1 | SUBROUTINE watercloud(ngrid,nlay,ptimestep, |
---|
2 | & pplev,pplay,pdpsrf,pzlev,pzlay,pt,pdt, |
---|
3 | & pq,pdq,pdqcloud,pdqscloud,pdtcloud, |
---|
4 | & nq,tau,tauscaling,rdust,rice,nuice, |
---|
5 | & rsedcloud,rhocloud) |
---|
6 | ! to use 'getin' |
---|
7 | USE ioipsl_getincom |
---|
8 | IMPLICIT NONE |
---|
9 | |
---|
10 | c======================================================================= |
---|
11 | c Water-ice cloud formation |
---|
12 | c |
---|
13 | c Includes two different schemes: |
---|
14 | c - A simplified scheme (see simpleclouds.F) |
---|
15 | c - An improved microphysical scheme (see improvedclouds.F) |
---|
16 | c |
---|
17 | c There is a time loop specific to cloud formation and sedimentation |
---|
18 | c due to timescales smaller than the GCM integration timestep. |
---|
19 | c |
---|
20 | c Authors: Franck Montmessin, Francois Forget, Ehouarn Millour, |
---|
21 | c J.-B. Madeleine, Thomas Navarro |
---|
22 | c |
---|
23 | c 2004 - 2012 |
---|
24 | c======================================================================= |
---|
25 | |
---|
26 | c----------------------------------------------------------------------- |
---|
27 | c declarations: |
---|
28 | c ------------- |
---|
29 | |
---|
30 | #include "dimensions.h" |
---|
31 | #include "dimphys.h" |
---|
32 | #include "comcstfi.h" |
---|
33 | #include "callkeys.h" |
---|
34 | #include "tracer.h" |
---|
35 | #include "comgeomfi.h" |
---|
36 | #include "dimradmars.h" |
---|
37 | |
---|
38 | c Inputs: |
---|
39 | c ------ |
---|
40 | |
---|
41 | INTEGER ngrid,nlay |
---|
42 | INTEGER nq ! nombre de traceurs |
---|
43 | REAL ptimestep ! pas de temps physique (s) |
---|
44 | REAL pplev(ngrid,nlay+1) ! pression aux inter-couches (Pa) |
---|
45 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
46 | REAL pdpsrf(ngrid) ! tendence surf pressure |
---|
47 | REAL pzlev(ngrid,nlay+1) ! altitude at layer boundaries |
---|
48 | REAL pzlay(ngrid,nlay) ! altitude at the middle of the layers |
---|
49 | REAL pt(ngrid,nlay) ! temperature at the middle of the layers (K) |
---|
50 | REAL pdt(ngrid,nlay) ! tendence temperature des autres param. |
---|
51 | |
---|
52 | real pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
53 | real pdq(ngrid,nlay,nq) ! tendence avant condensation (kg/kg.s-1) |
---|
54 | |
---|
55 | REAL tau(ngridmx,naerkind) ! Column dust optical depth at each point |
---|
56 | REAL tauscaling(ngridmx) ! Convertion factor for dust amount |
---|
57 | real rdust(ngridmx,nlay) ! Dust geometric mean radius (m) |
---|
58 | |
---|
59 | c Outputs: |
---|
60 | c ------- |
---|
61 | |
---|
62 | real pdqcloud(ngrid,nlay,nq) ! tendence de la condensation H2O(kg/kg.s-1) |
---|
63 | real pdqscloud(ngrid,nq) ! flux en surface (kg.m-2.s-1) |
---|
64 | REAL pdtcloud(ngrid,nlay) ! tendence temperature due |
---|
65 | ! a la chaleur latente |
---|
66 | |
---|
67 | REAL rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
68 | ! (r_c in montmessin_2004) |
---|
69 | REAL nuice(ngrid,nlay) ! Estimated effective variance |
---|
70 | ! of the size distribution |
---|
71 | real rsedcloud(ngridmx,nlay) ! Cloud sedimentation radius |
---|
72 | real rhocloud(ngridmx,nlay) ! Cloud density (kg.m-3) |
---|
73 | |
---|
74 | c local: |
---|
75 | c ------ |
---|
76 | |
---|
77 | ! for sedimentation |
---|
78 | REAL zq(ngridmx,nlay,nqmx) ! local value of tracers |
---|
79 | real masse (ngridmx,nlay) ! Layer mass (kg.m-2) |
---|
80 | real epaisseur (ngridmx,nlay) ! Layer thickness (m) |
---|
81 | real wq(ngridmx,nlay+1) ! displaced tracer mass (kg.m-2) |
---|
82 | |
---|
83 | ! for ice radius computation |
---|
84 | REAL Mo,No |
---|
85 | REAl ccntyp |
---|
86 | real beta ! correction for the shape of the ice particles (cf. newsedim) |
---|
87 | save beta |
---|
88 | |
---|
89 | ! for time loop |
---|
90 | INTEGER microstep ! time subsampling step variable |
---|
91 | INTEGER imicro ! time subsampling for coupled water microphysics & sedimentation |
---|
92 | SAVE imicro |
---|
93 | REAL microtimestep ! integration timestep for coupled water microphysics & sedimentation |
---|
94 | SAVE microtimestep |
---|
95 | |
---|
96 | ! tendency given by clouds (inside the micro loop) |
---|
97 | REAL subpdqcloud(ngrid,nlay,nq) ! cf. pdqcloud |
---|
98 | REAL subpdtcloud(ngrid,nlay) ! cf. pdtcloud |
---|
99 | |
---|
100 | ! global tendency (clouds+sedim+physics) |
---|
101 | REAL subpdq(ngrid,nlay,nq) ! cf. pdqcloud |
---|
102 | REAL subpdt(ngrid,nlay) ! cf. pdtcloud |
---|
103 | |
---|
104 | REAL CBRT |
---|
105 | EXTERNAL CBRT |
---|
106 | |
---|
107 | |
---|
108 | INTEGER iq,ig,l |
---|
109 | LOGICAL,SAVE :: firstcall=.true. |
---|
110 | |
---|
111 | c ** un petit test de coherence |
---|
112 | c -------------------------- |
---|
113 | |
---|
114 | IF (firstcall) THEN |
---|
115 | IF(ngrid.NE.ngridmx) THEN |
---|
116 | PRINT*,'STOP dans watercloud' |
---|
117 | PRINT*,'probleme de dimensions :' |
---|
118 | PRINT*,'ngrid =',ngrid |
---|
119 | PRINT*,'ngridmx =',ngridmx |
---|
120 | STOP |
---|
121 | ENDIF |
---|
122 | |
---|
123 | if (nq.gt.nqmx) then |
---|
124 | write(*,*) 'stop in watercloud (nq.gt.nqmx)!' |
---|
125 | write(*,*) 'nq=',nq,' nqmx=',nqmx |
---|
126 | stop |
---|
127 | endif |
---|
128 | |
---|
129 | write(*,*) "watercloud: igcm_h2o_vap=",igcm_h2o_vap |
---|
130 | write(*,*) " igcm_h2o_ice=",igcm_h2o_ice |
---|
131 | |
---|
132 | |
---|
133 | write(*,*) "correction for the shape of the ice particles ?" |
---|
134 | beta=0.75 ! default value |
---|
135 | call getin("ice_shape",beta) |
---|
136 | write(*,*) " ice_shape = ",beta |
---|
137 | |
---|
138 | write(*,*) "time subsampling for microphysic ?" |
---|
139 | imicro = 1 |
---|
140 | call getin("imicro",imicro) |
---|
141 | write(*,*)"imicro = ",imicro |
---|
142 | |
---|
143 | microtimestep = ptimestep/float(imicro) |
---|
144 | write(*,*)"Physical timestep is",ptimestep |
---|
145 | write(*,*)"Microphysics timestep is",microtimestep |
---|
146 | |
---|
147 | firstcall=.false. |
---|
148 | ENDIF ! of IF (firstcall) |
---|
149 | |
---|
150 | c-----Initialization |
---|
151 | subpdq(1:ngrid,1:nlay,1:nq) = 0 |
---|
152 | subpdt(1:ngrid,1:nlay) = 0 |
---|
153 | pdqscloud(1:ngrid,1:nq) = 0 |
---|
154 | zq(1:ngrid,1:nlay,1:nq) = 0 |
---|
155 | |
---|
156 | c-----Computing the different layer properties for clouds sedimentation |
---|
157 | do l=1,nlay |
---|
158 | do ig=1, ngrid |
---|
159 | masse(ig,l)=(pplev(ig,l) - pplev(ig,l+1)) /g |
---|
160 | epaisseur(ig,l)= pzlev(ig,l+1) - pzlev(ig,l) |
---|
161 | enddo |
---|
162 | enddo |
---|
163 | |
---|
164 | c------------------------------------------------------------------ |
---|
165 | c Time subsampling for coupled microphysics and sedimentation |
---|
166 | c------------------------------------------------------------------ |
---|
167 | DO microstep=1,imicro |
---|
168 | |
---|
169 | c------------------------------------------------------------------- |
---|
170 | c 1. Tendencies: |
---|
171 | c------------------ |
---|
172 | |
---|
173 | |
---|
174 | c------ Temperature tendency subpdt |
---|
175 | ! Each microtimestep we give the cloud scheme a stepped entry subpdt instead of pdt |
---|
176 | ! If imicro=1 subpdt is the same as pdt |
---|
177 | DO l=1,nlay |
---|
178 | DO ig=1,ngrid |
---|
179 | subpdt(ig,l) = subpdt(ig,l) |
---|
180 | & + pdt(ig,l) ! At each micro timestep we add pdt in order to have a stepped entry |
---|
181 | ENDDO |
---|
182 | ENDDO |
---|
183 | c------ Traceurs tendencies subpdq |
---|
184 | c------ At each micro timestep we add pdq in order to have a stepped entry |
---|
185 | IF (microphys) THEN |
---|
186 | DO l=1,nlay |
---|
187 | DO ig=1,ngrid |
---|
188 | subpdq(ig,l,igcm_dust_mass) = |
---|
189 | & subpdq(ig,l,igcm_dust_mass) |
---|
190 | & + pdq(ig,l,igcm_dust_mass) |
---|
191 | subpdq(ig,l,igcm_dust_number) = |
---|
192 | & subpdq(ig,l,igcm_dust_number) |
---|
193 | & + pdq(ig,l,igcm_dust_number) |
---|
194 | subpdq(ig,l,igcm_ccn_mass) = |
---|
195 | & subpdq(ig,l,igcm_ccn_mass) |
---|
196 | & + pdq(ig,l,igcm_ccn_mass) |
---|
197 | subpdq(ig,l,igcm_ccn_number) = |
---|
198 | & subpdq(ig,l,igcm_ccn_number) |
---|
199 | & + pdq(ig,l,igcm_ccn_number) |
---|
200 | ENDDO |
---|
201 | ENDDO |
---|
202 | ENDIF |
---|
203 | DO l=1,nlay |
---|
204 | DO ig=1,ngrid |
---|
205 | subpdq(ig,l,igcm_h2o_ice) = |
---|
206 | & subpdq(ig,l,igcm_h2o_ice) |
---|
207 | & + pdq(ig,l,igcm_h2o_ice) |
---|
208 | subpdq(ig,l,igcm_h2o_vap) = |
---|
209 | & subpdq(ig,l,igcm_h2o_vap) |
---|
210 | & + pdq(ig,l,igcm_h2o_vap) |
---|
211 | ENDDO |
---|
212 | ENDDO |
---|
213 | |
---|
214 | |
---|
215 | c------------------------------------------------------------------- |
---|
216 | c 2. Main call to the different cloud schemes: |
---|
217 | c------------------------------------------------ |
---|
218 | IF (microphys) THEN |
---|
219 | CALL improvedclouds(ngrid,nlay,microtimestep, |
---|
220 | & pplev,pplay,pzlev,pt,subpdt, |
---|
221 | & pq,subpdq,subpdqcloud,subpdtcloud, |
---|
222 | & nq,tauscaling,rdust,rice,nuice, |
---|
223 | & rsedcloud,rhocloud) |
---|
224 | ELSE |
---|
225 | CALL simpleclouds(ngrid,nlay,microtimestep, |
---|
226 | & pplev,pplay,pzlev,pzlay,pt,subpdt, |
---|
227 | & pq,subpdq,subpdqcloud,subpdtcloud, |
---|
228 | & nq,tau,rice,nuice,rsedcloud) |
---|
229 | ENDIF |
---|
230 | |
---|
231 | c-------------------------------------------------------------------- |
---|
232 | c 3. CCN & ice sedimentation: |
---|
233 | c-------------------------------- |
---|
234 | ! Sedimentation is done here for water ice and its CCN only |
---|
235 | ! callsedim in physics is done for dust (and others species if any) |
---|
236 | |
---|
237 | DO l=1,nlay |
---|
238 | DO ig=1,ngrid |
---|
239 | subpdt(ig,l) = |
---|
240 | & subpdt(ig,l) + subpdtcloud(ig,l) |
---|
241 | ENDDO |
---|
242 | ENDDO |
---|
243 | |
---|
244 | c------- water ice update before sedimentation (radius is done in the cloud scheme routine) |
---|
245 | DO l=1,nlay |
---|
246 | DO ig=1, ngrid |
---|
247 | zq(ig,l,igcm_h2o_ice)= max(1e-30, |
---|
248 | & pq(ig,l,igcm_h2o_ice) + (subpdq(ig,l,igcm_h2o_ice) |
---|
249 | & + subpdqcloud(ig,l,igcm_h2o_ice))*microtimestep) |
---|
250 | ! zq(ig,l,igcm_h2o_vap)= max(1e-30, |
---|
251 | ! & pq(ig,l,igcm_h2o_vap) + (subpdq(ig,l,igcm_h2o_vap) |
---|
252 | ! & + subpdqcloud(ig,l,igcm_h2o_vap))*microtimestep) |
---|
253 | ENDDO |
---|
254 | ENDDO |
---|
255 | |
---|
256 | |
---|
257 | c------- CCN update before sedimentation |
---|
258 | IF (microphys) THEN |
---|
259 | DO l=1,nlay |
---|
260 | DO ig=1,ngrid |
---|
261 | zq(ig,l,igcm_ccn_number)= |
---|
262 | & pq(ig,l,igcm_ccn_number) + (subpdq(ig,l,igcm_ccn_number) |
---|
263 | & + subpdqcloud(ig,l,igcm_ccn_number))*microtimestep |
---|
264 | zq(ig,l,igcm_ccn_number)= max(1e-30, |
---|
265 | & zq(ig,l,igcm_ccn_number))!*tauscaling(ig)) ! OU pas tauscaling ? |
---|
266 | zq(ig,l,igcm_ccn_mass)= |
---|
267 | & pq(ig,l,igcm_ccn_mass) + (subpdq(ig,l,igcm_ccn_mass) |
---|
268 | & + subpdqcloud(ig,l,igcm_ccn_mass))*microtimestep |
---|
269 | zq(ig,l,igcm_ccn_mass)=max(1e-30, |
---|
270 | & zq(ig,l,igcm_ccn_mass))!*tauscaling(ig)) ! OU pas tauscaling ? |
---|
271 | ENDDO |
---|
272 | ENDDO |
---|
273 | ENDIF |
---|
274 | |
---|
275 | |
---|
276 | |
---|
277 | IF (microphys) THEN |
---|
278 | |
---|
279 | c------- CCN number sedimentation |
---|
280 | call newsedim(ngrid,nlay,ngrid*nlay,ngrid*nlay, |
---|
281 | & microtimestep,pplev,masse,epaisseur,pt,rsedcloud, |
---|
282 | & rhocloud,zq(1,1,igcm_ccn_number),wq,beta) |
---|
283 | do ig=1,ngrid |
---|
284 | ! matters if one would like to know ccn surface deposition |
---|
285 | pdqscloud(ig,igcm_ccn_number)= |
---|
286 | & pdqscloud(ig,igcm_ccn_number) + wq(ig,1) |
---|
287 | enddo |
---|
288 | |
---|
289 | c------- CCN mass sedimentation |
---|
290 | call newsedim(ngrid,nlay,ngrid*nlay,ngrid*nlay, |
---|
291 | & microtimestep,pplev,masse,epaisseur,pt,rsedcloud, |
---|
292 | & rhocloud,zq(1,1,igcm_ccn_mass),wq,beta) |
---|
293 | do ig=1,ngrid |
---|
294 | ! matters if one would like to know ccn surface deposition |
---|
295 | pdqscloud(ig,igcm_ccn_mass)= |
---|
296 | & pdqscloud(ig,igcm_ccn_mass) + wq(ig,1) |
---|
297 | enddo |
---|
298 | |
---|
299 | c------- Water ice sedimentation -- improved microphys |
---|
300 | call newsedim(ngrid,nlay,ngrid*nlay,ngrid*nlay, |
---|
301 | & microtimestep,pplev,masse,epaisseur,pt,rsedcloud, |
---|
302 | & rhocloud,zq(1,1,igcm_h2o_ice),wq,beta) |
---|
303 | ELSE |
---|
304 | |
---|
305 | c------- Water ice sedimentation -- simple microphys |
---|
306 | call newsedim(ngrid,nlay,ngrid*nlay,1, |
---|
307 | & microtimestep,pplev,masse,epaisseur,pt,rsedcloud, |
---|
308 | & rho_q(igcm_h2o_ice),zq(1,1,igcm_h2o_ice),wq,beta) |
---|
309 | |
---|
310 | ENDIF |
---|
311 | |
---|
312 | |
---|
313 | c------- Surface ice tendency update |
---|
314 | DO ig=1,ngrid |
---|
315 | pdqscloud(ig,igcm_h2o_ice)= |
---|
316 | & pdqscloud(ig,igcm_h2o_ice) + wq(ig,1) |
---|
317 | ENDDO |
---|
318 | |
---|
319 | |
---|
320 | c------------------------------------------------------------------- |
---|
321 | c 5. Updating tendencies after sedimentation: |
---|
322 | c----------------------------------------------- |
---|
323 | |
---|
324 | DO l=1,nlay |
---|
325 | DO ig=1,ngrid |
---|
326 | |
---|
327 | subpdq(ig,l,igcm_h2o_ice) = |
---|
328 | & (zq(ig,l,igcm_h2o_ice) - pq(ig,l,igcm_h2o_ice)) |
---|
329 | & /microtimestep |
---|
330 | |
---|
331 | |
---|
332 | subpdq(ig,l,igcm_h2o_vap)=subpdq(ig,l,igcm_h2o_vap) |
---|
333 | & +subpdqcloud(ig,l,igcm_h2o_vap) |
---|
334 | |
---|
335 | ENDDO |
---|
336 | ENDDO |
---|
337 | |
---|
338 | |
---|
339 | IF (microphys) then |
---|
340 | DO l=1,nlay |
---|
341 | DO ig=1,ngrid |
---|
342 | subpdq(ig,l,igcm_ccn_number)=(zq(ig,l,igcm_ccn_number) |
---|
343 | & -pq(ig,l,igcm_ccn_number))/microtimestep |
---|
344 | subpdq(ig,l,igcm_ccn_mass)=(zq(ig,l,igcm_ccn_mass) |
---|
345 | & -pq(ig,l,igcm_ccn_mass))/microtimestep |
---|
346 | ENDDO |
---|
347 | ENDDO |
---|
348 | ENDIF |
---|
349 | |
---|
350 | |
---|
351 | |
---|
352 | ENDDO ! of DO microstep=1,imicro |
---|
353 | |
---|
354 | c------------------------------------------------------------------- |
---|
355 | c 6. Compute final tendencies after time loop: |
---|
356 | c------------------------------------------------ |
---|
357 | |
---|
358 | c------ Whole temperature tendency pdtcloud |
---|
359 | DO l=1,nlay |
---|
360 | DO ig=1,ngrid |
---|
361 | pdtcloud(ig,l) = |
---|
362 | & subpdt(ig,l)/imicro-pdt(ig,l) |
---|
363 | ENDDO |
---|
364 | ENDDO |
---|
365 | c------ Traceurs tendencies pdqcloud |
---|
366 | DO iq=1,nq |
---|
367 | DO l=1,nlay |
---|
368 | DO ig=1,ngrid |
---|
369 | pdqcloud(ig,l,iq) = subpdq(ig,l,iq)/imicro |
---|
370 | & - pdq(ig,l,iq) |
---|
371 | ENDDO |
---|
372 | ENDDO |
---|
373 | ENDDO |
---|
374 | c------ Traceurs surface tendencies pdqscloud |
---|
375 | DO iq=1,nq |
---|
376 | DO ig=1,ngrid |
---|
377 | pdqscloud(ig,iq) = |
---|
378 | & pdqscloud(ig,iq)/ptimestep |
---|
379 | ENDDO |
---|
380 | ENDDO |
---|
381 | |
---|
382 | |
---|
383 | |
---|
384 | c------Update the ice particle size "rice" for output or photochemistry. |
---|
385 | c------It is not used again in the water cycle. |
---|
386 | IF(scavenging) THEN |
---|
387 | DO l=1, nlay |
---|
388 | DO ig=1,ngrid |
---|
389 | Mo = pq(ig,l,igcm_h2o_ice) |
---|
390 | & + pdqcloud(ig,l,igcm_h2o_ice)*ptimestep |
---|
391 | & + (pq(ig,l,igcm_ccn_mass) |
---|
392 | & + pdqcloud(ig,l,igcm_ccn_mass)*ptimestep) |
---|
393 | & *tauscaling(ig) + 1.e-30 |
---|
394 | No = (pq(ig,l,igcm_ccn_number) |
---|
395 | & + pdqcloud(ig,l,igcm_ccn_number)*ptimestep) |
---|
396 | & *tauscaling(ig) + 1.e-30 |
---|
397 | rhocloud(ig,l) = (pq(ig,l,igcm_h2o_ice) + |
---|
398 | & pdqcloud(ig,l,igcm_h2o_ice)*ptimestep) |
---|
399 | & / Mo * rho_ice |
---|
400 | & + (pq(ig,l,igcm_ccn_mass) |
---|
401 | & + pdqcloud(ig,l,igcm_ccn_mass)*ptimestep) |
---|
402 | & *tauscaling(ig)/ Mo * rho_dust |
---|
403 | rhocloud(ig,l) = min(max(rhocloud(ig,l),rho_ice),rho_dust) |
---|
404 | rice(ig,l)=(Mo / No * 0.75 / pi / rhocloud(ig,l))**(1./3.) |
---|
405 | if ((Mo.lt.1.e-15) .or. (No.le.50)) rice(ig,l) = 1.e-8 |
---|
406 | ENDDO |
---|
407 | ENDDO |
---|
408 | ELSE |
---|
409 | DO l=1,nlay |
---|
410 | DO ig=1,ngrid |
---|
411 | ccntyp = |
---|
412 | & 1.3e+8*max(tau(ig,1),0.001)/0.1*exp(-pzlay(ig,l)/10000.) |
---|
413 | ccntyp = ccntyp /ccn_factor |
---|
414 | rice(ig,l)=max( CBRT ( ((pq(ig,l,igcm_h2o_ice) |
---|
415 | & + pdqcloud(ig,l,igcm_h2o_ice)*ptimestep)/rho_ice |
---|
416 | & +ccntyp*(4./3.)*pi*rdust(ig,l)**3.) |
---|
417 | & /(ccntyp*4./3.*pi) ), rdust(ig,l)) |
---|
418 | ENDDO |
---|
419 | ENDDO |
---|
420 | ENDIF ! of IF(scavenging) |
---|
421 | |
---|
422 | !-------------------------------------------------------------- |
---|
423 | !-------------------------------------------------------------- |
---|
424 | |
---|
425 | |
---|
426 | c A correction if a lot of subliming CO2 fills the 1st layer FF04/2005 |
---|
427 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
428 | c Then that should not affect the ice particle radius |
---|
429 | do ig=1,ngridmx |
---|
430 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,2)))then |
---|
431 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,3))) |
---|
432 | & rice(ig,2)=rice(ig,3) |
---|
433 | rice(ig,1)=rice(ig,2) |
---|
434 | end if |
---|
435 | end do |
---|
436 | |
---|
437 | c======================================================================= |
---|
438 | |
---|
439 | !!!!!!!!!! FOR PHOTOCHEMISTRY, REIMPLEMENT output of surfdust/surfice |
---|
440 | !! if (photochem) then |
---|
441 | !!c computation of dust and ice surface area (micron2/cm3) |
---|
442 | !!c for heterogeneous chemistry |
---|
443 | !! |
---|
444 | !! do l = 1,nlay |
---|
445 | !! do ig = 1,ngrid |
---|
446 | !!c |
---|
447 | !!c npart: number density of ccn in #/cm3 |
---|
448 | !!c |
---|
449 | !! npart(ig,l) = 1.e-6*ccn(ig,l) |
---|
450 | !! $ *masse(ig,l)/epaisseur(ig,l) |
---|
451 | !!c |
---|
452 | !!c dust and ice surface area |
---|
453 | !!c |
---|
454 | !! surfdust(ig,l) = npart(ig,l)*4.*pi*1.e12*rdust(ig,l)**2 |
---|
455 | !!c |
---|
456 | !! if (rice(ig,l) .ge. rdust(ig,l)) then |
---|
457 | !! surfice(ig,l) = npart(ig,l)*4.*pi*1.e12*rice(ig,l)**2 |
---|
458 | !! surfdust(ig,l) = 0. |
---|
459 | !! else |
---|
460 | !! surfice(ig,l) = 0. |
---|
461 | !! end if |
---|
462 | !! end do ! of do ig=1,ngrid |
---|
463 | !! end do ! of do l=1,nlay |
---|
464 | !! end if ! of photochem |
---|
465 | |
---|
466 | RETURN |
---|
467 | END |
---|
468 | |
---|