[633] | 1 | SUBROUTINE watercloud(ngrid,nlay,ptimestep, |
---|
| 2 | & pplev,pplay,pdpsrf,pzlay,pt,pdt, |
---|
[626] | 3 | & pq,pdq,pdqcloud,pdtcloud, |
---|
[358] | 4 | & nq,tau,tauscaling,rdust,rice,nuice, |
---|
| 5 | & rsedcloud,rhocloud) |
---|
[633] | 6 | ! to use 'getin' |
---|
| 7 | USE ioipsl_getincom |
---|
[740] | 8 | USE updaterad |
---|
[1226] | 9 | USE comcstfi_h |
---|
[1036] | 10 | use tracer_mod, only: nqmx, igcm_h2o_vap, igcm_h2o_ice, |
---|
| 11 | & igcm_dust_mass, igcm_dust_number, |
---|
| 12 | & igcm_ccn_mass, igcm_ccn_number, |
---|
| 13 | & rho_dust, nuice_sed, nuice_ref |
---|
[1246] | 14 | use dimradmars_mod, only: naerkind |
---|
[38] | 15 | IMPLICIT NONE |
---|
| 16 | |
---|
[633] | 17 | |
---|
[38] | 18 | c======================================================================= |
---|
[358] | 19 | c Water-ice cloud formation |
---|
| 20 | c |
---|
| 21 | c Includes two different schemes: |
---|
| 22 | c - A simplified scheme (see simpleclouds.F) |
---|
| 23 | c - An improved microphysical scheme (see improvedclouds.F) |
---|
[38] | 24 | c |
---|
[633] | 25 | c There is a time loop specific to cloud formation |
---|
| 26 | c due to timescales smaller than the GCM integration timestep. |
---|
| 27 | c |
---|
[358] | 28 | c Authors: Franck Montmessin, Francois Forget, Ehouarn Millour, |
---|
[522] | 29 | c J.-B. Madeleine, Thomas Navarro |
---|
[38] | 30 | c |
---|
[633] | 31 | c 2004 - 2012 |
---|
[38] | 32 | c======================================================================= |
---|
| 33 | |
---|
| 34 | c----------------------------------------------------------------------- |
---|
| 35 | c declarations: |
---|
| 36 | c ------------- |
---|
| 37 | |
---|
| 38 | #include "callkeys.h" |
---|
| 39 | |
---|
| 40 | c Inputs: |
---|
| 41 | c ------ |
---|
| 42 | |
---|
| 43 | INTEGER ngrid,nlay |
---|
[633] | 44 | INTEGER nq ! nombre de traceurs |
---|
[38] | 45 | REAL ptimestep ! pas de temps physique (s) |
---|
| 46 | REAL pplev(ngrid,nlay+1) ! pression aux inter-couches (Pa) |
---|
| 47 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
[633] | 48 | REAL pdpsrf(ngrid) ! tendence surf pressure |
---|
[38] | 49 | REAL pzlay(ngrid,nlay) ! altitude at the middle of the layers |
---|
| 50 | REAL pt(ngrid,nlay) ! temperature at the middle of the layers (K) |
---|
[633] | 51 | REAL pdt(ngrid,nlay) ! tendence temperature des autres param. |
---|
[38] | 52 | |
---|
| 53 | real pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
[633] | 54 | real pdq(ngrid,nlay,nq) ! tendence avant condensation (kg/kg.s-1) |
---|
[38] | 55 | |
---|
[1047] | 56 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
| 57 | REAL tauscaling(ngrid) ! Convertion factor for dust amount |
---|
| 58 | real rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
[38] | 59 | |
---|
| 60 | c Outputs: |
---|
| 61 | c ------- |
---|
| 62 | |
---|
[633] | 63 | real pdqcloud(ngrid,nlay,nq) ! tendence de la condensation H2O(kg/kg.s-1) |
---|
| 64 | REAL pdtcloud(ngrid,nlay) ! tendence temperature due |
---|
| 65 | ! a la chaleur latente |
---|
[38] | 66 | |
---|
| 67 | REAL rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
| 68 | ! (r_c in montmessin_2004) |
---|
| 69 | REAL nuice(ngrid,nlay) ! Estimated effective variance |
---|
| 70 | ! of the size distribution |
---|
[1047] | 71 | real rsedcloud(ngrid,nlay) ! Cloud sedimentation radius |
---|
| 72 | real rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
[38] | 73 | |
---|
| 74 | c local: |
---|
| 75 | c ------ |
---|
[633] | 76 | |
---|
| 77 | ! for ice radius computation |
---|
| 78 | REAL Mo,No |
---|
| 79 | REAl ccntyp |
---|
| 80 | |
---|
| 81 | ! for time loop |
---|
| 82 | INTEGER microstep ! time subsampling step variable |
---|
| 83 | INTEGER imicro ! time subsampling for coupled water microphysics & sedimentation |
---|
| 84 | SAVE imicro |
---|
| 85 | REAL microtimestep ! integration timestep for coupled water microphysics & sedimentation |
---|
| 86 | SAVE microtimestep |
---|
| 87 | |
---|
| 88 | ! tendency given by clouds (inside the micro loop) |
---|
| 89 | REAL subpdqcloud(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 90 | REAL subpdtcloud(ngrid,nlay) ! cf. pdtcloud |
---|
[38] | 91 | |
---|
[633] | 92 | ! global tendency (clouds+physics) |
---|
| 93 | REAL subpdq(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 94 | REAL subpdt(ngrid,nlay) ! cf. pdtcloud |
---|
| 95 | |
---|
[1467] | 96 | ! no supersaturation when option supersat is false |
---|
| 97 | REAL zt(ngrid,nlay) ! local value of temperature |
---|
| 98 | REAL zqsat(ngrid,nlay) ! saturation |
---|
[633] | 99 | |
---|
| 100 | INTEGER iq,ig,l |
---|
[38] | 101 | LOGICAL,SAVE :: firstcall=.true. |
---|
| 102 | |
---|
| 103 | c ** un petit test de coherence |
---|
| 104 | c -------------------------- |
---|
| 105 | |
---|
| 106 | IF (firstcall) THEN |
---|
| 107 | |
---|
| 108 | if (nq.gt.nqmx) then |
---|
| 109 | write(*,*) 'stop in watercloud (nq.gt.nqmx)!' |
---|
| 110 | write(*,*) 'nq=',nq,' nqmx=',nqmx |
---|
| 111 | stop |
---|
| 112 | endif |
---|
| 113 | |
---|
[358] | 114 | write(*,*) "watercloud: igcm_h2o_vap=",igcm_h2o_vap |
---|
| 115 | write(*,*) " igcm_h2o_ice=",igcm_h2o_ice |
---|
[633] | 116 | |
---|
| 117 | write(*,*) "time subsampling for microphysic ?" |
---|
| 118 | #ifdef MESOSCALE |
---|
| 119 | imicro = 2 |
---|
| 120 | #else |
---|
[951] | 121 | imicro = 30 |
---|
[633] | 122 | #endif |
---|
| 123 | call getin("imicro",imicro) |
---|
| 124 | write(*,*)"imicro = ",imicro |
---|
| 125 | |
---|
| 126 | microtimestep = ptimestep/real(imicro) |
---|
| 127 | write(*,*)"Physical timestep is",ptimestep |
---|
| 128 | write(*,*)"Microphysics timestep is",microtimestep |
---|
[38] | 129 | |
---|
| 130 | firstcall=.false. |
---|
| 131 | ENDIF ! of IF (firstcall) |
---|
[522] | 132 | |
---|
[633] | 133 | c-----Initialization |
---|
| 134 | subpdq(1:ngrid,1:nlay,1:nq) = 0 |
---|
| 135 | subpdt(1:ngrid,1:nlay) = 0 |
---|
| 136 | |
---|
| 137 | ! default value if no ice |
---|
| 138 | rhocloud(1:ngrid,1:nlay) = rho_dust |
---|
[38] | 139 | |
---|
[633] | 140 | |
---|
| 141 | |
---|
| 142 | c------------------------------------------------------------------ |
---|
| 143 | c Time subsampling for microphysics |
---|
| 144 | c------------------------------------------------------------------ |
---|
| 145 | DO microstep=1,imicro |
---|
[522] | 146 | |
---|
[633] | 147 | c------------------------------------------------------------------- |
---|
| 148 | c 1. Tendencies: |
---|
| 149 | c------------------ |
---|
[38] | 150 | |
---|
[633] | 151 | |
---|
| 152 | c------ Temperature tendency subpdt |
---|
| 153 | ! Each microtimestep we give the cloud scheme a stepped entry subpdt instead of pdt |
---|
| 154 | ! If imicro=1 subpdt is the same as pdt |
---|
| 155 | DO l=1,nlay |
---|
| 156 | DO ig=1,ngrid |
---|
| 157 | subpdt(ig,l) = subpdt(ig,l) |
---|
| 158 | & + pdt(ig,l) ! At each micro timestep we add pdt in order to have a stepped entry |
---|
| 159 | ENDDO |
---|
| 160 | ENDDO |
---|
| 161 | c------ Tracers tendencies subpdq |
---|
| 162 | c------ At each micro timestep we add pdq in order to have a stepped entry |
---|
| 163 | IF (microphys) THEN |
---|
| 164 | DO l=1,nlay |
---|
| 165 | DO ig=1,ngrid |
---|
| 166 | subpdq(ig,l,igcm_dust_mass) = |
---|
| 167 | & subpdq(ig,l,igcm_dust_mass) |
---|
| 168 | & + pdq(ig,l,igcm_dust_mass) |
---|
| 169 | subpdq(ig,l,igcm_dust_number) = |
---|
| 170 | & subpdq(ig,l,igcm_dust_number) |
---|
| 171 | & + pdq(ig,l,igcm_dust_number) |
---|
| 172 | subpdq(ig,l,igcm_ccn_mass) = |
---|
| 173 | & subpdq(ig,l,igcm_ccn_mass) |
---|
| 174 | & + pdq(ig,l,igcm_ccn_mass) |
---|
| 175 | subpdq(ig,l,igcm_ccn_number) = |
---|
| 176 | & subpdq(ig,l,igcm_ccn_number) |
---|
| 177 | & + pdq(ig,l,igcm_ccn_number) |
---|
| 178 | ENDDO |
---|
| 179 | ENDDO |
---|
| 180 | ENDIF |
---|
| 181 | DO l=1,nlay |
---|
| 182 | DO ig=1,ngrid |
---|
| 183 | subpdq(ig,l,igcm_h2o_ice) = |
---|
| 184 | & subpdq(ig,l,igcm_h2o_ice) |
---|
| 185 | & + pdq(ig,l,igcm_h2o_ice) |
---|
| 186 | subpdq(ig,l,igcm_h2o_vap) = |
---|
| 187 | & subpdq(ig,l,igcm_h2o_vap) |
---|
| 188 | & + pdq(ig,l,igcm_h2o_vap) |
---|
| 189 | ENDDO |
---|
| 190 | ENDDO |
---|
| 191 | |
---|
| 192 | |
---|
| 193 | c------------------------------------------------------------------- |
---|
| 194 | c 2. Main call to the different cloud schemes: |
---|
| 195 | c------------------------------------------------ |
---|
| 196 | IF (microphys) THEN |
---|
| 197 | CALL improvedclouds(ngrid,nlay,microtimestep, |
---|
| 198 | & pplay,pt,subpdt, |
---|
| 199 | & pq,subpdq,subpdqcloud,subpdtcloud, |
---|
| 200 | & nq,tauscaling) |
---|
| 201 | |
---|
| 202 | ELSE |
---|
| 203 | CALL simpleclouds(ngrid,nlay,microtimestep, |
---|
| 204 | & pplay,pzlay,pt,subpdt, |
---|
| 205 | & pq,subpdq,subpdqcloud,subpdtcloud, |
---|
[645] | 206 | & nq,tau,rice) |
---|
[633] | 207 | ENDIF |
---|
| 208 | |
---|
| 209 | |
---|
| 210 | c------------------------------------------------------------------- |
---|
| 211 | c 3. Updating tendencies after cloud scheme: |
---|
| 212 | c----------------------------------------------- |
---|
| 213 | |
---|
| 214 | IF (microphys) THEN |
---|
| 215 | DO l=1,nlay |
---|
| 216 | DO ig=1,ngrid |
---|
| 217 | subpdq(ig,l,igcm_dust_mass) = |
---|
| 218 | & subpdq(ig,l,igcm_dust_mass) |
---|
| 219 | & + subpdqcloud(ig,l,igcm_dust_mass) |
---|
| 220 | subpdq(ig,l,igcm_dust_number) = |
---|
| 221 | & subpdq(ig,l,igcm_dust_number) |
---|
| 222 | & + subpdqcloud(ig,l,igcm_dust_number) |
---|
| 223 | subpdq(ig,l,igcm_ccn_mass) = |
---|
| 224 | & subpdq(ig,l,igcm_ccn_mass) |
---|
| 225 | & + subpdqcloud(ig,l,igcm_ccn_mass) |
---|
| 226 | subpdq(ig,l,igcm_ccn_number) = |
---|
| 227 | & subpdq(ig,l,igcm_ccn_number) |
---|
| 228 | & + subpdqcloud(ig,l,igcm_ccn_number) |
---|
| 229 | ENDDO |
---|
| 230 | ENDDO |
---|
| 231 | ENDIF |
---|
| 232 | DO l=1,nlay |
---|
| 233 | DO ig=1,ngrid |
---|
| 234 | subpdq(ig,l,igcm_h2o_ice) = |
---|
| 235 | & subpdq(ig,l,igcm_h2o_ice) |
---|
| 236 | & + subpdqcloud(ig,l,igcm_h2o_ice) |
---|
| 237 | subpdq(ig,l,igcm_h2o_vap) = |
---|
| 238 | & subpdq(ig,l,igcm_h2o_vap) |
---|
| 239 | & + subpdqcloud(ig,l,igcm_h2o_vap) |
---|
| 240 | ENDDO |
---|
| 241 | ENDDO |
---|
[882] | 242 | |
---|
| 243 | IF (activice) THEN |
---|
| 244 | DO l=1,nlay |
---|
| 245 | DO ig=1,ngrid |
---|
| 246 | subpdt(ig,l) = |
---|
| 247 | & subpdt(ig,l) + subpdtcloud(ig,l) |
---|
| 248 | ENDDO |
---|
| 249 | ENDDO |
---|
| 250 | ENDIF |
---|
[633] | 251 | |
---|
| 252 | |
---|
| 253 | ENDDO ! of DO microstep=1,imicro |
---|
| 254 | |
---|
| 255 | c------------------------------------------------------------------- |
---|
| 256 | c 6. Compute final tendencies after time loop: |
---|
| 257 | c------------------------------------------------ |
---|
| 258 | |
---|
| 259 | c------ Temperature tendency pdtcloud |
---|
| 260 | DO l=1,nlay |
---|
| 261 | DO ig=1,ngrid |
---|
| 262 | pdtcloud(ig,l) = |
---|
| 263 | & subpdt(ig,l)/real(imicro)-pdt(ig,l) |
---|
| 264 | ENDDO |
---|
| 265 | ENDDO |
---|
[740] | 266 | |
---|
[633] | 267 | c------ Tracers tendencies pdqcloud |
---|
[703] | 268 | DO l=1,nlay |
---|
[633] | 269 | DO ig=1,ngrid |
---|
[703] | 270 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 271 | & subpdq(ig,l,igcm_h2o_ice)/real(imicro) |
---|
| 272 | & - pdq(ig,l,igcm_h2o_ice) |
---|
| 273 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 274 | & subpdq(ig,l,igcm_h2o_vap)/real(imicro) |
---|
| 275 | & - pdq(ig,l,igcm_h2o_vap) |
---|
[740] | 276 | ENDDO |
---|
| 277 | ENDDO |
---|
| 278 | |
---|
| 279 | IF(microphys) THEN |
---|
| 280 | DO l=1,nlay |
---|
| 281 | DO ig=1,ngrid |
---|
[703] | 282 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 283 | & subpdq(ig,l,igcm_ccn_mass)/real(imicro) |
---|
| 284 | & - pdq(ig,l,igcm_ccn_mass) |
---|
| 285 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 286 | & subpdq(ig,l,igcm_ccn_number)/real(imicro) |
---|
| 287 | & - pdq(ig,l,igcm_ccn_number) |
---|
[633] | 288 | ENDDO |
---|
[740] | 289 | ENDDO |
---|
| 290 | ENDIF |
---|
| 291 | |
---|
| 292 | IF(scavenging) THEN |
---|
| 293 | DO l=1,nlay |
---|
| 294 | DO ig=1,ngrid |
---|
| 295 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 296 | & subpdq(ig,l,igcm_dust_mass)/real(imicro) |
---|
| 297 | & - pdq(ig,l,igcm_dust_mass) |
---|
| 298 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 299 | & subpdq(ig,l,igcm_dust_number)/real(imicro) |
---|
| 300 | & - pdq(ig,l,igcm_dust_number) |
---|
| 301 | ENDDO |
---|
| 302 | ENDDO |
---|
| 303 | ENDIF |
---|
[633] | 304 | |
---|
| 305 | c------- Due to stepped entry, other processes tendencies can add up to negative values |
---|
| 306 | c------- Therefore, enforce positive values and conserve mass |
---|
| 307 | |
---|
[740] | 308 | |
---|
[633] | 309 | IF(microphys) THEN |
---|
| 310 | DO l=1,nlay |
---|
| 311 | DO ig=1,ngrid |
---|
[654] | 312 | IF ((pq(ig,l,igcm_ccn_number) + |
---|
[633] | 313 | & ptimestep* (pdq(ig,l,igcm_ccn_number) + |
---|
[654] | 314 | & pdqcloud(ig,l,igcm_ccn_number)) .le. 1.) |
---|
| 315 | & .or. (pq(ig,l,igcm_ccn_mass) + |
---|
| 316 | & ptimestep* (pdq(ig,l,igcm_ccn_mass) + |
---|
| 317 | & pdqcloud(ig,l,igcm_ccn_mass)) .le. 1.e-20)) THEN |
---|
[633] | 318 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 319 | & - pq(ig,l,igcm_ccn_number)/ptimestep |
---|
[654] | 320 | & - pdq(ig,l,igcm_ccn_number) + 1. |
---|
[633] | 321 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 322 | & -pdqcloud(ig,l,igcm_ccn_number) |
---|
| 323 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 324 | & - pq(ig,l,igcm_ccn_mass)/ptimestep |
---|
[654] | 325 | & - pdq(ig,l,igcm_ccn_mass) + 1.e-20 |
---|
[633] | 326 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 327 | & -pdqcloud(ig,l,igcm_ccn_mass) |
---|
| 328 | ENDIF |
---|
| 329 | ENDDO |
---|
| 330 | ENDDO |
---|
| 331 | ENDIF |
---|
| 332 | |
---|
[740] | 333 | IF(scavenging) THEN |
---|
[633] | 334 | DO l=1,nlay |
---|
| 335 | DO ig=1,ngrid |
---|
[740] | 336 | IF ((pq(ig,l,igcm_dust_number) + |
---|
| 337 | & ptimestep* (pdq(ig,l,igcm_dust_number) + |
---|
| 338 | & pdqcloud(ig,l,igcm_dust_number)) .le. 1.) |
---|
| 339 | & .or. (pq(ig,l,igcm_dust_mass) + |
---|
| 340 | & ptimestep* (pdq(ig,l,igcm_dust_mass) + |
---|
| 341 | & pdqcloud(ig,l,igcm_dust_mass)) .le. 1.e-20)) THEN |
---|
| 342 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 343 | & - pq(ig,l,igcm_dust_number)/ptimestep |
---|
| 344 | & - pdq(ig,l,igcm_dust_number) + 1. |
---|
| 345 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 346 | & -pdqcloud(ig,l,igcm_dust_number) |
---|
| 347 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 348 | & - pq(ig,l,igcm_dust_mass)/ptimestep |
---|
| 349 | & - pdq(ig,l,igcm_dust_mass) + 1.e-20 |
---|
| 350 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 351 | & -pdqcloud(ig,l,igcm_dust_mass) |
---|
| 352 | ENDIF |
---|
| 353 | ENDDO |
---|
| 354 | ENDDO |
---|
| 355 | ENDIF |
---|
| 356 | |
---|
| 357 | DO l=1,nlay |
---|
| 358 | DO ig=1,ngrid |
---|
[633] | 359 | IF (pq(ig,l,igcm_h2o_ice) + ptimestep* |
---|
| 360 | & (pdq(ig,l,igcm_h2o_ice) + pdqcloud(ig,l,igcm_h2o_ice)) |
---|
| 361 | & .le. 1.e-8) THEN |
---|
| 362 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 363 | & - pq(ig,l,igcm_h2o_ice)/ptimestep - pdq(ig,l,igcm_h2o_ice) |
---|
| 364 | pdqcloud(ig,l,igcm_h2o_vap) = -pdqcloud(ig,l,igcm_h2o_ice) |
---|
| 365 | ENDIF |
---|
| 366 | IF (pq(ig,l,igcm_h2o_vap) + ptimestep* |
---|
| 367 | & (pdq(ig,l,igcm_h2o_vap) + pdqcloud(ig,l,igcm_h2o_vap)) |
---|
| 368 | & .le. 1.e-8) THEN |
---|
| 369 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 370 | & - pq(ig,l,igcm_h2o_vap)/ptimestep - pdq(ig,l,igcm_h2o_vap) |
---|
| 371 | pdqcloud(ig,l,igcm_h2o_ice) = -pdqcloud(ig,l,igcm_h2o_vap) |
---|
| 372 | ENDIF |
---|
| 373 | ENDDO |
---|
| 374 | ENDDO |
---|
| 375 | |
---|
| 376 | |
---|
| 377 | c------Update the ice and dust particle size "rice" for output or photochemistry |
---|
| 378 | c------Only rsedcloud is used for the water cycle |
---|
| 379 | |
---|
| 380 | IF(scavenging) THEN |
---|
| 381 | DO l=1, nlay |
---|
| 382 | DO ig=1,ngrid |
---|
| 383 | |
---|
[740] | 384 | call updaterdust( |
---|
| 385 | & pq(ig,l,igcm_dust_mass) + ! dust mass |
---|
| 386 | & (pdq(ig,l,igcm_dust_mass) + ! dust mass |
---|
| 387 | & pdqcloud(ig,l,igcm_dust_mass))*ptimestep, ! dust mass |
---|
| 388 | & pq(ig,l,igcm_dust_number) + ! dust number |
---|
| 389 | & (pdq(ig,l,igcm_dust_number) + ! dust number |
---|
| 390 | & pdqcloud(ig,l,igcm_dust_number))*ptimestep, ! dust number |
---|
| 391 | & rdust(ig,l)) |
---|
[633] | 392 | |
---|
| 393 | ENDDO |
---|
| 394 | ENDDO |
---|
[740] | 395 | ENDIF |
---|
[1467] | 396 | |
---|
[740] | 397 | IF(microphys) THEN |
---|
[1467] | 398 | |
---|
| 399 | ! In case one does not want to allow supersatured water when using microphysics. |
---|
| 400 | ! Not done by default. |
---|
| 401 | IF(.not.supersat) THEN |
---|
| 402 | zt = pt + (pdt+pdtcloud)*ptimestep |
---|
| 403 | call watersat(ngrid*nlay,zt,pplay,zqsat) |
---|
| 404 | DO l=1, nlay |
---|
| 405 | DO ig=1,ngrid |
---|
| 406 | IF (pq(ig,l,igcm_h2o_vap) |
---|
| 407 | & + (pdq(ig,l,igcm_h2o_vap) + pdqcloud(ig,l,igcm_h2o_vap)) |
---|
| 408 | & * ptimestep .ge. zqsat(ig,l)) THEN |
---|
| 409 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 410 | & (zqsat(ig,l) - pq(ig,l,igcm_h2o_vap))/ptimestep |
---|
| 411 | & - pdq(ig,l,igcm_h2o_vap) |
---|
| 412 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 413 | & -pdqcloud(ig,l,igcm_h2o_vap) |
---|
| 414 | ! no need to correct ccn_number, updaterad can handle this properly. |
---|
| 415 | ENDIF |
---|
| 416 | ENDDO |
---|
| 417 | ENDDO |
---|
| 418 | ENDIF |
---|
[740] | 419 | |
---|
| 420 | DO l=1, nlay |
---|
| 421 | DO ig=1,ngrid |
---|
| 422 | |
---|
| 423 | call updaterice_micro( |
---|
| 424 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 425 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 426 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
| 427 | & pq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
| 428 | & (pdq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
| 429 | & pdqcloud(ig,l,igcm_ccn_mass))*ptimestep, ! ccn mass |
---|
| 430 | & pq(ig,l,igcm_ccn_number) + ! ccn number |
---|
| 431 | & (pdq(ig,l,igcm_ccn_number) + ! ccn number |
---|
| 432 | & pdqcloud(ig,l,igcm_ccn_number))*ptimestep, ! ccn number |
---|
| 433 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
| 434 | |
---|
[645] | 435 | ENDDO |
---|
[740] | 436 | ENDDO |
---|
[645] | 437 | |
---|
[740] | 438 | ELSE ! no microphys |
---|
| 439 | |
---|
[645] | 440 | DO l=1,nlay |
---|
| 441 | DO ig=1,ngrid |
---|
[740] | 442 | |
---|
| 443 | call updaterice_typ( |
---|
| 444 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 445 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 446 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
[746] | 447 | & tau(ig,1),pzlay(ig,l),rice(ig,l)) |
---|
[740] | 448 | |
---|
[633] | 449 | ENDDO |
---|
[740] | 450 | ENDDO |
---|
[633] | 451 | |
---|
[740] | 452 | ENDIF ! of IF(microphys) |
---|
[633] | 453 | |
---|
[740] | 454 | |
---|
| 455 | |
---|
[358] | 456 | c A correction if a lot of subliming CO2 fills the 1st layer FF04/2005 |
---|
| 457 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 458 | c Then that should not affect the ice particle radius |
---|
[1047] | 459 | do ig=1,ngrid |
---|
[358] | 460 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,2)))then |
---|
| 461 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,3))) |
---|
| 462 | & rice(ig,2)=rice(ig,3) |
---|
| 463 | rice(ig,1)=rice(ig,2) |
---|
| 464 | end if |
---|
| 465 | end do |
---|
[740] | 466 | |
---|
| 467 | |
---|
| 468 | DO l=1,nlay |
---|
| 469 | DO ig=1,ngrid |
---|
| 470 | rsedcloud(ig,l)=max(rice(ig,l)* |
---|
| 471 | & (1.+nuice_sed)*(1.+nuice_sed)*(1.+nuice_sed), |
---|
| 472 | & rdust(ig,l)) |
---|
| 473 | ! rsedcloud(ig,l)=min(rsedcloud(ig,l),1.e-4) |
---|
| 474 | ENDDO |
---|
| 475 | ENDDO |
---|
| 476 | |
---|
| 477 | ! used for rad. transfer calculations |
---|
| 478 | ! nuice is constant because a lognormal distribution is prescribed |
---|
| 479 | nuice(1:ngrid,1:nlay)=nuice_ref |
---|
[38] | 480 | |
---|
[740] | 481 | |
---|
| 482 | |
---|
[633] | 483 | c======================================================================= |
---|
| 484 | |
---|
[38] | 485 | END |
---|
| 486 | |
---|