[633] | 1 | SUBROUTINE watercloud(ngrid,nlay,ptimestep, |
---|
| 2 | & pplev,pplay,pdpsrf,pzlay,pt,pdt, |
---|
[626] | 3 | & pq,pdq,pdqcloud,pdtcloud, |
---|
[358] | 4 | & nq,tau,tauscaling,rdust,rice,nuice, |
---|
| 5 | & rsedcloud,rhocloud) |
---|
[633] | 6 | ! to use 'getin' |
---|
| 7 | USE ioipsl_getincom |
---|
[740] | 8 | USE updaterad |
---|
[1226] | 9 | USE comcstfi_h |
---|
[1036] | 10 | use tracer_mod, only: nqmx, igcm_h2o_vap, igcm_h2o_ice, |
---|
| 11 | & igcm_dust_mass, igcm_dust_number, |
---|
| 12 | & igcm_ccn_mass, igcm_ccn_number, |
---|
| 13 | & rho_dust, nuice_sed, nuice_ref |
---|
[38] | 14 | IMPLICIT NONE |
---|
| 15 | |
---|
[633] | 16 | |
---|
[38] | 17 | c======================================================================= |
---|
[358] | 18 | c Water-ice cloud formation |
---|
| 19 | c |
---|
| 20 | c Includes two different schemes: |
---|
| 21 | c - A simplified scheme (see simpleclouds.F) |
---|
| 22 | c - An improved microphysical scheme (see improvedclouds.F) |
---|
[38] | 23 | c |
---|
[633] | 24 | c There is a time loop specific to cloud formation |
---|
| 25 | c due to timescales smaller than the GCM integration timestep. |
---|
| 26 | c |
---|
[358] | 27 | c Authors: Franck Montmessin, Francois Forget, Ehouarn Millour, |
---|
[522] | 28 | c J.-B. Madeleine, Thomas Navarro |
---|
[38] | 29 | c |
---|
[633] | 30 | c 2004 - 2012 |
---|
[38] | 31 | c======================================================================= |
---|
| 32 | |
---|
| 33 | c----------------------------------------------------------------------- |
---|
| 34 | c declarations: |
---|
| 35 | c ------------- |
---|
| 36 | |
---|
[1047] | 37 | !#include "dimensions.h" |
---|
| 38 | !#include "dimphys.h" |
---|
[38] | 39 | #include "callkeys.h" |
---|
[1036] | 40 | !#include "tracer.h" |
---|
[1047] | 41 | !#include "comgeomfi.h" |
---|
| 42 | !#include "dimradmars.h" |
---|
| 43 | ! naerkind is set in scatterers.h (built when compiling with makegcm -s #) |
---|
| 44 | #include"scatterers.h" |
---|
[38] | 45 | |
---|
| 46 | c Inputs: |
---|
| 47 | c ------ |
---|
| 48 | |
---|
| 49 | INTEGER ngrid,nlay |
---|
[633] | 50 | INTEGER nq ! nombre de traceurs |
---|
[38] | 51 | REAL ptimestep ! pas de temps physique (s) |
---|
| 52 | REAL pplev(ngrid,nlay+1) ! pression aux inter-couches (Pa) |
---|
| 53 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
[633] | 54 | REAL pdpsrf(ngrid) ! tendence surf pressure |
---|
[38] | 55 | REAL pzlay(ngrid,nlay) ! altitude at the middle of the layers |
---|
| 56 | REAL pt(ngrid,nlay) ! temperature at the middle of the layers (K) |
---|
[633] | 57 | REAL pdt(ngrid,nlay) ! tendence temperature des autres param. |
---|
[38] | 58 | |
---|
| 59 | real pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
[633] | 60 | real pdq(ngrid,nlay,nq) ! tendence avant condensation (kg/kg.s-1) |
---|
[38] | 61 | |
---|
[1047] | 62 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
| 63 | REAL tauscaling(ngrid) ! Convertion factor for dust amount |
---|
| 64 | real rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
[38] | 65 | |
---|
| 66 | c Outputs: |
---|
| 67 | c ------- |
---|
| 68 | |
---|
[633] | 69 | real pdqcloud(ngrid,nlay,nq) ! tendence de la condensation H2O(kg/kg.s-1) |
---|
| 70 | REAL pdtcloud(ngrid,nlay) ! tendence temperature due |
---|
| 71 | ! a la chaleur latente |
---|
[38] | 72 | |
---|
| 73 | REAL rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
| 74 | ! (r_c in montmessin_2004) |
---|
| 75 | REAL nuice(ngrid,nlay) ! Estimated effective variance |
---|
| 76 | ! of the size distribution |
---|
[1047] | 77 | real rsedcloud(ngrid,nlay) ! Cloud sedimentation radius |
---|
| 78 | real rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
[38] | 79 | |
---|
| 80 | c local: |
---|
| 81 | c ------ |
---|
[633] | 82 | |
---|
| 83 | ! for ice radius computation |
---|
| 84 | REAL Mo,No |
---|
| 85 | REAl ccntyp |
---|
| 86 | |
---|
| 87 | ! for time loop |
---|
| 88 | INTEGER microstep ! time subsampling step variable |
---|
| 89 | INTEGER imicro ! time subsampling for coupled water microphysics & sedimentation |
---|
| 90 | SAVE imicro |
---|
| 91 | REAL microtimestep ! integration timestep for coupled water microphysics & sedimentation |
---|
| 92 | SAVE microtimestep |
---|
| 93 | |
---|
| 94 | ! tendency given by clouds (inside the micro loop) |
---|
| 95 | REAL subpdqcloud(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 96 | REAL subpdtcloud(ngrid,nlay) ! cf. pdtcloud |
---|
[38] | 97 | |
---|
[633] | 98 | ! global tendency (clouds+physics) |
---|
| 99 | REAL subpdq(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 100 | REAL subpdt(ngrid,nlay) ! cf. pdtcloud |
---|
| 101 | |
---|
| 102 | |
---|
| 103 | INTEGER iq,ig,l |
---|
[38] | 104 | LOGICAL,SAVE :: firstcall=.true. |
---|
| 105 | |
---|
| 106 | c ** un petit test de coherence |
---|
| 107 | c -------------------------- |
---|
| 108 | |
---|
| 109 | IF (firstcall) THEN |
---|
| 110 | |
---|
| 111 | if (nq.gt.nqmx) then |
---|
| 112 | write(*,*) 'stop in watercloud (nq.gt.nqmx)!' |
---|
| 113 | write(*,*) 'nq=',nq,' nqmx=',nqmx |
---|
| 114 | stop |
---|
| 115 | endif |
---|
| 116 | |
---|
[358] | 117 | write(*,*) "watercloud: igcm_h2o_vap=",igcm_h2o_vap |
---|
| 118 | write(*,*) " igcm_h2o_ice=",igcm_h2o_ice |
---|
[633] | 119 | |
---|
| 120 | write(*,*) "time subsampling for microphysic ?" |
---|
| 121 | #ifdef MESOSCALE |
---|
| 122 | imicro = 2 |
---|
| 123 | #else |
---|
[951] | 124 | imicro = 30 |
---|
[633] | 125 | #endif |
---|
| 126 | call getin("imicro",imicro) |
---|
| 127 | write(*,*)"imicro = ",imicro |
---|
| 128 | |
---|
| 129 | microtimestep = ptimestep/real(imicro) |
---|
| 130 | write(*,*)"Physical timestep is",ptimestep |
---|
| 131 | write(*,*)"Microphysics timestep is",microtimestep |
---|
[38] | 132 | |
---|
| 133 | firstcall=.false. |
---|
| 134 | ENDIF ! of IF (firstcall) |
---|
[522] | 135 | |
---|
[633] | 136 | c-----Initialization |
---|
| 137 | subpdq(1:ngrid,1:nlay,1:nq) = 0 |
---|
| 138 | subpdt(1:ngrid,1:nlay) = 0 |
---|
| 139 | |
---|
| 140 | ! default value if no ice |
---|
| 141 | rhocloud(1:ngrid,1:nlay) = rho_dust |
---|
[38] | 142 | |
---|
[633] | 143 | |
---|
| 144 | |
---|
| 145 | c------------------------------------------------------------------ |
---|
| 146 | c Time subsampling for microphysics |
---|
| 147 | c------------------------------------------------------------------ |
---|
| 148 | DO microstep=1,imicro |
---|
[522] | 149 | |
---|
[633] | 150 | c------------------------------------------------------------------- |
---|
| 151 | c 1. Tendencies: |
---|
| 152 | c------------------ |
---|
[38] | 153 | |
---|
[633] | 154 | |
---|
| 155 | c------ Temperature tendency subpdt |
---|
| 156 | ! Each microtimestep we give the cloud scheme a stepped entry subpdt instead of pdt |
---|
| 157 | ! If imicro=1 subpdt is the same as pdt |
---|
| 158 | DO l=1,nlay |
---|
| 159 | DO ig=1,ngrid |
---|
| 160 | subpdt(ig,l) = subpdt(ig,l) |
---|
| 161 | & + pdt(ig,l) ! At each micro timestep we add pdt in order to have a stepped entry |
---|
| 162 | ENDDO |
---|
| 163 | ENDDO |
---|
| 164 | c------ Tracers tendencies subpdq |
---|
| 165 | c------ At each micro timestep we add pdq in order to have a stepped entry |
---|
| 166 | IF (microphys) THEN |
---|
| 167 | DO l=1,nlay |
---|
| 168 | DO ig=1,ngrid |
---|
| 169 | subpdq(ig,l,igcm_dust_mass) = |
---|
| 170 | & subpdq(ig,l,igcm_dust_mass) |
---|
| 171 | & + pdq(ig,l,igcm_dust_mass) |
---|
| 172 | subpdq(ig,l,igcm_dust_number) = |
---|
| 173 | & subpdq(ig,l,igcm_dust_number) |
---|
| 174 | & + pdq(ig,l,igcm_dust_number) |
---|
| 175 | subpdq(ig,l,igcm_ccn_mass) = |
---|
| 176 | & subpdq(ig,l,igcm_ccn_mass) |
---|
| 177 | & + pdq(ig,l,igcm_ccn_mass) |
---|
| 178 | subpdq(ig,l,igcm_ccn_number) = |
---|
| 179 | & subpdq(ig,l,igcm_ccn_number) |
---|
| 180 | & + pdq(ig,l,igcm_ccn_number) |
---|
| 181 | ENDDO |
---|
| 182 | ENDDO |
---|
| 183 | ENDIF |
---|
| 184 | DO l=1,nlay |
---|
| 185 | DO ig=1,ngrid |
---|
| 186 | subpdq(ig,l,igcm_h2o_ice) = |
---|
| 187 | & subpdq(ig,l,igcm_h2o_ice) |
---|
| 188 | & + pdq(ig,l,igcm_h2o_ice) |
---|
| 189 | subpdq(ig,l,igcm_h2o_vap) = |
---|
| 190 | & subpdq(ig,l,igcm_h2o_vap) |
---|
| 191 | & + pdq(ig,l,igcm_h2o_vap) |
---|
| 192 | ENDDO |
---|
| 193 | ENDDO |
---|
| 194 | |
---|
| 195 | |
---|
| 196 | c------------------------------------------------------------------- |
---|
| 197 | c 2. Main call to the different cloud schemes: |
---|
| 198 | c------------------------------------------------ |
---|
| 199 | IF (microphys) THEN |
---|
| 200 | CALL improvedclouds(ngrid,nlay,microtimestep, |
---|
| 201 | & pplay,pt,subpdt, |
---|
| 202 | & pq,subpdq,subpdqcloud,subpdtcloud, |
---|
| 203 | & nq,tauscaling) |
---|
| 204 | |
---|
| 205 | ELSE |
---|
| 206 | CALL simpleclouds(ngrid,nlay,microtimestep, |
---|
| 207 | & pplay,pzlay,pt,subpdt, |
---|
| 208 | & pq,subpdq,subpdqcloud,subpdtcloud, |
---|
[645] | 209 | & nq,tau,rice) |
---|
[633] | 210 | ENDIF |
---|
| 211 | |
---|
| 212 | |
---|
| 213 | c------------------------------------------------------------------- |
---|
| 214 | c 3. Updating tendencies after cloud scheme: |
---|
| 215 | c----------------------------------------------- |
---|
| 216 | |
---|
| 217 | IF (microphys) THEN |
---|
| 218 | DO l=1,nlay |
---|
| 219 | DO ig=1,ngrid |
---|
| 220 | subpdq(ig,l,igcm_dust_mass) = |
---|
| 221 | & subpdq(ig,l,igcm_dust_mass) |
---|
| 222 | & + subpdqcloud(ig,l,igcm_dust_mass) |
---|
| 223 | subpdq(ig,l,igcm_dust_number) = |
---|
| 224 | & subpdq(ig,l,igcm_dust_number) |
---|
| 225 | & + subpdqcloud(ig,l,igcm_dust_number) |
---|
| 226 | subpdq(ig,l,igcm_ccn_mass) = |
---|
| 227 | & subpdq(ig,l,igcm_ccn_mass) |
---|
| 228 | & + subpdqcloud(ig,l,igcm_ccn_mass) |
---|
| 229 | subpdq(ig,l,igcm_ccn_number) = |
---|
| 230 | & subpdq(ig,l,igcm_ccn_number) |
---|
| 231 | & + subpdqcloud(ig,l,igcm_ccn_number) |
---|
| 232 | ENDDO |
---|
| 233 | ENDDO |
---|
| 234 | ENDIF |
---|
| 235 | DO l=1,nlay |
---|
| 236 | DO ig=1,ngrid |
---|
| 237 | subpdq(ig,l,igcm_h2o_ice) = |
---|
| 238 | & subpdq(ig,l,igcm_h2o_ice) |
---|
| 239 | & + subpdqcloud(ig,l,igcm_h2o_ice) |
---|
| 240 | subpdq(ig,l,igcm_h2o_vap) = |
---|
| 241 | & subpdq(ig,l,igcm_h2o_vap) |
---|
| 242 | & + subpdqcloud(ig,l,igcm_h2o_vap) |
---|
| 243 | ENDDO |
---|
| 244 | ENDDO |
---|
[882] | 245 | |
---|
| 246 | IF (activice) THEN |
---|
| 247 | DO l=1,nlay |
---|
| 248 | DO ig=1,ngrid |
---|
| 249 | subpdt(ig,l) = |
---|
| 250 | & subpdt(ig,l) + subpdtcloud(ig,l) |
---|
| 251 | ENDDO |
---|
| 252 | ENDDO |
---|
| 253 | ENDIF |
---|
[633] | 254 | |
---|
| 255 | |
---|
| 256 | ENDDO ! of DO microstep=1,imicro |
---|
| 257 | |
---|
| 258 | c------------------------------------------------------------------- |
---|
| 259 | c 6. Compute final tendencies after time loop: |
---|
| 260 | c------------------------------------------------ |
---|
| 261 | |
---|
| 262 | c------ Temperature tendency pdtcloud |
---|
| 263 | DO l=1,nlay |
---|
| 264 | DO ig=1,ngrid |
---|
| 265 | pdtcloud(ig,l) = |
---|
| 266 | & subpdt(ig,l)/real(imicro)-pdt(ig,l) |
---|
| 267 | ENDDO |
---|
| 268 | ENDDO |
---|
[740] | 269 | |
---|
[633] | 270 | c------ Tracers tendencies pdqcloud |
---|
[703] | 271 | DO l=1,nlay |
---|
[633] | 272 | DO ig=1,ngrid |
---|
[703] | 273 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 274 | & subpdq(ig,l,igcm_h2o_ice)/real(imicro) |
---|
| 275 | & - pdq(ig,l,igcm_h2o_ice) |
---|
| 276 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 277 | & subpdq(ig,l,igcm_h2o_vap)/real(imicro) |
---|
| 278 | & - pdq(ig,l,igcm_h2o_vap) |
---|
[740] | 279 | ENDDO |
---|
| 280 | ENDDO |
---|
| 281 | |
---|
| 282 | IF(microphys) THEN |
---|
| 283 | DO l=1,nlay |
---|
| 284 | DO ig=1,ngrid |
---|
[703] | 285 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 286 | & subpdq(ig,l,igcm_ccn_mass)/real(imicro) |
---|
| 287 | & - pdq(ig,l,igcm_ccn_mass) |
---|
| 288 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 289 | & subpdq(ig,l,igcm_ccn_number)/real(imicro) |
---|
| 290 | & - pdq(ig,l,igcm_ccn_number) |
---|
[633] | 291 | ENDDO |
---|
[740] | 292 | ENDDO |
---|
| 293 | ENDIF |
---|
| 294 | |
---|
| 295 | IF(scavenging) THEN |
---|
| 296 | DO l=1,nlay |
---|
| 297 | DO ig=1,ngrid |
---|
| 298 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 299 | & subpdq(ig,l,igcm_dust_mass)/real(imicro) |
---|
| 300 | & - pdq(ig,l,igcm_dust_mass) |
---|
| 301 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 302 | & subpdq(ig,l,igcm_dust_number)/real(imicro) |
---|
| 303 | & - pdq(ig,l,igcm_dust_number) |
---|
| 304 | ENDDO |
---|
| 305 | ENDDO |
---|
| 306 | ENDIF |
---|
[633] | 307 | |
---|
| 308 | c------- Due to stepped entry, other processes tendencies can add up to negative values |
---|
| 309 | c------- Therefore, enforce positive values and conserve mass |
---|
| 310 | |
---|
[740] | 311 | |
---|
[633] | 312 | IF(microphys) THEN |
---|
| 313 | DO l=1,nlay |
---|
| 314 | DO ig=1,ngrid |
---|
[654] | 315 | IF ((pq(ig,l,igcm_ccn_number) + |
---|
[633] | 316 | & ptimestep* (pdq(ig,l,igcm_ccn_number) + |
---|
[654] | 317 | & pdqcloud(ig,l,igcm_ccn_number)) .le. 1.) |
---|
| 318 | & .or. (pq(ig,l,igcm_ccn_mass) + |
---|
| 319 | & ptimestep* (pdq(ig,l,igcm_ccn_mass) + |
---|
| 320 | & pdqcloud(ig,l,igcm_ccn_mass)) .le. 1.e-20)) THEN |
---|
[633] | 321 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 322 | & - pq(ig,l,igcm_ccn_number)/ptimestep |
---|
[654] | 323 | & - pdq(ig,l,igcm_ccn_number) + 1. |
---|
[633] | 324 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 325 | & -pdqcloud(ig,l,igcm_ccn_number) |
---|
| 326 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 327 | & - pq(ig,l,igcm_ccn_mass)/ptimestep |
---|
[654] | 328 | & - pdq(ig,l,igcm_ccn_mass) + 1.e-20 |
---|
[633] | 329 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 330 | & -pdqcloud(ig,l,igcm_ccn_mass) |
---|
| 331 | ENDIF |
---|
| 332 | ENDDO |
---|
| 333 | ENDDO |
---|
| 334 | ENDIF |
---|
| 335 | |
---|
[740] | 336 | IF(scavenging) THEN |
---|
[633] | 337 | DO l=1,nlay |
---|
| 338 | DO ig=1,ngrid |
---|
[740] | 339 | IF ((pq(ig,l,igcm_dust_number) + |
---|
| 340 | & ptimestep* (pdq(ig,l,igcm_dust_number) + |
---|
| 341 | & pdqcloud(ig,l,igcm_dust_number)) .le. 1.) |
---|
| 342 | & .or. (pq(ig,l,igcm_dust_mass) + |
---|
| 343 | & ptimestep* (pdq(ig,l,igcm_dust_mass) + |
---|
| 344 | & pdqcloud(ig,l,igcm_dust_mass)) .le. 1.e-20)) THEN |
---|
| 345 | pdqcloud(ig,l,igcm_dust_number) = |
---|
| 346 | & - pq(ig,l,igcm_dust_number)/ptimestep |
---|
| 347 | & - pdq(ig,l,igcm_dust_number) + 1. |
---|
| 348 | pdqcloud(ig,l,igcm_ccn_number) = |
---|
| 349 | & -pdqcloud(ig,l,igcm_dust_number) |
---|
| 350 | pdqcloud(ig,l,igcm_dust_mass) = |
---|
| 351 | & - pq(ig,l,igcm_dust_mass)/ptimestep |
---|
| 352 | & - pdq(ig,l,igcm_dust_mass) + 1.e-20 |
---|
| 353 | pdqcloud(ig,l,igcm_ccn_mass) = |
---|
| 354 | & -pdqcloud(ig,l,igcm_dust_mass) |
---|
| 355 | ENDIF |
---|
| 356 | ENDDO |
---|
| 357 | ENDDO |
---|
| 358 | ENDIF |
---|
| 359 | |
---|
| 360 | DO l=1,nlay |
---|
| 361 | DO ig=1,ngrid |
---|
[633] | 362 | IF (pq(ig,l,igcm_h2o_ice) + ptimestep* |
---|
| 363 | & (pdq(ig,l,igcm_h2o_ice) + pdqcloud(ig,l,igcm_h2o_ice)) |
---|
| 364 | & .le. 1.e-8) THEN |
---|
| 365 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 366 | & - pq(ig,l,igcm_h2o_ice)/ptimestep - pdq(ig,l,igcm_h2o_ice) |
---|
| 367 | pdqcloud(ig,l,igcm_h2o_vap) = -pdqcloud(ig,l,igcm_h2o_ice) |
---|
| 368 | ENDIF |
---|
| 369 | IF (pq(ig,l,igcm_h2o_vap) + ptimestep* |
---|
| 370 | & (pdq(ig,l,igcm_h2o_vap) + pdqcloud(ig,l,igcm_h2o_vap)) |
---|
| 371 | & .le. 1.e-8) THEN |
---|
| 372 | pdqcloud(ig,l,igcm_h2o_vap) = |
---|
| 373 | & - pq(ig,l,igcm_h2o_vap)/ptimestep - pdq(ig,l,igcm_h2o_vap) |
---|
| 374 | pdqcloud(ig,l,igcm_h2o_ice) = -pdqcloud(ig,l,igcm_h2o_vap) |
---|
| 375 | ENDIF |
---|
| 376 | ENDDO |
---|
| 377 | ENDDO |
---|
| 378 | |
---|
| 379 | |
---|
| 380 | c------Update the ice and dust particle size "rice" for output or photochemistry |
---|
| 381 | c------Only rsedcloud is used for the water cycle |
---|
| 382 | |
---|
| 383 | IF(scavenging) THEN |
---|
| 384 | DO l=1, nlay |
---|
| 385 | DO ig=1,ngrid |
---|
| 386 | |
---|
[740] | 387 | call updaterdust( |
---|
| 388 | & pq(ig,l,igcm_dust_mass) + ! dust mass |
---|
| 389 | & (pdq(ig,l,igcm_dust_mass) + ! dust mass |
---|
| 390 | & pdqcloud(ig,l,igcm_dust_mass))*ptimestep, ! dust mass |
---|
| 391 | & pq(ig,l,igcm_dust_number) + ! dust number |
---|
| 392 | & (pdq(ig,l,igcm_dust_number) + ! dust number |
---|
| 393 | & pdqcloud(ig,l,igcm_dust_number))*ptimestep, ! dust number |
---|
| 394 | & rdust(ig,l)) |
---|
[633] | 395 | |
---|
| 396 | ENDDO |
---|
| 397 | ENDDO |
---|
[740] | 398 | ENDIF |
---|
[645] | 399 | |
---|
[740] | 400 | |
---|
| 401 | IF(microphys) THEN |
---|
| 402 | |
---|
| 403 | DO l=1, nlay |
---|
| 404 | DO ig=1,ngrid |
---|
| 405 | |
---|
| 406 | call updaterice_micro( |
---|
| 407 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 408 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 409 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
| 410 | & pq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
| 411 | & (pdq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
| 412 | & pdqcloud(ig,l,igcm_ccn_mass))*ptimestep, ! ccn mass |
---|
| 413 | & pq(ig,l,igcm_ccn_number) + ! ccn number |
---|
| 414 | & (pdq(ig,l,igcm_ccn_number) + ! ccn number |
---|
| 415 | & pdqcloud(ig,l,igcm_ccn_number))*ptimestep, ! ccn number |
---|
| 416 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
| 417 | |
---|
[645] | 418 | ENDDO |
---|
[740] | 419 | ENDDO |
---|
[645] | 420 | |
---|
[740] | 421 | ELSE ! no microphys |
---|
| 422 | |
---|
[645] | 423 | DO l=1,nlay |
---|
| 424 | DO ig=1,ngrid |
---|
[740] | 425 | |
---|
| 426 | call updaterice_typ( |
---|
| 427 | & pq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 428 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 429 | & pdqcloud(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
[746] | 430 | & tau(ig,1),pzlay(ig,l),rice(ig,l)) |
---|
[740] | 431 | |
---|
[633] | 432 | ENDDO |
---|
[740] | 433 | ENDDO |
---|
[633] | 434 | |
---|
[740] | 435 | ENDIF ! of IF(microphys) |
---|
[633] | 436 | |
---|
[740] | 437 | |
---|
| 438 | |
---|
[358] | 439 | c A correction if a lot of subliming CO2 fills the 1st layer FF04/2005 |
---|
| 440 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 441 | c Then that should not affect the ice particle radius |
---|
[1047] | 442 | do ig=1,ngrid |
---|
[358] | 443 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,2)))then |
---|
| 444 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,3))) |
---|
| 445 | & rice(ig,2)=rice(ig,3) |
---|
| 446 | rice(ig,1)=rice(ig,2) |
---|
| 447 | end if |
---|
| 448 | end do |
---|
[740] | 449 | |
---|
| 450 | |
---|
| 451 | DO l=1,nlay |
---|
| 452 | DO ig=1,ngrid |
---|
| 453 | rsedcloud(ig,l)=max(rice(ig,l)* |
---|
| 454 | & (1.+nuice_sed)*(1.+nuice_sed)*(1.+nuice_sed), |
---|
| 455 | & rdust(ig,l)) |
---|
| 456 | ! rsedcloud(ig,l)=min(rsedcloud(ig,l),1.e-4) |
---|
| 457 | ENDDO |
---|
| 458 | ENDDO |
---|
| 459 | |
---|
| 460 | ! used for rad. transfer calculations |
---|
| 461 | ! nuice is constant because a lognormal distribution is prescribed |
---|
| 462 | nuice(1:ngrid,1:nlay)=nuice_ref |
---|
[38] | 463 | |
---|
[740] | 464 | |
---|
| 465 | |
---|
[633] | 466 | c======================================================================= |
---|
| 467 | |
---|
[38] | 468 | END |
---|
| 469 | |
---|