[1711] | 1 | MODULE watercloud_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
[2162] | 5 | REAL,SAVE,ALLOCATABLE :: zdqcloud(:,:,:) ! tendencies on pq due to condensation of H2O(kg/kg.s-1) |
---|
| 6 | REAL,SAVE,ALLOCATABLE :: zdqscloud(:,:) ! tendencies on qsurf (calculated only by calchim but declared here) |
---|
| 7 | |
---|
[1711] | 8 | CONTAINS |
---|
| 9 | |
---|
[633] | 10 | SUBROUTINE watercloud(ngrid,nlay,ptimestep, |
---|
| 11 | & pplev,pplay,pdpsrf,pzlay,pt,pdt, |
---|
[626] | 12 | & pq,pdq,pdqcloud,pdtcloud, |
---|
[358] | 13 | & nq,tau,tauscaling,rdust,rice,nuice, |
---|
[1711] | 14 | & rsedcloud,rhocloud,totcloudfrac) |
---|
[2311] | 15 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
[1964] | 16 | USE updaterad, ONLY: updaterdust, updaterice_micro, |
---|
| 17 | & updaterice_typ |
---|
| 18 | USE improvedclouds_mod, ONLY: improvedclouds |
---|
[1996] | 19 | USE watersat_mod, ONLY: watersat |
---|
[1036] | 20 | use tracer_mod, only: nqmx, igcm_h2o_vap, igcm_h2o_ice, |
---|
[2312] | 21 | & igcm_hdo_vap, igcm_hdo_ice, |
---|
[1036] | 22 | & igcm_dust_mass, igcm_dust_number, |
---|
| 23 | & igcm_ccn_mass, igcm_ccn_number, |
---|
| 24 | & rho_dust, nuice_sed, nuice_ref |
---|
[1246] | 25 | use dimradmars_mod, only: naerkind |
---|
[38] | 26 | IMPLICIT NONE |
---|
| 27 | |
---|
[633] | 28 | |
---|
[38] | 29 | c======================================================================= |
---|
[358] | 30 | c Water-ice cloud formation |
---|
| 31 | c |
---|
| 32 | c Includes two different schemes: |
---|
| 33 | c - A simplified scheme (see simpleclouds.F) |
---|
| 34 | c - An improved microphysical scheme (see improvedclouds.F) |
---|
[38] | 35 | c |
---|
[633] | 36 | c There is a time loop specific to cloud formation |
---|
| 37 | c due to timescales smaller than the GCM integration timestep. |
---|
| 38 | c |
---|
[358] | 39 | c Authors: Franck Montmessin, Francois Forget, Ehouarn Millour, |
---|
[522] | 40 | c J.-B. Madeleine, Thomas Navarro |
---|
[38] | 41 | c |
---|
[633] | 42 | c 2004 - 2012 |
---|
[38] | 43 | c======================================================================= |
---|
| 44 | |
---|
| 45 | c----------------------------------------------------------------------- |
---|
| 46 | c declarations: |
---|
| 47 | c ------------- |
---|
| 48 | |
---|
[1964] | 49 | include "callkeys.h" |
---|
[38] | 50 | |
---|
[1976] | 51 | c Inputs/outputs: |
---|
[38] | 52 | c ------ |
---|
| 53 | |
---|
[1976] | 54 | INTEGER, INTENT(IN) :: ngrid,nlay |
---|
| 55 | INTEGER, INTENT(IN) :: nq ! nombre de traceurs |
---|
| 56 | REAL, INTENT(IN) :: ptimestep ! pas de temps physique (s) |
---|
| 57 | REAL, INTENT(IN) :: pplev(ngrid,nlay+1) ! pression aux inter-couches (Pa) |
---|
| 58 | REAL, INTENT(IN) :: pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
| 59 | REAL, INTENT(IN) :: pdpsrf(ngrid) ! tendence surf pressure |
---|
| 60 | REAL, INTENT(IN) :: pzlay(ngrid,nlay) ! altitude at the middle of the layers |
---|
| 61 | REAL, INTENT(IN) :: pt(ngrid,nlay) ! temperature at the middle of the layers (K) |
---|
| 62 | REAL, INTENT(IN) :: pdt(ngrid,nlay) ! tendence temperature des autres param. |
---|
[38] | 63 | |
---|
[1976] | 64 | REAL, INTENT(IN) :: pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
| 65 | rEAL, INTENT(IN) :: pdq(ngrid,nlay,nq) ! tendence avant condensation (kg/kg.s-1) |
---|
[38] | 66 | |
---|
[1976] | 67 | REAL, INTENT(IN) :: tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
| 68 | REAL, INTENT(IN) :: tauscaling(ngrid) ! Convertion factor for dust amount |
---|
| 69 | REAL, INTENT(INOUT) :: rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
[38] | 70 | |
---|
[1976] | 71 | REAL, INTENT(OUT) :: pdqcloud(ngrid,nlay,nq) ! tendence de la condensation H2O(kg/kg.s-1) |
---|
| 72 | REAL, INTENT(OUT) :: pdtcloud(ngrid,nlay) ! tendence temperature due |
---|
[633] | 73 | ! a la chaleur latente |
---|
[1976] | 74 | REAL, INTENT(INOUT) :: rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
[38] | 75 | ! (r_c in montmessin_2004) |
---|
[1976] | 76 | REAL, INTENT(OUT) :: nuice(ngrid,nlay) ! Estimated effective variance |
---|
[38] | 77 | ! of the size distribution |
---|
[1976] | 78 | REAL, INTENT(OUT) :: rsedcloud(ngrid,nlay) ! Cloud sedimentation radius |
---|
| 79 | REAL, INTENT(OUT) :: rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
[38] | 80 | |
---|
[1711] | 81 | REAL, INTENT(INOUT):: totcloudfrac(ngrid) ! Cloud fraction (A. Pottier 2013) |
---|
[1976] | 82 | |
---|
| 83 | c Locals: |
---|
[38] | 84 | c ------ |
---|
[1976] | 85 | |
---|
[633] | 86 | ! for ice radius computation |
---|
| 87 | REAL Mo,No |
---|
| 88 | REAl ccntyp |
---|
| 89 | |
---|
| 90 | ! for time loop |
---|
| 91 | INTEGER microstep ! time subsampling step variable |
---|
[1969] | 92 | INTEGER,SAVE :: imicro ! time subsampling for coupled water microphysics & sedimentation |
---|
| 93 | REAL,SAVE :: microtimestep ! integration timestep for coupled water microphysics & sedimentation |
---|
| 94 | REAL,SAVE :: microtimestep_prev=-999 |
---|
[633] | 95 | |
---|
| 96 | ! tendency given by clouds (inside the micro loop) |
---|
| 97 | REAL subpdqcloud(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 98 | REAL subpdtcloud(ngrid,nlay) ! cf. pdtcloud |
---|
[38] | 99 | |
---|
[633] | 100 | ! global tendency (clouds+physics) |
---|
[1909] | 101 | REAL sum_subpdq(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 102 | REAL sum_subpdt(ngrid,nlay) ! cf. pdtcloud |
---|
[633] | 103 | |
---|
[1467] | 104 | ! no supersaturation when option supersat is false |
---|
| 105 | REAL zt(ngrid,nlay) ! local value of temperature |
---|
| 106 | REAL zqsat(ngrid,nlay) ! saturation |
---|
[633] | 107 | |
---|
| 108 | INTEGER iq,ig,l |
---|
[38] | 109 | LOGICAL,SAVE :: firstcall=.true. |
---|
| 110 | |
---|
[1711] | 111 | ! Representation of sub-grid water ice clouds A. Pottier 2013 |
---|
[1880] | 112 | REAL :: ztclf(ngrid, nlay) |
---|
| 113 | REAL :: zqclf(ngrid, nlay,nq) |
---|
[1711] | 114 | REAL :: zdelt |
---|
| 115 | REAL :: norm |
---|
| 116 | REAL :: ponder |
---|
| 117 | REAL :: tcond(ngrid,nlay) |
---|
[1880] | 118 | REAL :: zqvap(ngrid,nlay) |
---|
[1711] | 119 | REAL :: zqice(ngrid,nlay) |
---|
| 120 | REAL :: spant ! delta T for the temperature distribution |
---|
| 121 | ! REAL :: zqsat(ngrid,nlay) ! saturation |
---|
[1909] | 122 | REAL :: pteff(ngrid, nlay)! effective temperature in the cloud,neb |
---|
[1711] | 123 | REAL :: pqeff(ngrid, nlay, nq)! effective tracers quantities in the cloud |
---|
| 124 | REAL :: cloudfrac(ngrid,nlay) ! cloud fraction |
---|
| 125 | REAL :: mincloud ! min cloud frac |
---|
| 126 | LOGICAL, save :: flagcloud=.true. |
---|
[2312] | 127 | |
---|
[38] | 128 | c ** un petit test de coherence |
---|
| 129 | c -------------------------- |
---|
| 130 | |
---|
| 131 | IF (firstcall) THEN |
---|
| 132 | |
---|
| 133 | if (nq.gt.nqmx) then |
---|
| 134 | write(*,*) 'stop in watercloud (nq.gt.nqmx)!' |
---|
| 135 | write(*,*) 'nq=',nq,' nqmx=',nqmx |
---|
[2311] | 136 | call abort_physic("watercloud","nq.gt.nqmx",1) |
---|
[38] | 137 | endif |
---|
| 138 | |
---|
[358] | 139 | write(*,*) "watercloud: igcm_h2o_vap=",igcm_h2o_vap |
---|
| 140 | write(*,*) " igcm_h2o_ice=",igcm_h2o_ice |
---|
[633] | 141 | |
---|
| 142 | write(*,*) "time subsampling for microphysic ?" |
---|
| 143 | #ifdef MESOSCALE |
---|
| 144 | imicro = 2 |
---|
| 145 | #else |
---|
[951] | 146 | imicro = 30 |
---|
[633] | 147 | #endif |
---|
[2311] | 148 | call getin_p("imicro",imicro) |
---|
[1969] | 149 | write(*,*)"watercloud: imicro = ",imicro |
---|
[633] | 150 | |
---|
[38] | 151 | firstcall=.false. |
---|
| 152 | ENDIF ! of IF (firstcall) |
---|
[1774] | 153 | |
---|
| 154 | !! AS: moved out of firstcall to allow nesting+evoluting timestep |
---|
| 155 | !! TBD: consider possible diff imicro with domains? |
---|
| 156 | microtimestep = ptimestep/real(imicro) |
---|
[1969] | 157 | if (microtimestep/=microtimestep_prev) then |
---|
| 158 | ! only tell the world if microtimestep has changed |
---|
| 159 | write(*,*)"watercloud: Physical timestep is ",ptimestep |
---|
| 160 | write(*,*)"watercloud: Microphysics timestep is ",microtimestep |
---|
| 161 | microtimestep_prev=microtimestep |
---|
| 162 | endif |
---|
[522] | 163 | |
---|
[633] | 164 | c-----Initialization |
---|
[1909] | 165 | sum_subpdq(1:ngrid,1:nlay,1:nq) = 0 |
---|
| 166 | sum_subpdt(1:ngrid,1:nlay) = 0 |
---|
[633] | 167 | |
---|
| 168 | ! default value if no ice |
---|
| 169 | rhocloud(1:ngrid,1:nlay) = rho_dust |
---|
[38] | 170 | |
---|
[1711] | 171 | c------------------------------------------------------------------- |
---|
| 172 | c 0. Representation of sub-grid water ice clouds |
---|
| 173 | c------------------ |
---|
[1880] | 174 | c-----Initialization |
---|
[1909] | 175 | pteff(1:ngrid,1:nlay) = 0 |
---|
[1880] | 176 | pqeff(1:ngrid,1:nlay,1:nq) = 0 |
---|
| 177 | DO l=1,nlay |
---|
| 178 | DO ig=1,ngrid |
---|
[1909] | 179 | pteff(ig,l)=pt(ig,l) |
---|
[1880] | 180 | END DO |
---|
| 181 | END DO |
---|
| 182 | DO l=1,nlay |
---|
| 183 | DO ig=1,ngrid |
---|
| 184 | DO iq=1,nq |
---|
| 185 | pqeff(ig,l,iq)=pq(ig,l,iq) |
---|
| 186 | ENDDO |
---|
| 187 | ENDDO |
---|
| 188 | ENDDO |
---|
[1711] | 189 | c-----Tendencies |
---|
| 190 | DO l=1,nlay |
---|
[1880] | 191 | DO ig=1,ngrid |
---|
| 192 | ztclf(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
| 193 | ENDDO |
---|
[1711] | 194 | ENDDO |
---|
| 195 | DO l=1,nlay |
---|
| 196 | DO ig=1,ngrid |
---|
| 197 | DO iq=1,nq |
---|
[1880] | 198 | zqclf(ig,l,iq)=pq(ig,l,iq)+pdq(ig,l,iq)*ptimestep |
---|
[1711] | 199 | ENDDO |
---|
| 200 | ENDDO |
---|
| 201 | ENDDO |
---|
| 202 | c-----Effective temperature calculation |
---|
| 203 | IF (CLFvarying) THEN |
---|
| 204 | spant=3.0 ! delta T for the temprature distribution |
---|
| 205 | mincloud=0.1 ! min cloudfrac when there is ice |
---|
| 206 | IF (flagcloud) THEN |
---|
| 207 | write(*,*) "Delta T", spant |
---|
| 208 | write(*,*) "mincloud", mincloud |
---|
| 209 | flagcloud=.false. |
---|
| 210 | END IF |
---|
[1880] | 211 | !CALL watersat(ngrid*nlay,ztclf,pplay,zqsat) !MV17: we dont need zqsat in the CLFvarying scheme |
---|
| 212 | zqvap=zqclf(:,:,igcm_h2o_vap) |
---|
| 213 | zqice=zqclf(:,:,igcm_h2o_ice) |
---|
[1711] | 214 | CALL tcondwater(ngrid*nlay,pplay,zqvap+zqice,tcond) |
---|
| 215 | DO l=1,nlay |
---|
| 216 | DO ig=1,ngrid |
---|
[1880] | 217 | zdelt=spant !MAX(spant*ztclf(ig,l),1.e-12), now totally in K. Fixed width |
---|
| 218 | IF (tcond(ig,l) .ge. (ztclf(ig,l)+zdelt)) THEN |
---|
[1909] | 219 | pteff(ig,l)=ztclf(ig,l) |
---|
[1711] | 220 | cloudfrac(ig,l)=1. |
---|
[1880] | 221 | ELSE IF (tcond(ig,l) .le. (ztclf(ig,l)-zdelt)) THEN |
---|
[1909] | 222 | pteff(ig,l)=ztclf(ig,l)-zdelt |
---|
[1711] | 223 | cloudfrac(ig,l)=mincloud |
---|
| 224 | ELSE |
---|
[1880] | 225 | cloudfrac(ig,l)=(tcond(ig,l)-ztclf(ig,l)+zdelt)/ |
---|
[1711] | 226 | & (2.0*zdelt) |
---|
[1909] | 227 | pteff(ig,l)=(tcond(ig,l)+ztclf(ig,l)-zdelt)/2. |
---|
[1711] | 228 | END IF |
---|
[1909] | 229 | pteff(ig,l)=pteff(ig,l)-pdt(ig,l)*ptimestep |
---|
[1880] | 230 | IF (cloudfrac(ig,l).le.mincloud) THEN !MV17: replaced .le.0 by .le.mincloud |
---|
[1711] | 231 | cloudfrac(ig,l)=mincloud |
---|
| 232 | ELSE IF (cloudfrac(ig,l).gt.1) THEN |
---|
| 233 | cloudfrac(ig,l)=1. |
---|
| 234 | END IF |
---|
| 235 | ENDDO |
---|
| 236 | ENDDO |
---|
| 237 | c-----Calculation of the total cloud coverage of the column |
---|
| 238 | DO ig=1,ngrid |
---|
| 239 | totcloudfrac(ig) = 0. |
---|
| 240 | norm=0. |
---|
| 241 | DO l=1,nlay |
---|
| 242 | ponder=zqice(ig,l)*(pplev(ig,l) - pplev(ig,l+1)) |
---|
| 243 | totcloudfrac(ig) = totcloudfrac(ig) |
---|
| 244 | & + cloudfrac(ig,l)*ponder |
---|
| 245 | norm=norm+ponder |
---|
| 246 | ENDDO |
---|
| 247 | totcloudfrac(ig)=MAX(totcloudfrac(ig)/norm,1.e-12) ! min value if NaNs |
---|
| 248 | ENDDO |
---|
[1880] | 249 | c-----Effective tracers quantities in the cloud fraction |
---|
| 250 | IF (microphys) THEN |
---|
| 251 | pqeff(:,:,igcm_ccn_mass)=pq(:,:,igcm_ccn_mass)/ |
---|
| 252 | & cloudfrac(:,:) |
---|
| 253 | pqeff(:,:,igcm_ccn_number)=pq(:,:,igcm_ccn_number)/ |
---|
| 254 | & cloudfrac(:,:) |
---|
| 255 | END IF ! end if (microphys) |
---|
| 256 | pqeff(:,:,igcm_h2o_ice)=pq(:,:,igcm_h2o_ice)/ |
---|
| 257 | & cloudfrac(:,:) |
---|
[1909] | 258 | !! CLFvarying outputs |
---|
[1880] | 259 | CALL WRITEDIAGFI(ngrid,'pqeffice','pqeffice', |
---|
| 260 | & 'kg/kg',3,pqeff(:,:,igcm_h2o_ice)) |
---|
[1909] | 261 | CALL WRITEDIAGFI(ngrid,'pteff','pteff', |
---|
| 262 | & 'K',3,pteff(:,:)) |
---|
[1880] | 263 | CALL WRITEDIAGFI(ngrid,'tcond','tcond', |
---|
| 264 | & 'K',3,tcond(:,:)) |
---|
| 265 | CALL WRITEDIAGFI(ngrid,'cloudfrac','cloudfrac', |
---|
| 266 | & 'K',3,cloudfrac(:,:)) |
---|
[1909] | 267 | END IF ! end if (CLFvarying) |
---|
[633] | 268 | c------------------------------------------------------------------ |
---|
[1880] | 269 | c Time subsampling for microphysics |
---|
| 270 | c------------------------------------------------------------------ |
---|
[1711] | 271 | rhocloud(1:ngrid,1:nlay) = rho_dust |
---|
[633] | 272 | DO microstep=1,imicro |
---|
[522] | 273 | |
---|
[633] | 274 | c------------------------------------------------------------------- |
---|
| 275 | c 1. Tendencies: |
---|
| 276 | c------------------ |
---|
[38] | 277 | |
---|
[633] | 278 | |
---|
| 279 | c------ Temperature tendency subpdt |
---|
| 280 | ! Each microtimestep we give the cloud scheme a stepped entry subpdt instead of pdt |
---|
| 281 | ! If imicro=1 subpdt is the same as pdt |
---|
| 282 | DO l=1,nlay |
---|
| 283 | DO ig=1,ngrid |
---|
[1909] | 284 | sum_subpdt(ig,l) = sum_subpdt(ig,l) |
---|
[633] | 285 | & + pdt(ig,l) ! At each micro timestep we add pdt in order to have a stepped entry |
---|
| 286 | ENDDO |
---|
| 287 | ENDDO |
---|
[1909] | 288 | c------ Tracers tendencies subpdq are additionned |
---|
[633] | 289 | c------ At each micro timestep we add pdq in order to have a stepped entry |
---|
| 290 | IF (microphys) THEN |
---|
| 291 | DO l=1,nlay |
---|
| 292 | DO ig=1,ngrid |
---|
[1909] | 293 | sum_subpdq(ig,l,igcm_dust_mass) = |
---|
| 294 | & sum_subpdq(ig,l,igcm_dust_mass) |
---|
[633] | 295 | & + pdq(ig,l,igcm_dust_mass) |
---|
[1909] | 296 | sum_subpdq(ig,l,igcm_dust_number) = |
---|
| 297 | & sum_subpdq(ig,l,igcm_dust_number) |
---|
[633] | 298 | & + pdq(ig,l,igcm_dust_number) |
---|
[1909] | 299 | sum_subpdq(ig,l,igcm_ccn_mass) = |
---|
| 300 | & sum_subpdq(ig,l,igcm_ccn_mass) |
---|
[633] | 301 | & + pdq(ig,l,igcm_ccn_mass) |
---|
[1909] | 302 | sum_subpdq(ig,l,igcm_ccn_number) = |
---|
| 303 | & sum_subpdq(ig,l,igcm_ccn_number) |
---|
[633] | 304 | & + pdq(ig,l,igcm_ccn_number) |
---|
| 305 | ENDDO |
---|
| 306 | ENDDO |
---|
| 307 | ENDIF |
---|
| 308 | DO l=1,nlay |
---|
| 309 | DO ig=1,ngrid |
---|
[1909] | 310 | sum_subpdq(ig,l,igcm_h2o_ice) = |
---|
| 311 | & sum_subpdq(ig,l,igcm_h2o_ice) |
---|
[633] | 312 | & + pdq(ig,l,igcm_h2o_ice) |
---|
[1909] | 313 | sum_subpdq(ig,l,igcm_h2o_vap) = |
---|
| 314 | & sum_subpdq(ig,l,igcm_h2o_vap) |
---|
[633] | 315 | & + pdq(ig,l,igcm_h2o_vap) |
---|
[2312] | 316 | IF (hdo) THEN |
---|
| 317 | sum_subpdq(ig,l,igcm_hdo_ice) = |
---|
| 318 | & sum_subpdq(ig,l,igcm_hdo_ice) |
---|
| 319 | & + pdq(ig,l,igcm_hdo_ice) |
---|
| 320 | sum_subpdq(ig,l,igcm_hdo_vap) = |
---|
| 321 | & sum_subpdq(ig,l,igcm_hdo_vap) |
---|
| 322 | & + pdq(ig,l,igcm_hdo_vap) |
---|
| 323 | ENDIF !hdo |
---|
[633] | 324 | ENDDO |
---|
[1880] | 325 | ENDDO |
---|
[633] | 326 | |
---|
| 327 | c------------------------------------------------------------------- |
---|
| 328 | c 2. Main call to the different cloud schemes: |
---|
| 329 | c------------------------------------------------ |
---|
| 330 | IF (microphys) THEN |
---|
| 331 | CALL improvedclouds(ngrid,nlay,microtimestep, |
---|
[1909] | 332 | & pplay,pteff,sum_subpdt, |
---|
| 333 | & pqeff,sum_subpdq,subpdqcloud,subpdtcloud, |
---|
[633] | 334 | & nq,tauscaling) |
---|
| 335 | |
---|
| 336 | ELSE |
---|
| 337 | CALL simpleclouds(ngrid,nlay,microtimestep, |
---|
[1909] | 338 | & pplay,pzlay,pteff,sum_subpdt, |
---|
| 339 | & pqeff,sum_subpdq,subpdqcloud,subpdtcloud, |
---|
[645] | 340 | & nq,tau,rice) |
---|
[633] | 341 | ENDIF |
---|
| 342 | |
---|
| 343 | c------------------------------------------------------------------- |
---|
| 344 | c 3. Updating tendencies after cloud scheme: |
---|
| 345 | c----------------------------------------------- |
---|
| 346 | |
---|
| 347 | IF (microphys) THEN |
---|
| 348 | DO l=1,nlay |
---|
| 349 | DO ig=1,ngrid |
---|
[1909] | 350 | sum_subpdq(ig,l,igcm_dust_mass) = |
---|
| 351 | & sum_subpdq(ig,l,igcm_dust_mass) |
---|
[633] | 352 | & + subpdqcloud(ig,l,igcm_dust_mass) |
---|
[1909] | 353 | sum_subpdq(ig,l,igcm_dust_number) = |
---|
| 354 | & sum_subpdq(ig,l,igcm_dust_number) |
---|
[633] | 355 | & + subpdqcloud(ig,l,igcm_dust_number) |
---|
[1909] | 356 | sum_subpdq(ig,l,igcm_ccn_mass) = |
---|
| 357 | & sum_subpdq(ig,l,igcm_ccn_mass) |
---|
[633] | 358 | & + subpdqcloud(ig,l,igcm_ccn_mass) |
---|
[1909] | 359 | sum_subpdq(ig,l,igcm_ccn_number) = |
---|
| 360 | & sum_subpdq(ig,l,igcm_ccn_number) |
---|
[633] | 361 | & + subpdqcloud(ig,l,igcm_ccn_number) |
---|
| 362 | ENDDO |
---|
| 363 | ENDDO |
---|
| 364 | ENDIF |
---|
| 365 | DO l=1,nlay |
---|
| 366 | DO ig=1,ngrid |
---|
[1909] | 367 | sum_subpdq(ig,l,igcm_h2o_ice) = |
---|
| 368 | & sum_subpdq(ig,l,igcm_h2o_ice) |
---|
[633] | 369 | & + subpdqcloud(ig,l,igcm_h2o_ice) |
---|
[1909] | 370 | sum_subpdq(ig,l,igcm_h2o_vap) = |
---|
| 371 | & sum_subpdq(ig,l,igcm_h2o_vap) |
---|
[633] | 372 | & + subpdqcloud(ig,l,igcm_h2o_vap) |
---|
[2312] | 373 | |
---|
| 374 | IF (hdo) THEN |
---|
| 375 | sum_subpdq(ig,l,igcm_hdo_ice) = |
---|
| 376 | & sum_subpdq(ig,l,igcm_hdo_ice) |
---|
| 377 | & + subpdqcloud(ig,l,igcm_hdo_ice) |
---|
| 378 | sum_subpdq(ig,l,igcm_hdo_vap) = |
---|
| 379 | & sum_subpdq(ig,l,igcm_hdo_vap) |
---|
| 380 | & + subpdqcloud(ig,l,igcm_hdo_vap) |
---|
| 381 | ENDIF ! hdo |
---|
| 382 | |
---|
[633] | 383 | ENDDO |
---|
| 384 | ENDDO |
---|
[882] | 385 | |
---|
| 386 | IF (activice) THEN |
---|
| 387 | DO l=1,nlay |
---|
| 388 | DO ig=1,ngrid |
---|
[1909] | 389 | sum_subpdt(ig,l) = |
---|
| 390 | & sum_subpdt(ig,l) + subpdtcloud(ig,l) |
---|
[882] | 391 | ENDDO |
---|
| 392 | ENDDO |
---|
| 393 | ENDIF |
---|
[633] | 394 | |
---|
| 395 | |
---|
| 396 | ENDDO ! of DO microstep=1,imicro |
---|
| 397 | |
---|
| 398 | c------------------------------------------------------------------- |
---|
| 399 | c 6. Compute final tendencies after time loop: |
---|
| 400 | c------------------------------------------------ |
---|
| 401 | |
---|
| 402 | c------ Temperature tendency pdtcloud |
---|
| 403 | DO l=1,nlay |
---|
| 404 | DO ig=1,ngrid |
---|
| 405 | pdtcloud(ig,l) = |
---|
[1909] | 406 | & sum_subpdt(ig,l)/real(imicro)-pdt(ig,l) |
---|
[633] | 407 | ENDDO |
---|
| 408 | ENDDO |
---|
[740] | 409 | |
---|
[633] | 410 | c------ Tracers tendencies pdqcloud |
---|
[703] | 411 | DO l=1,nlay |
---|
[633] | 412 | DO ig=1,ngrid |
---|
[703] | 413 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
[1909] | 414 | & sum_subpdq(ig,l,igcm_h2o_ice)/real(imicro) |
---|
[703] | 415 | & - pdq(ig,l,igcm_h2o_ice) |
---|
| 416 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
[1909] | 417 | & sum_subpdq(ig,l,igcm_h2o_vap)/real(imicro) |
---|
[703] | 418 | & - pdq(ig,l,igcm_h2o_vap) |
---|
[2312] | 419 | IF (hdo) THEN |
---|
| 420 | pdqcloud(ig,l,igcm_hdo_ice) = |
---|
| 421 | & sum_subpdq(ig,l,igcm_hdo_ice)/real(imicro) |
---|
| 422 | & - pdq(ig,l,igcm_hdo_ice) |
---|
| 423 | pdqcloud(ig,l,igcm_hdo_vap) = |
---|
| 424 | & sum_subpdq(ig,l,igcm_hdo_vap)/real(imicro) |
---|
| 425 | & - pdq(ig,l,igcm_hdo_vap) |
---|
| 426 | ENDIF !hdo |
---|
[740] | 427 | ENDDO |
---|
| 428 | ENDDO |
---|
| 429 | |
---|
| 430 | IF(microphys) THEN |
---|
| 431 | DO l=1,nlay |
---|
| 432 | DO ig=1,ngrid |
---|
[703] | 433 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
[1909] | 434 | & sum_subpdq(ig,l,igcm_ccn_mass)/real(imicro) |
---|
[703] | 435 | & - pdq(ig,l,igcm_ccn_mass) |
---|
| 436 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
[1909] | 437 | & sum_subpdq(ig,l,igcm_ccn_number)/real(imicro) |
---|
[703] | 438 | & - pdq(ig,l,igcm_ccn_number) |
---|
[633] | 439 | ENDDO |
---|
[740] | 440 | ENDDO |
---|
| 441 | ENDIF |
---|
| 442 | |
---|
| 443 | IF(scavenging) THEN |
---|
| 444 | DO l=1,nlay |
---|
| 445 | DO ig=1,ngrid |
---|
| 446 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
[1909] | 447 | & sum_subpdq(ig,l,igcm_dust_mass)/real(imicro) |
---|
[740] | 448 | & - pdq(ig,l,igcm_dust_mass) |
---|
| 449 | pdqcloud(ig,l,igcm_dust_number) = |
---|
[1909] | 450 | & sum_subpdq(ig,l,igcm_dust_number)/real(imicro) |
---|
[740] | 451 | & - pdq(ig,l,igcm_dust_number) |
---|
| 452 | ENDDO |
---|
| 453 | ENDDO |
---|
| 454 | ENDIF |
---|
[633] | 455 | |
---|
| 456 | c------- Due to stepped entry, other processes tendencies can add up to negative values |
---|
| 457 | c------- Therefore, enforce positive values and conserve mass |
---|
| 458 | IF(microphys) THEN |
---|
| 459 | DO l=1,nlay |
---|
| 460 | DO ig=1,ngrid |
---|
[654] | 461 | IF ((pq(ig,l,igcm_ccn_number) + |
---|
[633] | 462 | & ptimestep* (pdq(ig,l,igcm_ccn_number) + |
---|
[654] | 463 | & pdqcloud(ig,l,igcm_ccn_number)) .le. 1.) |
---|
| 464 | & .or. (pq(ig,l,igcm_ccn_mass) + |
---|
| 465 | & ptimestep* (pdq(ig,l,igcm_ccn_mass) + |
---|
| 466 | & pdqcloud(ig,l,igcm_ccn_mass)) .le. 1.e-20)) THEN |
---|
[633] | 467 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 468 | & - pq(ig,l,igcm_ccn_number)/ptimestep |
---|
[654] | 469 | & - pdq(ig,l,igcm_ccn_number) + 1. |
---|
[633] | 470 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 471 | & -pdqcloud(ig,l,igcm_ccn_number) |
---|
| 472 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 473 | & - pq(ig,l,igcm_ccn_mass)/ptimestep |
---|
[654] | 474 | & - pdq(ig,l,igcm_ccn_mass) + 1.e-20 |
---|
[633] | 475 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 476 | & -pdqcloud(ig,l,igcm_ccn_mass) |
---|
| 477 | ENDIF |
---|
| 478 | ENDDO |
---|
| 479 | ENDDO |
---|
| 480 | ENDIF |
---|
| 481 | |
---|
[740] | 482 | IF(scavenging) THEN |
---|
[633] | 483 | DO l=1,nlay |
---|
| 484 | DO ig=1,ngrid |
---|
[740] | 485 | IF ((pq(ig,l,igcm_dust_number) + |
---|
| 486 | & ptimestep* (pdq(ig,l,igcm_dust_number) + |
---|
| 487 | & pdqcloud(ig,l,igcm_dust_number)) .le. 1.) |
---|
| 488 | & .or. (pq(ig,l,igcm_dust_mass) + |
---|
| 489 | & ptimestep* (pdq(ig,l,igcm_dust_mass) + |
---|
| 490 | & pdqcloud(ig,l,igcm_dust_mass)) .le. 1.e-20)) THEN |
---|
| 491 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 492 | & - pq(ig,l,igcm_dust_number)/ptimestep |
---|
| 493 | & - pdq(ig,l,igcm_dust_number) + 1. |
---|
| 494 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 495 | & -pdqcloud(ig,l,igcm_dust_number) |
---|
| 496 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 497 | & - pq(ig,l,igcm_dust_mass)/ptimestep |
---|
| 498 | & - pdq(ig,l,igcm_dust_mass) + 1.e-20 |
---|
| 499 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 500 | & -pdqcloud(ig,l,igcm_dust_mass) |
---|
| 501 | ENDIF |
---|
| 502 | ENDDO |
---|
| 503 | ENDDO |
---|
| 504 | ENDIF |
---|
| 505 | |
---|
| 506 | DO l=1,nlay |
---|
| 507 | DO ig=1,ngrid |
---|
[2312] | 508 | |
---|
[633] | 509 | IF (pq(ig,l,igcm_h2o_ice) + ptimestep* |
---|
| 510 | & (pdq(ig,l,igcm_h2o_ice) + pdqcloud(ig,l,igcm_h2o_ice)) |
---|
| 511 | & .le. 1.e-8) THEN |
---|
| 512 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 513 | & - pq(ig,l,igcm_h2o_ice)/ptimestep - pdq(ig,l,igcm_h2o_ice) |
---|
| 514 | pdqcloud(ig,l,igcm_h2o_vap) = -pdqcloud(ig,l,igcm_h2o_ice) |
---|
[2312] | 515 | if (hdo) then |
---|
| 516 | pdqcloud(ig,l,igcm_hdo_ice) = |
---|
| 517 | & - pq(ig,l,igcm_hdo_ice)/ptimestep - pdq(ig,l,igcm_hdo_ice) |
---|
| 518 | pdqcloud(ig,l,igcm_hdo_vap) = -pdqcloud(ig,l,igcm_hdo_ice) |
---|
| 519 | endif |
---|
[633] | 520 | ENDIF |
---|
| 521 | IF (pq(ig,l,igcm_h2o_vap) + ptimestep* |
---|
| 522 | & (pdq(ig,l,igcm_h2o_vap) + pdqcloud(ig,l,igcm_h2o_vap)) |
---|
| 523 | & .le. 1.e-8) THEN |
---|
| 524 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 525 | & - pq(ig,l,igcm_h2o_vap)/ptimestep - pdq(ig,l,igcm_h2o_vap) |
---|
| 526 | pdqcloud(ig,l,igcm_h2o_ice) = -pdqcloud(ig,l,igcm_h2o_vap) |
---|
[2312] | 527 | if (hdo) then |
---|
| 528 | pdqcloud(ig,l,igcm_hdo_vap) = |
---|
| 529 | & - pq(ig,l,igcm_hdo_vap)/ptimestep - pdq(ig,l,igcm_hdo_vap) |
---|
| 530 | pdqcloud(ig,l,igcm_hdo_ice) = -pdqcloud(ig,l,igcm_hdo_vap) |
---|
| 531 | endif |
---|
[633] | 532 | ENDIF |
---|
[2312] | 533 | |
---|
[633] | 534 | ENDDO |
---|
| 535 | ENDDO |
---|
| 536 | |
---|
| 537 | c------Update the ice and dust particle size "rice" for output or photochemistry |
---|
| 538 | c------Only rsedcloud is used for the water cycle |
---|
| 539 | |
---|
| 540 | IF(scavenging) THEN |
---|
| 541 | DO l=1, nlay |
---|
| 542 | DO ig=1,ngrid |
---|
| 543 | |
---|
[740] | 544 | call updaterdust( |
---|
| 545 | & pq(ig,l,igcm_dust_mass) + ! dust mass |
---|
| 546 | & (pdq(ig,l,igcm_dust_mass) + ! dust mass |
---|
| 547 | & pdqcloud(ig,l,igcm_dust_mass))*ptimestep, ! dust mass |
---|
| 548 | & pq(ig,l,igcm_dust_number) + ! dust number |
---|
| 549 | & (pdq(ig,l,igcm_dust_number) + ! dust number |
---|
| 550 | & pdqcloud(ig,l,igcm_dust_number))*ptimestep, ! dust number |
---|
| 551 | & rdust(ig,l)) |
---|
[633] | 552 | |
---|
| 553 | ENDDO |
---|
| 554 | ENDDO |
---|
[740] | 555 | ENDIF |
---|
[1467] | 556 | |
---|
[740] | 557 | IF(microphys) THEN |
---|
[1467] | 558 | |
---|
| 559 | ! In case one does not want to allow supersatured water when using microphysics. |
---|
| 560 | ! Not done by default. |
---|
| 561 | IF(.not.supersat) THEN |
---|
| 562 | zt = pt + (pdt+pdtcloud)*ptimestep |
---|
| 563 | call watersat(ngrid*nlay,zt,pplay,zqsat) |
---|
| 564 | DO l=1, nlay |
---|
| 565 | DO ig=1,ngrid |
---|
| 566 | IF (pq(ig,l,igcm_h2o_vap) |
---|
| 567 | & + (pdq(ig,l,igcm_h2o_vap) + pdqcloud(ig,l,igcm_h2o_vap)) |
---|
| 568 | & * ptimestep .ge. zqsat(ig,l)) THEN |
---|
| 569 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 570 | & (zqsat(ig,l) - pq(ig,l,igcm_h2o_vap))/ptimestep |
---|
| 571 | & - pdq(ig,l,igcm_h2o_vap) |
---|
| 572 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 573 | & -pdqcloud(ig,l,igcm_h2o_vap) |
---|
| 574 | ! no need to correct ccn_number, updaterad can handle this properly. |
---|
| 575 | ENDIF |
---|
| 576 | ENDDO |
---|
| 577 | ENDDO |
---|
| 578 | ENDIF |
---|
[740] | 579 | |
---|
| 580 | DO l=1, nlay |
---|
| 581 | DO ig=1,ngrid |
---|
| 582 | |
---|
| 583 | call updaterice_micro( |
---|
| 584 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 585 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 586 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
| 587 | & pq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
| 588 | & (pdq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
| 589 | & pdqcloud(ig,l,igcm_ccn_mass))*ptimestep, ! ccn mass |
---|
| 590 | & pq(ig,l,igcm_ccn_number) + ! ccn number |
---|
| 591 | & (pdq(ig,l,igcm_ccn_number) + ! ccn number |
---|
| 592 | & pdqcloud(ig,l,igcm_ccn_number))*ptimestep, ! ccn number |
---|
| 593 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
| 594 | |
---|
[645] | 595 | ENDDO |
---|
[740] | 596 | ENDDO |
---|
[645] | 597 | |
---|
[740] | 598 | ELSE ! no microphys |
---|
| 599 | |
---|
[645] | 600 | DO l=1,nlay |
---|
| 601 | DO ig=1,ngrid |
---|
[740] | 602 | |
---|
| 603 | call updaterice_typ( |
---|
| 604 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 605 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 606 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
[746] | 607 | & tau(ig,1),pzlay(ig,l),rice(ig,l)) |
---|
[740] | 608 | |
---|
[633] | 609 | ENDDO |
---|
[740] | 610 | ENDDO |
---|
[633] | 611 | |
---|
[740] | 612 | ENDIF ! of IF(microphys) |
---|
[633] | 613 | |
---|
[740] | 614 | |
---|
| 615 | |
---|
[358] | 616 | c A correction if a lot of subliming CO2 fills the 1st layer FF04/2005 |
---|
| 617 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 618 | c Then that should not affect the ice particle radius |
---|
[1047] | 619 | do ig=1,ngrid |
---|
[358] | 620 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,2)))then |
---|
| 621 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,3))) |
---|
| 622 | & rice(ig,2)=rice(ig,3) |
---|
| 623 | rice(ig,1)=rice(ig,2) |
---|
| 624 | end if |
---|
| 625 | end do |
---|
[740] | 626 | |
---|
| 627 | |
---|
| 628 | DO l=1,nlay |
---|
| 629 | DO ig=1,ngrid |
---|
| 630 | rsedcloud(ig,l)=max(rice(ig,l)* |
---|
| 631 | & (1.+nuice_sed)*(1.+nuice_sed)*(1.+nuice_sed), |
---|
| 632 | & rdust(ig,l)) |
---|
| 633 | ! rsedcloud(ig,l)=min(rsedcloud(ig,l),1.e-4) |
---|
| 634 | ENDDO |
---|
| 635 | ENDDO |
---|
| 636 | |
---|
| 637 | ! used for rad. transfer calculations |
---|
| 638 | ! nuice is constant because a lognormal distribution is prescribed |
---|
| 639 | nuice(1:ngrid,1:nlay)=nuice_ref |
---|
[38] | 640 | |
---|
[1711] | 641 | c------Update tendencies for sub-grid water ice clouds |
---|
| 642 | IF (CLFvarying) THEN |
---|
| 643 | DO ig=1,ngrid |
---|
| 644 | DO l=1,nlay |
---|
| 645 | pdqcloud(ig,l,igcm_dust_mass)=pdqcloud(ig,l,igcm_dust_mass) |
---|
| 646 | & *cloudfrac(ig,l) |
---|
| 647 | pdqcloud(ig,l,igcm_ccn_mass)=pdqcloud(ig,l,igcm_ccn_mass) |
---|
| 648 | & *cloudfrac(ig,l) |
---|
| 649 | pdqcloud(ig,l,igcm_dust_number)=pdqcloud(ig,l, |
---|
| 650 | & igcm_dust_number) *cloudfrac(ig,l) |
---|
| 651 | pdqcloud(ig,l,igcm_ccn_number)=pdqcloud(ig,l, |
---|
| 652 | & igcm_ccn_number) *cloudfrac(ig,l) |
---|
| 653 | pdqcloud(ig,l,igcm_h2o_vap)=pdqcloud(ig,l, |
---|
| 654 | & igcm_h2o_vap) *cloudfrac(ig,l) |
---|
| 655 | pdqcloud(ig,l,igcm_h2o_ice)=pdqcloud(ig,l, |
---|
| 656 | & igcm_h2o_ice) *cloudfrac(ig,l) |
---|
| 657 | ENDDO |
---|
| 658 | ENDDO |
---|
| 659 | pdtcloud(:,:)=pdtcloud(:,:)*cloudfrac(:,:) |
---|
| 660 | ENDIF |
---|
[1758] | 661 | #ifndef MESOSCALE |
---|
[1711] | 662 | c======================================================================= |
---|
| 663 | call WRITEDIAGFI(ngrid,"pdqice2","pdqcloudice apres microphysique" |
---|
| 664 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay,igcm_h2o_ice)) |
---|
| 665 | call WRITEDIAGFI(ngrid,"pdqvap2","pdqcloudvap apres microphysique" |
---|
| 666 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
| 667 | & igcm_h2o_vap)) |
---|
[2312] | 668 | if (hdo) then |
---|
| 669 | call WRITEDIAGFI(ngrid,"pdqiceD","pdqiceD apres microphysique" |
---|
| 670 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay,igcm_hdo_ice)) |
---|
| 671 | call WRITEDIAGFI(ngrid,"pdqvapD","pdqvapD apres microphysique" |
---|
| 672 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
| 673 | & igcm_hdo_vap)) |
---|
| 674 | endif |
---|
[1711] | 675 | call WRITEDIAGFI(ngrid,"pdqccn2","pdqcloudccn apres microphysique" |
---|
| 676 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
| 677 | & igcm_ccn_mass)) |
---|
| 678 | call WRITEDIAGFI(ngrid,"pdqccnN2","pdqcloudccnN apres |
---|
| 679 | & microphysique","nb/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
| 680 | & igcm_ccn_number)) |
---|
| 681 | call WRITEDIAGFI(ngrid,"pdqdust2", "pdqclouddust apres |
---|
| 682 | & microphysique","kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
| 683 | & igcm_dust_mass)) |
---|
| 684 | call WRITEDIAGFI(ngrid,"pdqdustN2", "pdqclouddustN apres |
---|
| 685 | & microphysique","nb/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
| 686 | & igcm_dust_number)) |
---|
[633] | 687 | c======================================================================= |
---|
[1758] | 688 | #endif |
---|
[633] | 689 | |
---|
[1711] | 690 | END SUBROUTINE watercloud |
---|
| 691 | |
---|
[2162] | 692 | subroutine ini_watercloud_mod(ngrid,nlayer,nq) |
---|
| 693 | implicit none |
---|
| 694 | |
---|
| 695 | integer,intent(in) :: ngrid ! number of atmospheric columns |
---|
| 696 | integer,intent(in) :: nlayer ! number of atmospheric layers |
---|
| 697 | integer,intent(in) :: nq ! number of tracers |
---|
| 698 | |
---|
| 699 | allocate(zdqcloud(ngrid,nlayer,nq)) |
---|
| 700 | zdqcloud(:,:,:)=0 |
---|
| 701 | allocate(zdqscloud(ngrid,nq)) |
---|
| 702 | zdqscloud(:,:)=0 |
---|
| 703 | |
---|
| 704 | end subroutine ini_watercloud_mod |
---|
| 705 | |
---|
| 706 | |
---|
| 707 | subroutine end_watercloud_mod |
---|
| 708 | implicit none |
---|
| 709 | |
---|
| 710 | if (allocated(zdqcloud)) deallocate(zdqcloud) |
---|
| 711 | if (allocated(zdqscloud)) deallocate(zdqscloud) |
---|
| 712 | |
---|
| 713 | end subroutine end_watercloud_mod |
---|
| 714 | |
---|
[1711] | 715 | END MODULE watercloud_mod |
---|