[633] | 1 | SUBROUTINE watercloud(ngrid,nlay,ptimestep, |
---|
| 2 | & pplev,pplay,pdpsrf,pzlay,pt,pdt, |
---|
[626] | 3 | & pq,pdq,pdqcloud,pdtcloud, |
---|
[358] | 4 | & nq,tau,tauscaling,rdust,rice,nuice, |
---|
| 5 | & rsedcloud,rhocloud) |
---|
[633] | 6 | ! to use 'getin' |
---|
| 7 | USE ioipsl_getincom |
---|
[740] | 8 | USE updaterad |
---|
[38] | 9 | IMPLICIT NONE |
---|
| 10 | |
---|
[633] | 11 | |
---|
[38] | 12 | c======================================================================= |
---|
[358] | 13 | c Water-ice cloud formation |
---|
| 14 | c |
---|
| 15 | c Includes two different schemes: |
---|
| 16 | c - A simplified scheme (see simpleclouds.F) |
---|
| 17 | c - An improved microphysical scheme (see improvedclouds.F) |
---|
[38] | 18 | c |
---|
[633] | 19 | c There is a time loop specific to cloud formation |
---|
| 20 | c due to timescales smaller than the GCM integration timestep. |
---|
| 21 | c |
---|
[358] | 22 | c Authors: Franck Montmessin, Francois Forget, Ehouarn Millour, |
---|
[522] | 23 | c J.-B. Madeleine, Thomas Navarro |
---|
[38] | 24 | c |
---|
[633] | 25 | c 2004 - 2012 |
---|
[38] | 26 | c======================================================================= |
---|
| 27 | |
---|
| 28 | c----------------------------------------------------------------------- |
---|
| 29 | c declarations: |
---|
| 30 | c ------------- |
---|
| 31 | |
---|
| 32 | #include "dimensions.h" |
---|
| 33 | #include "dimphys.h" |
---|
| 34 | #include "comcstfi.h" |
---|
| 35 | #include "callkeys.h" |
---|
| 36 | #include "tracer.h" |
---|
| 37 | #include "comgeomfi.h" |
---|
[358] | 38 | #include "dimradmars.h" |
---|
[38] | 39 | |
---|
| 40 | c Inputs: |
---|
| 41 | c ------ |
---|
| 42 | |
---|
| 43 | INTEGER ngrid,nlay |
---|
[633] | 44 | INTEGER nq ! nombre de traceurs |
---|
[38] | 45 | REAL ptimestep ! pas de temps physique (s) |
---|
| 46 | REAL pplev(ngrid,nlay+1) ! pression aux inter-couches (Pa) |
---|
| 47 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
[633] | 48 | REAL pdpsrf(ngrid) ! tendence surf pressure |
---|
[38] | 49 | REAL pzlay(ngrid,nlay) ! altitude at the middle of the layers |
---|
| 50 | REAL pt(ngrid,nlay) ! temperature at the middle of the layers (K) |
---|
[633] | 51 | REAL pdt(ngrid,nlay) ! tendence temperature des autres param. |
---|
[38] | 52 | |
---|
| 53 | real pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
[633] | 54 | real pdq(ngrid,nlay,nq) ! tendence avant condensation (kg/kg.s-1) |
---|
[38] | 55 | |
---|
[633] | 56 | REAL tau(ngridmx,naerkind) ! Column dust optical depth at each point |
---|
| 57 | REAL tauscaling(ngridmx) ! Convertion factor for dust amount |
---|
| 58 | real rdust(ngridmx,nlay) ! Dust geometric mean radius (m) |
---|
[38] | 59 | |
---|
| 60 | c Outputs: |
---|
| 61 | c ------- |
---|
| 62 | |
---|
[633] | 63 | real pdqcloud(ngrid,nlay,nq) ! tendence de la condensation H2O(kg/kg.s-1) |
---|
| 64 | REAL pdtcloud(ngrid,nlay) ! tendence temperature due |
---|
| 65 | ! a la chaleur latente |
---|
[38] | 66 | |
---|
| 67 | REAL rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
| 68 | ! (r_c in montmessin_2004) |
---|
| 69 | REAL nuice(ngrid,nlay) ! Estimated effective variance |
---|
| 70 | ! of the size distribution |
---|
[633] | 71 | real rsedcloud(ngridmx,nlay) ! Cloud sedimentation radius |
---|
| 72 | real rhocloud(ngridmx,nlay) ! Cloud density (kg.m-3) |
---|
[38] | 73 | |
---|
| 74 | c local: |
---|
| 75 | c ------ |
---|
[633] | 76 | |
---|
| 77 | ! for ice radius computation |
---|
| 78 | REAL Mo,No |
---|
| 79 | REAl ccntyp |
---|
| 80 | |
---|
| 81 | ! for time loop |
---|
| 82 | INTEGER microstep ! time subsampling step variable |
---|
| 83 | INTEGER imicro ! time subsampling for coupled water microphysics & sedimentation |
---|
| 84 | SAVE imicro |
---|
| 85 | REAL microtimestep ! integration timestep for coupled water microphysics & sedimentation |
---|
| 86 | SAVE microtimestep |
---|
| 87 | |
---|
| 88 | ! tendency given by clouds (inside the micro loop) |
---|
| 89 | REAL subpdqcloud(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 90 | REAL subpdtcloud(ngrid,nlay) ! cf. pdtcloud |
---|
[38] | 91 | |
---|
[633] | 92 | ! global tendency (clouds+physics) |
---|
| 93 | REAL subpdq(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 94 | REAL subpdt(ngrid,nlay) ! cf. pdtcloud |
---|
| 95 | |
---|
| 96 | |
---|
| 97 | INTEGER iq,ig,l |
---|
[38] | 98 | LOGICAL,SAVE :: firstcall=.true. |
---|
| 99 | |
---|
| 100 | c ** un petit test de coherence |
---|
| 101 | c -------------------------- |
---|
| 102 | |
---|
| 103 | IF (firstcall) THEN |
---|
| 104 | IF(ngrid.NE.ngridmx) THEN |
---|
| 105 | PRINT*,'STOP dans watercloud' |
---|
| 106 | PRINT*,'probleme de dimensions :' |
---|
| 107 | PRINT*,'ngrid =',ngrid |
---|
| 108 | PRINT*,'ngridmx =',ngridmx |
---|
| 109 | STOP |
---|
| 110 | ENDIF |
---|
| 111 | |
---|
| 112 | if (nq.gt.nqmx) then |
---|
| 113 | write(*,*) 'stop in watercloud (nq.gt.nqmx)!' |
---|
| 114 | write(*,*) 'nq=',nq,' nqmx=',nqmx |
---|
| 115 | stop |
---|
| 116 | endif |
---|
| 117 | |
---|
[358] | 118 | write(*,*) "watercloud: igcm_h2o_vap=",igcm_h2o_vap |
---|
| 119 | write(*,*) " igcm_h2o_ice=",igcm_h2o_ice |
---|
[633] | 120 | |
---|
| 121 | write(*,*) "time subsampling for microphysic ?" |
---|
| 122 | #ifdef MESOSCALE |
---|
| 123 | imicro = 2 |
---|
| 124 | #else |
---|
| 125 | imicro = 15 |
---|
| 126 | #endif |
---|
| 127 | call getin("imicro",imicro) |
---|
| 128 | write(*,*)"imicro = ",imicro |
---|
| 129 | |
---|
| 130 | microtimestep = ptimestep/real(imicro) |
---|
| 131 | write(*,*)"Physical timestep is",ptimestep |
---|
| 132 | write(*,*)"Microphysics timestep is",microtimestep |
---|
[38] | 133 | |
---|
| 134 | firstcall=.false. |
---|
| 135 | ENDIF ! of IF (firstcall) |
---|
[522] | 136 | |
---|
[633] | 137 | c-----Initialization |
---|
| 138 | subpdq(1:ngrid,1:nlay,1:nq) = 0 |
---|
| 139 | subpdt(1:ngrid,1:nlay) = 0 |
---|
| 140 | |
---|
| 141 | ! default value if no ice |
---|
| 142 | rhocloud(1:ngrid,1:nlay) = rho_dust |
---|
[38] | 143 | |
---|
[633] | 144 | |
---|
| 145 | |
---|
| 146 | c------------------------------------------------------------------ |
---|
| 147 | c Time subsampling for microphysics |
---|
| 148 | c------------------------------------------------------------------ |
---|
| 149 | DO microstep=1,imicro |
---|
[522] | 150 | |
---|
[633] | 151 | c------------------------------------------------------------------- |
---|
| 152 | c 1. Tendencies: |
---|
| 153 | c------------------ |
---|
[38] | 154 | |
---|
[633] | 155 | |
---|
| 156 | c------ Temperature tendency subpdt |
---|
| 157 | ! Each microtimestep we give the cloud scheme a stepped entry subpdt instead of pdt |
---|
| 158 | ! If imicro=1 subpdt is the same as pdt |
---|
| 159 | DO l=1,nlay |
---|
| 160 | DO ig=1,ngrid |
---|
| 161 | subpdt(ig,l) = subpdt(ig,l) |
---|
| 162 | & + pdt(ig,l) ! At each micro timestep we add pdt in order to have a stepped entry |
---|
| 163 | ENDDO |
---|
| 164 | ENDDO |
---|
| 165 | c------ Tracers tendencies subpdq |
---|
| 166 | c------ At each micro timestep we add pdq in order to have a stepped entry |
---|
| 167 | IF (microphys) THEN |
---|
| 168 | DO l=1,nlay |
---|
| 169 | DO ig=1,ngrid |
---|
| 170 | subpdq(ig,l,igcm_dust_mass) = |
---|
| 171 | & subpdq(ig,l,igcm_dust_mass) |
---|
| 172 | & + pdq(ig,l,igcm_dust_mass) |
---|
| 173 | subpdq(ig,l,igcm_dust_number) = |
---|
| 174 | & subpdq(ig,l,igcm_dust_number) |
---|
| 175 | & + pdq(ig,l,igcm_dust_number) |
---|
| 176 | subpdq(ig,l,igcm_ccn_mass) = |
---|
| 177 | & subpdq(ig,l,igcm_ccn_mass) |
---|
| 178 | & + pdq(ig,l,igcm_ccn_mass) |
---|
| 179 | subpdq(ig,l,igcm_ccn_number) = |
---|
| 180 | & subpdq(ig,l,igcm_ccn_number) |
---|
| 181 | & + pdq(ig,l,igcm_ccn_number) |
---|
| 182 | ENDDO |
---|
| 183 | ENDDO |
---|
| 184 | ENDIF |
---|
| 185 | DO l=1,nlay |
---|
| 186 | DO ig=1,ngrid |
---|
| 187 | subpdq(ig,l,igcm_h2o_ice) = |
---|
| 188 | & subpdq(ig,l,igcm_h2o_ice) |
---|
| 189 | & + pdq(ig,l,igcm_h2o_ice) |
---|
| 190 | subpdq(ig,l,igcm_h2o_vap) = |
---|
| 191 | & subpdq(ig,l,igcm_h2o_vap) |
---|
| 192 | & + pdq(ig,l,igcm_h2o_vap) |
---|
| 193 | ENDDO |
---|
| 194 | ENDDO |
---|
| 195 | |
---|
| 196 | |
---|
| 197 | c------------------------------------------------------------------- |
---|
| 198 | c 2. Main call to the different cloud schemes: |
---|
| 199 | c------------------------------------------------ |
---|
| 200 | IF (microphys) THEN |
---|
| 201 | CALL improvedclouds(ngrid,nlay,microtimestep, |
---|
| 202 | & pplay,pt,subpdt, |
---|
| 203 | & pq,subpdq,subpdqcloud,subpdtcloud, |
---|
| 204 | & nq,tauscaling) |
---|
| 205 | |
---|
| 206 | ELSE |
---|
| 207 | CALL simpleclouds(ngrid,nlay,microtimestep, |
---|
| 208 | & pplay,pzlay,pt,subpdt, |
---|
| 209 | & pq,subpdq,subpdqcloud,subpdtcloud, |
---|
[645] | 210 | & nq,tau,rice) |
---|
[633] | 211 | ENDIF |
---|
| 212 | |
---|
| 213 | |
---|
| 214 | c------------------------------------------------------------------- |
---|
| 215 | c 3. Updating tendencies after cloud scheme: |
---|
| 216 | c----------------------------------------------- |
---|
| 217 | |
---|
| 218 | IF (microphys) THEN |
---|
| 219 | DO l=1,nlay |
---|
| 220 | DO ig=1,ngrid |
---|
| 221 | subpdq(ig,l,igcm_dust_mass) = |
---|
| 222 | & subpdq(ig,l,igcm_dust_mass) |
---|
| 223 | & + subpdqcloud(ig,l,igcm_dust_mass) |
---|
| 224 | subpdq(ig,l,igcm_dust_number) = |
---|
| 225 | & subpdq(ig,l,igcm_dust_number) |
---|
| 226 | & + subpdqcloud(ig,l,igcm_dust_number) |
---|
| 227 | subpdq(ig,l,igcm_ccn_mass) = |
---|
| 228 | & subpdq(ig,l,igcm_ccn_mass) |
---|
| 229 | & + subpdqcloud(ig,l,igcm_ccn_mass) |
---|
| 230 | subpdq(ig,l,igcm_ccn_number) = |
---|
| 231 | & subpdq(ig,l,igcm_ccn_number) |
---|
| 232 | & + subpdqcloud(ig,l,igcm_ccn_number) |
---|
| 233 | ENDDO |
---|
| 234 | ENDDO |
---|
| 235 | ENDIF |
---|
| 236 | DO l=1,nlay |
---|
| 237 | DO ig=1,ngrid |
---|
| 238 | subpdq(ig,l,igcm_h2o_ice) = |
---|
| 239 | & subpdq(ig,l,igcm_h2o_ice) |
---|
| 240 | & + subpdqcloud(ig,l,igcm_h2o_ice) |
---|
| 241 | subpdq(ig,l,igcm_h2o_vap) = |
---|
| 242 | & subpdq(ig,l,igcm_h2o_vap) |
---|
| 243 | & + subpdqcloud(ig,l,igcm_h2o_vap) |
---|
| 244 | ENDDO |
---|
| 245 | ENDDO |
---|
[882] | 246 | |
---|
| 247 | IF (activice) THEN |
---|
| 248 | DO l=1,nlay |
---|
| 249 | DO ig=1,ngrid |
---|
| 250 | subpdt(ig,l) = |
---|
| 251 | & subpdt(ig,l) + subpdtcloud(ig,l) |
---|
| 252 | ENDDO |
---|
| 253 | ENDDO |
---|
| 254 | ENDIF |
---|
[633] | 255 | |
---|
| 256 | |
---|
| 257 | ENDDO ! of DO microstep=1,imicro |
---|
| 258 | |
---|
| 259 | c------------------------------------------------------------------- |
---|
| 260 | c 6. Compute final tendencies after time loop: |
---|
| 261 | c------------------------------------------------ |
---|
| 262 | |
---|
| 263 | c------ Temperature tendency pdtcloud |
---|
| 264 | DO l=1,nlay |
---|
| 265 | DO ig=1,ngrid |
---|
| 266 | pdtcloud(ig,l) = |
---|
| 267 | & subpdt(ig,l)/real(imicro)-pdt(ig,l) |
---|
| 268 | ENDDO |
---|
| 269 | ENDDO |
---|
[740] | 270 | |
---|
[633] | 271 | c------ Tracers tendencies pdqcloud |
---|
[703] | 272 | DO l=1,nlay |
---|
[633] | 273 | DO ig=1,ngrid |
---|
[703] | 274 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 275 | & subpdq(ig,l,igcm_h2o_ice)/real(imicro) |
---|
| 276 | & - pdq(ig,l,igcm_h2o_ice) |
---|
| 277 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 278 | & subpdq(ig,l,igcm_h2o_vap)/real(imicro) |
---|
| 279 | & - pdq(ig,l,igcm_h2o_vap) |
---|
[740] | 280 | ENDDO |
---|
| 281 | ENDDO |
---|
| 282 | |
---|
| 283 | IF(microphys) THEN |
---|
| 284 | DO l=1,nlay |
---|
| 285 | DO ig=1,ngrid |
---|
[703] | 286 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 287 | & subpdq(ig,l,igcm_ccn_mass)/real(imicro) |
---|
| 288 | & - pdq(ig,l,igcm_ccn_mass) |
---|
| 289 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 290 | & subpdq(ig,l,igcm_ccn_number)/real(imicro) |
---|
| 291 | & - pdq(ig,l,igcm_ccn_number) |
---|
[633] | 292 | ENDDO |
---|
[740] | 293 | ENDDO |
---|
| 294 | ENDIF |
---|
| 295 | |
---|
| 296 | IF(scavenging) THEN |
---|
| 297 | DO l=1,nlay |
---|
| 298 | DO ig=1,ngrid |
---|
| 299 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 300 | & subpdq(ig,l,igcm_dust_mass)/real(imicro) |
---|
| 301 | & - pdq(ig,l,igcm_dust_mass) |
---|
| 302 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 303 | & subpdq(ig,l,igcm_dust_number)/real(imicro) |
---|
| 304 | & - pdq(ig,l,igcm_dust_number) |
---|
| 305 | ENDDO |
---|
| 306 | ENDDO |
---|
| 307 | ENDIF |
---|
[633] | 308 | |
---|
| 309 | c------- Due to stepped entry, other processes tendencies can add up to negative values |
---|
| 310 | c------- Therefore, enforce positive values and conserve mass |
---|
| 311 | |
---|
[740] | 312 | |
---|
[633] | 313 | IF(microphys) THEN |
---|
| 314 | DO l=1,nlay |
---|
| 315 | DO ig=1,ngrid |
---|
[654] | 316 | IF ((pq(ig,l,igcm_ccn_number) + |
---|
[633] | 317 | & ptimestep* (pdq(ig,l,igcm_ccn_number) + |
---|
[654] | 318 | & pdqcloud(ig,l,igcm_ccn_number)) .le. 1.) |
---|
| 319 | & .or. (pq(ig,l,igcm_ccn_mass) + |
---|
| 320 | & ptimestep* (pdq(ig,l,igcm_ccn_mass) + |
---|
| 321 | & pdqcloud(ig,l,igcm_ccn_mass)) .le. 1.e-20)) THEN |
---|
[633] | 322 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 323 | & - pq(ig,l,igcm_ccn_number)/ptimestep |
---|
[654] | 324 | & - pdq(ig,l,igcm_ccn_number) + 1. |
---|
[633] | 325 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 326 | & -pdqcloud(ig,l,igcm_ccn_number) |
---|
| 327 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 328 | & - pq(ig,l,igcm_ccn_mass)/ptimestep |
---|
[654] | 329 | & - pdq(ig,l,igcm_ccn_mass) + 1.e-20 |
---|
[633] | 330 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 331 | & -pdqcloud(ig,l,igcm_ccn_mass) |
---|
| 332 | ENDIF |
---|
| 333 | ENDDO |
---|
| 334 | ENDDO |
---|
| 335 | ENDIF |
---|
| 336 | |
---|
[740] | 337 | IF(scavenging) THEN |
---|
[633] | 338 | DO l=1,nlay |
---|
| 339 | DO ig=1,ngrid |
---|
[740] | 340 | IF ((pq(ig,l,igcm_dust_number) + |
---|
| 341 | & ptimestep* (pdq(ig,l,igcm_dust_number) + |
---|
| 342 | & pdqcloud(ig,l,igcm_dust_number)) .le. 1.) |
---|
| 343 | & .or. (pq(ig,l,igcm_dust_mass) + |
---|
| 344 | & ptimestep* (pdq(ig,l,igcm_dust_mass) + |
---|
| 345 | & pdqcloud(ig,l,igcm_dust_mass)) .le. 1.e-20)) THEN |
---|
| 346 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 347 | & - pq(ig,l,igcm_dust_number)/ptimestep |
---|
| 348 | & - pdq(ig,l,igcm_dust_number) + 1. |
---|
| 349 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 350 | & -pdqcloud(ig,l,igcm_dust_number) |
---|
| 351 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 352 | & - pq(ig,l,igcm_dust_mass)/ptimestep |
---|
| 353 | & - pdq(ig,l,igcm_dust_mass) + 1.e-20 |
---|
| 354 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 355 | & -pdqcloud(ig,l,igcm_dust_mass) |
---|
| 356 | ENDIF |
---|
| 357 | ENDDO |
---|
| 358 | ENDDO |
---|
| 359 | ENDIF |
---|
| 360 | |
---|
| 361 | DO l=1,nlay |
---|
| 362 | DO ig=1,ngrid |
---|
[633] | 363 | IF (pq(ig,l,igcm_h2o_ice) + ptimestep* |
---|
| 364 | & (pdq(ig,l,igcm_h2o_ice) + pdqcloud(ig,l,igcm_h2o_ice)) |
---|
| 365 | & .le. 1.e-8) THEN |
---|
| 366 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 367 | & - pq(ig,l,igcm_h2o_ice)/ptimestep - pdq(ig,l,igcm_h2o_ice) |
---|
| 368 | pdqcloud(ig,l,igcm_h2o_vap) = -pdqcloud(ig,l,igcm_h2o_ice) |
---|
| 369 | ENDIF |
---|
| 370 | IF (pq(ig,l,igcm_h2o_vap) + ptimestep* |
---|
| 371 | & (pdq(ig,l,igcm_h2o_vap) + pdqcloud(ig,l,igcm_h2o_vap)) |
---|
| 372 | & .le. 1.e-8) THEN |
---|
| 373 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 374 | & - pq(ig,l,igcm_h2o_vap)/ptimestep - pdq(ig,l,igcm_h2o_vap) |
---|
| 375 | pdqcloud(ig,l,igcm_h2o_ice) = -pdqcloud(ig,l,igcm_h2o_vap) |
---|
| 376 | ENDIF |
---|
| 377 | ENDDO |
---|
| 378 | ENDDO |
---|
| 379 | |
---|
| 380 | |
---|
| 381 | c------Update the ice and dust particle size "rice" for output or photochemistry |
---|
| 382 | c------Only rsedcloud is used for the water cycle |
---|
| 383 | |
---|
| 384 | IF(scavenging) THEN |
---|
| 385 | DO l=1, nlay |
---|
| 386 | DO ig=1,ngrid |
---|
| 387 | |
---|
[740] | 388 | call updaterdust( |
---|
| 389 | & pq(ig,l,igcm_dust_mass) + ! dust mass |
---|
| 390 | & (pdq(ig,l,igcm_dust_mass) + ! dust mass |
---|
| 391 | & pdqcloud(ig,l,igcm_dust_mass))*ptimestep, ! dust mass |
---|
| 392 | & pq(ig,l,igcm_dust_number) + ! dust number |
---|
| 393 | & (pdq(ig,l,igcm_dust_number) + ! dust number |
---|
| 394 | & pdqcloud(ig,l,igcm_dust_number))*ptimestep, ! dust number |
---|
| 395 | & rdust(ig,l)) |
---|
[633] | 396 | |
---|
| 397 | ENDDO |
---|
| 398 | ENDDO |
---|
[740] | 399 | ENDIF |
---|
[645] | 400 | |
---|
[740] | 401 | |
---|
| 402 | IF(microphys) THEN |
---|
| 403 | |
---|
| 404 | DO l=1, nlay |
---|
| 405 | DO ig=1,ngrid |
---|
| 406 | |
---|
| 407 | call updaterice_micro( |
---|
| 408 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 409 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 410 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
| 411 | & pq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
| 412 | & (pdq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
| 413 | & pdqcloud(ig,l,igcm_ccn_mass))*ptimestep, ! ccn mass |
---|
| 414 | & pq(ig,l,igcm_ccn_number) + ! ccn number |
---|
| 415 | & (pdq(ig,l,igcm_ccn_number) + ! ccn number |
---|
| 416 | & pdqcloud(ig,l,igcm_ccn_number))*ptimestep, ! ccn number |
---|
| 417 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
| 418 | |
---|
[645] | 419 | ENDDO |
---|
[740] | 420 | ENDDO |
---|
[645] | 421 | |
---|
[740] | 422 | ELSE ! no microphys |
---|
| 423 | |
---|
[645] | 424 | DO l=1,nlay |
---|
| 425 | DO ig=1,ngrid |
---|
[740] | 426 | |
---|
| 427 | call updaterice_typ( |
---|
| 428 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 429 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 430 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
[746] | 431 | & tau(ig,1),pzlay(ig,l),rice(ig,l)) |
---|
[740] | 432 | |
---|
[633] | 433 | ENDDO |
---|
[740] | 434 | ENDDO |
---|
[633] | 435 | |
---|
[740] | 436 | ENDIF ! of IF(microphys) |
---|
[633] | 437 | |
---|
[740] | 438 | |
---|
| 439 | |
---|
[358] | 440 | c A correction if a lot of subliming CO2 fills the 1st layer FF04/2005 |
---|
| 441 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 442 | c Then that should not affect the ice particle radius |
---|
| 443 | do ig=1,ngridmx |
---|
| 444 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,2)))then |
---|
| 445 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,3))) |
---|
| 446 | & rice(ig,2)=rice(ig,3) |
---|
| 447 | rice(ig,1)=rice(ig,2) |
---|
| 448 | end if |
---|
| 449 | end do |
---|
[740] | 450 | |
---|
| 451 | |
---|
| 452 | DO l=1,nlay |
---|
| 453 | DO ig=1,ngrid |
---|
| 454 | rsedcloud(ig,l)=max(rice(ig,l)* |
---|
| 455 | & (1.+nuice_sed)*(1.+nuice_sed)*(1.+nuice_sed), |
---|
| 456 | & rdust(ig,l)) |
---|
| 457 | ! rsedcloud(ig,l)=min(rsedcloud(ig,l),1.e-4) |
---|
| 458 | ENDDO |
---|
| 459 | ENDDO |
---|
| 460 | |
---|
| 461 | ! used for rad. transfer calculations |
---|
| 462 | ! nuice is constant because a lognormal distribution is prescribed |
---|
| 463 | nuice(1:ngrid,1:nlay)=nuice_ref |
---|
[38] | 464 | |
---|
[740] | 465 | |
---|
| 466 | |
---|
[633] | 467 | c======================================================================= |
---|
| 468 | |
---|
[38] | 469 | END |
---|
| 470 | |
---|