1 | SUBROUTINE watercloud(ngrid,nlay,ptimestep, |
---|
2 | & pplev,pplay,pdpsrf,pzlay,pt,pdt, |
---|
3 | & pq,pdq,pdqcloud,pdtcloud, |
---|
4 | & nq,tau,tauscaling,rdust,rice,nuice, |
---|
5 | & rsedcloud,rhocloud) |
---|
6 | ! to use 'getin' |
---|
7 | USE ioipsl_getincom |
---|
8 | USE updaterad |
---|
9 | USE comcstfi_h |
---|
10 | use tracer_mod, only: nqmx, igcm_h2o_vap, igcm_h2o_ice, |
---|
11 | & igcm_dust_mass, igcm_dust_number, |
---|
12 | & igcm_ccn_mass, igcm_ccn_number, |
---|
13 | & rho_dust, nuice_sed, nuice_ref |
---|
14 | use dimradmars_mod, only: naerkind |
---|
15 | IMPLICIT NONE |
---|
16 | |
---|
17 | |
---|
18 | c======================================================================= |
---|
19 | c Water-ice cloud formation |
---|
20 | c |
---|
21 | c Includes two different schemes: |
---|
22 | c - A simplified scheme (see simpleclouds.F) |
---|
23 | c - An improved microphysical scheme (see improvedclouds.F) |
---|
24 | c |
---|
25 | c There is a time loop specific to cloud formation |
---|
26 | c due to timescales smaller than the GCM integration timestep. |
---|
27 | c |
---|
28 | c Authors: Franck Montmessin, Francois Forget, Ehouarn Millour, |
---|
29 | c J.-B. Madeleine, Thomas Navarro |
---|
30 | c |
---|
31 | c 2004 - 2012 |
---|
32 | c======================================================================= |
---|
33 | |
---|
34 | c----------------------------------------------------------------------- |
---|
35 | c declarations: |
---|
36 | c ------------- |
---|
37 | |
---|
38 | #include "callkeys.h" |
---|
39 | |
---|
40 | c Inputs: |
---|
41 | c ------ |
---|
42 | |
---|
43 | INTEGER ngrid,nlay |
---|
44 | INTEGER nq ! nombre de traceurs |
---|
45 | REAL ptimestep ! pas de temps physique (s) |
---|
46 | REAL pplev(ngrid,nlay+1) ! pression aux inter-couches (Pa) |
---|
47 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
48 | REAL pdpsrf(ngrid) ! tendence surf pressure |
---|
49 | REAL pzlay(ngrid,nlay) ! altitude at the middle of the layers |
---|
50 | REAL pt(ngrid,nlay) ! temperature at the middle of the layers (K) |
---|
51 | REAL pdt(ngrid,nlay) ! tendence temperature des autres param. |
---|
52 | |
---|
53 | real pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
54 | real pdq(ngrid,nlay,nq) ! tendence avant condensation (kg/kg.s-1) |
---|
55 | |
---|
56 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
57 | REAL tauscaling(ngrid) ! Convertion factor for dust amount |
---|
58 | real rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
59 | |
---|
60 | c Outputs: |
---|
61 | c ------- |
---|
62 | |
---|
63 | real pdqcloud(ngrid,nlay,nq) ! tendence de la condensation H2O(kg/kg.s-1) |
---|
64 | REAL pdtcloud(ngrid,nlay) ! tendence temperature due |
---|
65 | ! a la chaleur latente |
---|
66 | |
---|
67 | REAL rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
68 | ! (r_c in montmessin_2004) |
---|
69 | REAL nuice(ngrid,nlay) ! Estimated effective variance |
---|
70 | ! of the size distribution |
---|
71 | real rsedcloud(ngrid,nlay) ! Cloud sedimentation radius |
---|
72 | real rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
73 | |
---|
74 | c local: |
---|
75 | c ------ |
---|
76 | |
---|
77 | ! for ice radius computation |
---|
78 | REAL Mo,No |
---|
79 | REAl ccntyp |
---|
80 | |
---|
81 | ! for time loop |
---|
82 | INTEGER microstep ! time subsampling step variable |
---|
83 | INTEGER imicro ! time subsampling for coupled water microphysics & sedimentation |
---|
84 | SAVE imicro |
---|
85 | REAL microtimestep ! integration timestep for coupled water microphysics & sedimentation |
---|
86 | SAVE microtimestep |
---|
87 | |
---|
88 | ! tendency given by clouds (inside the micro loop) |
---|
89 | REAL subpdqcloud(ngrid,nlay,nq) ! cf. pdqcloud |
---|
90 | REAL subpdtcloud(ngrid,nlay) ! cf. pdtcloud |
---|
91 | |
---|
92 | ! global tendency (clouds+physics) |
---|
93 | REAL subpdq(ngrid,nlay,nq) ! cf. pdqcloud |
---|
94 | REAL subpdt(ngrid,nlay) ! cf. pdtcloud |
---|
95 | |
---|
96 | |
---|
97 | INTEGER iq,ig,l |
---|
98 | LOGICAL,SAVE :: firstcall=.true. |
---|
99 | |
---|
100 | c ** un petit test de coherence |
---|
101 | c -------------------------- |
---|
102 | |
---|
103 | IF (firstcall) THEN |
---|
104 | |
---|
105 | if (nq.gt.nqmx) then |
---|
106 | write(*,*) 'stop in watercloud (nq.gt.nqmx)!' |
---|
107 | write(*,*) 'nq=',nq,' nqmx=',nqmx |
---|
108 | stop |
---|
109 | endif |
---|
110 | |
---|
111 | write(*,*) "watercloud: igcm_h2o_vap=",igcm_h2o_vap |
---|
112 | write(*,*) " igcm_h2o_ice=",igcm_h2o_ice |
---|
113 | |
---|
114 | write(*,*) "time subsampling for microphysic ?" |
---|
115 | #ifdef MESOSCALE |
---|
116 | imicro = 2 |
---|
117 | #else |
---|
118 | imicro = 30 |
---|
119 | #endif |
---|
120 | call getin("imicro",imicro) |
---|
121 | write(*,*)"imicro = ",imicro |
---|
122 | |
---|
123 | microtimestep = ptimestep/real(imicro) |
---|
124 | write(*,*)"Physical timestep is",ptimestep |
---|
125 | write(*,*)"Microphysics timestep is",microtimestep |
---|
126 | |
---|
127 | firstcall=.false. |
---|
128 | ENDIF ! of IF (firstcall) |
---|
129 | |
---|
130 | c-----Initialization |
---|
131 | subpdq(1:ngrid,1:nlay,1:nq) = 0 |
---|
132 | subpdt(1:ngrid,1:nlay) = 0 |
---|
133 | |
---|
134 | ! default value if no ice |
---|
135 | rhocloud(1:ngrid,1:nlay) = rho_dust |
---|
136 | |
---|
137 | |
---|
138 | |
---|
139 | c------------------------------------------------------------------ |
---|
140 | c Time subsampling for microphysics |
---|
141 | c------------------------------------------------------------------ |
---|
142 | DO microstep=1,imicro |
---|
143 | |
---|
144 | c------------------------------------------------------------------- |
---|
145 | c 1. Tendencies: |
---|
146 | c------------------ |
---|
147 | |
---|
148 | |
---|
149 | c------ Temperature tendency subpdt |
---|
150 | ! Each microtimestep we give the cloud scheme a stepped entry subpdt instead of pdt |
---|
151 | ! If imicro=1 subpdt is the same as pdt |
---|
152 | DO l=1,nlay |
---|
153 | DO ig=1,ngrid |
---|
154 | subpdt(ig,l) = subpdt(ig,l) |
---|
155 | & + pdt(ig,l) ! At each micro timestep we add pdt in order to have a stepped entry |
---|
156 | ENDDO |
---|
157 | ENDDO |
---|
158 | c------ Tracers tendencies subpdq |
---|
159 | c------ At each micro timestep we add pdq in order to have a stepped entry |
---|
160 | IF (microphys) THEN |
---|
161 | DO l=1,nlay |
---|
162 | DO ig=1,ngrid |
---|
163 | subpdq(ig,l,igcm_dust_mass) = |
---|
164 | & subpdq(ig,l,igcm_dust_mass) |
---|
165 | & + pdq(ig,l,igcm_dust_mass) |
---|
166 | subpdq(ig,l,igcm_dust_number) = |
---|
167 | & subpdq(ig,l,igcm_dust_number) |
---|
168 | & + pdq(ig,l,igcm_dust_number) |
---|
169 | subpdq(ig,l,igcm_ccn_mass) = |
---|
170 | & subpdq(ig,l,igcm_ccn_mass) |
---|
171 | & + pdq(ig,l,igcm_ccn_mass) |
---|
172 | subpdq(ig,l,igcm_ccn_number) = |
---|
173 | & subpdq(ig,l,igcm_ccn_number) |
---|
174 | & + pdq(ig,l,igcm_ccn_number) |
---|
175 | ENDDO |
---|
176 | ENDDO |
---|
177 | ENDIF |
---|
178 | DO l=1,nlay |
---|
179 | DO ig=1,ngrid |
---|
180 | subpdq(ig,l,igcm_h2o_ice) = |
---|
181 | & subpdq(ig,l,igcm_h2o_ice) |
---|
182 | & + pdq(ig,l,igcm_h2o_ice) |
---|
183 | subpdq(ig,l,igcm_h2o_vap) = |
---|
184 | & subpdq(ig,l,igcm_h2o_vap) |
---|
185 | & + pdq(ig,l,igcm_h2o_vap) |
---|
186 | ENDDO |
---|
187 | ENDDO |
---|
188 | |
---|
189 | |
---|
190 | c------------------------------------------------------------------- |
---|
191 | c 2. Main call to the different cloud schemes: |
---|
192 | c------------------------------------------------ |
---|
193 | IF (microphys) THEN |
---|
194 | CALL improvedclouds(ngrid,nlay,microtimestep, |
---|
195 | & pplay,pt,subpdt, |
---|
196 | & pq,subpdq,subpdqcloud,subpdtcloud, |
---|
197 | & nq,tauscaling) |
---|
198 | |
---|
199 | ELSE |
---|
200 | CALL simpleclouds(ngrid,nlay,microtimestep, |
---|
201 | & pplay,pzlay,pt,subpdt, |
---|
202 | & pq,subpdq,subpdqcloud,subpdtcloud, |
---|
203 | & nq,tau,rice) |
---|
204 | ENDIF |
---|
205 | |
---|
206 | |
---|
207 | c------------------------------------------------------------------- |
---|
208 | c 3. Updating tendencies after cloud scheme: |
---|
209 | c----------------------------------------------- |
---|
210 | |
---|
211 | IF (microphys) THEN |
---|
212 | DO l=1,nlay |
---|
213 | DO ig=1,ngrid |
---|
214 | subpdq(ig,l,igcm_dust_mass) = |
---|
215 | & subpdq(ig,l,igcm_dust_mass) |
---|
216 | & + subpdqcloud(ig,l,igcm_dust_mass) |
---|
217 | subpdq(ig,l,igcm_dust_number) = |
---|
218 | & subpdq(ig,l,igcm_dust_number) |
---|
219 | & + subpdqcloud(ig,l,igcm_dust_number) |
---|
220 | subpdq(ig,l,igcm_ccn_mass) = |
---|
221 | & subpdq(ig,l,igcm_ccn_mass) |
---|
222 | & + subpdqcloud(ig,l,igcm_ccn_mass) |
---|
223 | subpdq(ig,l,igcm_ccn_number) = |
---|
224 | & subpdq(ig,l,igcm_ccn_number) |
---|
225 | & + subpdqcloud(ig,l,igcm_ccn_number) |
---|
226 | ENDDO |
---|
227 | ENDDO |
---|
228 | ENDIF |
---|
229 | DO l=1,nlay |
---|
230 | DO ig=1,ngrid |
---|
231 | subpdq(ig,l,igcm_h2o_ice) = |
---|
232 | & subpdq(ig,l,igcm_h2o_ice) |
---|
233 | & + subpdqcloud(ig,l,igcm_h2o_ice) |
---|
234 | subpdq(ig,l,igcm_h2o_vap) = |
---|
235 | & subpdq(ig,l,igcm_h2o_vap) |
---|
236 | & + subpdqcloud(ig,l,igcm_h2o_vap) |
---|
237 | ENDDO |
---|
238 | ENDDO |
---|
239 | |
---|
240 | IF (activice) THEN |
---|
241 | DO l=1,nlay |
---|
242 | DO ig=1,ngrid |
---|
243 | subpdt(ig,l) = |
---|
244 | & subpdt(ig,l) + subpdtcloud(ig,l) |
---|
245 | ENDDO |
---|
246 | ENDDO |
---|
247 | ENDIF |
---|
248 | |
---|
249 | |
---|
250 | ENDDO ! of DO microstep=1,imicro |
---|
251 | |
---|
252 | c------------------------------------------------------------------- |
---|
253 | c 6. Compute final tendencies after time loop: |
---|
254 | c------------------------------------------------ |
---|
255 | |
---|
256 | c------ Temperature tendency pdtcloud |
---|
257 | DO l=1,nlay |
---|
258 | DO ig=1,ngrid |
---|
259 | pdtcloud(ig,l) = |
---|
260 | & subpdt(ig,l)/real(imicro)-pdt(ig,l) |
---|
261 | ENDDO |
---|
262 | ENDDO |
---|
263 | |
---|
264 | c------ Tracers tendencies pdqcloud |
---|
265 | DO l=1,nlay |
---|
266 | DO ig=1,ngrid |
---|
267 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
268 | & subpdq(ig,l,igcm_h2o_ice)/real(imicro) |
---|
269 | & - pdq(ig,l,igcm_h2o_ice) |
---|
270 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
271 | & subpdq(ig,l,igcm_h2o_vap)/real(imicro) |
---|
272 | & - pdq(ig,l,igcm_h2o_vap) |
---|
273 | ENDDO |
---|
274 | ENDDO |
---|
275 | |
---|
276 | IF(microphys) THEN |
---|
277 | DO l=1,nlay |
---|
278 | DO ig=1,ngrid |
---|
279 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
280 | & subpdq(ig,l,igcm_ccn_mass)/real(imicro) |
---|
281 | & - pdq(ig,l,igcm_ccn_mass) |
---|
282 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
283 | & subpdq(ig,l,igcm_ccn_number)/real(imicro) |
---|
284 | & - pdq(ig,l,igcm_ccn_number) |
---|
285 | ENDDO |
---|
286 | ENDDO |
---|
287 | ENDIF |
---|
288 | |
---|
289 | IF(scavenging) THEN |
---|
290 | DO l=1,nlay |
---|
291 | DO ig=1,ngrid |
---|
292 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
293 | & subpdq(ig,l,igcm_dust_mass)/real(imicro) |
---|
294 | & - pdq(ig,l,igcm_dust_mass) |
---|
295 | pdqcloud(ig,l,igcm_dust_number) = |
---|
296 | & subpdq(ig,l,igcm_dust_number)/real(imicro) |
---|
297 | & - pdq(ig,l,igcm_dust_number) |
---|
298 | ENDDO |
---|
299 | ENDDO |
---|
300 | ENDIF |
---|
301 | |
---|
302 | c------- Due to stepped entry, other processes tendencies can add up to negative values |
---|
303 | c------- Therefore, enforce positive values and conserve mass |
---|
304 | |
---|
305 | |
---|
306 | IF(microphys) THEN |
---|
307 | DO l=1,nlay |
---|
308 | DO ig=1,ngrid |
---|
309 | IF ((pq(ig,l,igcm_ccn_number) + |
---|
310 | & ptimestep* (pdq(ig,l,igcm_ccn_number) + |
---|
311 | & pdqcloud(ig,l,igcm_ccn_number)) .le. 1.) |
---|
312 | & .or. (pq(ig,l,igcm_ccn_mass) + |
---|
313 | & ptimestep* (pdq(ig,l,igcm_ccn_mass) + |
---|
314 | & pdqcloud(ig,l,igcm_ccn_mass)) .le. 1.e-20)) THEN |
---|
315 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
316 | & - pq(ig,l,igcm_ccn_number)/ptimestep |
---|
317 | & - pdq(ig,l,igcm_ccn_number) + 1. |
---|
318 | pdqcloud(ig,l,igcm_dust_number) = |
---|
319 | & -pdqcloud(ig,l,igcm_ccn_number) |
---|
320 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
321 | & - pq(ig,l,igcm_ccn_mass)/ptimestep |
---|
322 | & - pdq(ig,l,igcm_ccn_mass) + 1.e-20 |
---|
323 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
324 | & -pdqcloud(ig,l,igcm_ccn_mass) |
---|
325 | ENDIF |
---|
326 | ENDDO |
---|
327 | ENDDO |
---|
328 | ENDIF |
---|
329 | |
---|
330 | IF(scavenging) THEN |
---|
331 | DO l=1,nlay |
---|
332 | DO ig=1,ngrid |
---|
333 | IF ((pq(ig,l,igcm_dust_number) + |
---|
334 | & ptimestep* (pdq(ig,l,igcm_dust_number) + |
---|
335 | & pdqcloud(ig,l,igcm_dust_number)) .le. 1.) |
---|
336 | & .or. (pq(ig,l,igcm_dust_mass) + |
---|
337 | & ptimestep* (pdq(ig,l,igcm_dust_mass) + |
---|
338 | & pdqcloud(ig,l,igcm_dust_mass)) .le. 1.e-20)) THEN |
---|
339 | pdqcloud(ig,l,igcm_dust_number) = |
---|
340 | & - pq(ig,l,igcm_dust_number)/ptimestep |
---|
341 | & - pdq(ig,l,igcm_dust_number) + 1. |
---|
342 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
343 | & -pdqcloud(ig,l,igcm_dust_number) |
---|
344 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
345 | & - pq(ig,l,igcm_dust_mass)/ptimestep |
---|
346 | & - pdq(ig,l,igcm_dust_mass) + 1.e-20 |
---|
347 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
348 | & -pdqcloud(ig,l,igcm_dust_mass) |
---|
349 | ENDIF |
---|
350 | ENDDO |
---|
351 | ENDDO |
---|
352 | ENDIF |
---|
353 | |
---|
354 | DO l=1,nlay |
---|
355 | DO ig=1,ngrid |
---|
356 | IF (pq(ig,l,igcm_h2o_ice) + ptimestep* |
---|
357 | & (pdq(ig,l,igcm_h2o_ice) + pdqcloud(ig,l,igcm_h2o_ice)) |
---|
358 | & .le. 1.e-8) THEN |
---|
359 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
360 | & - pq(ig,l,igcm_h2o_ice)/ptimestep - pdq(ig,l,igcm_h2o_ice) |
---|
361 | pdqcloud(ig,l,igcm_h2o_vap) = -pdqcloud(ig,l,igcm_h2o_ice) |
---|
362 | ENDIF |
---|
363 | IF (pq(ig,l,igcm_h2o_vap) + ptimestep* |
---|
364 | & (pdq(ig,l,igcm_h2o_vap) + pdqcloud(ig,l,igcm_h2o_vap)) |
---|
365 | & .le. 1.e-8) THEN |
---|
366 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
367 | & - pq(ig,l,igcm_h2o_vap)/ptimestep - pdq(ig,l,igcm_h2o_vap) |
---|
368 | pdqcloud(ig,l,igcm_h2o_ice) = -pdqcloud(ig,l,igcm_h2o_vap) |
---|
369 | ENDIF |
---|
370 | ENDDO |
---|
371 | ENDDO |
---|
372 | |
---|
373 | |
---|
374 | c------Update the ice and dust particle size "rice" for output or photochemistry |
---|
375 | c------Only rsedcloud is used for the water cycle |
---|
376 | |
---|
377 | IF(scavenging) THEN |
---|
378 | DO l=1, nlay |
---|
379 | DO ig=1,ngrid |
---|
380 | |
---|
381 | call updaterdust( |
---|
382 | & pq(ig,l,igcm_dust_mass) + ! dust mass |
---|
383 | & (pdq(ig,l,igcm_dust_mass) + ! dust mass |
---|
384 | & pdqcloud(ig,l,igcm_dust_mass))*ptimestep, ! dust mass |
---|
385 | & pq(ig,l,igcm_dust_number) + ! dust number |
---|
386 | & (pdq(ig,l,igcm_dust_number) + ! dust number |
---|
387 | & pdqcloud(ig,l,igcm_dust_number))*ptimestep, ! dust number |
---|
388 | & rdust(ig,l)) |
---|
389 | |
---|
390 | ENDDO |
---|
391 | ENDDO |
---|
392 | ENDIF |
---|
393 | |
---|
394 | |
---|
395 | IF(microphys) THEN |
---|
396 | |
---|
397 | DO l=1, nlay |
---|
398 | DO ig=1,ngrid |
---|
399 | |
---|
400 | call updaterice_micro( |
---|
401 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
402 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
403 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
404 | & pq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
405 | & (pdq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
406 | & pdqcloud(ig,l,igcm_ccn_mass))*ptimestep, ! ccn mass |
---|
407 | & pq(ig,l,igcm_ccn_number) + ! ccn number |
---|
408 | & (pdq(ig,l,igcm_ccn_number) + ! ccn number |
---|
409 | & pdqcloud(ig,l,igcm_ccn_number))*ptimestep, ! ccn number |
---|
410 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
411 | |
---|
412 | ENDDO |
---|
413 | ENDDO |
---|
414 | |
---|
415 | ELSE ! no microphys |
---|
416 | |
---|
417 | DO l=1,nlay |
---|
418 | DO ig=1,ngrid |
---|
419 | |
---|
420 | call updaterice_typ( |
---|
421 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
422 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
423 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
424 | & tau(ig,1),pzlay(ig,l),rice(ig,l)) |
---|
425 | |
---|
426 | ENDDO |
---|
427 | ENDDO |
---|
428 | |
---|
429 | ENDIF ! of IF(microphys) |
---|
430 | |
---|
431 | |
---|
432 | |
---|
433 | c A correction if a lot of subliming CO2 fills the 1st layer FF04/2005 |
---|
434 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
435 | c Then that should not affect the ice particle radius |
---|
436 | do ig=1,ngrid |
---|
437 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,2)))then |
---|
438 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,3))) |
---|
439 | & rice(ig,2)=rice(ig,3) |
---|
440 | rice(ig,1)=rice(ig,2) |
---|
441 | end if |
---|
442 | end do |
---|
443 | |
---|
444 | |
---|
445 | DO l=1,nlay |
---|
446 | DO ig=1,ngrid |
---|
447 | rsedcloud(ig,l)=max(rice(ig,l)* |
---|
448 | & (1.+nuice_sed)*(1.+nuice_sed)*(1.+nuice_sed), |
---|
449 | & rdust(ig,l)) |
---|
450 | ! rsedcloud(ig,l)=min(rsedcloud(ig,l),1.e-4) |
---|
451 | ENDDO |
---|
452 | ENDDO |
---|
453 | |
---|
454 | ! used for rad. transfer calculations |
---|
455 | ! nuice is constant because a lognormal distribution is prescribed |
---|
456 | nuice(1:ngrid,1:nlay)=nuice_ref |
---|
457 | |
---|
458 | |
---|
459 | |
---|
460 | c======================================================================= |
---|
461 | |
---|
462 | END |
---|
463 | |
---|