
[1909] | 440 | & sum_subpdq(ig,l,igcm_ccn_mass)/real(imicro) |
---|
[703] | 441 | & - pdq(ig,l,igcm_ccn_mass) |
---|
| 442 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
[1909] | 443 | & sum_subpdq(ig,l,igcm_ccn_number)/real(imicro) |
---|
[703] | 444 | & - pdq(ig,l,igcm_ccn_number) |
---|
[633] | 445 | ENDDO |
---|
[740] | 446 | ENDDO |
---|
| 447 | ENDIF |
---|
| 448 | |
---|
| 449 | IF(scavenging) THEN |
---|
| 450 | DO l=1,nlay |
---|
| 451 | DO ig=1,ngrid |
---|
| 452 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
[1909] | 453 | & sum_subpdq(ig,l,igcm_dust_mass)/real(imicro) |
---|
[740] | 454 | & - pdq(ig,l,igcm_dust_mass) |
---|
| 455 | pdqcloud(ig,l,igcm_dust_number) = |
---|
[1909] | 456 | & sum_subpdq(ig,l,igcm_dust_number)/real(imicro) |
---|
[740] | 457 | & - pdq(ig,l,igcm_dust_number) |
---|
| 458 | ENDDO |
---|
| 459 | ENDDO |
---|
| 460 | ENDIF |
---|
[633] | 461 | |
---|
| 462 | c------- Due to stepped entry, other processes tendencies can add up to negative values |
---|
| 463 | c------- Therefore, enforce positive values and conserve mass |
---|
| 464 | IF(microphys) THEN |
---|
| 465 | DO l=1,nlay |
---|
| 466 | DO ig=1,ngrid |
---|
[654] | 467 | IF ((pq(ig,l,igcm_ccn_number) + |
---|
[633] | 468 | & ptimestep* (pdq(ig,l,igcm_ccn_number) + |
---|
[654] | 469 | & pdqcloud(ig,l,igcm_ccn_number)) .le. 1.) |
---|
| 470 | & .or. (pq(ig,l,igcm_ccn_mass) + |
---|
| 471 | & ptimestep* (pdq(ig,l,igcm_ccn_mass) + |
---|
| 472 | & pdqcloud(ig,l,igcm_ccn_mass)) .le. 1.e-20)) THEN |
---|
[633] | 473 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 474 | & - pq(ig,l,igcm_ccn_number)/ptimestep |
---|
[654] | 475 | & - pdq(ig,l,igcm_ccn_number) + 1. |
---|
[633] | 476 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 477 | & -pdqcloud(ig,l,igcm_ccn_number) |
---|
| 478 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 479 | & - pq(ig,l,igcm_ccn_mass)/ptimestep |
---|
[654] | 480 | & - pdq(ig,l,igcm_ccn_mass) + 1.e-20 |
---|
[633] | 481 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 482 | & -pdqcloud(ig,l,igcm_ccn_mass) |
---|
| 483 | ENDIF |
---|
| 484 | ENDDO |
---|
| 485 | ENDDO |
---|
| 486 | ENDIF |
---|
| 487 | |
---|
[740] | 488 | IF(scavenging) THEN |
---|
[633] | 489 | DO l=1,nlay |
---|
| 490 | DO ig=1,ngrid |
---|
[740] | 491 | IF ((pq(ig,l,igcm_dust_number) + |
---|
| 492 | & ptimestep* (pdq(ig,l,igcm_dust_number) + |
---|
| 493 | & pdqcloud(ig,l,igcm_dust_number)) .le. 1.) |
---|
| 494 | & .or. (pq(ig,l,igcm_dust_mass) + |
---|
| 495 | & ptimestep* (pdq(ig,l,igcm_dust_mass) + |
---|
| 496 | & pdqcloud(ig,l,igcm_dust_mass)) .le. 1.e-20)) THEN |
---|
| 497 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 498 | & - pq(ig,l,igcm_dust_number)/ptimestep |
---|
| 499 | & - pdq(ig,l,igcm_dust_number) + 1. |
---|
| 500 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 501 | & -pdqcloud(ig,l,igcm_dust_number) |
---|
| 502 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 503 | & - pq(ig,l,igcm_dust_mass)/ptimestep |
---|
| 504 | & - pdq(ig,l,igcm_dust_mass) + 1.e-20 |
---|
| 505 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 506 | & -pdqcloud(ig,l,igcm_dust_mass) |
---|
| 507 | ENDIF |
---|
| 508 | ENDDO |
---|
| 509 | ENDDO |
---|
| 510 | ENDIF |
---|
| 511 | |
---|
| 512 | DO l=1,nlay |
---|
| 513 | DO ig=1,ngrid |
---|
[2312] | 514 | |
---|
[633] | 515 | IF (pq(ig,l,igcm_h2o_ice) + ptimestep* |
---|
| 516 | & (pdq(ig,l,igcm_h2o_ice) + pdqcloud(ig,l,igcm_h2o_ice)) |
---|
[2516] | 517 | & .le. qperemin) THEN |
---|
[633] | 518 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 519 | & - pq(ig,l,igcm_h2o_ice)/ptimestep - pdq(ig,l,igcm_h2o_ice) |
---|
| 520 | pdqcloud(ig,l,igcm_h2o_vap) = -pdqcloud(ig,l,igcm_h2o_ice) |
---|
[2312] | 521 | if (hdo) then |
---|
| 522 | pdqcloud(ig,l,igcm_hdo_ice) = |
---|
| 523 | & - pq(ig,l,igcm_hdo_ice)/ptimestep - pdq(ig,l,igcm_hdo_ice) |
---|
| 524 | pdqcloud(ig,l,igcm_hdo_vap) = -pdqcloud(ig,l,igcm_hdo_ice) |
---|
| 525 | endif |
---|
[633] | 526 | ENDIF |
---|
| 527 | IF (pq(ig,l,igcm_h2o_vap) + ptimestep* |
---|
| 528 | & (pdq(ig,l,igcm_h2o_vap) + pdqcloud(ig,l,igcm_h2o_vap)) |
---|
[2516] | 529 | & .le. qperemin) THEN |
---|
[633] | 530 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 531 | & - pq(ig,l,igcm_h2o_vap)/ptimestep - pdq(ig,l,igcm_h2o_vap) |
---|
| 532 | pdqcloud(ig,l,igcm_h2o_ice) = -pdqcloud(ig,l,igcm_h2o_vap) |
---|
[2312] | 533 | if (hdo) then |
---|
| 534 | pdqcloud(ig,l,igcm_hdo_vap) = |
---|
| 535 | & - pq(ig,l,igcm_hdo_vap)/ptimestep - pdq(ig,l,igcm_hdo_vap) |
---|
| 536 | pdqcloud(ig,l,igcm_hdo_ice) = -pdqcloud(ig,l,igcm_hdo_vap) |
---|
| 537 | endif |
---|
[633] | 538 | ENDIF |
---|
[2312] | 539 | |
---|
[633] | 540 | ENDDO |
---|
| 541 | ENDDO |
---|
| 542 | |
---|
| 543 | c------Update the ice and dust particle size "rice" for output or photochemistry |
---|
| 544 | c------Only rsedcloud is used for the water cycle |
---|
| 545 | |
---|
| 546 | IF(scavenging) THEN |
---|
| 547 | DO l=1, nlay |
---|
| 548 | DO ig=1,ngrid |
---|
| 549 | |
---|
[740] | 550 | call updaterdust( |
---|
| 551 | & pq(ig,l,igcm_dust_mass) + ! dust mass |
---|
| 552 | & (pdq(ig,l,igcm_dust_mass) + ! dust mass |
---|
| 553 | & pdqcloud(ig,l,igcm_dust_mass))*ptimestep, ! dust mass |
---|
| 554 | & pq(ig,l,igcm_dust_number) + ! dust number |
---|
| 555 | & (pdq(ig,l,igcm_dust_number) + ! dust number |
---|
| 556 | & pdqcloud(ig,l,igcm_dust_number))*ptimestep, ! dust number |
---|
| 557 | & rdust(ig,l)) |
---|
[633] | 558 | |
---|
| 559 | ENDDO |
---|
| 560 | ENDDO |
---|
[740] | 561 | ENDIF |
---|
[1467] | 562 | |
---|
[740] | 563 | IF(microphys) THEN |
---|
[1467] | 564 | |
---|
| 565 | ! In case one does not want to allow supersatured water when using microphysics. |
---|
| 566 | ! Not done by default. |
---|
| 567 | IF(.not.supersat) THEN |
---|
| 568 | zt = pt + (pdt+pdtcloud)*ptimestep |
---|
| 569 | call watersat(ngrid*nlay,zt,pplay,zqsat) |
---|
| 570 | DO l=1, nlay |
---|
| 571 | DO ig=1,ngrid |
---|
| 572 | IF (pq(ig,l,igcm_h2o_vap) |
---|
| 573 | & + (pdq(ig,l,igcm_h2o_vap) + pdqcloud(ig,l,igcm_h2o_vap)) |
---|
| 574 | & * ptimestep .ge. zqsat(ig,l)) THEN |
---|
| 575 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 576 | & (zqsat(ig,l) - pq(ig,l,igcm_h2o_vap))/ptimestep |
---|
| 577 | & - pdq(ig,l,igcm_h2o_vap) |
---|
| 578 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 579 | & -pdqcloud(ig,l,igcm_h2o_vap) |
---|
| 580 | ! no need to correct ccn_number, updaterad can handle this properly. |
---|
| 581 | ENDIF |
---|
| 582 | ENDDO |
---|
| 583 | ENDDO |
---|
| 584 | ENDIF |
---|
[740] | 585 | |
---|
| 586 | DO l=1, nlay |
---|
| 587 | DO ig=1,ngrid |
---|
| 588 | |
---|
| 589 | call updaterice_micro( |
---|
| 590 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 591 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 592 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
| 593 | & pq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
| 594 | & (pdq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
| 595 | & pdqcloud(ig,l,igcm_ccn_mass))*ptimestep, ! ccn mass |
---|
| 596 | & pq(ig,l,igcm_ccn_number) + ! ccn number |
---|
| 597 | & (pdq(ig,l,igcm_ccn_number) + ! ccn number |
---|
| 598 | & pdqcloud(ig,l,igcm_ccn_number))*ptimestep, ! ccn number |
---|
| 599 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
| 600 | |
---|
[645] | 601 | ENDDO |
---|
[740] | 602 | ENDDO |
---|
[645] | 603 | |
---|
[740] | 604 | ELSE ! no microphys |
---|
| 605 | |
---|
[645] | 606 | DO l=1,nlay |
---|
| 607 | DO ig=1,ngrid |
---|
[740] | 608 | |
---|
| 609 | call updaterice_typ( |
---|
| 610 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 611 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 612 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
[746] | 613 | & tau(ig,1),pzlay(ig,l),rice(ig,l)) |
---|
[740] | 614 | |
---|
[633] | 615 | ENDDO |
---|
[740] | 616 | ENDDO |
---|
[633] | 617 | |
---|
[740] | 618 | ENDIF ! of IF(microphys) |
---|
[633] | 619 | |
---|
[740] | 620 | |
---|
| 621 | |
---|
[358] | 622 | c A correction if a lot of subliming CO2 fills the 1st layer FF04/2005 |
---|
| 623 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 624 | c Then that should not affect the ice particle radius |
---|
[1047] | 625 | do ig=1,ngrid |
---|
[358] | 626 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,2)))then |
---|
| 627 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,3))) |
---|
| 628 | & rice(ig,2)=rice(ig,3) |
---|
| 629 | rice(ig,1)=rice(ig,2) |
---|
| 630 | end if |
---|
| 631 | end do |
---|
[740] | 632 | |
---|
| 633 | |
---|
| 634 | DO l=1,nlay |
---|
| 635 | DO ig=1,ngrid |
---|
| 636 | rsedcloud(ig,l)=max(rice(ig,l)* |
---|
| 637 | & (1.+nuice_sed)*(1.+nuice_sed)*(1.+nuice_sed), |
---|
| 638 | & rdust(ig,l)) |
---|
| 639 | ! rsedcloud(ig,l)=min(rsedcloud(ig,l),1.e-4) |
---|
| 640 | ENDDO |
---|
| 641 | ENDDO |
---|
| 642 | |
---|
| 643 | ! used for rad. transfer calculations |
---|
| 644 | ! nuice is constant because a lognormal distribution is prescribed |
---|
| 645 | nuice(1:ngrid,1:nlay)=nuice_ref |
---|
[38] | 646 | |
---|
[1711] | 647 | c------Update tendencies for sub-grid water ice clouds |
---|
| 648 | IF (CLFvarying) THEN |
---|
| 649 | DO ig=1,ngrid |
---|
| 650 | DO l=1,nlay |
---|
| 651 | pdqcloud(ig,l,igcm_dust_mass)=pdqcloud(ig,l,igcm_dust_mass) |
---|
| 652 | & *cloudfrac(ig,l) |
---|
| 653 | pdqcloud(ig,l,igcm_ccn_mass)=pdqcloud(ig,l,igcm_ccn_mass) |
---|
| 654 | & *cloudfrac(ig,l) |
---|
| 655 | pdqcloud(ig,l,igcm_dust_number)=pdqcloud(ig,l, |
---|
| 656 | & igcm_dust_number) *cloudfrac(ig,l) |
---|
| 657 | pdqcloud(ig,l,igcm_ccn_number)=pdqcloud(ig,l, |
---|
| 658 | & igcm_ccn_number) *cloudfrac(ig,l) |
---|
| 659 | pdqcloud(ig,l,igcm_h2o_vap)=pdqcloud(ig,l, |
---|
| 660 | & igcm_h2o_vap) *cloudfrac(ig,l) |
---|
| 661 | pdqcloud(ig,l,igcm_h2o_ice)=pdqcloud(ig,l, |
---|
| 662 | & igcm_h2o_ice) *cloudfrac(ig,l) |
---|
| 663 | ENDDO |
---|
| 664 | ENDDO |
---|
| 665 | pdtcloud(:,:)=pdtcloud(:,:)*cloudfrac(:,:) |
---|
| 666 | ENDIF |
---|
[1758] | 667 | #ifndef MESOSCALE |
---|
[1711] | 668 | c======================================================================= |
---|
| 669 | call WRITEDIAGFI(ngrid,"pdqice2","pdqcloudice apres microphysique" |
---|
| 670 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay,igcm_h2o_ice)) |
---|
| 671 | call WRITEDIAGFI(ngrid,"pdqvap2","pdqcloudvap apres microphysique" |
---|
| 672 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
| 673 | & igcm_h2o_vap)) |
---|
[2312] | 674 | if (hdo) then |
---|
| 675 | call WRITEDIAGFI(ngrid,"pdqiceD","pdqiceD apres microphysique" |
---|
| 676 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay,igcm_hdo_ice)) |
---|
| 677 | call WRITEDIAGFI(ngrid,"pdqvapD","pdqvapD apres microphysique" |
---|
| 678 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
| 679 | & igcm_hdo_vap)) |
---|
| 680 | endif |
---|
[1711] | 681 | call WRITEDIAGFI(ngrid,"pdqccn2","pdqcloudccn apres microphysique" |
---|
| 682 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
| 683 | & igcm_ccn_mass)) |
---|
[2494] | 684 | call WRITEDIAGFI(ngrid,"pdqccnN2","pdqcloudccnN apres "// |
---|
| 685 | & "microphysique","nb/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
[1711] | 686 | & igcm_ccn_number)) |
---|
[2494] | 687 | call WRITEDIAGFI(ngrid,"pdqdust2", "pdqclouddust apres "// |
---|
| 688 | & "microphysique","kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
[1711] | 689 | & igcm_dust_mass)) |
---|
[2494] | 690 | call WRITEDIAGFI(ngrid,"pdqdustN2", "pdqclouddustN apres "// |
---|
| 691 | & "microphysique","nb/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
[1711] | 692 | & igcm_dust_number)) |
---|
[633] | 693 | c======================================================================= |
---|
[1758] | 694 | #endif |
---|
[633] | 695 | |
---|
[1711] | 696 | END SUBROUTINE watercloud |
---|
| 697 | |
---|
[2162] | 698 | subroutine ini_watercloud_mod(ngrid,nlayer,nq) |
---|
| 699 | implicit none |
---|
| 700 | |
---|
| 701 | integer,intent(in) :: ngrid ! number of atmospheric columns |
---|
| 702 | integer,intent(in) :: nlayer ! number of atmospheric layers |
---|
| 703 | integer,intent(in) :: nq ! number of tracers |
---|
| 704 | |
---|
| 705 | allocate(zdqcloud(ngrid,nlayer,nq)) |
---|
| 706 | zdqcloud(:,:,:)=0 |
---|
| 707 | allocate(zdqscloud(ngrid,nq)) |
---|
| 708 | zdqscloud(:,:)=0 |
---|
| 709 | |
---|
| 710 | end subroutine ini_watercloud_mod |
---|
| 711 | |
---|
| 712 | |
---|
| 713 | subroutine end_watercloud_mod |
---|
| 714 | implicit none |
---|
| 715 | |
---|
| 716 | if (allocated(zdqcloud)) deallocate(zdqcloud) |
---|
| 717 | if (allocated(zdqscloud)) deallocate(zdqscloud) |
---|
| 718 | |
---|
| 719 | end subroutine end_watercloud_mod |
---|
| 720 | |
---|
[1711] | 721 | END MODULE watercloud_mod |
---|