| 1 | MODULE vdifc_mod |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | SUBROUTINE vdifc(ngrid,nlay,nsoil,nq,nqsoil,ppopsk, |
|---|
| 8 | $ ptimestep,pcapcal,lecrit, |
|---|
| 9 | $ pplay,pplev,pzlay,pzlev,pz0, |
|---|
| 10 | $ pu,pv,ph,pq,ptsrf,ptsoil,pemis,pqsurf,qsoil, |
|---|
| 11 | $ pore_icefraction,pdufi,pdvfi,pdhfi, |
|---|
| 12 | $ pdqfi,pfluxsrf, |
|---|
| 13 | $ pdudif,pdvdif,pdhdif,pdtsrf,pq2, |
|---|
| 14 | $ pdqdif,pdqsdif,wstar, |
|---|
| 15 | $ hfmax,pcondicea_co2microp,sensibFlux, |
|---|
| 16 | $ dustliftday,local_time,watercap, dwatercap_dif) |
|---|
| 17 | |
|---|
| 18 | use tracer_mod, only: noms, igcm_dust_mass, igcm_dust_number, |
|---|
| 19 | & igcm_dust_submicron, igcm_h2o_vap, |
|---|
| 20 | & igcm_h2o_ice, alpha_lift, igcm_co2, |
|---|
| 21 | & igcm_hdo_vap, igcm_hdo_ice, |
|---|
| 22 | & igcm_stormdust_mass, igcm_stormdust_number |
|---|
| 23 | use surfdat_h, only: watercaptag, frost_albedo_threshold, dryness, |
|---|
| 24 | & old_wsublimation_scheme |
|---|
| 25 | USE comcstfi_h, ONLY: cpp, r, rcp, g, pi |
|---|
| 26 | use watersat_mod, only: watersat |
|---|
| 27 | use turb_mod, only: turb_resolved, ustar, tstar |
|---|
| 28 | use compute_dtau_mod, only: ti_injection_sol,tf_injection_sol |
|---|
| 29 | use hdo_surfex_mod, only: hdo_surfex |
|---|
| 30 | c use geometry_mod, only: longitude_deg,latitude_deg ! Joseph |
|---|
| 31 | use dust_param_mod, only: doubleq, submicron, lifting |
|---|
| 32 | use write_output_mod, only: write_output |
|---|
| 33 | use comslope_mod, ONLY: nslope,def_slope,def_slope_mean, |
|---|
| 34 | & subslope_dist,major_slope,iflat |
|---|
| 35 | use microphys_h, only: To |
|---|
| 36 | use paleoclimate_mod, only: d_coef,h2o_ice_depth,lag_layer |
|---|
| 37 | use comsoil_h, only: layer, mlayer,adsorption_soil |
|---|
| 38 | use vdif_cd_mod, only: vdif_cd |
|---|
| 39 | use lmdz_call_atke, only: call_atke |
|---|
| 40 | IMPLICIT NONE |
|---|
| 41 | |
|---|
| 42 | c======================================================================= |
|---|
| 43 | c |
|---|
| 44 | c subject: |
|---|
| 45 | c -------- |
|---|
| 46 | c Turbulent diffusion (mixing) for potential T, U, V and tracer |
|---|
| 47 | c |
|---|
| 48 | c Shema implicite |
|---|
| 49 | c On commence par rajouter au variables x la tendance physique |
|---|
| 50 | c et on resoult en fait: |
|---|
| 51 | c x(t+1) = x(t) + dt * (dx/dt)phys(t) + dt * (dx/dt)difv(t+1) |
|---|
| 52 | c |
|---|
| 53 | c author: |
|---|
| 54 | c ------ |
|---|
| 55 | c Hourdin/Forget/Fournier |
|---|
| 56 | c======================================================================= |
|---|
| 57 | |
|---|
| 58 | c----------------------------------------------------------------------- |
|---|
| 59 | c declarations: |
|---|
| 60 | c ------------- |
|---|
| 61 | |
|---|
| 62 | include "callkeys.h" |
|---|
| 63 | |
|---|
| 64 | c |
|---|
| 65 | c arguments: |
|---|
| 66 | c ---------- |
|---|
| 67 | |
|---|
| 68 | INTEGER,INTENT(IN) :: ngrid,nlay,nsoil,nqsoil |
|---|
| 69 | REAL,INTENT(IN) :: ptimestep |
|---|
| 70 | REAL,INTENT(IN) :: pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
|---|
| 71 | REAL,INTENT(IN) :: pzlay(ngrid,nlay),pzlev(ngrid,nlay+1) |
|---|
| 72 | REAL,INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) |
|---|
| 73 | REAL,INTENT(IN) :: ph(ngrid,nlay) |
|---|
| 74 | REAL,INTENT(IN) :: ptsrf(ngrid,nslope),pemis(ngrid,nslope) |
|---|
| 75 | REAL,INTENT(IN) :: pdufi(ngrid,nlay),pdvfi(ngrid,nlay) |
|---|
| 76 | REAL,INTENT(IN) :: pdhfi(ngrid,nlay) |
|---|
| 77 | REAL,INTENT(IN) :: pfluxsrf(ngrid,nslope) |
|---|
| 78 | REAL,INTENT(OUT) :: pdudif(ngrid,nlay),pdvdif(ngrid,nlay) |
|---|
| 79 | REAL,INTENT(OUT) :: pdtsrf(ngrid,nslope),pdhdif(ngrid,nlay) |
|---|
| 80 | REAL,INTENT(IN) :: pcapcal(ngrid,nslope) |
|---|
| 81 | REAL,INTENT(INOUT) :: pq2(ngrid,nlay+1) |
|---|
| 82 | REAL,INTENT(IN) :: ptsoil(ngrid,nsoil,nslope) |
|---|
| 83 | |
|---|
| 84 | c Argument added for condensation: |
|---|
| 85 | REAL,INTENT(IN) :: ppopsk(ngrid,nlay) |
|---|
| 86 | logical,INTENT(IN) :: lecrit |
|---|
| 87 | REAL,INTENT(IN) :: pcondicea_co2microp(ngrid,nlay)! tendency due to CO2 condensation (kg/kg.s-1) |
|---|
| 88 | |
|---|
| 89 | REAL,INTENT(IN) :: pz0(ngrid) ! surface roughness length (m) |
|---|
| 90 | |
|---|
| 91 | c Argument added to account for subgrid gustiness : |
|---|
| 92 | |
|---|
| 93 | REAL,INTENT(IN) :: wstar(ngrid), hfmax(ngrid)!, zi(ngrid) |
|---|
| 94 | |
|---|
| 95 | c Traceurs : |
|---|
| 96 | integer,intent(in) :: nq |
|---|
| 97 | REAL,INTENT(IN) :: pqsurf(ngrid,nq,nslope) |
|---|
| 98 | REAL :: zqsurf(ngrid) ! temporary water tracer |
|---|
| 99 | real,intent(in) :: pq(ngrid,nlay,nq), pdqfi(ngrid,nlay,nq) |
|---|
| 100 | real,intent(out) :: pdqdif(ngrid,nlay,nq) |
|---|
| 101 | real,intent(out) :: pdqsdif(ngrid,nq,nslope) |
|---|
| 102 | REAL,INTENT(in) :: dustliftday(ngrid) |
|---|
| 103 | REAL,INTENT(inout) :: qsoil(ngrid,nsoil,nqsoil,nslope) !subsurface tracers |
|---|
| 104 | REAL,INTENT(in) :: local_time(ngrid) |
|---|
| 105 | |
|---|
| 106 | c local: |
|---|
| 107 | c ------ |
|---|
| 108 | |
|---|
| 109 | REAL :: pt(ngrid,nlay) |
|---|
| 110 | |
|---|
| 111 | INTEGER ilev,ig,ilay,nlev,islope,ik,lice |
|---|
| 112 | |
|---|
| 113 | REAL z4st,zdplanck(ngrid) |
|---|
| 114 | REAL zkv(ngrid,nlay+1),zkh(ngrid,nlay+1) |
|---|
| 115 | REAL zkq(ngrid,nlay+1) |
|---|
| 116 | REAL zcdv(ngrid,nslope),zcdh(ngrid,nslope) |
|---|
| 117 | REAL :: zcdv_true(ngrid,nslope) |
|---|
| 118 | REAL :: zcdh_true(ngrid,nslope) ! drag coeff are used by the LES to recompute u* and hfx |
|---|
| 119 | REAL :: zcdv_tmp(ngrid),zcdh_tmp(ngrid) ! drag coeffs for the major sub-grid surface |
|---|
| 120 | REAL :: zcdv_true_tmp(ngrid),zcdh_true_tmp(ngrid) ! drag coeffs (computed with wind gustiness for the major sub-grid surface |
|---|
| 121 | REAL zu(ngrid,nlay),zv(ngrid,nlay) |
|---|
| 122 | REAL zh(ngrid,nlay) |
|---|
| 123 | REAL ztsrf2(ngrid) |
|---|
| 124 | REAL z1(ngrid),z2(ngrid) |
|---|
| 125 | REAL za(ngrid,nlay),zb(ngrid,nlay) |
|---|
| 126 | REAL zb0(ngrid,nlay) |
|---|
| 127 | REAL zc(ngrid,nlay),zd(ngrid,nlay) |
|---|
| 128 | REAL zcst1 |
|---|
| 129 | REAL zu2(ngrid) |
|---|
| 130 | |
|---|
| 131 | |
|---|
| 132 | EXTERNAL SSUM,SCOPY |
|---|
| 133 | REAL SSUM |
|---|
| 134 | LOGICAL,SAVE :: firstcall=.true. |
|---|
| 135 | |
|---|
| 136 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 137 | |
|---|
| 138 | c variable added for CO2 condensation: |
|---|
| 139 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 140 | REAL hh , zhcond(ngrid,nlay) |
|---|
| 141 | REAL,PARAMETER :: latcond=5.9e5 |
|---|
| 142 | REAL,PARAMETER :: tcond1mb=136.27 |
|---|
| 143 | REAL,SAVE :: acond,bcond |
|---|
| 144 | |
|---|
| 145 | !$OMP THREADPRIVATE(acond,bcond) |
|---|
| 146 | |
|---|
| 147 | c Subtimestep & implicit treatment of water vapor |
|---|
| 148 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 149 | REAL zdqsdif_surf(ngrid) ! subtimestep pdqsdif for water ice |
|---|
| 150 | REAL ztsrf(ngrid) ! temporary surface temperature in tsub |
|---|
| 151 | REAL zdtsrf(ngrid,nslope) ! surface temperature tendancy in tsub |
|---|
| 152 | REAL surf_h2o_lh(ngrid,nslope) ! Surface h2o latent heat flux |
|---|
| 153 | REAL zsurf_h2o_lh(ngrid,nslope) ! Tsub surface h2o latent heat flux |
|---|
| 154 | |
|---|
| 155 | c For latent heat release from ground water ice sublimation |
|---|
| 156 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 157 | REAL tsrf_lh(ngrid) ! temporary surface temperature with lh effect |
|---|
| 158 | REAL lh ! latent heat, formulation given in the Technical Document: |
|---|
| 159 | ! "Modeling water ice sublimation under Phoenix-like conditions", Montmessin et al. 2004 |
|---|
| 160 | |
|---|
| 161 | c Tracers : |
|---|
| 162 | c ~~~~~~~ |
|---|
| 163 | INTEGER iq |
|---|
| 164 | REAL zq(ngrid,nlay,nq) |
|---|
| 165 | REAL zq1temp(ngrid) |
|---|
| 166 | REAL rho(ngrid) ! near surface air density |
|---|
| 167 | REAL qsat(ngrid) |
|---|
| 168 | |
|---|
| 169 | |
|---|
| 170 | REAL hdoflux(ngrid,nslope) ! value of vapour flux of HDO |
|---|
| 171 | REAL hdoflux_meshavg(ngrid) ! value of vapour flux of HDO |
|---|
| 172 | ! REAL h2oflux(ngrid) ! value of vapour flux of H2O |
|---|
| 173 | REAL old_h2o_vap(ngrid) ! traceur d'eau avant traitement |
|---|
| 174 | REAL saved_h2o_vap(ngrid) ! traceur d'eau avant traitement |
|---|
| 175 | |
|---|
| 176 | REAL kmixmin |
|---|
| 177 | |
|---|
| 178 | c Argument added for surface water ice budget: |
|---|
| 179 | REAL,INTENT(IN) :: watercap(ngrid,nslope) |
|---|
| 180 | REAL,INTENT(OUT) :: dwatercap_dif(ngrid,nslope) |
|---|
| 181 | |
|---|
| 182 | c Subtimestep to compute h2o latent heat flux: |
|---|
| 183 | REAL :: dtmax = 0.5 ! subtimestep temp criterion |
|---|
| 184 | INTEGER tsub ! adaptative subtimestep (seconds) |
|---|
| 185 | REAL subtimestep !ptimestep/nsubtimestep |
|---|
| 186 | INTEGER nsubtimestep(ngrid) ! number of subtimestep (int) |
|---|
| 187 | |
|---|
| 188 | c Mass-variation scheme : |
|---|
| 189 | c ~~~~~~~ |
|---|
| 190 | |
|---|
| 191 | INTEGER j,l |
|---|
| 192 | REAL zcondicea(ngrid,nlay) |
|---|
| 193 | REAL zt(ngrid,nlay),ztcond(ngrid,nlay+1) |
|---|
| 194 | REAL betam(ngrid,nlay),dmice(ngrid,nlay) |
|---|
| 195 | REAL pdtc(ngrid,nlay) |
|---|
| 196 | REAL zhs(ngrid,nlay) |
|---|
| 197 | REAL,SAVE :: ccond |
|---|
| 198 | |
|---|
| 199 | !$OMP THREADPRIVATE(ccond) |
|---|
| 200 | |
|---|
| 201 | c Theta_m formulation for mass-variation scheme : |
|---|
| 202 | c ~~~~~~~ |
|---|
| 203 | |
|---|
| 204 | INTEGER,SAVE :: ico2 |
|---|
| 205 | INTEGER llnt(ngrid) |
|---|
| 206 | REAL,SAVE :: m_co2, m_noco2, A , B |
|---|
| 207 | REAL vmr_co2(ngrid,nlay) |
|---|
| 208 | REAL qco2,mmean(ngrid,nlay) |
|---|
| 209 | |
|---|
| 210 | !$OMP THREADPRIVATE(ico2,m_co2,m_noco2,A,B) |
|---|
| 211 | |
|---|
| 212 | REAL,INTENT(OUT) :: sensibFlux(ngrid) |
|---|
| 213 | |
|---|
| 214 | !!MARGAUX |
|---|
| 215 | REAL DoH_vap(ngrid,nlay) |
|---|
| 216 | !! Sub-grid scale slopes |
|---|
| 217 | REAL :: pdqsdif_tmp(ngrid,nq) ! Temporary for dust lifting |
|---|
| 218 | REAL :: watercap_tmp(ngrid) |
|---|
| 219 | REAL :: zq_slope_vap(ngrid,nlay,nq,nslope) |
|---|
| 220 | REAL :: zq_tmp_vap(ngrid,nlay,nq) |
|---|
| 221 | REAL :: ptsrf_tmp(ngrid) |
|---|
| 222 | REAL :: pqsurf_tmp(ngrid,nq) |
|---|
| 223 | REAL :: pdqsdif_tmphdo(ngrid,nq) |
|---|
| 224 | REAL :: qsat_tmp(ngrid) |
|---|
| 225 | INTEGER :: indmax |
|---|
| 226 | |
|---|
| 227 | character*2 str2 |
|---|
| 228 | |
|---|
| 229 | !! Subsurface exchanges |
|---|
| 230 | LOGICAL :: exchange ! boolean to check if exchange between the subsurface and the atmosphere can occurs |
|---|
| 231 | REAL :: zdqsdif_regolith(ngrid,nslope) ! Flux from subsurface (positive pointing outwards) (kg/m^2/s) |
|---|
| 232 | REAL zq1temp_regolith(ngrid) ! Temporary atmospheric mixing ratio after exchange with subsurface (kg / kg) |
|---|
| 233 | REAL zdqsdif_tot(ngrid) ! subtimestep pdqsdif for water ice |
|---|
| 234 | LOGICAL :: writeoutput ! boolean to say to soilexchange.F if we are at the last iteration and thus if he can write in the diagsoil |
|---|
| 235 | REAL, INTENT(out) :: pore_icefraction(ngrid,nsoil,nslope) ! ice filling fraction in the pores |
|---|
| 236 | !! Water buyoncy |
|---|
| 237 | LOGICAL :: virtual |
|---|
| 238 | |
|---|
| 239 | !! Subsurface ice interactions |
|---|
| 240 | REAL Tice(ngrid,nslope) ! subsurface temperature where ice is located (K) |
|---|
| 241 | REAL qsat_ssi(ngrid,nslope) ! qsat(Tice) (kg/kg) |
|---|
| 242 | REAL resist(ngrid,nslope) ! subsurface ice flux reduction coef (1) |
|---|
| 243 | REAL zdqsdif_ssi_atm(ngrid,nslope) ! SSI - atmosphere flux (kg/m^2/s^-1) at a given subtimestep |
|---|
| 244 | REAL zdqsdif_ssi_frost(ngrid,nslope) ! SSI - frost flux (kg/m^2/s^-1) at a given subtimestep |
|---|
| 245 | REAL zdqsdif_ssi_atm_tot(ngrid,nslope) ! SSI - atmosphere flux (kg/m^2/s^-1) summed over all subtimestep |
|---|
| 246 | REAL zdqsdif_ssi_frost_tot(ngrid,nslope) ! SSI - frost flux (kg/m^2/s^-1) summed over all subtimestep |
|---|
| 247 | REAL zdqsdif_ssi_tot(ngrid,nslope) ! Total flux of the interactions with SSI kg/m^2/s^-1) |
|---|
| 248 | |
|---|
| 249 | REAL :: tol_frost = 1e-4 ! tolerence for frost thicnkess (kg/m^2) to avoid numerical noise effect |
|---|
| 250 | c ** un petit test de coherence |
|---|
| 251 | c -------------------------- |
|---|
| 252 | |
|---|
| 253 | ! AS: OK firstcall absolute |
|---|
| 254 | IF (firstcall) THEN |
|---|
| 255 | c To compute: Tcond= 1./(bcond-acond*log(.0095*p)) (p in pascal) |
|---|
| 256 | bcond=1./tcond1mb |
|---|
| 257 | acond=r/latcond |
|---|
| 258 | ccond=cpp/(g*latcond) |
|---|
| 259 | PRINT*,'In vdifc: Tcond(P=1mb)=',tcond1mb,' Lcond=',latcond |
|---|
| 260 | PRINT*,' acond,bcond,ccond',acond,bcond,ccond |
|---|
| 261 | |
|---|
| 262 | |
|---|
| 263 | ico2=0 |
|---|
| 264 | |
|---|
| 265 | c Prepare Special treatment if one of the tracer is CO2 gas |
|---|
| 266 | do iq=1,nq |
|---|
| 267 | if (noms(iq).eq."co2") then |
|---|
| 268 | ico2=iq |
|---|
| 269 | m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
|---|
| 270 | m_noco2 = 33.37E-3 ! Non condensible mol mass (kg/mol) |
|---|
| 271 | c Compute A and B coefficient use to compute |
|---|
| 272 | c mean molecular mass Mair defined by |
|---|
| 273 | c 1/Mair = q(ico2)/m_co2 + (1-q(ico2))/m_noco2 |
|---|
| 274 | c 1/Mair = A*q(ico2) + B |
|---|
| 275 | A =(1/m_co2 - 1/m_noco2) |
|---|
| 276 | B=1/m_noco2 |
|---|
| 277 | endif |
|---|
| 278 | enddo |
|---|
| 279 | |
|---|
| 280 | firstcall=.false. |
|---|
| 281 | ENDIF |
|---|
| 282 | |
|---|
| 283 | DO ig = 1,ngrid |
|---|
| 284 | ptsrf_tmp(ig) = ptsrf(ig,major_slope(ig)) |
|---|
| 285 | pqsurf_tmp(ig,:) = pqsurf(ig,:,major_slope(ig)) |
|---|
| 286 | ENDDO |
|---|
| 287 | |
|---|
| 288 | c----------------------------------------------------------------------- |
|---|
| 289 | c 1. initialisation |
|---|
| 290 | c ----------------- |
|---|
| 291 | |
|---|
| 292 | nlev=nlay+1 |
|---|
| 293 | |
|---|
| 294 | ! initialize output tendencies to zero: |
|---|
| 295 | pdudif(1:ngrid,1:nlay)=0 |
|---|
| 296 | pdvdif(1:ngrid,1:nlay)=0 |
|---|
| 297 | pdhdif(1:ngrid,1:nlay)=0 |
|---|
| 298 | pdtsrf(1:ngrid,1:nslope)=0 |
|---|
| 299 | zdtsrf(1:ngrid,1:nslope)=0 |
|---|
| 300 | surf_h2o_lh(1:ngrid,1:nslope)=0 |
|---|
| 301 | zsurf_h2o_lh(1:ngrid,1:nslope)=0 |
|---|
| 302 | pdqdif(1:ngrid,1:nlay,1:nq)=0 |
|---|
| 303 | pdqsdif(1:ngrid,1:nq,1:nslope)=0 |
|---|
| 304 | pdqsdif_tmp(1:ngrid,1:nq)=0 |
|---|
| 305 | zdqsdif_surf(1:ngrid)=0 |
|---|
| 306 | dwatercap_dif(1:ngrid,1:nslope)=0 |
|---|
| 307 | zdqsdif_regolith(1:ngrid,1:nslope)=0 |
|---|
| 308 | zq1temp_regolith(1:ngrid)=0 |
|---|
| 309 | zdqsdif_tot(1:ngrid)=0 |
|---|
| 310 | virtual = .false. |
|---|
| 311 | pore_icefraction(:,:,:) = 0. |
|---|
| 312 | zdqsdif_ssi_atm(:,:) = 0. |
|---|
| 313 | zdqsdif_ssi_frost(:,:) = 0. |
|---|
| 314 | zdqsdif_ssi_tot(:,:) = 0. |
|---|
| 315 | zdqsdif_ssi_atm_tot(:,:) = 0. |
|---|
| 316 | zdqsdif_ssi_frost_tot(:,:) = 0. |
|---|
| 317 | |
|---|
| 318 | |
|---|
| 319 | c ** calcul de rho*dz et dt*rho/dz=dt*rho**2 g/dp |
|---|
| 320 | c avec rho=p/RT=p/ (R Theta) (p/ps)**kappa |
|---|
| 321 | c ---------------------------------------- |
|---|
| 322 | |
|---|
| 323 | DO ilay=1,nlay |
|---|
| 324 | DO ig=1,ngrid |
|---|
| 325 | za(ig,ilay)=(pplev(ig,ilay)-pplev(ig,ilay+1))/g |
|---|
| 326 | ! Mass variation scheme: |
|---|
| 327 | betam(ig,ilay)=-za(ig,ilay)*latcond/(cpp*ppopsk(ig,ilay)) |
|---|
| 328 | ENDDO |
|---|
| 329 | ENDDO |
|---|
| 330 | |
|---|
| 331 | zcst1=4.*g*ptimestep/(r*r) |
|---|
| 332 | DO ilev=2,nlev-1 |
|---|
| 333 | DO ig=1,ngrid |
|---|
| 334 | zb0(ig,ilev)=pplev(ig,ilev)* |
|---|
| 335 | s (pplev(ig,1)/pplev(ig,ilev))**rcp / |
|---|
| 336 | s (ph(ig,ilev-1)+ph(ig,ilev)) |
|---|
| 337 | zb0(ig,ilev)=zcst1*zb0(ig,ilev)*zb0(ig,ilev)/ |
|---|
| 338 | s (pplay(ig,ilev-1)-pplay(ig,ilev)) |
|---|
| 339 | ENDDO |
|---|
| 340 | ENDDO |
|---|
| 341 | DO ig=1,ngrid |
|---|
| 342 | zb0(ig,1)=ptimestep*pplev(ig,1)/(r*ptsrf_tmp(ig)) |
|---|
| 343 | ENDDO |
|---|
| 344 | |
|---|
| 345 | c ** diagnostique pour l'initialisation |
|---|
| 346 | c ---------------------------------- |
|---|
| 347 | |
|---|
| 348 | IF(lecrit) THEN |
|---|
| 349 | ig=ngrid/2+1 |
|---|
| 350 | PRINT*,'Pression (mbar) ,altitude (km),u,v,theta, rho dz' |
|---|
| 351 | DO ilay=1,nlay |
|---|
| 352 | WRITE(*,'(6f11.5)') |
|---|
| 353 | s .01*pplay(ig,ilay),.001*pzlay(ig,ilay), |
|---|
| 354 | s pu(ig,ilay),pv(ig,ilay),ph(ig,ilay),za(ig,ilay) |
|---|
| 355 | ENDDO |
|---|
| 356 | PRINT*,'Pression (mbar) ,altitude (km),zb' |
|---|
| 357 | DO ilev=1,nlay |
|---|
| 358 | WRITE(*,'(3f15.7)') |
|---|
| 359 | s .01*pplev(ig,ilev),.001*pzlev(ig,ilev), |
|---|
| 360 | s zb0(ig,ilev) |
|---|
| 361 | ENDDO |
|---|
| 362 | ENDIF |
|---|
| 363 | |
|---|
| 364 | c ----------------------------------- |
|---|
| 365 | c Potential Condensation temperature: |
|---|
| 366 | c ----------------------------------- |
|---|
| 367 | |
|---|
| 368 | c Compute CO2 Volume mixing ratio |
|---|
| 369 | c ------------------------------- |
|---|
| 370 | if (callcond.and.(ico2.ne.0)) then |
|---|
| 371 | DO ilev=1,nlay |
|---|
| 372 | DO ig=1,ngrid |
|---|
| 373 | qco2=MAX(1.E-30 |
|---|
| 374 | & ,pq(ig,ilev,ico2)+pdqfi(ig,ilev,ico2)*ptimestep) |
|---|
| 375 | c Mean air molecular mass = 1/(q(ico2)/m_co2 + (1-q(ico2))/m_noco2) |
|---|
| 376 | mmean(ig,ilev)=1/(A*qco2 +B) |
|---|
| 377 | vmr_co2(ig,ilev) = qco2*mmean(ig,ilev)/m_co2 |
|---|
| 378 | ENDDO |
|---|
| 379 | ENDDO |
|---|
| 380 | else |
|---|
| 381 | DO ilev=1,nlay |
|---|
| 382 | DO ig=1,ngrid |
|---|
| 383 | vmr_co2(ig,ilev)=0.95 |
|---|
| 384 | ENDDO |
|---|
| 385 | ENDDO |
|---|
| 386 | end if |
|---|
| 387 | |
|---|
| 388 | c forecast of atmospheric temperature zt and frost temperature ztcond |
|---|
| 389 | c -------------------------------------------------------------------- |
|---|
| 390 | |
|---|
| 391 | if (callcond) then |
|---|
| 392 | DO ilev=1,nlay |
|---|
| 393 | DO ig=1,ngrid |
|---|
| 394 | ztcond(ig,ilev)= |
|---|
| 395 | & 1./(bcond-acond*log(.01*vmr_co2(ig,ilev)*pplay(ig,ilev))) |
|---|
| 396 | if (pplay(ig,ilev).lt.1e-4) ztcond(ig,ilev)=0.0 !mars Monica |
|---|
| 397 | ! zhcond(ig,ilev) = |
|---|
| 398 | ! & (1./(bcond-acond*log(.0095*pplay(ig,ilev))))/ppopsk(ig,ilev) |
|---|
| 399 | zhcond(ig,ilev) = ztcond(ig,ilev)/ppopsk(ig,ilev) |
|---|
| 400 | END DO |
|---|
| 401 | END DO |
|---|
| 402 | ztcond(:,nlay+1)=ztcond(:,nlay) |
|---|
| 403 | else |
|---|
| 404 | zhcond(:,:) = 0 |
|---|
| 405 | ztcond(:,:) = 0 |
|---|
| 406 | end if |
|---|
| 407 | |
|---|
| 408 | |
|---|
| 409 | c----------------------------------------------------------------------- |
|---|
| 410 | c 2. ajout des tendances physiques |
|---|
| 411 | c ----------------------------- |
|---|
| 412 | |
|---|
| 413 | DO ilev=1,nlay |
|---|
| 414 | DO ig=1,ngrid |
|---|
| 415 | zu(ig,ilev)=pu(ig,ilev)+pdufi(ig,ilev)*ptimestep |
|---|
| 416 | zv(ig,ilev)=pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep |
|---|
| 417 | zh(ig,ilev)=ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
|---|
| 418 | ! zh(ig,ilev)=max(zh(ig,ilev),zhcond(ig,ilev)) |
|---|
| 419 | ENDDO |
|---|
| 420 | ENDDO |
|---|
| 421 | |
|---|
| 422 | zq(1:ngrid,1:nlay,1:nq)=pq(1:ngrid,1:nlay,1:nq)+ |
|---|
| 423 | & pdqfi(1:ngrid,1:nlay,1:nq)*ptimestep |
|---|
| 424 | |
|---|
| 425 | c----------------------------------------------------------------------- |
|---|
| 426 | c 3. schema de turbulence |
|---|
| 427 | c -------------------- |
|---|
| 428 | |
|---|
| 429 | c ** source d'energie cinetique turbulente a la surface |
|---|
| 430 | c (condition aux limites du schema de diffusion turbulente |
|---|
| 431 | c dans la couche limite |
|---|
| 432 | c --------------------- |
|---|
| 433 | |
|---|
| 434 | CALL vdif_cd(ngrid,nlay,nslope,pz0,g,pzlay,pplay,pu,pv,wstar, |
|---|
| 435 | & ptsrf,ph,virtual,mmean(:,1),zq(:,:,igcm_h2o_vap), |
|---|
| 436 | & pqsurf(:,igcm_h2o_ice,:), |
|---|
| 437 | & zcdv_true,zcdh_true) |
|---|
| 438 | |
|---|
| 439 | zu2(:)=pu(:,1)*pu(:,1)+pv(:,1)*pv(:,1) |
|---|
| 440 | |
|---|
| 441 | DO islope = 1,nslope |
|---|
| 442 | IF (callrichsl) THEN |
|---|
| 443 | zcdv(:,islope)=zcdv_true(:,islope)*sqrt(zu2(:)+ |
|---|
| 444 | & (log(1.+0.7*wstar(:) + 2.3*wstar(:)**2))**2) |
|---|
| 445 | zcdh(:,islope)=zcdh_true(:,islope)*sqrt(zu2(:)+ |
|---|
| 446 | & (log(1.+0.7*wstar(:) + 2.3*wstar(:)**2))**2) |
|---|
| 447 | ELSE |
|---|
| 448 | zcdv(:,islope)=zcdv_true(:,islope)*sqrt(zu2(:)) ! 1 / bulk aerodynamic momentum conductance |
|---|
| 449 | zcdh(:,islope)=zcdh_true(:,islope)*sqrt(zu2(:)) ! 1 / bulk aerodynamic heat conductance |
|---|
| 450 | ENDIF |
|---|
| 451 | ENDDO |
|---|
| 452 | ustar(:) = 0 |
|---|
| 453 | tstar(:) = 0 |
|---|
| 454 | DO ig = 1,ngrid |
|---|
| 455 | zcdv_tmp(ig) = zcdv(ig,major_slope(ig)) |
|---|
| 456 | zcdh_tmp(ig) = zcdh(ig,major_slope(ig)) |
|---|
| 457 | zcdv_true_tmp(ig) = zcdv_true(ig,major_slope(ig)) |
|---|
| 458 | zcdh_true_tmp(ig) = zcdh_true(ig,major_slope(ig)) |
|---|
| 459 | IF (callrichsl) THEN |
|---|
| 460 | ustar(ig)=sqrt(zcdv_true(ig,major_slope(ig))) |
|---|
| 461 | & *sqrt(zu2(ig)+(log(1.+0.7*wstar(ig) + |
|---|
| 462 | & 2.3*wstar(ig)**2))**2) |
|---|
| 463 | IF (zcdh_true(ig,major_slope(ig)) .ne. 0.) THEN ! When Cd=Ch=0, u*=t*=0 |
|---|
| 464 | tstar(ig)=(ph(ig,1)-ptsrf_tmp(ig)) |
|---|
| 465 | & *zcdh_tmp(ig)/ustar(ig) |
|---|
| 466 | ENDIF |
|---|
| 467 | ELSE |
|---|
| 468 | ustar(ig)=sqrt(zcdv_true(ig,major_slope(ig))) |
|---|
| 469 | & *sqrt(zu2(ig)) |
|---|
| 470 | tstar(ig)=(ph(ig,1)-ptsrf_tmp(ig)) |
|---|
| 471 | & *zcdh_true(ig,major_slope(ig)) |
|---|
| 472 | & /sqrt(zcdv_true(ig,major_slope(ig))) |
|---|
| 473 | ENDIF |
|---|
| 474 | ENDDO |
|---|
| 475 | |
|---|
| 476 | c ** schema de diffusion turbulente dans la couche limite |
|---|
| 477 | c ---------------------------------------------------- |
|---|
| 478 | pt(:,:)=ph(:,:)*ppopsk(:,:) |
|---|
| 479 | if (callyamada4) then |
|---|
| 480 | call yamada4(ngrid,nlay,nq,ptimestep,g,r,pplev,pt |
|---|
| 481 | s ,pzlev,pzlay,pu,pv,ph,pq,zcdv_true_tmp,pq2,zkv,zkh,zkq,ustar |
|---|
| 482 | s ,9) |
|---|
| 483 | |
|---|
| 484 | elseif (callatke) then |
|---|
| 485 | call call_atke(ptimestep,ngrid,nlay,zcdv_true_tmp, |
|---|
| 486 | s zcdh_true_tmp,pu(:,1),pv(:,1),ptsrf_tmp, |
|---|
| 487 | s pu,pv,pt,zq(:,1,igcm_h2o_vap),pplay,pplev, |
|---|
| 488 | s pzlay,pzlev,pq2,zkv(:,1:nlay),zkh(:,1:nlay)) |
|---|
| 489 | |
|---|
| 490 | zkv(:,nlay+1) = zkv(:,nlay) |
|---|
| 491 | zkh(:,nlay+1) = zkh(:,nlay) |
|---|
| 492 | else |
|---|
| 493 | call vdif_kc(ngrid,nlay,nq,ptimestep,g,pzlev,pzlay |
|---|
| 494 | s ,pu,pv,ph,zcdv_true_tmp |
|---|
| 495 | s ,pq2,zkv,zkh,zq) |
|---|
| 496 | |
|---|
| 497 | endif |
|---|
| 498 | if ((doubleq).and.(ngrid.eq.1)) then |
|---|
| 499 | kmixmin = 80. !80.! minimum eddy mix coeff in 1D |
|---|
| 500 | do ilev=2,nlay |
|---|
| 501 | do ig=1,ngrid |
|---|
| 502 | zkh(ig,ilev) = max(kmixmin,zkh(ig,ilev)) |
|---|
| 503 | zkv(ig,ilev) = max(kmixmin,zkv(ig,ilev)) |
|---|
| 504 | end do |
|---|
| 505 | end do |
|---|
| 506 | end if |
|---|
| 507 | |
|---|
| 508 | c ** diagnostique pour le schema de turbulence |
|---|
| 509 | c ----------------------------------------- |
|---|
| 510 | |
|---|
| 511 | IF(lecrit) THEN |
|---|
| 512 | PRINT* |
|---|
| 513 | PRINT*,'Diagnostic for the vertical turbulent mixing' |
|---|
| 514 | PRINT*,'Cd for momentum and potential temperature' |
|---|
| 515 | |
|---|
| 516 | PRINT*,zcdv_tmp(ngrid/2+1),zcdh_tmp(ngrid/2+1) |
|---|
| 517 | PRINT*,'Mixing coefficient for momentum and pot.temp.' |
|---|
| 518 | DO ilev=1,nlay |
|---|
| 519 | PRINT*,zkv(ngrid/2+1,ilev),zkh(ngrid/2+1,ilev) |
|---|
| 520 | ENDDO |
|---|
| 521 | ENDIF |
|---|
| 522 | |
|---|
| 523 | c----------------------------------------------------------------------- |
|---|
| 524 | c 4. inversion pour l'implicite sur u |
|---|
| 525 | c -------------------------------- |
|---|
| 526 | |
|---|
| 527 | c ** l'equation est |
|---|
| 528 | c u(t+1) = u(t) + dt * {(du/dt)phys}(t) + dt * {(du/dt)difv}(t+1) |
|---|
| 529 | c avec |
|---|
| 530 | c /zu/ = u(t) + dt * {(du/dt)phys}(t) (voir paragraphe 2.) |
|---|
| 531 | c et |
|---|
| 532 | c dt * {(du/dt)difv}(t+1) = dt * {(d/dz)[ Ku (du/dz) ]}(t+1) |
|---|
| 533 | c donc les entrees sont /zcdv/ pour la condition a la limite sol |
|---|
| 534 | c et /zkv/ = Ku |
|---|
| 535 | |
|---|
| 536 | zb(1:ngrid,2:nlay)=zkv(1:ngrid,2:nlay)*zb0(1:ngrid,2:nlay) |
|---|
| 537 | zb(1:ngrid,1)=zcdv_tmp(1:ngrid)*zb0(1:ngrid,1) |
|---|
| 538 | |
|---|
| 539 | DO ig=1,ngrid |
|---|
| 540 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
|---|
| 541 | zc(ig,nlay)=za(ig,nlay)*zu(ig,nlay)*z1(ig) |
|---|
| 542 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
|---|
| 543 | ENDDO |
|---|
| 544 | |
|---|
| 545 | DO ilay=nlay-1,1,-1 |
|---|
| 546 | DO ig=1,ngrid |
|---|
| 547 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
|---|
| 548 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
|---|
| 549 | zc(ig,ilay)=(za(ig,ilay)*zu(ig,ilay)+ |
|---|
| 550 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
|---|
| 551 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
|---|
| 552 | ENDDO |
|---|
| 553 | ENDDO |
|---|
| 554 | |
|---|
| 555 | DO ig=1,ngrid |
|---|
| 556 | zu(ig,1)=zc(ig,1) |
|---|
| 557 | ENDDO |
|---|
| 558 | DO ilay=2,nlay |
|---|
| 559 | DO ig=1,ngrid |
|---|
| 560 | zu(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zu(ig,ilay-1) |
|---|
| 561 | ENDDO |
|---|
| 562 | ENDDO |
|---|
| 563 | |
|---|
| 564 | c----------------------------------------------------------------------- |
|---|
| 565 | c 5. inversion pour l'implicite sur v |
|---|
| 566 | c -------------------------------- |
|---|
| 567 | |
|---|
| 568 | c ** l'equation est |
|---|
| 569 | c v(t+1) = v(t) + dt * {(dv/dt)phys}(t) + dt * {(dv/dt)difv}(t+1) |
|---|
| 570 | c avec |
|---|
| 571 | c /zv/ = v(t) + dt * {(dv/dt)phys}(t) (voir paragraphe 2.) |
|---|
| 572 | c et |
|---|
| 573 | c dt * {(dv/dt)difv}(t+1) = dt * {(d/dz)[ Kv (dv/dz) ]}(t+1) |
|---|
| 574 | c donc les entrees sont /zcdv/ pour la condition a la limite sol |
|---|
| 575 | c et /zkv/ = Kv |
|---|
| 576 | |
|---|
| 577 | DO ig=1,ngrid |
|---|
| 578 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
|---|
| 579 | zc(ig,nlay)=za(ig,nlay)*zv(ig,nlay)*z1(ig) |
|---|
| 580 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
|---|
| 581 | ENDDO |
|---|
| 582 | |
|---|
| 583 | DO ilay=nlay-1,1,-1 |
|---|
| 584 | DO ig=1,ngrid |
|---|
| 585 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
|---|
| 586 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
|---|
| 587 | zc(ig,ilay)=(za(ig,ilay)*zv(ig,ilay)+ |
|---|
| 588 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
|---|
| 589 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
|---|
| 590 | ENDDO |
|---|
| 591 | ENDDO |
|---|
| 592 | |
|---|
| 593 | DO ig=1,ngrid |
|---|
| 594 | zv(ig,1)=zc(ig,1) |
|---|
| 595 | ENDDO |
|---|
| 596 | DO ilay=2,nlay |
|---|
| 597 | DO ig=1,ngrid |
|---|
| 598 | zv(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zv(ig,ilay-1) |
|---|
| 599 | ENDDO |
|---|
| 600 | ENDDO |
|---|
| 601 | |
|---|
| 602 | c----------------------------------------------------------------------- |
|---|
| 603 | c Using the wind modified by friction for lifting and sublimation |
|---|
| 604 | c ---------------------------------------------------------------- |
|---|
| 605 | |
|---|
| 606 | ! This is computed above and takes into account surface-atmosphere flux |
|---|
| 607 | ! enhancement by subgrid gustiness and atmospheric-stability related |
|---|
| 608 | ! variations of transfer coefficients. |
|---|
| 609 | ! Calculate Cd again with wind slowed by friction |
|---|
| 610 | c ------------------------------------------- |
|---|
| 611 | |
|---|
| 612 | CALL vdif_cd(ngrid,nlay,nslope,pz0,g,pzlay,pplay,zu,zv,wstar, |
|---|
| 613 | & ptsrf,ph,virtual,mmean(:,1),zq(:,:,igcm_h2o_vap), |
|---|
| 614 | & pqsurf(:,igcm_h2o_ice,:), |
|---|
| 615 | & zcdv_true,zcdh_true) |
|---|
| 616 | |
|---|
| 617 | zu2(:)=zu(:,1)*zu(:,1)+zv(:,1)*zv(:,1) |
|---|
| 618 | |
|---|
| 619 | DO islope = 1,nslope |
|---|
| 620 | IF (callrichsl) THEN |
|---|
| 621 | zcdv(:,islope)=zcdv_true(:,islope)*sqrt(zu2(:)+ |
|---|
| 622 | & (log(1.+0.7*wstar(:) + 2.3*wstar(:)**2))**2) |
|---|
| 623 | zcdh(:,islope)=zcdh_true(:,islope)*sqrt(zu2(:)+ |
|---|
| 624 | & (log(1.+0.7*wstar(:) + 2.3*wstar(:)**2))**2) |
|---|
| 625 | ELSE |
|---|
| 626 | zcdv(:,islope)=zcdv_true(:,islope)*sqrt(zu2(:)) ! 1 / bulk aerodynamic momentum conductance |
|---|
| 627 | zcdh(:,islope)=zcdh_true(:,islope)*sqrt(zu2(:)) ! 1 / bulk aerodynamic heat conductance |
|---|
| 628 | ENDIF |
|---|
| 629 | ENDDO |
|---|
| 630 | ustar(:) = 0 |
|---|
| 631 | tstar(:) = 0 |
|---|
| 632 | DO ig = 1,ngrid |
|---|
| 633 | zcdv_tmp(ig) = zcdv(ig,major_slope(ig)) |
|---|
| 634 | zcdh_tmp(ig) = zcdh(ig,major_slope(ig)) |
|---|
| 635 | zcdv_true_tmp(ig) = zcdv_true(ig,major_slope(ig)) |
|---|
| 636 | zcdh_true_tmp(ig) = zcdh_true(ig,major_slope(ig)) |
|---|
| 637 | IF (callrichsl) THEN |
|---|
| 638 | ustar(ig)=sqrt(zcdv_true(ig,major_slope(ig))) |
|---|
| 639 | & *sqrt(zu2(ig)+(log(1.+0.7*wstar(ig) + |
|---|
| 640 | & 2.3*wstar(ig)**2))**2) |
|---|
| 641 | IF (zcdh_true(ig,major_slope(ig)) .ne. 0.) THEN ! When Cd=Ch=0, u*=t*=0 |
|---|
| 642 | tstar(ig)=(ph(ig,1)-ptsrf_tmp(ig)) |
|---|
| 643 | & *zcdh_tmp(ig)/ustar(ig) |
|---|
| 644 | ENDIF |
|---|
| 645 | ELSE |
|---|
| 646 | ustar(ig)=sqrt(zcdv_true(ig,major_slope(ig))) |
|---|
| 647 | & *sqrt(zu2(ig)) |
|---|
| 648 | tstar(ig)=(ph(ig,1)-ptsrf_tmp(ig)) |
|---|
| 649 | & *zcdh_true(ig,major_slope(ig)) |
|---|
| 650 | & /sqrt(zcdv_true(ig,major_slope(ig))) |
|---|
| 651 | ENDIF |
|---|
| 652 | ENDDO |
|---|
| 653 | |
|---|
| 654 | |
|---|
| 655 | c----------------------------------------------------------------------- |
|---|
| 656 | c 6. inversion pour l'implicite sur h sans oublier le couplage |
|---|
| 657 | c avec le sol (conduction) |
|---|
| 658 | c ------------------------ |
|---|
| 659 | |
|---|
| 660 | c ** l'equation est |
|---|
| 661 | c h(t+1) = h(t) + dt * {(dh/dt)phys}(t) + dt * {(dh/dt)difv}(t+1) |
|---|
| 662 | c avec |
|---|
| 663 | c /zh/ = h(t) + dt * {(dh/dt)phys}(t) (voir paragraphe 2.) |
|---|
| 664 | c et |
|---|
| 665 | c dt * {(dh/dt)difv}(t+1) = dt * {(d/dz)[ Kh (dh/dz) ]}(t+1) |
|---|
| 666 | c donc les entrees sont /zcdh/ pour la condition de raccord au sol |
|---|
| 667 | c et /zkh/ = Kh |
|---|
| 668 | c ------------- |
|---|
| 669 | |
|---|
| 670 | c Mass variation scheme: |
|---|
| 671 | zb(1:ngrid,2:nlay)=zkh(1:ngrid,2:nlay)*zb0(1:ngrid,2:nlay) |
|---|
| 672 | zb(1:ngrid,1)=zcdh_tmp(1:ngrid)*zb0(1:ngrid,1) |
|---|
| 673 | |
|---|
| 674 | c on initialise dm c |
|---|
| 675 | |
|---|
| 676 | pdtc(:,:)=0. |
|---|
| 677 | zt(:,:)=0. |
|---|
| 678 | dmice(:,:)=0. |
|---|
| 679 | |
|---|
| 680 | c ** calcul de (d Planck / dT) a la temperature d'interface |
|---|
| 681 | c ------------------------------------------------------ |
|---|
| 682 | |
|---|
| 683 | z4st=4.*5.67e-8*ptimestep |
|---|
| 684 | IF (tke_heat_flux .eq. 0.) THEN |
|---|
| 685 | DO ig=1,ngrid |
|---|
| 686 | indmax = major_slope(ig) |
|---|
| 687 | zdplanck(ig)=z4st*pemis(ig,indmax)*ptsrf(ig,indmax)* |
|---|
| 688 | & ptsrf(ig,indmax)*ptsrf(ig,indmax) |
|---|
| 689 | ENDDO |
|---|
| 690 | ELSE |
|---|
| 691 | zdplanck(:)=0. |
|---|
| 692 | ENDIF |
|---|
| 693 | |
|---|
| 694 | ! calcul de zc et zd pour la couche top en prenant en compte le terme |
|---|
| 695 | ! de variation de masse (on fait une boucle pour que \E7a converge) |
|---|
| 696 | |
|---|
| 697 | ! Identification des points de grilles qui ont besoin de la correction |
|---|
| 698 | |
|---|
| 699 | llnt(:)=1 |
|---|
| 700 | IF (.not.turb_resolved) THEN |
|---|
| 701 | IF (callcond) THEN |
|---|
| 702 | DO ig=1,ngrid |
|---|
| 703 | DO l=1,nlay |
|---|
| 704 | if(zh(ig,l) .lt. zhcond(ig,l)) then |
|---|
| 705 | llnt(ig)=300 |
|---|
| 706 | ! 200 and 100 do not go beyond month 9 with normal dissipation |
|---|
| 707 | goto 5 |
|---|
| 708 | endif |
|---|
| 709 | ENDDO |
|---|
| 710 | 5 continue |
|---|
| 711 | ENDDO |
|---|
| 712 | ENDIF |
|---|
| 713 | |
|---|
| 714 | ENDIF |
|---|
| 715 | |
|---|
| 716 | DO ig=1,ngrid |
|---|
| 717 | indmax = major_slope(ig) |
|---|
| 718 | ! Initialization of z1 and zd, which do not depend on dmice |
|---|
| 719 | |
|---|
| 720 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
|---|
| 721 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
|---|
| 722 | |
|---|
| 723 | DO ilay=nlay-1,1,-1 |
|---|
| 724 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
|---|
| 725 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
|---|
| 726 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
|---|
| 727 | ENDDO |
|---|
| 728 | |
|---|
| 729 | ! Convergence loop |
|---|
| 730 | |
|---|
| 731 | DO j=1,llnt(ig) |
|---|
| 732 | |
|---|
| 733 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
|---|
| 734 | zc(ig,nlay)=za(ig,nlay)*zh(ig,nlay) |
|---|
| 735 | & -betam(ig,nlay)*dmice(ig,nlay) |
|---|
| 736 | zc(ig,nlay)=zc(ig,nlay)*z1(ig) |
|---|
| 737 | ! zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
|---|
| 738 | |
|---|
| 739 | ! calcul de zc et zd pour les couches du haut vers le bas |
|---|
| 740 | |
|---|
| 741 | DO ilay=nlay-1,1,-1 |
|---|
| 742 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
|---|
| 743 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
|---|
| 744 | zc(ig,ilay)=(za(ig,ilay)*zh(ig,ilay)+ |
|---|
| 745 | $ zb(ig,ilay+1)*zc(ig,ilay+1)- |
|---|
| 746 | $ betam(ig,ilay)*dmice(ig,ilay))*z1(ig) |
|---|
| 747 | ! zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
|---|
| 748 | ENDDO |
|---|
| 749 | |
|---|
| 750 | c ** calcul de la temperature_d'interface et de sa tendance. |
|---|
| 751 | c on ecrit que la somme des flux est nulle a l'interface |
|---|
| 752 | c a t + \delta t, |
|---|
| 753 | c c'est a dire le flux radiatif a {t + \delta t} |
|---|
| 754 | c + le flux turbulent a {t + \delta t} |
|---|
| 755 | c qui s'ecrit K (T1-Tsurf) avec T1 = d1 Tsurf + c1 |
|---|
| 756 | c (notation K dt = /cpp*b/) |
|---|
| 757 | c + le flux dans le sol a t |
|---|
| 758 | c + l'evolution du flux dans le sol lorsque la temperature d'interface |
|---|
| 759 | c passe de sa valeur a t a sa valeur a {t + \delta t}. |
|---|
| 760 | c ---------------------------------------------------- |
|---|
| 761 | |
|---|
| 762 | z1(ig)=pcapcal(ig,indmax)*ptsrf(ig,indmax) |
|---|
| 763 | s + cpp*zb(ig,1)*zc(ig,1) |
|---|
| 764 | s + zdplanck(ig)*ptsrf(ig,indmax) |
|---|
| 765 | s + pfluxsrf(ig,indmax)*ptimestep |
|---|
| 766 | z2(ig)= pcapcal(ig,indmax)+cpp*zb(ig,1)*(1.-zd(ig,1)) |
|---|
| 767 | s +zdplanck(ig) |
|---|
| 768 | ztsrf2(ig)=z1(ig)/z2(ig) |
|---|
| 769 | ! pdtsrf(ig)=(ztsrf2(ig)-ptsrf(ig))/ptimestep !incremented outside loop |
|---|
| 770 | zhs(ig,1)=zc(ig,1)+zd(ig,1)*ztsrf2(ig) |
|---|
| 771 | |
|---|
| 772 | c ** et a partir de la temperature au sol on remonte |
|---|
| 773 | c ----------------------------------------------- |
|---|
| 774 | |
|---|
| 775 | DO ilay=2,nlay |
|---|
| 776 | zhs(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zhs(ig,ilay-1) |
|---|
| 777 | ENDDO |
|---|
| 778 | DO ilay=1,nlay |
|---|
| 779 | zt(ig,ilay)=zhs(ig,ilay)*ppopsk(ig,ilay) |
|---|
| 780 | ENDDO |
|---|
| 781 | |
|---|
| 782 | c Condensation/sublimation in the atmosphere |
|---|
| 783 | c ------------------------------------------ |
|---|
| 784 | c (computation of zcondicea and dmice) |
|---|
| 785 | |
|---|
| 786 | IF (.NOT. co2clouds) then |
|---|
| 787 | DO l=nlay , 1, -1 |
|---|
| 788 | IF(zt(ig,l).LT.ztcond(ig,l)) THEN |
|---|
| 789 | pdtc(ig,l)=(ztcond(ig,l) - zt(ig,l))/ptimestep |
|---|
| 790 | zcondicea(ig,l)=(pplev(ig,l)-pplev(ig,l+1)) |
|---|
| 791 | & *ccond*pdtc(ig,l) |
|---|
| 792 | dmice(ig,l)= dmice(ig,l) + zcondicea(ig,l)*ptimestep |
|---|
| 793 | END IF |
|---|
| 794 | ENDDO |
|---|
| 795 | ELSE |
|---|
| 796 | DO l=nlay , 1, -1 |
|---|
| 797 | zcondicea(ig,l)= 0.!pcondicea_co2microp(ig,l)* |
|---|
| 798 | c & (pplev(ig,l) - pplev(ig,l+1))/g |
|---|
| 799 | dmice(ig,l)= 0.!dmice(ig,l) + zcondicea(ig,l)*ptimestep |
|---|
| 800 | pdtc(ig,l)=0. |
|---|
| 801 | ENDDO |
|---|
| 802 | ENDIF |
|---|
| 803 | |
|---|
| 804 | ENDDO!of Do j=1,XXX |
|---|
| 805 | pdtsrf(ig,indmax)=(ztsrf2(ig)-ptsrf(ig,indmax))/ptimestep |
|---|
| 806 | ENDDO !of Do ig=1,ngrid |
|---|
| 807 | |
|---|
| 808 | DO ig=1,ngrid ! computing sensible heat flux (atm => surface) |
|---|
| 809 | sensibFlux(ig)=cpp*zb(ig,1)/ptimestep*(zhs(ig,1)-ztsrf2(ig)) |
|---|
| 810 | ENDDO |
|---|
| 811 | |
|---|
| 812 | c Now implicit sheme on each sub-grid subslope: |
|---|
| 813 | IF (nslope.ne.1) then |
|---|
| 814 | DO islope=1,nslope |
|---|
| 815 | DO ig=1,ngrid |
|---|
| 816 | IF(islope.ne.major_slope(ig)) then |
|---|
| 817 | IF (tke_heat_flux .eq. 0.) THEN |
|---|
| 818 | zdplanck(ig)=z4st*pemis(ig,islope)*ptsrf(ig,islope)**3 |
|---|
| 819 | ELSE |
|---|
| 820 | zdplanck(ig) = 0. |
|---|
| 821 | ENDIF |
|---|
| 822 | zb(ig,1)=zcdh(ig,islope)*zb0(ig,1) |
|---|
| 823 | z1(ig)=pcapcal(ig,islope)*ptsrf(ig,islope) |
|---|
| 824 | s + cpp*zb(ig,1)*zc(ig,1) |
|---|
| 825 | s + zdplanck(ig)*ptsrf(ig,islope) |
|---|
| 826 | s + pfluxsrf(ig,islope)*ptimestep |
|---|
| 827 | z2(ig)= pcapcal(ig,islope)+cpp*zb(ig,1)*(1.-zd(ig,1)) |
|---|
| 828 | s +zdplanck(ig) |
|---|
| 829 | ztsrf2(ig)=z1(ig)/z2(ig) |
|---|
| 830 | pdtsrf(ig,islope)=(ztsrf2(ig)-ptsrf(ig,islope))/ptimestep |
|---|
| 831 | ENDIF ! islope != indmax |
|---|
| 832 | ENDDO ! ig |
|---|
| 833 | ENDDO !islope |
|---|
| 834 | ENDIF !nslope.ne.1 |
|---|
| 835 | |
|---|
| 836 | c----------------------------------------------------------------------- |
|---|
| 837 | c TRACERS |
|---|
| 838 | c ------- |
|---|
| 839 | c Calcul du flux vertical au bas de la premiere couche (dust) : |
|---|
| 840 | c ----------------------------------------------------------- |
|---|
| 841 | do ig=1,ngrid |
|---|
| 842 | rho(ig) = zb0(ig,1) /ptimestep |
|---|
| 843 | c zb(ig,1) = 0. |
|---|
| 844 | end do |
|---|
| 845 | c Dust lifting: |
|---|
| 846 | if (lifting) then |
|---|
| 847 | #ifndef MESOSCALE |
|---|
| 848 | if (doubleq.AND.submicron) then |
|---|
| 849 | do ig=1,ngrid |
|---|
| 850 | c if(qsurf(ig,igcm_co2).lt.1) then |
|---|
| 851 | pdqsdif_tmp(ig,igcm_dust_mass) = |
|---|
| 852 | & -alpha_lift(igcm_dust_mass) |
|---|
| 853 | pdqsdif_tmp(ig,igcm_dust_number) = |
|---|
| 854 | & -alpha_lift(igcm_dust_number) |
|---|
| 855 | pdqsdif_tmp(ig,igcm_dust_submicron) = |
|---|
| 856 | & -alpha_lift(igcm_dust_submicron) |
|---|
| 857 | c end if |
|---|
| 858 | end do |
|---|
| 859 | else if (doubleq) then |
|---|
| 860 | if (dustinjection.eq.0) then !injection scheme 0 (old) |
|---|
| 861 | !or 2 (injection in CL) |
|---|
| 862 | do ig=1,ngrid |
|---|
| 863 | if(pqsurf_tmp(ig,igcm_co2).lt.1) then ! pas de soulevement si glace CO2 |
|---|
| 864 | pdqsdif_tmp(ig,igcm_dust_mass) = |
|---|
| 865 | & -alpha_lift(igcm_dust_mass) |
|---|
| 866 | pdqsdif_tmp(ig,igcm_dust_number) = |
|---|
| 867 | & -alpha_lift(igcm_dust_number) |
|---|
| 868 | end if |
|---|
| 869 | end do |
|---|
| 870 | elseif(dustinjection.eq.1)then ! dust injection scheme = 1 injection from surface |
|---|
| 871 | do ig=1,ngrid |
|---|
| 872 | if(pqsurf_tmp(ig,igcm_co2).lt.1) then ! pas de soulevement si glace CO2 |
|---|
| 873 | IF((ti_injection_sol.LE.local_time(ig)).and. |
|---|
| 874 | & (local_time(ig).LE.tf_injection_sol)) THEN |
|---|
| 875 | if (rdstorm) then !Rocket dust storm scheme |
|---|
| 876 | pdqsdif_tmp(ig,igcm_stormdust_mass) = |
|---|
| 877 | & -alpha_lift(igcm_stormdust_mass) |
|---|
| 878 | & *dustliftday(ig) |
|---|
| 879 | pdqsdif_tmp(ig,igcm_stormdust_number) = |
|---|
| 880 | & -alpha_lift(igcm_stormdust_number) |
|---|
| 881 | & *dustliftday(ig) |
|---|
| 882 | pdqsdif_tmp(ig,igcm_dust_mass)= 0. |
|---|
| 883 | pdqsdif_tmp(ig,igcm_dust_number)= 0. |
|---|
| 884 | else |
|---|
| 885 | pdqsdif_tmp(ig,igcm_dust_mass)= |
|---|
| 886 | & -dustliftday(ig)* |
|---|
| 887 | & alpha_lift(igcm_dust_mass) |
|---|
| 888 | pdqsdif_tmp(ig,igcm_dust_number)= |
|---|
| 889 | & -dustliftday(ig)* |
|---|
| 890 | & alpha_lift(igcm_dust_number) |
|---|
| 891 | endif |
|---|
| 892 | if (submicron) then |
|---|
| 893 | pdqsdif_tmp(ig,igcm_dust_submicron) = 0. |
|---|
| 894 | endif ! if (submicron) |
|---|
| 895 | ELSE ! outside dust injection time frame |
|---|
| 896 | pdqsdif_tmp(ig,igcm_dust_mass)= 0. |
|---|
| 897 | pdqsdif_tmp(ig,igcm_dust_number)= 0. |
|---|
| 898 | if (rdstorm) then |
|---|
| 899 | pdqsdif_tmp(ig,igcm_stormdust_mass)= 0. |
|---|
| 900 | pdqsdif_tmp(ig,igcm_stormdust_number)= 0. |
|---|
| 901 | end if |
|---|
| 902 | ENDIF |
|---|
| 903 | |
|---|
| 904 | end if ! of if(qsurf(ig,igcm_co2).lt.1) |
|---|
| 905 | end do |
|---|
| 906 | endif ! end if dustinjection |
|---|
| 907 | else if (submicron) then |
|---|
| 908 | do ig=1,ngrid |
|---|
| 909 | pdqsdif_tmp(ig,igcm_dust_submicron) = |
|---|
| 910 | & -alpha_lift(igcm_dust_submicron) |
|---|
| 911 | end do |
|---|
| 912 | else |
|---|
| 913 | #endif |
|---|
| 914 | call dustlift(ngrid,nlay,nq,rho,zcdh_true_tmp,zcdh_tmp, |
|---|
| 915 | & pqsurf_tmp(:,igcm_co2),pdqsdif_tmp) |
|---|
| 916 | #ifndef MESOSCALE |
|---|
| 917 | endif !doubleq.AND.submicron |
|---|
| 918 | #endif |
|---|
| 919 | else |
|---|
| 920 | pdqsdif_tmp(1:ngrid,1:nq) = 0. |
|---|
| 921 | end if |
|---|
| 922 | |
|---|
| 923 | c OU calcul de la valeur de q a la surface (water) : |
|---|
| 924 | c ---------------------------------------- |
|---|
| 925 | |
|---|
| 926 | c Inversion pour l'implicite sur q |
|---|
| 927 | c Cas des traceurs qui ne sont pas h2o_vap |
|---|
| 928 | c h2o_vap est traite plus loin avec un sous pas de temps |
|---|
| 929 | c hdo_vap est traite ensuite car dependant de h2o_vap |
|---|
| 930 | c -------------------------------- |
|---|
| 931 | |
|---|
| 932 | do iq=1,nq !for all tracers except water vapor |
|---|
| 933 | if ((.not. water).or.(.not. iq.eq.igcm_h2o_vap).or. |
|---|
| 934 | & (.not. iq.eq.igcm_hdo_vap)) then |
|---|
| 935 | |
|---|
| 936 | |
|---|
| 937 | zb(1:ngrid,2:nlay)=zkh(1:ngrid,2:nlay)*zb0(1:ngrid,2:nlay) |
|---|
| 938 | zb(1:ngrid,1)=0 |
|---|
| 939 | |
|---|
| 940 | DO ig=1,ngrid |
|---|
| 941 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
|---|
| 942 | zc(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
|---|
| 943 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
|---|
| 944 | ENDDO |
|---|
| 945 | |
|---|
| 946 | DO ilay=nlay-1,2,-1 |
|---|
| 947 | DO ig=1,ngrid |
|---|
| 948 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
|---|
| 949 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
|---|
| 950 | zc(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ |
|---|
| 951 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
|---|
| 952 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
|---|
| 953 | ENDDO |
|---|
| 954 | ENDDO |
|---|
| 955 | |
|---|
| 956 | if ((iq.eq.igcm_h2o_ice) |
|---|
| 957 | $ .or. (hdo.and.(iq.eq.igcm_hdo_ice) )) then |
|---|
| 958 | |
|---|
| 959 | DO ig=1,ngrid |
|---|
| 960 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
|---|
| 961 | $ zb(ig,2)*(1.-zd(ig,2))) |
|---|
| 962 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
|---|
| 963 | $ zb(ig,2)*zc(ig,2)) *z1(ig) !special case h2o_ice |
|---|
| 964 | ENDDO |
|---|
| 965 | else ! every other tracer |
|---|
| 966 | DO ig=1,ngrid |
|---|
| 967 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
|---|
| 968 | $ zb(ig,2)*(1.-zd(ig,2))) |
|---|
| 969 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
|---|
| 970 | $ zb(ig,2)*zc(ig,2) + |
|---|
| 971 | $ (-pdqsdif_tmp(ig,iq)) *ptimestep) *z1(ig) !tracer flux from surface |
|---|
| 972 | ENDDO |
|---|
| 973 | endif !((iq.eq.igcm_h2o_ice) |
|---|
| 974 | c Starting upward calculations for simple mixing of tracer (dust) |
|---|
| 975 | DO ig=1,ngrid |
|---|
| 976 | zq(ig,1,iq)=zc(ig,1) |
|---|
| 977 | DO ilay=2,nlay |
|---|
| 978 | zq(ig,ilay,iq)=zc(ig,ilay)+zd(ig,ilay)*zq(ig,ilay-1,iq) |
|---|
| 979 | ENDDO |
|---|
| 980 | ENDDO |
|---|
| 981 | DO islope = 1,nslope |
|---|
| 982 | DO ig = 1,ngrid |
|---|
| 983 | pdqsdif(ig,iq,islope) = pdqsdif_tmp(ig,iq) |
|---|
| 984 | & * cos(pi*def_slope_mean(islope)/180.) |
|---|
| 985 | ENDDO |
|---|
| 986 | ENDDO |
|---|
| 987 | |
|---|
| 988 | endif! ((.not. water).or.(.not. iq.eq.igcm_h2o_vap)) then |
|---|
| 989 | enddo ! of do iq=1,nq |
|---|
| 990 | |
|---|
| 991 | c --------- h2o_vap -------------------------------- |
|---|
| 992 | |
|---|
| 993 | c Treatement of the water frost |
|---|
| 994 | c We use a subtimestep to take into account the release of latent heat |
|---|
| 995 | |
|---|
| 996 | do iq=1,nq |
|---|
| 997 | if ((water).and.(iq.eq.igcm_h2o_vap)) then |
|---|
| 998 | |
|---|
| 999 | DO islope = 1,nslope |
|---|
| 1000 | DO ig=1,ngrid |
|---|
| 1001 | |
|---|
| 1002 | zqsurf(ig)=pqsurf(ig,igcm_h2o_ice,islope)/ |
|---|
| 1003 | & cos(pi*def_slope_mean(islope)/180.) |
|---|
| 1004 | watercap_tmp(ig) = watercap(ig,islope)/ |
|---|
| 1005 | & cos(pi*def_slope_mean(islope)/180.) |
|---|
| 1006 | ENDDO ! ig=1,ngrid |
|---|
| 1007 | |
|---|
| 1008 | c Computation of the subtimestep |
|---|
| 1009 | call make_tsub(ngrid,pdtsrf(:,islope),zqsurf, |
|---|
| 1010 | & ptimestep,dtmax,watercaptag, |
|---|
| 1011 | & nsubtimestep) |
|---|
| 1012 | c Calculation for turbulent exchange (rho Cd,h U (qatm - qsat(Tsurf)) with the surface (for ice) |
|---|
| 1013 | c initialization of ztsrf, which is surface temperature in |
|---|
| 1014 | c the subtimestep. |
|---|
| 1015 | saved_h2o_vap(:)= zq(:,1,igcm_h2o_vap) |
|---|
| 1016 | DO ig=1,ngrid |
|---|
| 1017 | c nsubtimestep(ig)=1 !for debug |
|---|
| 1018 | subtimestep = ptimestep/nsubtimestep(ig) |
|---|
| 1019 | call write_output('subtimestep', |
|---|
| 1020 | & 'vdifc substimestep length','s',subtimestep) |
|---|
| 1021 | ztsrf(ig)=ptsrf(ig,islope) ! +pdtsrf(ig)*subtimestep |
|---|
| 1022 | zq_tmp_vap(ig,:,:) =zq(ig,:,:) |
|---|
| 1023 | c Beginning of the subtimestep |
|---|
| 1024 | DO tsub=1,nsubtimestep(ig) |
|---|
| 1025 | if(tsub.eq.nsubtimestep(ig)) writeoutput = .true. |
|---|
| 1026 | zb(1:ngrid,2:nlay)=zkh(1:ngrid,2:nlay)*zb0(1:ngrid,2:nlay) |
|---|
| 1027 | & /float(nsubtimestep(ig)) |
|---|
| 1028 | if(old_wsublimation_scheme) then |
|---|
| 1029 | zb(1:ngrid,1)=zcdv(1:ngrid,islope)*zb0(1:ngrid,1) |
|---|
| 1030 | & /float(nsubtimestep(ig)) |
|---|
| 1031 | else |
|---|
| 1032 | zb(1:ngrid,1)=zcdh(1:ngrid,islope)*zb0(1:ngrid,1) |
|---|
| 1033 | & /float(nsubtimestep(ig)) |
|---|
| 1034 | endif |
|---|
| 1035 | zb(1:ngrid,1)=dryness(1:ngrid)*zb(1:ngrid,1) |
|---|
| 1036 | |
|---|
| 1037 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
|---|
| 1038 | zc(ig,nlay)=za(ig,nlay)*zq_tmp_vap(ig,nlay,iq)*z1(ig) |
|---|
| 1039 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
|---|
| 1040 | DO ilay=nlay-1,2,-1 |
|---|
| 1041 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
|---|
| 1042 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
|---|
| 1043 | zc(ig,ilay)=(za(ig,ilay)*zq_tmp_vap(ig,ilay,iq)+ |
|---|
| 1044 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
|---|
| 1045 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
|---|
| 1046 | ENDDO |
|---|
| 1047 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
|---|
| 1048 | $ zb(ig,2)*(1.-zd(ig,2))) |
|---|
| 1049 | zc(ig,1)=(za(ig,1)*zq_tmp_vap(ig,1,iq)+ |
|---|
| 1050 | $ zb(ig,2)*zc(ig,2)) * z1(ig) |
|---|
| 1051 | |
|---|
| 1052 | call watersat(1,ztsrf(ig),pplev(ig,1),qsat(ig)) |
|---|
| 1053 | old_h2o_vap(ig)=zq_tmp_vap(ig,1,igcm_h2o_vap) |
|---|
| 1054 | zd(ig,1)=zb(ig,1)*z1(ig) |
|---|
| 1055 | zq1temp(ig)=zc(ig,1)+ zd(ig,1)*qsat(ig) |
|---|
| 1056 | if(old_wsublimation_scheme) then |
|---|
| 1057 | zdqsdif_surf(ig)=rho(ig)*dryness(ig)*zcdv(ig,islope) |
|---|
| 1058 | & *(zq1temp(ig)-qsat(ig)) |
|---|
| 1059 | else |
|---|
| 1060 | zdqsdif_surf(ig)=rho(ig)*dryness(ig)*zcdh(ig,islope) |
|---|
| 1061 | & *(zq1temp(ig)-qsat(ig)) |
|---|
| 1062 | endif |
|---|
| 1063 | |
|---|
| 1064 | zdqsdif_tot(ig) = zdqsdif_surf(ig) |
|---|
| 1065 | ! -------------------------------------------------------------------------------------------------------------------------------- |
|---|
| 1066 | ! We consider here the possible interactions between the subsurface and the atmosphere in the case of the surface is free of frost |
|---|
| 1067 | ! when computing the complete adsorption/desorption model |
|---|
| 1068 | ! -------------------------------------------------------------------------------------------------------------------------------- |
|---|
| 1069 | if(.not.watercaptag(ig)) then |
|---|
| 1070 | if (((-(zdqsdif_surf(ig))* |
|---|
| 1071 | & subtimestep).gt.zqsurf(ig)) |
|---|
| 1072 | & .and.(pqsurf(ig,igcm_co2,islope).eq.0.)) then |
|---|
| 1073 | exchange = .true. |
|---|
| 1074 | else |
|---|
| 1075 | exchange = .false. |
|---|
| 1076 | endif |
|---|
| 1077 | else |
|---|
| 1078 | exchange = .false. |
|---|
| 1079 | endif |
|---|
| 1080 | |
|---|
| 1081 | ! -------------------------------------------------------------------------------------------------------------------------------- |
|---|
| 1082 | ! If one consider adsorption, all the fluxes to/from the surface/subsurface/atmosphere are computed here |
|---|
| 1083 | ! -------------------------------------------------------------------------------------------------------------------------------- |
|---|
| 1084 | |
|---|
| 1085 | if (adsorption_soil) then |
|---|
| 1086 | call soilwater(1,nlay,nq,nsoil, nqsoil, |
|---|
| 1087 | & ztsrf(ig),ptsoil(ig,:,islope),subtimestep, |
|---|
| 1088 | & exchange,qsat(ig),zq_tmp_vap(ig,:,:), |
|---|
| 1089 | & za(ig,:),zb(ig,:),zc(ig,:),zd(ig,:), |
|---|
| 1090 | & zdqsdif_surf(ig), zqsurf(ig), |
|---|
| 1091 | & qsoil(ig,:,:,islope), pplev(ig,1), rho(ig), |
|---|
| 1092 | & writeoutput,zdqsdif_regolith(ig,islope), |
|---|
| 1093 | & zq1temp_regolith(ig), |
|---|
| 1094 | & pore_icefraction(ig,:,islope)) |
|---|
| 1095 | |
|---|
| 1096 | |
|---|
| 1097 | if(.not.watercaptag(ig)) then |
|---|
| 1098 | if (exchange) then |
|---|
| 1099 | zq1temp(ig) = zq1temp_regolith(ig) |
|---|
| 1100 | zdqsdif_tot(ig)= |
|---|
| 1101 | & -zqsurf(ig)/subtimestep |
|---|
| 1102 | else |
|---|
| 1103 | zdqsdif_tot(ig) = zdqsdif_surf(ig) + |
|---|
| 1104 | & zdqsdif_regolith(ig,islope) ! boundary condition = qsat, but pdqsdif is calculated to update qsurf (including loss of surface ice to the subsurface) |
|---|
| 1105 | endif ! of "if exchange = true" |
|---|
| 1106 | endif ! of "if not.watercaptag" |
|---|
| 1107 | endif ! adsorption |
|---|
| 1108 | ! -------------------------------------------------------------------------------------------------------------------------------------- |
|---|
| 1109 | ! Here we do the same, but without computing the complete adsorpption/desorption. Note that it work only if one does not use adsorption |
|---|
| 1110 | ! If no subsurface ice, then the models computes the surface flux/water vapor flux as usual |
|---|
| 1111 | ! -------------------------------------------------------------------------------------------------------------------------------------- |
|---|
| 1112 | |
|---|
| 1113 | ! ------------------------------------------------------------------------------------------------------------------------------------------ |
|---|
| 1114 | ! First, We consider here the possible interactions between the subsurface and the atmosphere in the case of the surface is free of frost |
|---|
| 1115 | ! ------------------------------------------------------------------------------------------------------------------------------------------ |
|---|
| 1116 | |
|---|
| 1117 | if(.not.watercaptag(ig).and.(.not.adsorption_soil)) then |
|---|
| 1118 | if ((-zdqsdif_tot(ig)*subtimestep) |
|---|
| 1119 | & .ge.(zqsurf(ig))) then |
|---|
| 1120 | |
|---|
| 1121 | zdqsdif_tot(ig)=-zqsurf(ig)/subtimestep |
|---|
| 1122 | ! zqsurf(ig) = 0 |
|---|
| 1123 | if((h2o_ice_depth(ig,islope).gt.0) |
|---|
| 1124 | & .and.lag_layer) then |
|---|
| 1125 | ! Atm <-> subsurface exchange, we need to update the exchange coefficient zb by a factor 1/1+R; R = zice*Cd,h*/D and add the flux from the subsurface |
|---|
| 1126 | |
|---|
| 1127 | if(old_wsublimation_scheme) then |
|---|
| 1128 | resist(ig,islope)=h2o_ice_depth(ig,islope) |
|---|
| 1129 | & *zcdv(ig,islope)/d_coef(ig,islope) |
|---|
| 1130 | else |
|---|
| 1131 | resist(ig,islope)=h2o_ice_depth(ig,islope) |
|---|
| 1132 | & *zcdh(ig,islope)/d_coef(ig,islope) |
|---|
| 1133 | endif |
|---|
| 1134 | |
|---|
| 1135 | zb(ig,1)=zb(ig,1)*1/(1+resist(ig,islope)) ! change zb to account subsurface ice |
|---|
| 1136 | ! Now we add the flux from the subsurface ice : rho Cd,h U*(1/1+R) * (q1-qsat_ssi(Tice)) |
|---|
| 1137 | |
|---|
| 1138 | call compute_Tice(nsoil, ptsoil(ig,:,islope), |
|---|
| 1139 | & ztsrf(ig), |
|---|
| 1140 | & h2o_ice_depth(ig,islope), |
|---|
| 1141 | & Tice(ig,islope)) ! compute ice temperature |
|---|
| 1142 | |
|---|
| 1143 | call watersat(1,Tice(ig,islope),pplev(ig,1), |
|---|
| 1144 | & qsat_ssi(ig,islope)) |
|---|
| 1145 | |
|---|
| 1146 | qsat_ssi(ig,islope)=ztsrf(ig)/Tice(ig,islope) |
|---|
| 1147 | & *qsat_ssi(ig,islope) |
|---|
| 1148 | ! Flux from the subsurface |
|---|
| 1149 | if(old_wsublimation_scheme) then |
|---|
| 1150 | zdqsdif_ssi_atm(ig,islope)=rho(ig) |
|---|
| 1151 | & *dryness(ig)*zcdv(ig,islope) |
|---|
| 1152 | & *1/(1+resist(ig,islope)) |
|---|
| 1153 | & *(zq1temp(ig)-qsat_ssi(ig,islope)) |
|---|
| 1154 | else |
|---|
| 1155 | zdqsdif_ssi_atm(ig,islope)=rho(ig)* |
|---|
| 1156 | & *dryness(ig) *zcdh(ig,islope) |
|---|
| 1157 | & *1/(1+resist(ig,islope)) |
|---|
| 1158 | & *(zq1temp(ig)-qsat_ssi(ig,islope)) |
|---|
| 1159 | endif |
|---|
| 1160 | ! And now we solve correctly the system |
|---|
| 1161 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
|---|
| 1162 | & zb(ig,2)*(1.-zd(ig,2))) |
|---|
| 1163 | zc(ig,1)=(za(ig,1)*zq_tmp_vap(ig,1,iq)+ |
|---|
| 1164 | & zb(ig,2)*zc(ig,2) + |
|---|
| 1165 | & (-zdqsdif_tot(ig)) *subtimestep) |
|---|
| 1166 | & * z1(ig) |
|---|
| 1167 | zd(ig,1)=zb(ig,1)*z1(ig) |
|---|
| 1168 | zq1temp(ig)=zc(ig,1)+ zd(ig,1) |
|---|
| 1169 | & *qsat_ssi(ig,islope) |
|---|
| 1170 | |
|---|
| 1171 | |
|---|
| 1172 | |
|---|
| 1173 | else |
|---|
| 1174 | ! No atm <-> subsurface exchange, we do it the usual way |
|---|
| 1175 | zdqsdif_tot(ig)=-zqsurf(ig)/subtimestep |
|---|
| 1176 | z1(ig)=1./(za(ig,1)+ zb(ig,2)*(1.-zd(ig,2))) |
|---|
| 1177 | zc(ig,1)=(za(ig,1)* |
|---|
| 1178 | & zq_tmp_vap(ig,1,igcm_h2o_vap)+ |
|---|
| 1179 | & zb(ig,2)*zc(ig,2) + |
|---|
| 1180 | & (-zdqsdif_tot(ig)) *subtimestep) *z1(ig) |
|---|
| 1181 | zq1temp(ig)=zc(ig,1) |
|---|
| 1182 | endif ! Of subsurface <-> atmosphere exchange |
|---|
| 1183 | endif ! sublimating more than available frost & surface - frost exchange |
|---|
| 1184 | endif !if .not.watercaptag(ig) |
|---|
| 1185 | |
|---|
| 1186 | ! -------------------------------------------------------------------------------------------------------------------------------- |
|---|
| 1187 | ! We check possible frost subsurface ice interaction: since there is no subsurface water ice mass reservoir represented (yet), |
|---|
| 1188 | ! we do not include their effect on the mass of surface frost. |
|---|
| 1189 | ! -------------------------------------------------------------------------------------------------------------------------------- |
|---|
| 1190 | |
|---|
| 1191 | if((h2o_ice_depth(ig,islope).gt.0).and.lag_layer |
|---|
| 1192 | & .and.(.not.adsorption_soil)) then |
|---|
| 1193 | ! First case: still frost at the surface but no watercaptag |
|---|
| 1194 | if(((watercaptag(ig))).or. |
|---|
| 1195 | & (((-zdqsdif_tot(ig)*subtimestep) |
|---|
| 1196 | & .lt.(zqsurf(ig))) |
|---|
| 1197 | & .and. (zqsurf(ig).gt.tol_frost))) then |
|---|
| 1198 | ! Still frost at the surface: we consider the possibility to have subsurface <-> frost exchange |
|---|
| 1199 | ! The flux between frost and ssi is D/zice *(qsat(Tsurf)-qsat_ssi(Tice)) |
|---|
| 1200 | call compute_Tice(nsoil, ptsoil(ig,:,islope), |
|---|
| 1201 | & ztsrf(ig), |
|---|
| 1202 | & h2o_ice_depth(ig,islope), |
|---|
| 1203 | & Tice(ig,islope)) ! compute ice temperature |
|---|
| 1204 | |
|---|
| 1205 | call watersat(1,Tice(ig,islope),pplev(ig,1), |
|---|
| 1206 | & qsat_ssi(ig,islope)) |
|---|
| 1207 | |
|---|
| 1208 | qsat_ssi(ig,islope)=ztsrf(ig)/Tice(ig,islope) |
|---|
| 1209 | & *qsat_ssi(ig,islope) |
|---|
| 1210 | |
|---|
| 1211 | zdqsdif_ssi_frost(ig,islope)= d_coef(ig,islope) |
|---|
| 1212 | & /h2o_ice_depth(ig,islope) |
|---|
| 1213 | & *rho(ig)*dryness(ig) |
|---|
| 1214 | & *(qsat(ig)-qsat_ssi(ig,islope)) |
|---|
| 1215 | |
|---|
| 1216 | ! Line to comment for now since we don't have a mass of subsurface frost in our computation (otherwise, we would not conserve the H2O mass in the system) |
|---|
| 1217 | zdqsdif_tot(ig) = zdqsdif_tot(ig) - |
|---|
| 1218 | & zdqsdif_ssi_frost(ig,islope) |
|---|
| 1219 | endif ! watercaptag or frost at the surface |
|---|
| 1220 | endif ! interaction frost <-> subsurface ice |
|---|
| 1221 | |
|---|
| 1222 | |
|---|
| 1223 | c Starting upward calculations for water : |
|---|
| 1224 | zq_tmp_vap(ig,1,igcm_h2o_vap)=zq1temp(ig) |
|---|
| 1225 | c Take into account the H2O latent heat impact on the surface temperature |
|---|
| 1226 | if (latentheat_surfwater) then |
|---|
| 1227 | lh=(2834.3-0.28*(ztsrf(ig)-To)- |
|---|
| 1228 | & 0.004*(ztsrf(ig)-To)*(ztsrf(ig)-To))*1.e+3 |
|---|
| 1229 | zdtsrf(ig,islope)= zdqsdif_tot(ig)*lh |
|---|
| 1230 | & /pcapcal(ig,islope) |
|---|
| 1231 | endif ! (latentheat_surfwater) then |
|---|
| 1232 | |
|---|
| 1233 | DO ilay=2,nlay |
|---|
| 1234 | zq_tmp_vap(ig,ilay,iq)=zc(ig,ilay)+zd(ig,ilay) |
|---|
| 1235 | & *zq_tmp_vap(ig,ilay-1,iq) |
|---|
| 1236 | ENDDO |
|---|
| 1237 | c Subtimestep water budget : |
|---|
| 1238 | ztsrf(ig) = ztsrf(ig)+(pdtsrf(ig,islope) |
|---|
| 1239 | & + zdtsrf(ig,islope))*subtimestep |
|---|
| 1240 | zqsurf(ig)= zqsurf(ig)+( |
|---|
| 1241 | & zdqsdif_tot(ig))*subtimestep |
|---|
| 1242 | if (zqsurf(ig)<0 .and.(.not.watercaptag(ig))) then |
|---|
| 1243 | zqsurf(ig)=0 |
|---|
| 1244 | endif |
|---|
| 1245 | zdqsdif_ssi_atm_tot(ig,islope) = |
|---|
| 1246 | & zdqsdif_ssi_atm_tot(ig,islope) |
|---|
| 1247 | & + zdqsdif_ssi_atm(ig,islope) |
|---|
| 1248 | zdqsdif_ssi_frost_tot(ig,islope) = |
|---|
| 1249 | & zdqsdif_ssi_frost_tot(ig,islope) |
|---|
| 1250 | & + zdqsdif_ssi_frost(ig,islope) |
|---|
| 1251 | c Monitoring instantaneous latent heat flux in W.m-2 : |
|---|
| 1252 | zsurf_h2o_lh(ig,islope) = zsurf_h2o_lh(ig,islope)+ |
|---|
| 1253 | & (zdtsrf(ig,islope)*pcapcal(ig,islope)) |
|---|
| 1254 | & *subtimestep |
|---|
| 1255 | |
|---|
| 1256 | c We ensure that surface temperature can't rise above the solid domain if there |
|---|
| 1257 | c is still ice on the surface (oldschool) |
|---|
| 1258 | if(zqsurf(ig) |
|---|
| 1259 | & +zdqsdif_tot(ig)*subtimestep |
|---|
| 1260 | & .gt.frost_albedo_threshold) then ! if there is still ice, T cannot exceed To |
|---|
| 1261 | zdtsrf(ig,islope) = min(zdtsrf(ig,islope), |
|---|
| 1262 | & (To-ztsrf(ig))/subtimestep) ! ice melt case |
|---|
| 1263 | endif |
|---|
| 1264 | |
|---|
| 1265 | c End of the subtimestep |
|---|
| 1266 | ENDDO ! tsub=1,nsubtimestep |
|---|
| 1267 | |
|---|
| 1268 | c Integration of subtimestep temp and water budget : |
|---|
| 1269 | c (btw could also compute the post timestep temp and ice |
|---|
| 1270 | c by simply adding the subtimestep trend instead of this) |
|---|
| 1271 | surf_h2o_lh(ig,islope)= zsurf_h2o_lh(ig,islope)/ptimestep |
|---|
| 1272 | pdtsrf(ig,islope)= (ztsrf(ig) - |
|---|
| 1273 | & ptsrf(ig,islope))/ptimestep |
|---|
| 1274 | pdqsdif(ig,igcm_h2o_ice,islope)= |
|---|
| 1275 | & (zqsurf(ig)- pqsurf(ig,igcm_h2o_ice,islope)/ |
|---|
| 1276 | & cos(pi*def_slope_mean(islope)/180.)) |
|---|
| 1277 | & /ptimestep |
|---|
| 1278 | |
|---|
| 1279 | zdqsdif_ssi_tot(ig,islope) = |
|---|
| 1280 | & zdqsdif_ssi_atm_tot(ig,islope) |
|---|
| 1281 | & + zdqsdif_ssi_frost_tot(ig,islope) |
|---|
| 1282 | c if subliming more than qsurf(ice) and on watercaptag, water |
|---|
| 1283 | c sublimates from watercap reservoir (dwatercap_dif is <0) |
|---|
| 1284 | if(watercaptag(ig)) then |
|---|
| 1285 | if ((-pdqsdif(ig,igcm_h2o_ice,islope)*ptimestep) |
|---|
| 1286 | & .gt.(pqsurf(ig,igcm_h2o_ice,islope) |
|---|
| 1287 | & /cos(pi*def_slope_mean(islope)/180.))) then |
|---|
| 1288 | dwatercap_dif(ig,islope)= |
|---|
| 1289 | & pdqsdif(ig,igcm_h2o_ice,islope)+ |
|---|
| 1290 | & (pqsurf(ig,igcm_h2o_ice,islope) / |
|---|
| 1291 | & cos(pi*def_slope_mean(islope)/180.))/ptimestep |
|---|
| 1292 | pdqsdif(ig,igcm_h2o_ice,islope)= |
|---|
| 1293 | & - (pqsurf(ig,igcm_h2o_ice,islope)/ |
|---|
| 1294 | & cos(pi*def_slope_mean(islope)/180.))/ptimestep |
|---|
| 1295 | endif! ((-pdqsdif(ig)*ptimestep) |
|---|
| 1296 | endif !(watercaptag(ig)) then |
|---|
| 1297 | zq_slope_vap(ig,:,:,islope) = zq_tmp_vap(ig,:,:) |
|---|
| 1298 | ENDDO ! of DO ig=1,ngrid |
|---|
| 1299 | ENDDO ! islope |
|---|
| 1300 | c Some grid box averages: interface with the atmosphere |
|---|
| 1301 | DO ig = 1,ngrid |
|---|
| 1302 | DO ilay = 1,nlay |
|---|
| 1303 | zq(ig,ilay,iq) = 0. |
|---|
| 1304 | DO islope = 1,nslope |
|---|
| 1305 | zq(ig,ilay,iq) = zq(ig,ilay,iq) + |
|---|
| 1306 | $ zq_slope_vap(ig,ilay,iq,islope) * |
|---|
| 1307 | $ subslope_dist(ig,islope) |
|---|
| 1308 | ENDDO |
|---|
| 1309 | ENDDO |
|---|
| 1310 | ENDDO |
|---|
| 1311 | ! Recompute values in kg/m^2 slopped |
|---|
| 1312 | DO ig = 1,ngrid |
|---|
| 1313 | DO islope = 1,nslope |
|---|
| 1314 | pdqsdif(ig,igcm_h2o_ice,islope) = |
|---|
| 1315 | & pdqsdif(ig,igcm_h2o_ice,islope) |
|---|
| 1316 | & * cos(pi*def_slope_mean(islope)/180.) |
|---|
| 1317 | |
|---|
| 1318 | dwatercap_dif(ig,islope) = |
|---|
| 1319 | & dwatercap_dif(ig,islope) |
|---|
| 1320 | & * cos(pi*def_slope_mean(islope)/180.) |
|---|
| 1321 | ENDDO |
|---|
| 1322 | ENDDO |
|---|
| 1323 | |
|---|
| 1324 | END IF ! of IF ((water).and.(iq.eq.igcm_h2o_vap)) |
|---|
| 1325 | |
|---|
| 1326 | c --------- end of h2o_vap ---------------------------- |
|---|
| 1327 | |
|---|
| 1328 | c --------- hdo_vap ----------------------------------- |
|---|
| 1329 | |
|---|
| 1330 | c hdo_ice has already been with along h2o_ice |
|---|
| 1331 | c amongst "normal" tracers (ie not h2o_vap) |
|---|
| 1332 | |
|---|
| 1333 | if (hdo.and.(iq.eq.igcm_hdo_vap)) then |
|---|
| 1334 | zb(1:ngrid,2:nlay)=zkh(1:ngrid,2:nlay)*zb0(1:ngrid,2:nlay) |
|---|
| 1335 | zb(1:ngrid,1)=0 |
|---|
| 1336 | |
|---|
| 1337 | DO ig=1,ngrid |
|---|
| 1338 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
|---|
| 1339 | zc(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
|---|
| 1340 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
|---|
| 1341 | ENDDO |
|---|
| 1342 | |
|---|
| 1343 | DO ilay=nlay-1,2,-1 |
|---|
| 1344 | DO ig=1,ngrid |
|---|
| 1345 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
|---|
| 1346 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
|---|
| 1347 | zc(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ |
|---|
| 1348 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
|---|
| 1349 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
|---|
| 1350 | ENDDO |
|---|
| 1351 | ENDDO |
|---|
| 1352 | hdoflux_meshavg(:) = 0. |
|---|
| 1353 | DO islope = 1,nslope |
|---|
| 1354 | |
|---|
| 1355 | pdqsdif_tmphdo(:,:) = pdqsdif(:,:,islope) |
|---|
| 1356 | & /cos(pi*def_slope_mean(islope)/180.) |
|---|
| 1357 | |
|---|
| 1358 | call watersat(ngrid,pdtsrf(:,islope)*ptimestep + |
|---|
| 1359 | & ptsrf(:,islope),pplev(:,1),qsat_tmp) |
|---|
| 1360 | |
|---|
| 1361 | CALL hdo_surfex(ngrid,nlay,nq,ptimestep, |
|---|
| 1362 | & zt,pplay,zq,pqsurf(:,:,islope), |
|---|
| 1363 | & saved_h2o_vap,qsat_tmp, |
|---|
| 1364 | & pdqsdif_tmphdo, |
|---|
| 1365 | & dwatercap_dif(:,islope)/cos(pi*def_slope_mean(islope)/180.), |
|---|
| 1366 | & hdoflux(:,islope)) |
|---|
| 1367 | |
|---|
| 1368 | pdqsdif(:,:,islope) = pdqsdif_tmphdo(:,:) * |
|---|
| 1369 | & cos(pi*def_slope_mean(islope)/180.) |
|---|
| 1370 | DO ig = 1,ngrid |
|---|
| 1371 | hdoflux_meshavg(ig) = hdoflux_meshavg(ig) + |
|---|
| 1372 | & hdoflux(ig,islope)*subslope_dist(ig,islope) |
|---|
| 1373 | |
|---|
| 1374 | ENDDO !ig = 1,ngrid |
|---|
| 1375 | ENDDO !islope = 1,nslope |
|---|
| 1376 | |
|---|
| 1377 | DO ig=1,ngrid |
|---|
| 1378 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
|---|
| 1379 | $ zb(ig,2)*(1.-zd(ig,2))) |
|---|
| 1380 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
|---|
| 1381 | $ zb(ig,2)*zc(ig,2) + |
|---|
| 1382 | $ (-hdoflux_meshavg(ig)) *ptimestep) *z1(ig) !tracer flux from surface |
|---|
| 1383 | ENDDO |
|---|
| 1384 | |
|---|
| 1385 | DO ig=1,ngrid |
|---|
| 1386 | zq(ig,1,iq)=zc(ig,1) |
|---|
| 1387 | DO ilay=2,nlay |
|---|
| 1388 | zq(ig,ilay,iq)=zc(ig,ilay)+zd(ig,ilay)*zq(ig,ilay-1,iq) |
|---|
| 1389 | ENDDO |
|---|
| 1390 | ENDDO |
|---|
| 1391 | endif ! (hdo.and.(iq.eq.igcm_hdo_vap)) |
|---|
| 1392 | |
|---|
| 1393 | c --------- end of hdo ---------------------------- |
|---|
| 1394 | |
|---|
| 1395 | enddo ! of do iq=1,nq |
|---|
| 1396 | |
|---|
| 1397 | c --------- end of tracers ---------------------------- |
|---|
| 1398 | |
|---|
| 1399 | call write_output("surf_h2o_lh", |
|---|
| 1400 | & "Ground ice latent heat flux", |
|---|
| 1401 | & "W.m-2",surf_h2o_lh(:,iflat)) |
|---|
| 1402 | |
|---|
| 1403 | call write_output('zdqsdif_ssi_frost_tot', |
|---|
| 1404 | & 'Flux between frost and subsurface ice','kg.m-2.s-1', |
|---|
| 1405 | & zdqsdif_ssi_frost_tot(:,iflat)) |
|---|
| 1406 | |
|---|
| 1407 | call write_output('zdqsdif_ssi_atm_tot', |
|---|
| 1408 | & 'Flux between atmosphere and subsurface ice','kg.m-2.s-1', |
|---|
| 1409 | & zdqsdif_ssi_atm_tot(:,iflat)) |
|---|
| 1410 | |
|---|
| 1411 | call write_output('zdqsdif_ssi_tot', |
|---|
| 1412 | & 'Total flux echange with subsurface ice','kg.m-2.s-1', |
|---|
| 1413 | & zdqsdif_ssi_tot(:,iflat)) |
|---|
| 1414 | |
|---|
| 1415 | |
|---|
| 1416 | C Diagnostic output for HDO |
|---|
| 1417 | ! if (hdo) then |
|---|
| 1418 | ! CALL write_output('hdoflux', |
|---|
| 1419 | ! & 'hdoflux', |
|---|
| 1420 | ! & ' ',hdoflux_meshavg(:)) |
|---|
| 1421 | ! CALL write_output('h2oflux', |
|---|
| 1422 | ! & 'h2oflux', |
|---|
| 1423 | ! & ' ',h2oflux(:)) |
|---|
| 1424 | ! endif |
|---|
| 1425 | |
|---|
| 1426 | c----------------------------------------------------------------------- |
|---|
| 1427 | c 8. calcul final des tendances de la diffusion verticale |
|---|
| 1428 | c ---------------------------------------------------- |
|---|
| 1429 | |
|---|
| 1430 | DO ilev = 1, nlay |
|---|
| 1431 | DO ig=1,ngrid |
|---|
| 1432 | pdudif(ig,ilev)=( zu(ig,ilev)- |
|---|
| 1433 | $ (pu(ig,ilev)+pdufi(ig,ilev)*ptimestep) )/ptimestep |
|---|
| 1434 | pdvdif(ig,ilev)=( zv(ig,ilev)- |
|---|
| 1435 | $ (pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep) )/ptimestep |
|---|
| 1436 | hh = ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
|---|
| 1437 | $ + (latcond*dmice(ig,ilev)/cpp)/ppopsk(ig,ilev) |
|---|
| 1438 | pdhdif(ig,ilev)=( zhs(ig,ilev)- hh )/ptimestep |
|---|
| 1439 | ENDDO |
|---|
| 1440 | ENDDO |
|---|
| 1441 | |
|---|
| 1442 | pdqdif(1:ngrid,1:nlay,1:nq)=(zq(1:ngrid,1:nlay,1:nq)- |
|---|
| 1443 | & (pq(1:ngrid,1:nlay,1:nq) |
|---|
| 1444 | & +pdqfi(1:ngrid,1:nlay,1:nq) |
|---|
| 1445 | & *ptimestep))/ptimestep |
|---|
| 1446 | |
|---|
| 1447 | c ** diagnostique final |
|---|
| 1448 | c ------------------ |
|---|
| 1449 | |
|---|
| 1450 | IF(lecrit) THEN |
|---|
| 1451 | PRINT*,'In vdif' |
|---|
| 1452 | PRINT*,'Ts (t) and Ts (t+st)' |
|---|
| 1453 | WRITE(*,'(a10,3a15)') |
|---|
| 1454 | s 'theta(t)','theta(t+dt)','u(t)','u(t+dt)' |
|---|
| 1455 | PRINT*,ptsrf(ngrid/2+1,:),ztsrf2(ngrid/2+1) |
|---|
| 1456 | DO ilev=1,nlay |
|---|
| 1457 | WRITE(*,'(4f15.7)') |
|---|
| 1458 | s ph(ngrid/2+1,ilev),zhs(ngrid/2+1,ilev), |
|---|
| 1459 | s pu(ngrid/2+1,ilev),zu(ngrid/2+1,ilev) |
|---|
| 1460 | |
|---|
| 1461 | ENDDO |
|---|
| 1462 | ENDIF |
|---|
| 1463 | |
|---|
| 1464 | END SUBROUTINE vdifc |
|---|
| 1465 | |
|---|
| 1466 | c==================================== |
|---|
| 1467 | |
|---|
| 1468 | SUBROUTINE make_tsub(naersize,dtsurf,qsurf,ptimestep, |
|---|
| 1469 | $ dtmax,watercaptag,ntsub) |
|---|
| 1470 | |
|---|
| 1471 | c Pas de temps adaptatif en estimant le taux de sublimation |
|---|
| 1472 | c et en adaptant avec un critere "dtmax" du chauffage a accomoder |
|---|
| 1473 | c dtmax est regle empiriquement (pour l'instant) a 0.5 K |
|---|
| 1474 | |
|---|
| 1475 | integer,intent(in) :: naersize |
|---|
| 1476 | real,intent(in) :: dtsurf(naersize) |
|---|
| 1477 | real,intent(in) :: qsurf(naersize) |
|---|
| 1478 | logical,intent(in) :: watercaptag(naersize) |
|---|
| 1479 | real,intent(in) :: ptimestep |
|---|
| 1480 | real,intent(in) :: dtmax |
|---|
| 1481 | real :: ztsub(naersize) |
|---|
| 1482 | integer :: i |
|---|
| 1483 | integer,intent(out) :: ntsub(naersize) |
|---|
| 1484 | |
|---|
| 1485 | do i=1,naersize |
|---|
| 1486 | if ((qsurf(i).eq.0).and. |
|---|
| 1487 | & (.not.watercaptag(i))) then |
|---|
| 1488 | ntsub(i) = 1 |
|---|
| 1489 | else |
|---|
| 1490 | ztsub(i) = ptimestep * dtsurf(i) / dtmax |
|---|
| 1491 | ntsub(i) = ceiling(abs(ztsub(i))) |
|---|
| 1492 | endif ! (qsurf(i).eq.0) then |
|---|
| 1493 | c |
|---|
| 1494 | c write(78,*), dtsurf*ptimestep, dtsurf, ntsub |
|---|
| 1495 | enddo! 1=1,ngrid |
|---|
| 1496 | |
|---|
| 1497 | |
|---|
| 1498 | |
|---|
| 1499 | END SUBROUTINE make_tsub |
|---|
| 1500 | |
|---|
| 1501 | |
|---|
| 1502 | c==================================== |
|---|
| 1503 | |
|---|
| 1504 | SUBROUTINE compute_Tice(nsoil, ptsoil, ptsurf, ice_depth, Tice) |
|---|
| 1505 | |
|---|
| 1506 | c Compute subsurface ice temperature by interpolating the temperatures between the two adjacent cells. |
|---|
| 1507 | use comsoil_h, only: layer, mlayer |
|---|
| 1508 | |
|---|
| 1509 | implicit none |
|---|
| 1510 | integer,intent(in) :: nsoil ! Number of soil layers |
|---|
| 1511 | real,intent(in) :: ptsoil(nsoil) ! Soil temperature (K) |
|---|
| 1512 | real,intent(in) :: ptsurf ! Soil temperature (K) |
|---|
| 1513 | real,intent(in) :: ice_depth ! Ice depth (m) |
|---|
| 1514 | real,intent(out) :: Tice ! Ice temperatures (K) |
|---|
| 1515 | |
|---|
| 1516 | c Local |
|---|
| 1517 | integer :: ik ! Loop variables |
|---|
| 1518 | integer :: indexice ! Index of the ice |
|---|
| 1519 | |
|---|
| 1520 | c Code: |
|---|
| 1521 | indexice = -1 |
|---|
| 1522 | if(ice_depth.lt.mlayer(0)) then |
|---|
| 1523 | indexice = 0. |
|---|
| 1524 | else |
|---|
| 1525 | do ik = 0,nsoil-2 ! go through all the layers to find the ice locations |
|---|
| 1526 | if((mlayer(ik).le.ice_depth).and. |
|---|
| 1527 | & (mlayer(ik+1).gt.ice_depth)) then |
|---|
| 1528 | indexice = ik+1 |
|---|
| 1529 | exit |
|---|
| 1530 | endif |
|---|
| 1531 | enddo |
|---|
| 1532 | endif |
|---|
| 1533 | |
|---|
| 1534 | if(indexice.lt.0) then |
|---|
| 1535 | call abort_physic("vdifc - compute Tice", |
|---|
| 1536 | & "subsurface ice is below the last soil layer",1) |
|---|
| 1537 | else |
|---|
| 1538 | if(indexice .ge. 1) then ! Linear inteprolation between soil temperature |
|---|
| 1539 | Tice = (ptsoil(indexice)-ptsoil(indexice+1)) |
|---|
| 1540 | & /(mlayer(indexice-1)-mlayer(indexice)) |
|---|
| 1541 | & *(ice_depth-mlayer(indexice)) + ptsoil(indexice+1) |
|---|
| 1542 | else ! Linear inteprolation between the 1st soil temperature and the surface temperature |
|---|
| 1543 | Tice = (ptsoil(1) - ptsurf)/mlayer(0) |
|---|
| 1544 | & *(ice_depth-mlayer(0)) + ptsoil(1) |
|---|
| 1545 | endif ! index ice >=0 |
|---|
| 1546 | endif !indexice <0 |
|---|
| 1547 | |
|---|
| 1548 | |
|---|
| 1549 | END SUBROUTINE compute_Tice |
|---|
| 1550 | END MODULE vdifc_mod |
|---|