[1711] | 1 | MODULE watercloud_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[633] | 7 | SUBROUTINE watercloud(ngrid,nlay,ptimestep, |
---|
| 8 | & pplev,pplay,pdpsrf,pzlay,pt,pdt, |
---|
[626] | 9 | & pq,pdq,pdqcloud,pdtcloud, |
---|
[358] | 10 | & nq,tau,tauscaling,rdust,rice,nuice, |
---|
[1711] | 11 | & rsedcloud,rhocloud,totcloudfrac) |
---|
[633] | 12 | ! to use 'getin' |
---|
| 13 | USE ioipsl_getincom |
---|
[740] | 14 | USE updaterad |
---|
[1226] | 15 | USE comcstfi_h |
---|
[1036] | 16 | use tracer_mod, only: nqmx, igcm_h2o_vap, igcm_h2o_ice, |
---|
| 17 | & igcm_dust_mass, igcm_dust_number, |
---|
| 18 | & igcm_ccn_mass, igcm_ccn_number, |
---|
| 19 | & rho_dust, nuice_sed, nuice_ref |
---|
[1246] | 20 | use dimradmars_mod, only: naerkind |
---|
[38] | 21 | IMPLICIT NONE |
---|
| 22 | |
---|
[633] | 23 | |
---|
[38] | 24 | c======================================================================= |
---|
[358] | 25 | c Water-ice cloud formation |
---|
| 26 | c |
---|
| 27 | c Includes two different schemes: |
---|
| 28 | c - A simplified scheme (see simpleclouds.F) |
---|
| 29 | c - An improved microphysical scheme (see improvedclouds.F) |
---|
[38] | 30 | c |
---|
[633] | 31 | c There is a time loop specific to cloud formation |
---|
| 32 | c due to timescales smaller than the GCM integration timestep. |
---|
| 33 | c |
---|
[358] | 34 | c Authors: Franck Montmessin, Francois Forget, Ehouarn Millour, |
---|
[522] | 35 | c J.-B. Madeleine, Thomas Navarro |
---|
[38] | 36 | c |
---|
[633] | 37 | c 2004 - 2012 |
---|
[38] | 38 | c======================================================================= |
---|
| 39 | |
---|
| 40 | c----------------------------------------------------------------------- |
---|
| 41 | c declarations: |
---|
| 42 | c ------------- |
---|
| 43 | |
---|
| 44 | #include "callkeys.h" |
---|
| 45 | |
---|
| 46 | c Inputs: |
---|
| 47 | c ------ |
---|
| 48 | |
---|
| 49 | INTEGER ngrid,nlay |
---|
[633] | 50 | INTEGER nq ! nombre de traceurs |
---|
[38] | 51 | REAL ptimestep ! pas de temps physique (s) |
---|
| 52 | REAL pplev(ngrid,nlay+1) ! pression aux inter-couches (Pa) |
---|
| 53 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
[633] | 54 | REAL pdpsrf(ngrid) ! tendence surf pressure |
---|
[38] | 55 | REAL pzlay(ngrid,nlay) ! altitude at the middle of the layers |
---|
| 56 | REAL pt(ngrid,nlay) ! temperature at the middle of the layers (K) |
---|
[633] | 57 | REAL pdt(ngrid,nlay) ! tendence temperature des autres param. |
---|
[38] | 58 | |
---|
| 59 | real pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
[633] | 60 | real pdq(ngrid,nlay,nq) ! tendence avant condensation (kg/kg.s-1) |
---|
[38] | 61 | |
---|
[1047] | 62 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
| 63 | REAL tauscaling(ngrid) ! Convertion factor for dust amount |
---|
| 64 | real rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
[38] | 65 | |
---|
| 66 | c Outputs: |
---|
| 67 | c ------- |
---|
| 68 | |
---|
[633] | 69 | real pdqcloud(ngrid,nlay,nq) ! tendence de la condensation H2O(kg/kg.s-1) |
---|
| 70 | REAL pdtcloud(ngrid,nlay) ! tendence temperature due |
---|
| 71 | ! a la chaleur latente |
---|
[38] | 72 | |
---|
| 73 | REAL rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
| 74 | ! (r_c in montmessin_2004) |
---|
| 75 | REAL nuice(ngrid,nlay) ! Estimated effective variance |
---|
| 76 | ! of the size distribution |
---|
[1047] | 77 | real rsedcloud(ngrid,nlay) ! Cloud sedimentation radius |
---|
| 78 | real rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
[38] | 79 | |
---|
[1711] | 80 | REAL, INTENT(INOUT):: totcloudfrac(ngrid) ! Cloud fraction (A. Pottier 2013) |
---|
[38] | 81 | c local: |
---|
| 82 | c ------ |
---|
[633] | 83 | |
---|
| 84 | ! for ice radius computation |
---|
| 85 | REAL Mo,No |
---|
| 86 | REAl ccntyp |
---|
| 87 | |
---|
| 88 | ! for time loop |
---|
| 89 | INTEGER microstep ! time subsampling step variable |
---|
| 90 | INTEGER imicro ! time subsampling for coupled water microphysics & sedimentation |
---|
| 91 | SAVE imicro |
---|
| 92 | REAL microtimestep ! integration timestep for coupled water microphysics & sedimentation |
---|
| 93 | SAVE microtimestep |
---|
| 94 | |
---|
| 95 | ! tendency given by clouds (inside the micro loop) |
---|
| 96 | REAL subpdqcloud(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 97 | REAL subpdtcloud(ngrid,nlay) ! cf. pdtcloud |
---|
[38] | 98 | |
---|
[633] | 99 | ! global tendency (clouds+physics) |
---|
| 100 | REAL subpdq(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 101 | REAL subpdt(ngrid,nlay) ! cf. pdtcloud |
---|
| 102 | |
---|
[1467] | 103 | ! no supersaturation when option supersat is false |
---|
| 104 | REAL zt(ngrid,nlay) ! local value of temperature |
---|
| 105 | REAL zqsat(ngrid,nlay) ! saturation |
---|
[633] | 106 | |
---|
| 107 | INTEGER iq,ig,l |
---|
[38] | 108 | LOGICAL,SAVE :: firstcall=.true. |
---|
| 109 | |
---|
[1711] | 110 | ! Representation of sub-grid water ice clouds A. Pottier 2013 |
---|
| 111 | ! REAL :: zt(ngrid, nlay) |
---|
| 112 | REAL :: zq(ngrid, nlay,nq) |
---|
| 113 | REAL :: zdelt |
---|
| 114 | REAL :: norm |
---|
| 115 | REAL :: ponder |
---|
| 116 | REAL :: tcond(ngrid,nlay) |
---|
| 117 | REAL :: zqvap(ngrid,nlay) |
---|
| 118 | REAL :: zqice(ngrid,nlay) |
---|
| 119 | REAL :: spant ! delta T for the temperature distribution |
---|
| 120 | ! REAL :: zqsat(ngrid,nlay) ! saturation |
---|
| 121 | REAL :: zteff(ngrid, nlay)! effective temperature in the cloud,neb |
---|
| 122 | REAL :: pqeff(ngrid, nlay, nq)! effective tracers quantities in the cloud |
---|
| 123 | REAL :: cloudfrac(ngrid,nlay) ! cloud fraction |
---|
| 124 | REAL :: mincloud ! min cloud frac |
---|
| 125 | LOGICAL, save :: flagcloud=.true. |
---|
[38] | 126 | c ** un petit test de coherence |
---|
| 127 | c -------------------------- |
---|
| 128 | |
---|
| 129 | IF (firstcall) THEN |
---|
| 130 | |
---|
| 131 | if (nq.gt.nqmx) then |
---|
| 132 | write(*,*) 'stop in watercloud (nq.gt.nqmx)!' |
---|
| 133 | write(*,*) 'nq=',nq,' nqmx=',nqmx |
---|
| 134 | stop |
---|
| 135 | endif |
---|
| 136 | |
---|
[358] | 137 | write(*,*) "watercloud: igcm_h2o_vap=",igcm_h2o_vap |
---|
| 138 | write(*,*) " igcm_h2o_ice=",igcm_h2o_ice |
---|
[633] | 139 | |
---|
| 140 | write(*,*) "time subsampling for microphysic ?" |
---|
| 141 | #ifdef MESOSCALE |
---|
| 142 | imicro = 2 |
---|
| 143 | #else |
---|
[951] | 144 | imicro = 30 |
---|
[633] | 145 | #endif |
---|
| 146 | call getin("imicro",imicro) |
---|
| 147 | write(*,*)"imicro = ",imicro |
---|
| 148 | |
---|
| 149 | microtimestep = ptimestep/real(imicro) |
---|
| 150 | write(*,*)"Physical timestep is",ptimestep |
---|
| 151 | write(*,*)"Microphysics timestep is",microtimestep |
---|
[38] | 152 | |
---|
| 153 | firstcall=.false. |
---|
| 154 | ENDIF ! of IF (firstcall) |
---|
[522] | 155 | |
---|
[633] | 156 | c-----Initialization |
---|
| 157 | subpdq(1:ngrid,1:nlay,1:nq) = 0 |
---|
| 158 | subpdt(1:ngrid,1:nlay) = 0 |
---|
| 159 | |
---|
| 160 | ! default value if no ice |
---|
| 161 | rhocloud(1:ngrid,1:nlay) = rho_dust |
---|
[38] | 162 | |
---|
[1711] | 163 | c------------------------------------------------------------------- |
---|
| 164 | c 0. Representation of sub-grid water ice clouds |
---|
| 165 | c------------------ |
---|
| 166 | c-----Tendencies |
---|
| 167 | DO l=1,nlay |
---|
| 168 | DO ig=1,ngrid |
---|
| 169 | zt(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
| 170 | ENDDO |
---|
| 171 | ENDDO |
---|
| 172 | DO l=1,nlay |
---|
| 173 | DO ig=1,ngrid |
---|
| 174 | DO iq=1,nq |
---|
| 175 | zq(ig,l,iq)=pq(ig,l,iq)+pdq(ig,l,iq)*ptimestep |
---|
| 176 | ENDDO |
---|
| 177 | ENDDO |
---|
| 178 | ENDDO |
---|
| 179 | c-----Effective temperature calculation |
---|
| 180 | IF (CLFvarying) THEN |
---|
| 181 | spant=3.0 ! delta T for the temprature distribution |
---|
| 182 | mincloud=0.1 ! min cloudfrac when there is ice |
---|
| 183 | IF (flagcloud) THEN |
---|
| 184 | write(*,*) "Delta T", spant |
---|
| 185 | write(*,*) "mincloud", mincloud |
---|
| 186 | flagcloud=.false. |
---|
| 187 | END IF |
---|
| 188 | CALL watersat(ngrid*nlay,zt,pplay,zqsat) |
---|
| 189 | zqvap=zq(:,:,igcm_h2o_vap) |
---|
| 190 | zqice=zq(:,:,igcm_h2o_ice) |
---|
| 191 | CALL tcondwater(ngrid*nlay,pplay,zqvap+zqice,tcond) |
---|
| 192 | DO l=1,nlay |
---|
| 193 | DO ig=1,ngrid |
---|
| 194 | zdelt=spant !MAX(spant*zt(ig,l),1.e-12), now totally in K. Fixed width |
---|
| 195 | IF (tcond(ig,l) .ge. (zt(ig,l)+zdelt)) THEN |
---|
| 196 | zteff(ig,l)=zt(ig,l) |
---|
| 197 | cloudfrac(ig,l)=1. |
---|
| 198 | ELSE IF (tcond(ig,l) .le. (zt(ig,l)-zdelt)) THEN |
---|
| 199 | zteff(ig,l)=zt(ig,l)-zdelt |
---|
| 200 | cloudfrac(ig,l)=mincloud |
---|
| 201 | ELSE |
---|
| 202 | cloudfrac(ig,l)=(tcond(ig,l)-zt(ig,l)+zdelt)/ |
---|
| 203 | & (2.0*zdelt) |
---|
| 204 | zteff(ig,l)=(tcond(ig,l)+zt(ig,l)-zdelt)/2. |
---|
| 205 | END IF |
---|
| 206 | zteff(ig,l)=zteff(ig,l)-pdt(ig,l)*ptimestep |
---|
| 207 | IF (cloudfrac(ig,l).le.0) THEN |
---|
| 208 | cloudfrac(ig,l)=mincloud |
---|
| 209 | ELSE IF (cloudfrac(ig,l).gt.1) THEN |
---|
| 210 | cloudfrac(ig,l)=1. |
---|
| 211 | END IF |
---|
| 212 | ENDDO |
---|
| 213 | ENDDO |
---|
| 214 | c-----Calculation of the total cloud coverage of the column |
---|
| 215 | DO ig=1,ngrid |
---|
| 216 | totcloudfrac(ig) = 0. |
---|
| 217 | norm=0. |
---|
| 218 | DO l=1,nlay |
---|
| 219 | ponder=zqice(ig,l)*(pplev(ig,l) - pplev(ig,l+1)) |
---|
| 220 | totcloudfrac(ig) = totcloudfrac(ig) |
---|
| 221 | & + cloudfrac(ig,l)*ponder |
---|
| 222 | norm=norm+ponder |
---|
| 223 | ENDDO |
---|
| 224 | totcloudfrac(ig)=MAX(totcloudfrac(ig)/norm,1.e-12) ! min value if NaNs |
---|
| 225 | ENDDO |
---|
| 226 | c-----No sub-grid cloud representation (CLFvarying=false) |
---|
| 227 | ELSE |
---|
| 228 | DO l=1,nlay |
---|
| 229 | DO ig=1,ngrid |
---|
| 230 | zteff(ig,l)=pt(ig,l) |
---|
| 231 | END DO |
---|
| 232 | END DO |
---|
| 233 | END IF ! end if (CLFvarying) |
---|
[633] | 234 | |
---|
| 235 | c------------------------------------------------------------------ |
---|
| 236 | c Time subsampling for microphysics |
---|
[1711] | 237 | rhocloud(1:ngrid,1:nlay) = rho_dust |
---|
[633] | 238 | DO microstep=1,imicro |
---|
[522] | 239 | |
---|
[633] | 240 | c------------------------------------------------------------------- |
---|
| 241 | c 1. Tendencies: |
---|
| 242 | c------------------ |
---|
[38] | 243 | |
---|
[633] | 244 | |
---|
| 245 | c------ Temperature tendency subpdt |
---|
| 246 | ! Each microtimestep we give the cloud scheme a stepped entry subpdt instead of pdt |
---|
| 247 | ! If imicro=1 subpdt is the same as pdt |
---|
| 248 | DO l=1,nlay |
---|
| 249 | DO ig=1,ngrid |
---|
| 250 | subpdt(ig,l) = subpdt(ig,l) |
---|
| 251 | & + pdt(ig,l) ! At each micro timestep we add pdt in order to have a stepped entry |
---|
| 252 | ENDDO |
---|
| 253 | ENDDO |
---|
| 254 | c------ Tracers tendencies subpdq |
---|
| 255 | c------ At each micro timestep we add pdq in order to have a stepped entry |
---|
| 256 | IF (microphys) THEN |
---|
| 257 | DO l=1,nlay |
---|
| 258 | DO ig=1,ngrid |
---|
| 259 | subpdq(ig,l,igcm_dust_mass) = |
---|
| 260 | & subpdq(ig,l,igcm_dust_mass) |
---|
| 261 | & + pdq(ig,l,igcm_dust_mass) |
---|
| 262 | subpdq(ig,l,igcm_dust_number) = |
---|
| 263 | & subpdq(ig,l,igcm_dust_number) |
---|
| 264 | & + pdq(ig,l,igcm_dust_number) |
---|
| 265 | subpdq(ig,l,igcm_ccn_mass) = |
---|
| 266 | & subpdq(ig,l,igcm_ccn_mass) |
---|
| 267 | & + pdq(ig,l,igcm_ccn_mass) |
---|
| 268 | subpdq(ig,l,igcm_ccn_number) = |
---|
| 269 | & subpdq(ig,l,igcm_ccn_number) |
---|
| 270 | & + pdq(ig,l,igcm_ccn_number) |
---|
| 271 | ENDDO |
---|
| 272 | ENDDO |
---|
| 273 | ENDIF |
---|
| 274 | DO l=1,nlay |
---|
| 275 | DO ig=1,ngrid |
---|
| 276 | subpdq(ig,l,igcm_h2o_ice) = |
---|
| 277 | & subpdq(ig,l,igcm_h2o_ice) |
---|
| 278 | & + pdq(ig,l,igcm_h2o_ice) |
---|
| 279 | subpdq(ig,l,igcm_h2o_vap) = |
---|
| 280 | & subpdq(ig,l,igcm_h2o_vap) |
---|
| 281 | & + pdq(ig,l,igcm_h2o_vap) |
---|
| 282 | ENDDO |
---|
| 283 | ENDDO |
---|
[1711] | 284 | c------ Effective tracers quantities in the cloud fraction |
---|
| 285 | IF (CLFvarying) THEN |
---|
| 286 | pqeff(:,:,:)=pq(:,:,:) ! prevent from buggs (A. Pottier) |
---|
| 287 | pqeff(:,:,igcm_ccn_mass) =pq(:,:,igcm_ccn_mass)/ |
---|
| 288 | & cloudfrac(:,:) |
---|
| 289 | pqeff(:,:,igcm_ccn_number)= |
---|
| 290 | & pq(:,:,igcm_ccn_number)/cloudfrac(:,:) |
---|
| 291 | pqeff(:,:,igcm_h2o_ice)= pq(:,:,igcm_h2o_ice)/ |
---|
| 292 | & cloudfrac(:,:) |
---|
| 293 | ELSE |
---|
| 294 | pqeff(:,:,:)=pq(:,:,:) |
---|
| 295 | pqeff(:,:,igcm_ccn_mass)= pq(:,:,igcm_ccn_mass) |
---|
| 296 | pqeff(:,:,igcm_ccn_number)= pq(:,:,igcm_ccn_number) |
---|
| 297 | pqeff(:,:,igcm_h2o_ice)= pq(:,:,igcm_h2o_ice) |
---|
| 298 | END IF |
---|
[633] | 299 | |
---|
| 300 | c------------------------------------------------------------------- |
---|
| 301 | c 2. Main call to the different cloud schemes: |
---|
| 302 | c------------------------------------------------ |
---|
| 303 | IF (microphys) THEN |
---|
| 304 | CALL improvedclouds(ngrid,nlay,microtimestep, |
---|
[1711] | 305 | & pplay,zteff,subpdt, |
---|
| 306 | & pqeff,subpdq,subpdqcloud,subpdtcloud, |
---|
[633] | 307 | & nq,tauscaling) |
---|
| 308 | |
---|
| 309 | ELSE |
---|
| 310 | CALL simpleclouds(ngrid,nlay,microtimestep, |
---|
[1711] | 311 | & pplay,pzlay,zteff,subpdt, |
---|
| 312 | & pqeff,subpdq,subpdqcloud,subpdtcloud, |
---|
[645] | 313 | & nq,tau,rice) |
---|
[633] | 314 | ENDIF |
---|
| 315 | |
---|
| 316 | c------------------------------------------------------------------- |
---|
| 317 | c 3. Updating tendencies after cloud scheme: |
---|
| 318 | c----------------------------------------------- |
---|
| 319 | |
---|
| 320 | IF (microphys) THEN |
---|
| 321 | DO l=1,nlay |
---|
| 322 | DO ig=1,ngrid |
---|
| 323 | subpdq(ig,l,igcm_dust_mass) = |
---|
| 324 | & subpdq(ig,l,igcm_dust_mass) |
---|
| 325 | & + subpdqcloud(ig,l,igcm_dust_mass) |
---|
| 326 | subpdq(ig,l,igcm_dust_number) = |
---|
| 327 | & subpdq(ig,l,igcm_dust_number) |
---|
| 328 | & + subpdqcloud(ig,l,igcm_dust_number) |
---|
| 329 | subpdq(ig,l,igcm_ccn_mass) = |
---|
| 330 | & subpdq(ig,l,igcm_ccn_mass) |
---|
| 331 | & + subpdqcloud(ig,l,igcm_ccn_mass) |
---|
| 332 | subpdq(ig,l,igcm_ccn_number) = |
---|
| 333 | & subpdq(ig,l,igcm_ccn_number) |
---|
| 334 | & + subpdqcloud(ig,l,igcm_ccn_number) |
---|
| 335 | ENDDO |
---|
| 336 | ENDDO |
---|
| 337 | ENDIF |
---|
| 338 | DO l=1,nlay |
---|
| 339 | DO ig=1,ngrid |
---|
| 340 | subpdq(ig,l,igcm_h2o_ice) = |
---|
| 341 | & subpdq(ig,l,igcm_h2o_ice) |
---|
| 342 | & + subpdqcloud(ig,l,igcm_h2o_ice) |
---|
| 343 | subpdq(ig,l,igcm_h2o_vap) = |
---|
| 344 | & subpdq(ig,l,igcm_h2o_vap) |
---|
| 345 | & + subpdqcloud(ig,l,igcm_h2o_vap) |
---|
| 346 | ENDDO |
---|
| 347 | ENDDO |
---|
[882] | 348 | |
---|
| 349 | IF (activice) THEN |
---|
| 350 | DO l=1,nlay |
---|
| 351 | DO ig=1,ngrid |
---|
| 352 | subpdt(ig,l) = |
---|
| 353 | & subpdt(ig,l) + subpdtcloud(ig,l) |
---|
| 354 | ENDDO |
---|
| 355 | ENDDO |
---|
| 356 | ENDIF |
---|
[633] | 357 | |
---|
| 358 | |
---|
| 359 | ENDDO ! of DO microstep=1,imicro |
---|
| 360 | |
---|
| 361 | c------------------------------------------------------------------- |
---|
| 362 | c 6. Compute final tendencies after time loop: |
---|
| 363 | c------------------------------------------------ |
---|
| 364 | |
---|
| 365 | c------ Temperature tendency pdtcloud |
---|
| 366 | DO l=1,nlay |
---|
| 367 | DO ig=1,ngrid |
---|
| 368 | pdtcloud(ig,l) = |
---|
| 369 | & subpdt(ig,l)/real(imicro)-pdt(ig,l) |
---|
| 370 | ENDDO |
---|
| 371 | ENDDO |
---|
[740] | 372 | |
---|
[633] | 373 | c------ Tracers tendencies pdqcloud |
---|
[703] | 374 | DO l=1,nlay |
---|
[633] | 375 | DO ig=1,ngrid |
---|
[703] | 376 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 377 | & subpdq(ig,l,igcm_h2o_ice)/real(imicro) |
---|
| 378 | & - pdq(ig,l,igcm_h2o_ice) |
---|
| 379 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 380 | & subpdq(ig,l,igcm_h2o_vap)/real(imicro) |
---|
| 381 | & - pdq(ig,l,igcm_h2o_vap) |
---|
[740] | 382 | ENDDO |
---|
| 383 | ENDDO |
---|
| 384 | |
---|
| 385 | IF(microphys) THEN |
---|
| 386 | DO l=1,nlay |
---|
| 387 | DO ig=1,ngrid |
---|
[703] | 388 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 389 | & subpdq(ig,l,igcm_ccn_mass)/real(imicro) |
---|
| 390 | & - pdq(ig,l,igcm_ccn_mass) |
---|
| 391 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 392 | & subpdq(ig,l,igcm_ccn_number)/real(imicro) |
---|
| 393 | & - pdq(ig,l,igcm_ccn_number) |
---|
[633] | 394 | ENDDO |
---|
[740] | 395 | ENDDO |
---|
| 396 | ENDIF |
---|
| 397 | |
---|
| 398 | IF(scavenging) THEN |
---|
| 399 | DO l=1,nlay |
---|
| 400 | DO ig=1,ngrid |
---|
| 401 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 402 | & subpdq(ig,l,igcm_dust_mass)/real(imicro) |
---|
| 403 | & - pdq(ig,l,igcm_dust_mass) |
---|
| 404 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 405 | & subpdq(ig,l,igcm_dust_number)/real(imicro) |
---|
| 406 | & - pdq(ig,l,igcm_dust_number) |
---|
| 407 | ENDDO |
---|
| 408 | ENDDO |
---|
| 409 | ENDIF |
---|
[633] | 410 | |
---|
| 411 | c------- Due to stepped entry, other processes tendencies can add up to negative values |
---|
| 412 | c------- Therefore, enforce positive values and conserve mass |
---|
| 413 | IF(microphys) THEN |
---|
| 414 | DO l=1,nlay |
---|
| 415 | DO ig=1,ngrid |
---|
[654] | 416 | IF ((pq(ig,l,igcm_ccn_number) + |
---|
[633] | 417 | & ptimestep* (pdq(ig,l,igcm_ccn_number) + |
---|
[654] | 418 | & pdqcloud(ig,l,igcm_ccn_number)) .le. 1.) |
---|
| 419 | & .or. (pq(ig,l,igcm_ccn_mass) + |
---|
| 420 | & ptimestep* (pdq(ig,l,igcm_ccn_mass) + |
---|
| 421 | & pdqcloud(ig,l,igcm_ccn_mass)) .le. 1.e-20)) THEN |
---|
[633] | 422 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 423 | & - pq(ig,l,igcm_ccn_number)/ptimestep |
---|
[654] | 424 | & - pdq(ig,l,igcm_ccn_number) + 1. |
---|
[633] | 425 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 426 | & -pdqcloud(ig,l,igcm_ccn_number) |
---|
| 427 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 428 | & - pq(ig,l,igcm_ccn_mass)/ptimestep |
---|
[654] | 429 | & - pdq(ig,l,igcm_ccn_mass) + 1.e-20 |
---|
[633] | 430 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 431 | & -pdqcloud(ig,l,igcm_ccn_mass) |
---|
| 432 | ENDIF |
---|
| 433 | ENDDO |
---|
| 434 | ENDDO |
---|
| 435 | ENDIF |
---|
| 436 | |
---|
[740] | 437 | IF(scavenging) THEN |
---|
[633] | 438 | DO l=1,nlay |
---|
| 439 | DO ig=1,ngrid |
---|
[740] | 440 | IF ((pq(ig,l,igcm_dust_number) + |
---|
| 441 | & ptimestep* (pdq(ig,l,igcm_dust_number) + |
---|
| 442 | & pdqcloud(ig,l,igcm_dust_number)) .le. 1.) |
---|
| 443 | & .or. (pq(ig,l,igcm_dust_mass) + |
---|
| 444 | & ptimestep* (pdq(ig,l,igcm_dust_mass) + |
---|
| 445 | & pdqcloud(ig,l,igcm_dust_mass)) .le. 1.e-20)) THEN |
---|
| 446 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 447 | & - pq(ig,l,igcm_dust_number)/ptimestep |
---|
| 448 | & - pdq(ig,l,igcm_dust_number) + 1. |
---|
| 449 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 450 | & -pdqcloud(ig,l,igcm_dust_number) |
---|
| 451 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 452 | & - pq(ig,l,igcm_dust_mass)/ptimestep |
---|
| 453 | & - pdq(ig,l,igcm_dust_mass) + 1.e-20 |
---|
| 454 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 455 | & -pdqcloud(ig,l,igcm_dust_mass) |
---|
| 456 | ENDIF |
---|
| 457 | ENDDO |
---|
| 458 | ENDDO |
---|
| 459 | ENDIF |
---|
| 460 | |
---|
| 461 | DO l=1,nlay |
---|
| 462 | DO ig=1,ngrid |
---|
[633] | 463 | IF (pq(ig,l,igcm_h2o_ice) + ptimestep* |
---|
| 464 | & (pdq(ig,l,igcm_h2o_ice) + pdqcloud(ig,l,igcm_h2o_ice)) |
---|
| 465 | & .le. 1.e-8) THEN |
---|
| 466 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 467 | & - pq(ig,l,igcm_h2o_ice)/ptimestep - pdq(ig,l,igcm_h2o_ice) |
---|
| 468 | pdqcloud(ig,l,igcm_h2o_vap) = -pdqcloud(ig,l,igcm_h2o_ice) |
---|
| 469 | ENDIF |
---|
| 470 | IF (pq(ig,l,igcm_h2o_vap) + ptimestep* |
---|
| 471 | & (pdq(ig,l,igcm_h2o_vap) + pdqcloud(ig,l,igcm_h2o_vap)) |
---|
| 472 | & .le. 1.e-8) THEN |
---|
| 473 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 474 | & - pq(ig,l,igcm_h2o_vap)/ptimestep - pdq(ig,l,igcm_h2o_vap) |
---|
| 475 | pdqcloud(ig,l,igcm_h2o_ice) = -pdqcloud(ig,l,igcm_h2o_vap) |
---|
| 476 | ENDIF |
---|
| 477 | ENDDO |
---|
| 478 | ENDDO |
---|
| 479 | |
---|
| 480 | |
---|
| 481 | c------Update the ice and dust particle size "rice" for output or photochemistry |
---|
| 482 | c------Only rsedcloud is used for the water cycle |
---|
| 483 | |
---|
| 484 | IF(scavenging) THEN |
---|
| 485 | DO l=1, nlay |
---|
| 486 | DO ig=1,ngrid |
---|
| 487 | |
---|
[740] | 488 | call updaterdust( |
---|
| 489 | & pq(ig,l,igcm_dust_mass) + ! dust mass |
---|
| 490 | & (pdq(ig,l,igcm_dust_mass) + ! dust mass |
---|
| 491 | & pdqcloud(ig,l,igcm_dust_mass))*ptimestep, ! dust mass |
---|
| 492 | & pq(ig,l,igcm_dust_number) + ! dust number |
---|
| 493 | & (pdq(ig,l,igcm_dust_number) + ! dust number |
---|
| 494 | & pdqcloud(ig,l,igcm_dust_number))*ptimestep, ! dust number |
---|
| 495 | & rdust(ig,l)) |
---|
[633] | 496 | |
---|
| 497 | ENDDO |
---|
| 498 | ENDDO |
---|
[740] | 499 | ENDIF |
---|
[1467] | 500 | |
---|
[740] | 501 | IF(microphys) THEN |
---|
[1467] | 502 | |
---|
| 503 | ! In case one does not want to allow supersatured water when using microphysics. |
---|
| 504 | ! Not done by default. |
---|
| 505 | IF(.not.supersat) THEN |
---|
| 506 | zt = pt + (pdt+pdtcloud)*ptimestep |
---|
| 507 | call watersat(ngrid*nlay,zt,pplay,zqsat) |
---|
| 508 | DO l=1, nlay |
---|
| 509 | DO ig=1,ngrid |
---|
| 510 | IF (pq(ig,l,igcm_h2o_vap) |
---|
| 511 | & + (pdq(ig,l,igcm_h2o_vap) + pdqcloud(ig,l,igcm_h2o_vap)) |
---|
| 512 | & * ptimestep .ge. zqsat(ig,l)) THEN |
---|
| 513 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 514 | & (zqsat(ig,l) - pq(ig,l,igcm_h2o_vap))/ptimestep |
---|
| 515 | & - pdq(ig,l,igcm_h2o_vap) |
---|
| 516 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 517 | & -pdqcloud(ig,l,igcm_h2o_vap) |
---|
| 518 | ! no need to correct ccn_number, updaterad can handle this properly. |
---|
| 519 | ENDIF |
---|
| 520 | ENDDO |
---|
| 521 | ENDDO |
---|
| 522 | ENDIF |
---|
[740] | 523 | |
---|
| 524 | DO l=1, nlay |
---|
| 525 | DO ig=1,ngrid |
---|
| 526 | |
---|
| 527 | call updaterice_micro( |
---|
| 528 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 529 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 530 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
| 531 | & pq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
| 532 | & (pdq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
| 533 | & pdqcloud(ig,l,igcm_ccn_mass))*ptimestep, ! ccn mass |
---|
| 534 | & pq(ig,l,igcm_ccn_number) + ! ccn number |
---|
| 535 | & (pdq(ig,l,igcm_ccn_number) + ! ccn number |
---|
| 536 | & pdqcloud(ig,l,igcm_ccn_number))*ptimestep, ! ccn number |
---|
| 537 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
| 538 | |
---|
[645] | 539 | ENDDO |
---|
[740] | 540 | ENDDO |
---|
[645] | 541 | |
---|
[740] | 542 | ELSE ! no microphys |
---|
| 543 | |
---|
[645] | 544 | DO l=1,nlay |
---|
| 545 | DO ig=1,ngrid |
---|
[740] | 546 | |
---|
| 547 | call updaterice_typ( |
---|
| 548 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 549 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 550 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
[746] | 551 | & tau(ig,1),pzlay(ig,l),rice(ig,l)) |
---|
[740] | 552 | |
---|
[633] | 553 | ENDDO |
---|
[740] | 554 | ENDDO |
---|
[633] | 555 | |
---|
[740] | 556 | ENDIF ! of IF(microphys) |
---|
[633] | 557 | |
---|
[740] | 558 | |
---|
| 559 | |
---|
[358] | 560 | c A correction if a lot of subliming CO2 fills the 1st layer FF04/2005 |
---|
| 561 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 562 | c Then that should not affect the ice particle radius |
---|
[1047] | 563 | do ig=1,ngrid |
---|
[358] | 564 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,2)))then |
---|
| 565 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,3))) |
---|
| 566 | & rice(ig,2)=rice(ig,3) |
---|
| 567 | rice(ig,1)=rice(ig,2) |
---|
| 568 | end if |
---|
| 569 | end do |
---|
[740] | 570 | |
---|
| 571 | |
---|
| 572 | DO l=1,nlay |
---|
| 573 | DO ig=1,ngrid |
---|
| 574 | rsedcloud(ig,l)=max(rice(ig,l)* |
---|
| 575 | & (1.+nuice_sed)*(1.+nuice_sed)*(1.+nuice_sed), |
---|
| 576 | & rdust(ig,l)) |
---|
| 577 | ! rsedcloud(ig,l)=min(rsedcloud(ig,l),1.e-4) |
---|
| 578 | ENDDO |
---|
| 579 | ENDDO |
---|
| 580 | |
---|
| 581 | ! used for rad. transfer calculations |
---|
| 582 | ! nuice is constant because a lognormal distribution is prescribed |
---|
| 583 | nuice(1:ngrid,1:nlay)=nuice_ref |
---|
[38] | 584 | |
---|
[1711] | 585 | c------Update tendencies for sub-grid water ice clouds |
---|
| 586 | IF (CLFvarying) THEN |
---|
| 587 | DO ig=1,ngrid |
---|
| 588 | DO l=1,nlay |
---|
| 589 | pdqcloud(ig,l,igcm_dust_mass)=pdqcloud(ig,l,igcm_dust_mass) |
---|
| 590 | & *cloudfrac(ig,l) |
---|
| 591 | pdqcloud(ig,l,igcm_ccn_mass)=pdqcloud(ig,l,igcm_ccn_mass) |
---|
| 592 | & *cloudfrac(ig,l) |
---|
| 593 | pdqcloud(ig,l,igcm_dust_number)=pdqcloud(ig,l, |
---|
| 594 | & igcm_dust_number) *cloudfrac(ig,l) |
---|
| 595 | pdqcloud(ig,l,igcm_ccn_number)=pdqcloud(ig,l, |
---|
| 596 | & igcm_ccn_number) *cloudfrac(ig,l) |
---|
| 597 | pdqcloud(ig,l,igcm_h2o_vap)=pdqcloud(ig,l, |
---|
| 598 | & igcm_h2o_vap) *cloudfrac(ig,l) |
---|
| 599 | pdqcloud(ig,l,igcm_h2o_ice)=pdqcloud(ig,l, |
---|
| 600 | & igcm_h2o_ice) *cloudfrac(ig,l) |
---|
| 601 | ENDDO |
---|
| 602 | ENDDO |
---|
| 603 | pdtcloud(:,:)=pdtcloud(:,:)*cloudfrac(:,:) |
---|
| 604 | ENDIF |
---|
[1758] | 605 | #ifndef MESOSCALE |
---|
[1711] | 606 | c======================================================================= |
---|
| 607 | call WRITEDIAGFI(ngrid,"pdqice2","pdqcloudice apres microphysique" |
---|
| 608 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay,igcm_h2o_ice)) |
---|
| 609 | call WRITEDIAGFI(ngrid,"pdqvap2","pdqcloudvap apres microphysique" |
---|
| 610 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
| 611 | & igcm_h2o_vap)) |
---|
| 612 | call WRITEDIAGFI(ngrid,"pdqccn2","pdqcloudccn apres microphysique" |
---|
| 613 | & ,"kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
| 614 | & igcm_ccn_mass)) |
---|
| 615 | call WRITEDIAGFI(ngrid,"pdqccnN2","pdqcloudccnN apres |
---|
| 616 | & microphysique","nb/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
| 617 | & igcm_ccn_number)) |
---|
| 618 | call WRITEDIAGFI(ngrid,"pdqdust2", "pdqclouddust apres |
---|
| 619 | & microphysique","kg/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
| 620 | & igcm_dust_mass)) |
---|
| 621 | call WRITEDIAGFI(ngrid,"pdqdustN2", "pdqclouddustN apres |
---|
| 622 | & microphysique","nb/kg.s-1",3,pdqcloud(1:ngrid,1:nlay, |
---|
| 623 | & igcm_dust_number)) |
---|
[633] | 624 | c======================================================================= |
---|
[1758] | 625 | #endif |
---|
[633] | 626 | |
---|
[1711] | 627 | END SUBROUTINE watercloud |
---|
| 628 | |
---|
| 629 | END MODULE watercloud_mod |
---|