1 | MODULE vdifc_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | SUBROUTINE vdifc(ngrid,nlay,nq,ppopsk, |
---|
8 | $ ptimestep,pcapcal,lecrit, |
---|
9 | $ pplay,pplev,pzlay,pzlev,pz0, |
---|
10 | $ pu,pv,ph,pq,ptsrf,pemis,pqsurf, |
---|
11 | $ pdufi,pdvfi,pdhfi,pdqfi,pfluxsrf, |
---|
12 | $ pdudif,pdvdif,pdhdif,pdtsrf,pq2, |
---|
13 | $ pdqdif,pdqsdif,wstar,zcdv_true,zcdh_true, |
---|
14 | $ hfmax,pcondicea_co2microp,sensibFlux, |
---|
15 | $ dustliftday,local_time,watercap, dwatercap_dif) |
---|
16 | |
---|
17 | use tracer_mod, only: noms, igcm_dust_mass, igcm_dust_number, |
---|
18 | & igcm_dust_submicron, igcm_h2o_vap, |
---|
19 | & igcm_h2o_ice, alpha_lift, igcm_co2, |
---|
20 | & igcm_hdo_vap, igcm_hdo_ice, |
---|
21 | & igcm_stormdust_mass, igcm_stormdust_number |
---|
22 | use surfdat_h, only: watercaptag, frost_albedo_threshold, dryness |
---|
23 | USE comcstfi_h, ONLY: cpp, r, rcp, g, pi |
---|
24 | use watersat_mod, only: watersat |
---|
25 | use turb_mod, only: turb_resolved, ustar, tstar |
---|
26 | use compute_dtau_mod, only: ti_injection_sol,tf_injection_sol |
---|
27 | use hdo_surfex_mod, only: hdo_surfex |
---|
28 | c use geometry_mod, only: longitude_deg,latitude_deg ! Joseph |
---|
29 | use dust_param_mod, only: doubleq, submicron, lifting |
---|
30 | use write_output_mod, only: write_output |
---|
31 | use comslope_mod, ONLY: nslope,def_slope,def_slope_mean, |
---|
32 | & subslope_dist,major_slope,iflat |
---|
33 | use microphys_h, only: To |
---|
34 | |
---|
35 | IMPLICIT NONE |
---|
36 | |
---|
37 | c======================================================================= |
---|
38 | c |
---|
39 | c subject: |
---|
40 | c -------- |
---|
41 | c Turbulent diffusion (mixing) for potential T, U, V and tracer |
---|
42 | c |
---|
43 | c Shema implicite |
---|
44 | c On commence par rajouter au variables x la tendance physique |
---|
45 | c et on resoult en fait: |
---|
46 | c x(t+1) = x(t) + dt * (dx/dt)phys(t) + dt * (dx/dt)difv(t+1) |
---|
47 | c |
---|
48 | c author: |
---|
49 | c ------ |
---|
50 | c Hourdin/Forget/Fournier |
---|
51 | c======================================================================= |
---|
52 | |
---|
53 | c----------------------------------------------------------------------- |
---|
54 | c declarations: |
---|
55 | c ------------- |
---|
56 | |
---|
57 | include "callkeys.h" |
---|
58 | |
---|
59 | c |
---|
60 | c arguments: |
---|
61 | c ---------- |
---|
62 | |
---|
63 | INTEGER,INTENT(IN) :: ngrid,nlay |
---|
64 | REAL,INTENT(IN) :: ptimestep |
---|
65 | REAL,INTENT(IN) :: pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
66 | REAL,INTENT(IN) :: pzlay(ngrid,nlay),pzlev(ngrid,nlay+1) |
---|
67 | REAL,INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) |
---|
68 | REAL,INTENT(IN) :: ph(ngrid,nlay) |
---|
69 | REAL,INTENT(IN) :: ptsrf(ngrid,nslope),pemis(ngrid,nslope) |
---|
70 | REAL,INTENT(IN) :: pdufi(ngrid,nlay),pdvfi(ngrid,nlay) |
---|
71 | REAL,INTENT(IN) :: pdhfi(ngrid,nlay) |
---|
72 | REAL,INTENT(IN) :: pfluxsrf(ngrid,nslope) |
---|
73 | REAL,INTENT(OUT) :: pdudif(ngrid,nlay),pdvdif(ngrid,nlay) |
---|
74 | REAL,INTENT(OUT) :: pdtsrf(ngrid,nslope),pdhdif(ngrid,nlay) |
---|
75 | REAL,INTENT(IN) :: pcapcal(ngrid,nslope) |
---|
76 | REAL,INTENT(INOUT) :: pq2(ngrid,nlay+1) |
---|
77 | |
---|
78 | c Argument added for condensation: |
---|
79 | REAL,INTENT(IN) :: ppopsk(ngrid,nlay) |
---|
80 | logical,INTENT(IN) :: lecrit |
---|
81 | REAL,INTENT(IN) :: pcondicea_co2microp(ngrid,nlay)! tendency due to CO2 condensation (kg/kg.s-1) |
---|
82 | |
---|
83 | REAL,INTENT(IN) :: pz0(ngrid) ! surface roughness length (m) |
---|
84 | |
---|
85 | c Argument added to account for subgrid gustiness : |
---|
86 | |
---|
87 | REAL,INTENT(IN) :: wstar(ngrid), hfmax(ngrid)!, zi(ngrid) |
---|
88 | |
---|
89 | c Traceurs : |
---|
90 | integer,intent(in) :: nq |
---|
91 | REAL,INTENT(IN) :: pqsurf(ngrid,nq,nslope) |
---|
92 | REAL :: zqsurf(ngrid) ! temporary water tracer |
---|
93 | real,intent(in) :: pq(ngrid,nlay,nq), pdqfi(ngrid,nlay,nq) |
---|
94 | real,intent(out) :: pdqdif(ngrid,nlay,nq) |
---|
95 | real,intent(out) :: pdqsdif(ngrid,nq,nslope) |
---|
96 | REAL,INTENT(in) :: dustliftday(ngrid) |
---|
97 | REAL,INTENT(in) :: local_time(ngrid) |
---|
98 | |
---|
99 | c local: |
---|
100 | c ------ |
---|
101 | |
---|
102 | REAL :: pt(ngrid,nlay) |
---|
103 | |
---|
104 | INTEGER ilev,ig,ilay,nlev,islope |
---|
105 | |
---|
106 | REAL z4st,zdplanck(ngrid) |
---|
107 | REAL zkv(ngrid,nlay+1),zkh(ngrid,nlay+1) |
---|
108 | REAL zkq(ngrid,nlay+1) |
---|
109 | REAL zcdv(ngrid),zcdh(ngrid) |
---|
110 | REAL, INTENT(IN) :: zcdv_true(ngrid),zcdh_true(ngrid) ! drag coeff are used by the LES to recompute u* and hfx |
---|
111 | REAL zu(ngrid,nlay),zv(ngrid,nlay) |
---|
112 | REAL zh(ngrid,nlay) |
---|
113 | REAL ztsrf2(ngrid) |
---|
114 | REAL z1(ngrid),z2(ngrid) |
---|
115 | REAL za(ngrid,nlay),zb(ngrid,nlay) |
---|
116 | REAL zb0(ngrid,nlay) |
---|
117 | REAL zc(ngrid,nlay),zd(ngrid,nlay) |
---|
118 | REAL zcst1 |
---|
119 | REAL zu2(ngrid) |
---|
120 | |
---|
121 | EXTERNAL SSUM,SCOPY |
---|
122 | REAL SSUM |
---|
123 | LOGICAL,SAVE :: firstcall=.true. |
---|
124 | |
---|
125 | !$OMP THREADPRIVATE(firstcall) |
---|
126 | |
---|
127 | c variable added for CO2 condensation: |
---|
128 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
129 | REAL hh , zhcond(ngrid,nlay) |
---|
130 | REAL,PARAMETER :: latcond=5.9e5 |
---|
131 | REAL,PARAMETER :: tcond1mb=136.27 |
---|
132 | REAL,SAVE :: acond,bcond |
---|
133 | |
---|
134 | !$OMP THREADPRIVATE(acond,bcond) |
---|
135 | |
---|
136 | c Subtimestep & implicit treatment of water vapor |
---|
137 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
138 | REAL zdqsdif(ngrid) ! subtimestep pdqsdif for water ice |
---|
139 | REAL ztsrf(ngrid) ! temporary surface temperature in tsub |
---|
140 | REAL zdtsrf(ngrid,nslope) ! surface temperature tendancy in tsub |
---|
141 | REAL surf_h2o_lh(ngrid,nslope) ! Surface h2o latent heat flux |
---|
142 | REAL zsurf_h2o_lh(ngrid,nslope) ! Tsub surface h2o latent heat flux |
---|
143 | |
---|
144 | c For latent heat release from ground water ice sublimation |
---|
145 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
146 | REAL tsrf_lh(ngrid) ! temporary surface temperature with lh effect |
---|
147 | REAL lh ! latent heat, formulation given in the Technical Document: |
---|
148 | ! "Modeling water ice sublimation under Phoenix-like conditions", Montmessin et al. 2004 |
---|
149 | |
---|
150 | c Tracers : |
---|
151 | c ~~~~~~~ |
---|
152 | INTEGER iq |
---|
153 | REAL zq(ngrid,nlay,nq) |
---|
154 | REAL zq1temp(ngrid) |
---|
155 | REAL rho(ngrid) ! near surface air density |
---|
156 | REAL qsat(ngrid) |
---|
157 | |
---|
158 | REAL hdoflux(ngrid,nslope) ! value of vapour flux of HDO |
---|
159 | REAL hdoflux_meshavg(ngrid) ! value of vapour flux of HDO |
---|
160 | ! REAL h2oflux(ngrid) ! value of vapour flux of H2O |
---|
161 | REAL old_h2o_vap(ngrid) ! traceur d'eau avant traitement |
---|
162 | REAL saved_h2o_vap(ngrid) ! traceur d'eau avant traitement |
---|
163 | |
---|
164 | REAL kmixmin |
---|
165 | |
---|
166 | c Argument added for surface water ice budget: |
---|
167 | REAL,INTENT(IN) :: watercap(ngrid,nslope) |
---|
168 | REAL,INTENT(OUT) :: dwatercap_dif(ngrid,nslope) |
---|
169 | |
---|
170 | c Subtimestep to compute h2o latent heat flux: |
---|
171 | REAL :: dtmax = 0.5 ! subtimestep temp criterion |
---|
172 | INTEGER tsub ! adaptative subtimestep (seconds) |
---|
173 | REAL subtimestep !ptimestep/nsubtimestep |
---|
174 | INTEGER nsubtimestep(ngrid) ! number of subtimestep (int) |
---|
175 | |
---|
176 | c Mass-variation scheme : |
---|
177 | c ~~~~~~~ |
---|
178 | |
---|
179 | INTEGER j,l |
---|
180 | REAL zcondicea(ngrid,nlay) |
---|
181 | REAL zt(ngrid,nlay),ztcond(ngrid,nlay+1) |
---|
182 | REAL betam(ngrid,nlay),dmice(ngrid,nlay) |
---|
183 | REAL pdtc(ngrid,nlay) |
---|
184 | REAL zhs(ngrid,nlay) |
---|
185 | REAL,SAVE :: ccond |
---|
186 | |
---|
187 | !$OMP THREADPRIVATE(ccond) |
---|
188 | |
---|
189 | c Theta_m formulation for mass-variation scheme : |
---|
190 | c ~~~~~~~ |
---|
191 | |
---|
192 | INTEGER,SAVE :: ico2 |
---|
193 | INTEGER llnt(ngrid) |
---|
194 | REAL,SAVE :: m_co2, m_noco2, A , B |
---|
195 | REAL vmr_co2(ngrid,nlay) |
---|
196 | REAL qco2,mmean |
---|
197 | |
---|
198 | !$OMP THREADPRIVATE(ico2,m_co2,m_noco2,A,B) |
---|
199 | |
---|
200 | REAL,INTENT(OUT) :: sensibFlux(ngrid) |
---|
201 | |
---|
202 | !!MARGAUX |
---|
203 | REAL DoH_vap(ngrid,nlay) |
---|
204 | !! Sub-grid scale slopes |
---|
205 | REAL :: pdqsdif_tmp(ngrid,nq) ! Temporary for dust lifting |
---|
206 | REAL :: watercap_tmp(ngrid) |
---|
207 | REAL :: zq_slope_vap(ngrid,nlay,nq,nslope) |
---|
208 | REAL :: zq_tmp_vap(ngrid,nlay,nq) |
---|
209 | REAL :: ptsrf_tmp(ngrid) |
---|
210 | REAL :: pqsurf_tmp(ngrid,nq) |
---|
211 | REAL :: pdqsdif_tmphdo(ngrid,nq) |
---|
212 | REAL :: qsat_tmp(ngrid) |
---|
213 | INTEGER :: indmax |
---|
214 | |
---|
215 | character*2 str2 |
---|
216 | |
---|
217 | c ** un petit test de coherence |
---|
218 | c -------------------------- |
---|
219 | |
---|
220 | ! AS: OK firstcall absolute |
---|
221 | IF (firstcall) THEN |
---|
222 | c To compute: Tcond= 1./(bcond-acond*log(.0095*p)) (p in pascal) |
---|
223 | bcond=1./tcond1mb |
---|
224 | acond=r/latcond |
---|
225 | ccond=cpp/(g*latcond) |
---|
226 | PRINT*,'In vdifc: Tcond(P=1mb)=',tcond1mb,' Lcond=',latcond |
---|
227 | PRINT*,' acond,bcond,ccond',acond,bcond,ccond |
---|
228 | |
---|
229 | |
---|
230 | ico2=0 |
---|
231 | |
---|
232 | c Prepare Special treatment if one of the tracer is CO2 gas |
---|
233 | do iq=1,nq |
---|
234 | if (noms(iq).eq."co2") then |
---|
235 | ico2=iq |
---|
236 | m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
---|
237 | m_noco2 = 33.37E-3 ! Non condensible mol mass (kg/mol) |
---|
238 | c Compute A and B coefficient use to compute |
---|
239 | c mean molecular mass Mair defined by |
---|
240 | c 1/Mair = q(ico2)/m_co2 + (1-q(ico2))/m_noco2 |
---|
241 | c 1/Mair = A*q(ico2) + B |
---|
242 | A =(1/m_co2 - 1/m_noco2) |
---|
243 | B=1/m_noco2 |
---|
244 | endif |
---|
245 | enddo |
---|
246 | |
---|
247 | firstcall=.false. |
---|
248 | ENDIF |
---|
249 | |
---|
250 | DO ig = 1,ngrid |
---|
251 | ptsrf_tmp(ig) = ptsrf(ig,major_slope(ig)) |
---|
252 | pqsurf_tmp(ig,:) = pqsurf(ig,:,major_slope(ig)) |
---|
253 | ENDDO |
---|
254 | |
---|
255 | c----------------------------------------------------------------------- |
---|
256 | c 1. initialisation |
---|
257 | c ----------------- |
---|
258 | |
---|
259 | nlev=nlay+1 |
---|
260 | |
---|
261 | ! initialize output tendencies to zero: |
---|
262 | pdudif(1:ngrid,1:nlay)=0 |
---|
263 | pdvdif(1:ngrid,1:nlay)=0 |
---|
264 | pdhdif(1:ngrid,1:nlay)=0 |
---|
265 | pdtsrf(1:ngrid,1:nslope)=0 |
---|
266 | zdtsrf(1:ngrid,1:nslope)=0 |
---|
267 | surf_h2o_lh(1:ngrid,1:nslope)=0 |
---|
268 | zsurf_h2o_lh(1:ngrid,1:nslope)=0 |
---|
269 | pdqdif(1:ngrid,1:nlay,1:nq)=0 |
---|
270 | pdqsdif(1:ngrid,1:nq,1:nslope)=0 |
---|
271 | pdqsdif_tmp(1:ngrid,1:nq)=0 |
---|
272 | zdqsdif(1:ngrid)=0 |
---|
273 | dwatercap_dif(1:ngrid,1:nslope)=0 |
---|
274 | |
---|
275 | c ** calcul de rho*dz et dt*rho/dz=dt*rho**2 g/dp |
---|
276 | c avec rho=p/RT=p/ (R Theta) (p/ps)**kappa |
---|
277 | c ---------------------------------------- |
---|
278 | |
---|
279 | DO ilay=1,nlay |
---|
280 | DO ig=1,ngrid |
---|
281 | za(ig,ilay)=(pplev(ig,ilay)-pplev(ig,ilay+1))/g |
---|
282 | ! Mass variation scheme: |
---|
283 | betam(ig,ilay)=-za(ig,ilay)*latcond/(cpp*ppopsk(ig,ilay)) |
---|
284 | ENDDO |
---|
285 | ENDDO |
---|
286 | |
---|
287 | zcst1=4.*g*ptimestep/(r*r) |
---|
288 | DO ilev=2,nlev-1 |
---|
289 | DO ig=1,ngrid |
---|
290 | zb0(ig,ilev)=pplev(ig,ilev)* |
---|
291 | s (pplev(ig,1)/pplev(ig,ilev))**rcp / |
---|
292 | s (ph(ig,ilev-1)+ph(ig,ilev)) |
---|
293 | zb0(ig,ilev)=zcst1*zb0(ig,ilev)*zb0(ig,ilev)/ |
---|
294 | s (pplay(ig,ilev-1)-pplay(ig,ilev)) |
---|
295 | ENDDO |
---|
296 | ENDDO |
---|
297 | DO ig=1,ngrid |
---|
298 | zb0(ig,1)=ptimestep*pplev(ig,1)/(r*ptsrf_tmp(ig)) |
---|
299 | ENDDO |
---|
300 | |
---|
301 | c ** diagnostique pour l'initialisation |
---|
302 | c ---------------------------------- |
---|
303 | |
---|
304 | IF(lecrit) THEN |
---|
305 | ig=ngrid/2+1 |
---|
306 | PRINT*,'Pression (mbar) ,altitude (km),u,v,theta, rho dz' |
---|
307 | DO ilay=1,nlay |
---|
308 | WRITE(*,'(6f11.5)') |
---|
309 | s .01*pplay(ig,ilay),.001*pzlay(ig,ilay), |
---|
310 | s pu(ig,ilay),pv(ig,ilay),ph(ig,ilay),za(ig,ilay) |
---|
311 | ENDDO |
---|
312 | PRINT*,'Pression (mbar) ,altitude (km),zb' |
---|
313 | DO ilev=1,nlay |
---|
314 | WRITE(*,'(3f15.7)') |
---|
315 | s .01*pplev(ig,ilev),.001*pzlev(ig,ilev), |
---|
316 | s zb0(ig,ilev) |
---|
317 | ENDDO |
---|
318 | ENDIF |
---|
319 | |
---|
320 | c ----------------------------------- |
---|
321 | c Potential Condensation temperature: |
---|
322 | c ----------------------------------- |
---|
323 | |
---|
324 | c Compute CO2 Volume mixing ratio |
---|
325 | c ------------------------------- |
---|
326 | if (callcond.and.(ico2.ne.0)) then |
---|
327 | DO ilev=1,nlay |
---|
328 | DO ig=1,ngrid |
---|
329 | qco2=MAX(1.E-30 |
---|
330 | & ,pq(ig,ilev,ico2)+pdqfi(ig,ilev,ico2)*ptimestep) |
---|
331 | c Mean air molecular mass = 1/(q(ico2)/m_co2 + (1-q(ico2))/m_noco2) |
---|
332 | mmean=1/(A*qco2 +B) |
---|
333 | vmr_co2(ig,ilev) = qco2*mmean/m_co2 |
---|
334 | ENDDO |
---|
335 | ENDDO |
---|
336 | else |
---|
337 | DO ilev=1,nlay |
---|
338 | DO ig=1,ngrid |
---|
339 | vmr_co2(ig,ilev)=0.95 |
---|
340 | ENDDO |
---|
341 | ENDDO |
---|
342 | end if |
---|
343 | |
---|
344 | c forecast of atmospheric temperature zt and frost temperature ztcond |
---|
345 | c -------------------------------------------------------------------- |
---|
346 | |
---|
347 | if (callcond) then |
---|
348 | DO ilev=1,nlay |
---|
349 | DO ig=1,ngrid |
---|
350 | ztcond(ig,ilev)= |
---|
351 | & 1./(bcond-acond*log(.01*vmr_co2(ig,ilev)*pplay(ig,ilev))) |
---|
352 | if (pplay(ig,ilev).lt.1e-4) ztcond(ig,ilev)=0.0 !mars Monica |
---|
353 | ! zhcond(ig,ilev) = |
---|
354 | ! & (1./(bcond-acond*log(.0095*pplay(ig,ilev))))/ppopsk(ig,ilev) |
---|
355 | zhcond(ig,ilev) = ztcond(ig,ilev)/ppopsk(ig,ilev) |
---|
356 | END DO |
---|
357 | END DO |
---|
358 | ztcond(:,nlay+1)=ztcond(:,nlay) |
---|
359 | else |
---|
360 | zhcond(:,:) = 0 |
---|
361 | ztcond(:,:) = 0 |
---|
362 | end if |
---|
363 | |
---|
364 | |
---|
365 | c----------------------------------------------------------------------- |
---|
366 | c 2. ajout des tendances physiques |
---|
367 | c ----------------------------- |
---|
368 | |
---|
369 | DO ilev=1,nlay |
---|
370 | DO ig=1,ngrid |
---|
371 | zu(ig,ilev)=pu(ig,ilev)+pdufi(ig,ilev)*ptimestep |
---|
372 | zv(ig,ilev)=pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep |
---|
373 | zh(ig,ilev)=ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
---|
374 | ! zh(ig,ilev)=max(zh(ig,ilev),zhcond(ig,ilev)) |
---|
375 | ENDDO |
---|
376 | ENDDO |
---|
377 | |
---|
378 | zq(1:ngrid,1:nlay,1:nq)=pq(1:ngrid,1:nlay,1:nq)+ |
---|
379 | & pdqfi(1:ngrid,1:nlay,1:nq)*ptimestep |
---|
380 | |
---|
381 | c----------------------------------------------------------------------- |
---|
382 | c 3. schema de turbulence |
---|
383 | c -------------------- |
---|
384 | |
---|
385 | c ** source d'energie cinetique turbulente a la surface |
---|
386 | c (condition aux limites du schema de diffusion turbulente |
---|
387 | c dans la couche limite |
---|
388 | c --------------------- |
---|
389 | |
---|
390 | CALL vdif_cd(ngrid,nlay,pz0,g,pzlay,pu,pv,wstar,ptsrf_tmp |
---|
391 | & ,ph,zcdv_true,zcdh_true) |
---|
392 | |
---|
393 | zu2(:)=pu(:,1)*pu(:,1)+pv(:,1)*pv(:,1) |
---|
394 | |
---|
395 | IF (callrichsl) THEN |
---|
396 | zcdv(:)=zcdv_true(:)*sqrt(zu2(:)+ |
---|
397 | & (log(1.+0.7*wstar(:) + 2.3*wstar(:)**2))**2) |
---|
398 | zcdh(:)=zcdh_true(:)*sqrt(zu2(:)+ |
---|
399 | & (log(1.+0.7*wstar(:) + 2.3*wstar(:)**2))**2) |
---|
400 | |
---|
401 | ustar(:)=sqrt(zcdv_true(:))*sqrt(zu2(:)+ |
---|
402 | & (log(1.+0.7*wstar(:) + 2.3*wstar(:)**2))**2) |
---|
403 | |
---|
404 | tstar(:)=0. |
---|
405 | DO ig=1,ngrid |
---|
406 | IF (zcdh_true(ig) .ne. 0.) THEN ! When Cd=Ch=0, u*=t*=0 |
---|
407 | tstar(ig)=(ph(ig,1)-ptsrf_tmp(ig)) |
---|
408 | & *zcdh(ig)/ustar(ig) |
---|
409 | ENDIF |
---|
410 | ENDDO |
---|
411 | |
---|
412 | ELSE |
---|
413 | zcdv(:)=zcdv_true(:)*sqrt(zu2(:)) ! 1 / bulk aerodynamic momentum conductance |
---|
414 | zcdh(:)=zcdh_true(:)*sqrt(zu2(:)) ! 1 / bulk aerodynamic heat conductance |
---|
415 | ustar(:)=sqrt(zcdv_true(:))*sqrt(zu2(:)) |
---|
416 | tstar(:)=(ph(:,1)-ptsrf_tmp(:)) |
---|
417 | & *zcdh_true(:)/sqrt(zcdv_true(:)) |
---|
418 | ENDIF |
---|
419 | |
---|
420 | ! Some usefull diagnostics for the new surface layer parametrization : |
---|
421 | |
---|
422 | ! call write_output('vdifc_zcdv_true', |
---|
423 | ! & 'momentum drag','no units', |
---|
424 | ! & zcdv_true(:)) |
---|
425 | ! call write_output('vdifc_zcdh_true', |
---|
426 | ! & 'heat drag','no units', |
---|
427 | ! & zcdh_true(:)) |
---|
428 | ! call write_output('vdifc_ust', |
---|
429 | ! & 'friction velocity','m/s',ust(:)) |
---|
430 | ! call write_output('vdifc_tst', |
---|
431 | ! & 'friction temperature','K',tst(:)) |
---|
432 | ! call write_output('vdifc_zcdv', |
---|
433 | ! & 'aerodyn momentum conductance','m/s', |
---|
434 | ! & zcdv(:)) |
---|
435 | ! call write_output('vdifc_zcdh', |
---|
436 | ! & 'aerodyn heat conductance','m/s', |
---|
437 | ! & zcdh(:)) |
---|
438 | |
---|
439 | c ** schema de diffusion turbulente dans la couche limite |
---|
440 | c ---------------------------------------------------- |
---|
441 | IF (.not. callyamada4) THEN |
---|
442 | |
---|
443 | CALL vdif_kc(ngrid,nlay,nq,ptimestep,g,pzlev,pzlay |
---|
444 | & ,pu,pv,ph,zcdv_true |
---|
445 | & ,pq2,zkv,zkh,zq) |
---|
446 | |
---|
447 | ELSE |
---|
448 | |
---|
449 | pt(:,:)=ph(:,:)*ppopsk(:,:) |
---|
450 | CALL yamada4(ngrid,nlay,nq,ptimestep,g,r,pplev,pt |
---|
451 | s ,pzlev,pzlay,pu,pv,ph,pq,zcdv_true,pq2,zkv,zkh,zkq,ustar |
---|
452 | s ,9) |
---|
453 | ENDIF |
---|
454 | |
---|
455 | if ((doubleq).and.(ngrid.eq.1)) then |
---|
456 | kmixmin = 80. !80.! minimum eddy mix coeff in 1D |
---|
457 | do ilev=1,nlay |
---|
458 | do ig=1,ngrid |
---|
459 | zkh(ig,ilev) = max(kmixmin,zkh(ig,ilev)) |
---|
460 | zkv(ig,ilev) = max(kmixmin,zkv(ig,ilev)) |
---|
461 | end do |
---|
462 | end do |
---|
463 | end if |
---|
464 | |
---|
465 | c ** diagnostique pour le schema de turbulence |
---|
466 | c ----------------------------------------- |
---|
467 | |
---|
468 | IF(lecrit) THEN |
---|
469 | PRINT* |
---|
470 | PRINT*,'Diagnostic for the vertical turbulent mixing' |
---|
471 | PRINT*,'Cd for momentum and potential temperature' |
---|
472 | |
---|
473 | PRINT*,zcdv(ngrid/2+1),zcdh(ngrid/2+1) |
---|
474 | PRINT*,'Mixing coefficient for momentum and pot.temp.' |
---|
475 | DO ilev=1,nlay |
---|
476 | PRINT*,zkv(ngrid/2+1,ilev),zkh(ngrid/2+1,ilev) |
---|
477 | ENDDO |
---|
478 | ENDIF |
---|
479 | |
---|
480 | c----------------------------------------------------------------------- |
---|
481 | c 4. inversion pour l'implicite sur u |
---|
482 | c -------------------------------- |
---|
483 | |
---|
484 | c ** l'equation est |
---|
485 | c u(t+1) = u(t) + dt * {(du/dt)phys}(t) + dt * {(du/dt)difv}(t+1) |
---|
486 | c avec |
---|
487 | c /zu/ = u(t) + dt * {(du/dt)phys}(t) (voir paragraphe 2.) |
---|
488 | c et |
---|
489 | c dt * {(du/dt)difv}(t+1) = dt * {(d/dz)[ Ku (du/dz) ]}(t+1) |
---|
490 | c donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
491 | c et /zkv/ = Ku |
---|
492 | |
---|
493 | zb(1:ngrid,2:nlay)=zkv(1:ngrid,2:nlay)*zb0(1:ngrid,2:nlay) |
---|
494 | zb(1:ngrid,1)=zcdv(1:ngrid)*zb0(1:ngrid,1) |
---|
495 | |
---|
496 | DO ig=1,ngrid |
---|
497 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
498 | zc(ig,nlay)=za(ig,nlay)*zu(ig,nlay)*z1(ig) |
---|
499 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
500 | ENDDO |
---|
501 | |
---|
502 | DO ilay=nlay-1,1,-1 |
---|
503 | DO ig=1,ngrid |
---|
504 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
505 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
506 | zc(ig,ilay)=(za(ig,ilay)*zu(ig,ilay)+ |
---|
507 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
508 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
509 | ENDDO |
---|
510 | ENDDO |
---|
511 | |
---|
512 | DO ig=1,ngrid |
---|
513 | zu(ig,1)=zc(ig,1) |
---|
514 | ENDDO |
---|
515 | DO ilay=2,nlay |
---|
516 | DO ig=1,ngrid |
---|
517 | zu(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zu(ig,ilay-1) |
---|
518 | ENDDO |
---|
519 | ENDDO |
---|
520 | |
---|
521 | c----------------------------------------------------------------------- |
---|
522 | c 5. inversion pour l'implicite sur v |
---|
523 | c -------------------------------- |
---|
524 | |
---|
525 | c ** l'equation est |
---|
526 | c v(t+1) = v(t) + dt * {(dv/dt)phys}(t) + dt * {(dv/dt)difv}(t+1) |
---|
527 | c avec |
---|
528 | c /zv/ = v(t) + dt * {(dv/dt)phys}(t) (voir paragraphe 2.) |
---|
529 | c et |
---|
530 | c dt * {(dv/dt)difv}(t+1) = dt * {(d/dz)[ Kv (dv/dz) ]}(t+1) |
---|
531 | c donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
532 | c et /zkv/ = Kv |
---|
533 | |
---|
534 | DO ig=1,ngrid |
---|
535 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
536 | zc(ig,nlay)=za(ig,nlay)*zv(ig,nlay)*z1(ig) |
---|
537 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
538 | ENDDO |
---|
539 | |
---|
540 | DO ilay=nlay-1,1,-1 |
---|
541 | DO ig=1,ngrid |
---|
542 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
543 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
544 | zc(ig,ilay)=(za(ig,ilay)*zv(ig,ilay)+ |
---|
545 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
546 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
547 | ENDDO |
---|
548 | ENDDO |
---|
549 | |
---|
550 | DO ig=1,ngrid |
---|
551 | zv(ig,1)=zc(ig,1) |
---|
552 | ENDDO |
---|
553 | DO ilay=2,nlay |
---|
554 | DO ig=1,ngrid |
---|
555 | zv(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zv(ig,ilay-1) |
---|
556 | ENDDO |
---|
557 | ENDDO |
---|
558 | |
---|
559 | c----------------------------------------------------------------------- |
---|
560 | c 6. inversion pour l'implicite sur h sans oublier le couplage |
---|
561 | c avec le sol (conduction) |
---|
562 | c ------------------------ |
---|
563 | |
---|
564 | c ** l'equation est |
---|
565 | c h(t+1) = h(t) + dt * {(dh/dt)phys}(t) + dt * {(dh/dt)difv}(t+1) |
---|
566 | c avec |
---|
567 | c /zh/ = h(t) + dt * {(dh/dt)phys}(t) (voir paragraphe 2.) |
---|
568 | c et |
---|
569 | c dt * {(dh/dt)difv}(t+1) = dt * {(d/dz)[ Kh (dh/dz) ]}(t+1) |
---|
570 | c donc les entrees sont /zcdh/ pour la condition de raccord au sol |
---|
571 | c et /zkh/ = Kh |
---|
572 | c ------------- |
---|
573 | |
---|
574 | c Mass variation scheme: |
---|
575 | zb(1:ngrid,2:nlay)=zkh(1:ngrid,2:nlay)*zb0(1:ngrid,2:nlay) |
---|
576 | zb(1:ngrid,1)=zcdh(1:ngrid)*zb0(1:ngrid,1) |
---|
577 | |
---|
578 | c on initialise dm c |
---|
579 | |
---|
580 | pdtc(:,:)=0. |
---|
581 | zt(:,:)=0. |
---|
582 | dmice(:,:)=0. |
---|
583 | |
---|
584 | c ** calcul de (d Planck / dT) a la temperature d'interface |
---|
585 | c ------------------------------------------------------ |
---|
586 | |
---|
587 | z4st=4.*5.67e-8*ptimestep |
---|
588 | IF (tke_heat_flux .eq. 0.) THEN |
---|
589 | DO ig=1,ngrid |
---|
590 | indmax = major_slope(ig) |
---|
591 | zdplanck(ig)=z4st*pemis(ig,indmax)*ptsrf(ig,indmax)* |
---|
592 | & ptsrf(ig,indmax)*ptsrf(ig,indmax) |
---|
593 | ENDDO |
---|
594 | ELSE |
---|
595 | zdplanck(:)=0. |
---|
596 | ENDIF |
---|
597 | |
---|
598 | ! calcul de zc et zd pour la couche top en prenant en compte le terme |
---|
599 | ! de variation de masse (on fait une boucle pour que \E7a converge) |
---|
600 | |
---|
601 | ! Identification des points de grilles qui ont besoin de la correction |
---|
602 | |
---|
603 | llnt(:)=1 |
---|
604 | IF (.not.turb_resolved) THEN |
---|
605 | IF (callcond) THEN |
---|
606 | DO ig=1,ngrid |
---|
607 | DO l=1,nlay |
---|
608 | if(zh(ig,l) .lt. zhcond(ig,l)) then |
---|
609 | llnt(ig)=300 |
---|
610 | ! 200 and 100 do not go beyond month 9 with normal dissipation |
---|
611 | goto 5 |
---|
612 | endif |
---|
613 | ENDDO |
---|
614 | 5 continue |
---|
615 | ENDDO |
---|
616 | ENDIF |
---|
617 | |
---|
618 | ENDIF |
---|
619 | |
---|
620 | |
---|
621 | |
---|
622 | DO ig=1,ngrid |
---|
623 | indmax = major_slope(ig) |
---|
624 | ! Initialization of z1 and zd, which do not depend on dmice |
---|
625 | |
---|
626 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
627 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
628 | |
---|
629 | DO ilay=nlay-1,1,-1 |
---|
630 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
631 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
632 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
633 | ENDDO |
---|
634 | |
---|
635 | ! Convergence loop |
---|
636 | |
---|
637 | DO j=1,llnt(ig) |
---|
638 | |
---|
639 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
640 | zc(ig,nlay)=za(ig,nlay)*zh(ig,nlay) |
---|
641 | & -betam(ig,nlay)*dmice(ig,nlay) |
---|
642 | zc(ig,nlay)=zc(ig,nlay)*z1(ig) |
---|
643 | ! zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
644 | |
---|
645 | ! calcul de zc et zd pour les couches du haut vers le bas |
---|
646 | |
---|
647 | DO ilay=nlay-1,1,-1 |
---|
648 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
649 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
650 | zc(ig,ilay)=(za(ig,ilay)*zh(ig,ilay)+ |
---|
651 | $ zb(ig,ilay+1)*zc(ig,ilay+1)- |
---|
652 | $ betam(ig,ilay)*dmice(ig,ilay))*z1(ig) |
---|
653 | ! zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
654 | ENDDO |
---|
655 | |
---|
656 | c ** calcul de la temperature_d'interface et de sa tendance. |
---|
657 | c on ecrit que la somme des flux est nulle a l'interface |
---|
658 | c a t + \delta t, |
---|
659 | c c'est a dire le flux radiatif a {t + \delta t} |
---|
660 | c + le flux turbulent a {t + \delta t} |
---|
661 | c qui s'ecrit K (T1-Tsurf) avec T1 = d1 Tsurf + c1 |
---|
662 | c (notation K dt = /cpp*b/) |
---|
663 | c + le flux dans le sol a t |
---|
664 | c + l'evolution du flux dans le sol lorsque la temperature d'interface |
---|
665 | c passe de sa valeur a t a sa valeur a {t + \delta t}. |
---|
666 | c ---------------------------------------------------- |
---|
667 | |
---|
668 | z1(ig)=pcapcal(ig,indmax)*ptsrf(ig,indmax) |
---|
669 | s + cpp*zb(ig,1)*zc(ig,1) |
---|
670 | s + zdplanck(ig)*ptsrf(ig,indmax) |
---|
671 | s + pfluxsrf(ig,indmax)*ptimestep |
---|
672 | z2(ig)= pcapcal(ig,indmax)+cpp*zb(ig,1)*(1.-zd(ig,1)) |
---|
673 | s +zdplanck(ig) |
---|
674 | ztsrf2(ig)=z1(ig)/z2(ig) |
---|
675 | ! pdtsrf(ig)=(ztsrf2(ig)-ptsrf(ig))/ptimestep !incremented outside loop |
---|
676 | zhs(ig,1)=zc(ig,1)+zd(ig,1)*ztsrf2(ig) |
---|
677 | |
---|
678 | c ** et a partir de la temperature au sol on remonte |
---|
679 | c ----------------------------------------------- |
---|
680 | |
---|
681 | DO ilay=2,nlay |
---|
682 | zhs(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zhs(ig,ilay-1) |
---|
683 | ENDDO |
---|
684 | DO ilay=1,nlay |
---|
685 | zt(ig,ilay)=zhs(ig,ilay)*ppopsk(ig,ilay) |
---|
686 | ENDDO |
---|
687 | |
---|
688 | c Condensation/sublimation in the atmosphere |
---|
689 | c ------------------------------------------ |
---|
690 | c (computation of zcondicea and dmice) |
---|
691 | |
---|
692 | IF (.NOT. co2clouds) then |
---|
693 | DO l=nlay , 1, -1 |
---|
694 | IF(zt(ig,l).LT.ztcond(ig,l)) THEN |
---|
695 | pdtc(ig,l)=(ztcond(ig,l) - zt(ig,l))/ptimestep |
---|
696 | zcondicea(ig,l)=(pplev(ig,l)-pplev(ig,l+1)) |
---|
697 | & *ccond*pdtc(ig,l) |
---|
698 | dmice(ig,l)= dmice(ig,l) + zcondicea(ig,l)*ptimestep |
---|
699 | END IF |
---|
700 | ENDDO |
---|
701 | ELSE |
---|
702 | DO l=nlay , 1, -1 |
---|
703 | zcondicea(ig,l)= 0.!pcondicea_co2microp(ig,l)* |
---|
704 | c & (pplev(ig,l) - pplev(ig,l+1))/g |
---|
705 | dmice(ig,l)= 0.!dmice(ig,l) + zcondicea(ig,l)*ptimestep |
---|
706 | pdtc(ig,l)=0. |
---|
707 | ENDDO |
---|
708 | ENDIF |
---|
709 | |
---|
710 | ENDDO!of Do j=1,XXX |
---|
711 | pdtsrf(ig,indmax)=(ztsrf2(ig)-ptsrf(ig,indmax))/ptimestep |
---|
712 | ENDDO !of Do ig=1,ngrid |
---|
713 | |
---|
714 | DO ig=1,ngrid ! computing sensible heat flux (atm => surface) |
---|
715 | sensibFlux(ig)=cpp*zb(ig,1)/ptimestep*(zhs(ig,1)-ztsrf2(ig)) |
---|
716 | ENDDO |
---|
717 | |
---|
718 | c Now implicit sheme on each sub-grid subslope: |
---|
719 | IF (nslope.ne.1) then |
---|
720 | DO islope=1,nslope |
---|
721 | DO ig=1,ngrid |
---|
722 | IF(islope.ne.major_slope(ig)) then |
---|
723 | IF (tke_heat_flux .eq. 0.) THEN |
---|
724 | zdplanck(ig)=z4st*pemis(ig,islope)*ptsrf(ig,islope)**3 |
---|
725 | ELSE |
---|
726 | zdplanck(ig) = 0. |
---|
727 | ENDIF |
---|
728 | z1(ig)=pcapcal(ig,islope)*ptsrf(ig,islope) |
---|
729 | s + cpp*zb(ig,1)*zc(ig,1) |
---|
730 | s + zdplanck(ig)*ptsrf(ig,islope) |
---|
731 | s + pfluxsrf(ig,islope)*ptimestep |
---|
732 | z2(ig)= pcapcal(ig,islope)+cpp*zb(ig,1)*(1.-zd(ig,1)) |
---|
733 | s +zdplanck(ig) |
---|
734 | ztsrf2(ig)=z1(ig)/z2(ig) |
---|
735 | pdtsrf(ig,islope)=(ztsrf2(ig)-ptsrf(ig,islope))/ptimestep |
---|
736 | ENDIF ! islope != indmax |
---|
737 | ENDDO ! ig |
---|
738 | ENDDO !islope |
---|
739 | ENDIF !nslope.ne.1 |
---|
740 | |
---|
741 | c----------------------------------------------------------------------- |
---|
742 | c TRACERS |
---|
743 | c ------- |
---|
744 | |
---|
745 | c Using the wind modified by friction for lifting and sublimation |
---|
746 | c ---------------------------------------------------------------- |
---|
747 | |
---|
748 | ! This is computed above and takes into account surface-atmosphere flux |
---|
749 | ! enhancement by subgrid gustiness and atmospheric-stability related |
---|
750 | ! variations of transfer coefficients. |
---|
751 | |
---|
752 | ! DO ig=1,ngrid |
---|
753 | ! zu2(ig)=zu(ig,1)*zu(ig,1)+zv(ig,1)*zv(ig,1) |
---|
754 | ! zcdv(ig)=zcdv_true(ig)*sqrt(zu2(ig)) |
---|
755 | ! zcdh(ig)=zcdh_true(ig)*sqrt(zu2(ig)) |
---|
756 | ! ENDDO |
---|
757 | |
---|
758 | c Calcul du flux vertical au bas de la premiere couche (dust) : |
---|
759 | c ----------------------------------------------------------- |
---|
760 | do ig=1,ngrid |
---|
761 | rho(ig) = zb0(ig,1) /ptimestep |
---|
762 | c zb(ig,1) = 0. |
---|
763 | end do |
---|
764 | c Dust lifting: |
---|
765 | if (lifting) then |
---|
766 | #ifndef MESOSCALE |
---|
767 | if (doubleq.AND.submicron) then |
---|
768 | do ig=1,ngrid |
---|
769 | c if(qsurf(ig,igcm_co2).lt.1) then |
---|
770 | pdqsdif_tmp(ig,igcm_dust_mass) = |
---|
771 | & -alpha_lift(igcm_dust_mass) |
---|
772 | pdqsdif_tmp(ig,igcm_dust_number) = |
---|
773 | & -alpha_lift(igcm_dust_number) |
---|
774 | pdqsdif_tmp(ig,igcm_dust_submicron) = |
---|
775 | & -alpha_lift(igcm_dust_submicron) |
---|
776 | c end if |
---|
777 | end do |
---|
778 | else if (doubleq) then |
---|
779 | if (dustinjection.eq.0) then !injection scheme 0 (old) |
---|
780 | !or 2 (injection in CL) |
---|
781 | do ig=1,ngrid |
---|
782 | if(pqsurf_tmp(ig,igcm_co2).lt.1) then ! pas de soulevement si glace CO2 |
---|
783 | pdqsdif_tmp(ig,igcm_dust_mass) = |
---|
784 | & -alpha_lift(igcm_dust_mass) |
---|
785 | pdqsdif_tmp(ig,igcm_dust_number) = |
---|
786 | & -alpha_lift(igcm_dust_number) |
---|
787 | end if |
---|
788 | end do |
---|
789 | elseif(dustinjection.eq.1)then ! dust injection scheme = 1 injection from surface |
---|
790 | do ig=1,ngrid |
---|
791 | if(pqsurf_tmp(ig,igcm_co2).lt.1) then ! pas de soulevement si glace CO2 |
---|
792 | IF((ti_injection_sol.LE.local_time(ig)).and. |
---|
793 | & (local_time(ig).LE.tf_injection_sol)) THEN |
---|
794 | if (rdstorm) then !Rocket dust storm scheme |
---|
795 | pdqsdif_tmp(ig,igcm_stormdust_mass) = |
---|
796 | & -alpha_lift(igcm_stormdust_mass) |
---|
797 | & *dustliftday(ig) |
---|
798 | pdqsdif_tmp(ig,igcm_stormdust_number) = |
---|
799 | & -alpha_lift(igcm_stormdust_number) |
---|
800 | & *dustliftday(ig) |
---|
801 | pdqsdif_tmp(ig,igcm_dust_mass)= 0. |
---|
802 | pdqsdif_tmp(ig,igcm_dust_number)= 0. |
---|
803 | else |
---|
804 | pdqsdif_tmp(ig,igcm_dust_mass)= |
---|
805 | & -dustliftday(ig)* |
---|
806 | & alpha_lift(igcm_dust_mass) |
---|
807 | pdqsdif_tmp(ig,igcm_dust_number)= |
---|
808 | & -dustliftday(ig)* |
---|
809 | & alpha_lift(igcm_dust_number) |
---|
810 | endif |
---|
811 | if (submicron) then |
---|
812 | pdqsdif_tmp(ig,igcm_dust_submicron) = 0. |
---|
813 | endif ! if (submicron) |
---|
814 | ELSE ! outside dust injection time frame |
---|
815 | pdqsdif_tmp(ig,igcm_dust_mass)= 0. |
---|
816 | pdqsdif_tmp(ig,igcm_dust_number)= 0. |
---|
817 | if (rdstorm) then |
---|
818 | pdqsdif_tmp(ig,igcm_stormdust_mass)= 0. |
---|
819 | pdqsdif_tmp(ig,igcm_stormdust_number)= 0. |
---|
820 | end if |
---|
821 | ENDIF |
---|
822 | |
---|
823 | end if ! of if(qsurf(ig,igcm_co2).lt.1) |
---|
824 | end do |
---|
825 | endif ! end if dustinjection |
---|
826 | else if (submicron) then |
---|
827 | do ig=1,ngrid |
---|
828 | pdqsdif_tmp(ig,igcm_dust_submicron) = |
---|
829 | & -alpha_lift(igcm_dust_submicron) |
---|
830 | end do |
---|
831 | else |
---|
832 | #endif |
---|
833 | call dustlift(ngrid,nlay,nq,rho,zcdh_true,zcdh, |
---|
834 | & pqsurf_tmp(:,igcm_co2),pdqsdif_tmp) |
---|
835 | #ifndef MESOSCALE |
---|
836 | endif !doubleq.AND.submicron |
---|
837 | #endif |
---|
838 | else |
---|
839 | pdqsdif_tmp(1:ngrid,1:nq) = 0. |
---|
840 | end if |
---|
841 | |
---|
842 | c OU calcul de la valeur de q a la surface (water) : |
---|
843 | c ---------------------------------------- |
---|
844 | |
---|
845 | c Inversion pour l'implicite sur q |
---|
846 | c Cas des traceurs qui ne sont pas h2o_vap |
---|
847 | c h2o_vap est traite plus loin avec un sous pas de temps |
---|
848 | c hdo_vap est traite ensuite car dependant de h2o_vap |
---|
849 | c -------------------------------- |
---|
850 | |
---|
851 | do iq=1,nq !for all tracers except water vapor |
---|
852 | if ((.not. water).or.(.not. iq.eq.igcm_h2o_vap).or. |
---|
853 | & (.not. iq.eq.igcm_hdo_vap)) then |
---|
854 | |
---|
855 | |
---|
856 | zb(1:ngrid,2:nlay)=zkh(1:ngrid,2:nlay)*zb0(1:ngrid,2:nlay) |
---|
857 | zb(1:ngrid,1)=0 |
---|
858 | |
---|
859 | DO ig=1,ngrid |
---|
860 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
861 | zc(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
862 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
863 | ENDDO |
---|
864 | |
---|
865 | DO ilay=nlay-1,2,-1 |
---|
866 | DO ig=1,ngrid |
---|
867 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
868 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
869 | zc(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ |
---|
870 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
871 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
872 | ENDDO |
---|
873 | ENDDO |
---|
874 | |
---|
875 | if ((iq.eq.igcm_h2o_ice) |
---|
876 | $ .or. (hdo.and.(iq.eq.igcm_hdo_ice) )) then |
---|
877 | |
---|
878 | DO ig=1,ngrid |
---|
879 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
---|
880 | $ zb(ig,2)*(1.-zd(ig,2))) |
---|
881 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
882 | $ zb(ig,2)*zc(ig,2)) *z1(ig) !special case h2o_ice |
---|
883 | ENDDO |
---|
884 | else ! every other tracer |
---|
885 | DO ig=1,ngrid |
---|
886 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
---|
887 | $ zb(ig,2)*(1.-zd(ig,2))) |
---|
888 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
889 | $ zb(ig,2)*zc(ig,2) + |
---|
890 | $ (-pdqsdif_tmp(ig,iq)) *ptimestep) *z1(ig) !tracer flux from surface |
---|
891 | ENDDO |
---|
892 | endif !((iq.eq.igcm_h2o_ice) |
---|
893 | c Starting upward calculations for simple mixing of tracer (dust) |
---|
894 | DO ig=1,ngrid |
---|
895 | zq(ig,1,iq)=zc(ig,1) |
---|
896 | DO ilay=2,nlay |
---|
897 | zq(ig,ilay,iq)=zc(ig,ilay)+zd(ig,ilay)*zq(ig,ilay-1,iq) |
---|
898 | ENDDO |
---|
899 | ENDDO |
---|
900 | DO islope = 1,nslope |
---|
901 | DO ig = 1,ngrid |
---|
902 | pdqsdif(ig,iq,islope) = pdqsdif_tmp(ig,iq) |
---|
903 | & * cos(pi*def_slope_mean(islope)/180.) |
---|
904 | ENDDO |
---|
905 | ENDDO |
---|
906 | |
---|
907 | endif! ((.not. water).or.(.not. iq.eq.igcm_h2o_vap)) then |
---|
908 | enddo ! of do iq=1,nq |
---|
909 | |
---|
910 | c --------- h2o_vap -------------------------------- |
---|
911 | |
---|
912 | |
---|
913 | c Traitement de la vapeur d'eau h2o_vap |
---|
914 | c Utilisation d'un sous pas de temps afin |
---|
915 | c de decrire le flux de chaleur latente |
---|
916 | |
---|
917 | do iq=1,nq |
---|
918 | if ((water).and.(iq.eq.igcm_h2o_vap)) then |
---|
919 | |
---|
920 | DO islope = 1,nslope |
---|
921 | DO ig=1,ngrid |
---|
922 | zqsurf(ig)=pqsurf(ig,igcm_h2o_ice,islope)/ |
---|
923 | & cos(pi*def_slope_mean(islope)/180.) |
---|
924 | watercap_tmp(ig) = watercap(ig,islope)/ |
---|
925 | & cos(pi*def_slope_mean(islope)/180.) |
---|
926 | ENDDO ! ig=1,ngrid |
---|
927 | |
---|
928 | c make_tsub : sous pas de temps adaptatif |
---|
929 | c la subroutine est a la fin du fichier |
---|
930 | |
---|
931 | call make_tsub(ngrid,pdtsrf(:,islope),zqsurf, |
---|
932 | & ptimestep,dtmax,watercaptag, |
---|
933 | & nsubtimestep) |
---|
934 | |
---|
935 | c Calculation for turbulent exchange with the surface (for ice) |
---|
936 | c initialization of ztsrf, which is surface temperature in |
---|
937 | c the subtimestep. |
---|
938 | saved_h2o_vap(:)= zq(:,1,igcm_h2o_vap) |
---|
939 | |
---|
940 | DO ig=1,ngrid |
---|
941 | subtimestep = ptimestep/nsubtimestep(ig) |
---|
942 | ztsrf(ig)=ptsrf(ig,islope) ! +pdtsrf(ig)*subtimestep |
---|
943 | zq_tmp_vap(ig,:,:) =zq(ig,:,:) |
---|
944 | c Debut du sous pas de temps |
---|
945 | |
---|
946 | DO tsub=1,nsubtimestep(ig) |
---|
947 | |
---|
948 | c C'est parti ! |
---|
949 | zb(1:ngrid,2:nlay)=zkh(1:ngrid,2:nlay)*zb0(1:ngrid,2:nlay) |
---|
950 | & /float(nsubtimestep(ig)) |
---|
951 | zb(1:ngrid,1)=zcdv(1:ngrid)*zb0(1:ngrid,1) |
---|
952 | & /float(nsubtimestep(ig)) |
---|
953 | zb(1:ngrid,1)=dryness(1:ngrid)*zb(1:ngrid,1) |
---|
954 | |
---|
955 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
956 | zc(ig,nlay)=za(ig,nlay)*zq_tmp_vap(ig,nlay,iq)*z1(ig) |
---|
957 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
958 | DO ilay=nlay-1,2,-1 |
---|
959 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
960 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
961 | zc(ig,ilay)=(za(ig,ilay)*zq_tmp_vap(ig,ilay,iq)+ |
---|
962 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
963 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
964 | ENDDO |
---|
965 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
---|
966 | $ zb(ig,2)*(1.-zd(ig,2))) |
---|
967 | zc(ig,1)=(za(ig,1)*zq_tmp_vap(ig,1,iq)+ |
---|
968 | $ zb(ig,2)*zc(ig,2)) * z1(ig) |
---|
969 | |
---|
970 | call watersat(1,ztsrf(ig),pplev(ig,1),qsat(ig)) |
---|
971 | old_h2o_vap(ig)=zq_tmp_vap(ig,1,igcm_h2o_vap) |
---|
972 | zd(ig,1)=zb(ig,1)*z1(ig) |
---|
973 | zq1temp(ig)=zc(ig,1)+ zd(ig,1)*qsat(ig) |
---|
974 | |
---|
975 | zdqsdif(ig)=rho(ig)*dryness(ig)*zcdv(ig) |
---|
976 | & *(zq1temp(ig)-qsat(ig)) |
---|
977 | c write(*,*)'subliming more than available frost: qsurf!' |
---|
978 | |
---|
979 | if(.not.watercaptag(ig)) then |
---|
980 | if ((-zdqsdif(ig)*subtimestep) |
---|
981 | & .gt.(zqsurf(ig))) then |
---|
982 | c pdqsdif > 0 : ice condensing |
---|
983 | c pdqsdif < 0 : ice subliming |
---|
984 | c write(*,*) "subliming more than available frost: qsurf!" |
---|
985 | zdqsdif(ig)= |
---|
986 | & -zqsurf(ig)/subtimestep |
---|
987 | c write(*,*)'flux vers le sol=',pdqsdif(ig,nq) |
---|
988 | z1(ig)=1./(za(ig,1)+ zb(ig,2)*(1.-zd(ig,2))) |
---|
989 | zc(ig,1)=(za(ig,1)*zq_tmp_vap(ig,1,igcm_h2o_vap)+ |
---|
990 | $ zb(ig,2)*zc(ig,2) + |
---|
991 | $ (-zdqsdif(ig)) *subtimestep) *z1(ig) |
---|
992 | zq1temp(ig)=zc(ig,1) |
---|
993 | endif !if .not.watercaptag(ig) |
---|
994 | endif ! if sublim more than surface |
---|
995 | |
---|
996 | c Starting upward calculations for water : |
---|
997 | c Actualisation de h2o_vap dans le premier niveau |
---|
998 | zq_tmp_vap(ig,1,igcm_h2o_vap)=zq1temp(ig) |
---|
999 | |
---|
1000 | c Take into account the H2O latent heat impact on the surface temperature |
---|
1001 | if (latentheat_surfwater) then |
---|
1002 | lh=(2834.3-0.28*(ztsrf(ig)-To)- |
---|
1003 | & 0.004*(ztsrf(ig)-To)*(ztsrf(ig)-To))*1.e+3 |
---|
1004 | zdtsrf(ig,islope)= zdqsdif(ig)*lh /pcapcal(ig,islope) |
---|
1005 | endif ! (latentheat_surfwater) then |
---|
1006 | |
---|
1007 | DO ilay=2,nlay |
---|
1008 | zq_tmp_vap(ig,ilay,iq)=zc(ig,ilay)+zd(ig,ilay) |
---|
1009 | & *zq_tmp_vap(ig,ilay-1,iq) |
---|
1010 | ENDDO |
---|
1011 | |
---|
1012 | c Subtimestep water budget : |
---|
1013 | |
---|
1014 | ztsrf(ig) = ztsrf(ig)+(pdtsrf(ig,islope) |
---|
1015 | & + zdtsrf(ig,islope))*subtimestep |
---|
1016 | zqsurf(ig)= zqsurf(ig)+( |
---|
1017 | & zdqsdif(ig))*subtimestep |
---|
1018 | |
---|
1019 | c Monitoring instantaneous latent heat flux in W.m-2 : |
---|
1020 | zsurf_h2o_lh(ig,islope) = zsurf_h2o_lh(ig,islope)+ |
---|
1021 | & (zdtsrf(ig,islope)*pcapcal(ig,islope)) |
---|
1022 | & *subtimestep |
---|
1023 | |
---|
1024 | c We ensure that surface temperature can't rise above the solid domain if there |
---|
1025 | c is still ice on the surface (oldschool) |
---|
1026 | if(zqsurf(ig) |
---|
1027 | & +zdqsdif(ig)*subtimestep |
---|
1028 | & .gt.frost_albedo_threshold) then ! if there is still ice, T cannot exceed To |
---|
1029 | zdtsrf(ig,islope) = min(zdtsrf(ig,islope), |
---|
1030 | & (To-ztsrf(ig))/subtimestep) ! ice melt case |
---|
1031 | endif |
---|
1032 | |
---|
1033 | c Fin du sous pas de temps |
---|
1034 | ENDDO ! tsub=1,nsubtimestep |
---|
1035 | |
---|
1036 | c Integration of subtimestep temp and water budget : |
---|
1037 | c (btw could also compute the post timestep temp and ice |
---|
1038 | c by simply adding the subtimestep trend instead of this) |
---|
1039 | surf_h2o_lh(ig,islope)= zsurf_h2o_lh(ig,islope)/ptimestep |
---|
1040 | pdtsrf(ig,islope)= (ztsrf(ig) - |
---|
1041 | & ptsrf(ig,islope))/ptimestep |
---|
1042 | pdqsdif(ig,igcm_h2o_ice,islope)= |
---|
1043 | & (zqsurf(ig)- pqsurf(ig,igcm_h2o_ice,islope)/ |
---|
1044 | & cos(pi*def_slope_mean(islope)/180.)) |
---|
1045 | & /ptimestep |
---|
1046 | |
---|
1047 | c if subliming more than qsurf(ice) and on watercaptag, water |
---|
1048 | c sublimates from watercap reservoir (dwatercap_dif is <0) |
---|
1049 | if(watercaptag(ig)) then |
---|
1050 | if ((-pdqsdif(ig,igcm_h2o_ice,islope)*ptimestep) |
---|
1051 | & .gt.(pqsurf(ig,igcm_h2o_ice,islope) |
---|
1052 | & /cos(pi*def_slope_mean(islope)/180.))) then |
---|
1053 | dwatercap_dif(ig,islope)= |
---|
1054 | & pdqsdif(ig,igcm_h2o_ice,islope)+ |
---|
1055 | & (pqsurf(ig,igcm_h2o_ice,islope) / |
---|
1056 | & cos(pi*def_slope_mean(islope)/180.))/ptimestep |
---|
1057 | pdqsdif(ig,igcm_h2o_ice,islope)= |
---|
1058 | & - (pqsurf(ig,igcm_h2o_ice,islope)/ |
---|
1059 | & cos(pi*def_slope_mean(islope)/180.))/ptimestep |
---|
1060 | endif! ((-pdqsdif(ig)*ptimestep) |
---|
1061 | endif !(watercaptag(ig)) then |
---|
1062 | zq_slope_vap(ig,:,:,islope) = zq_tmp_vap(ig,:,:) |
---|
1063 | ENDDO ! of DO ig=1,ngrid |
---|
1064 | ENDDO ! islope |
---|
1065 | |
---|
1066 | c Some grid box averages: interface with the atmosphere |
---|
1067 | DO ig = 1,ngrid |
---|
1068 | DO ilay = 1,nlay |
---|
1069 | zq(ig,ilay,iq) = 0. |
---|
1070 | DO islope = 1,nslope |
---|
1071 | zq(ig,ilay,iq) = zq(ig,ilay,iq) + |
---|
1072 | $ zq_slope_vap(ig,ilay,iq,islope) * |
---|
1073 | $ subslope_dist(ig,islope) |
---|
1074 | ENDDO |
---|
1075 | ENDDO |
---|
1076 | ENDDO |
---|
1077 | |
---|
1078 | ! Recompute values in kg/m^2 slopped |
---|
1079 | DO ig = 1,ngrid |
---|
1080 | DO islope = 1,nslope |
---|
1081 | pdqsdif(ig,igcm_h2o_ice,islope) = |
---|
1082 | & pdqsdif(ig,igcm_h2o_ice,islope) |
---|
1083 | & * cos(pi*def_slope_mean(islope)/180.) |
---|
1084 | |
---|
1085 | dwatercap_dif(ig,islope) = |
---|
1086 | & dwatercap_dif(ig,islope) |
---|
1087 | & * cos(pi*def_slope_mean(islope)/180.) |
---|
1088 | ENDDO |
---|
1089 | ENDDO |
---|
1090 | |
---|
1091 | END IF ! of IF ((water).and.(iq.eq.igcm_h2o_vap)) |
---|
1092 | |
---|
1093 | c --------- end of h2o_vap ---------------------------- |
---|
1094 | |
---|
1095 | c --------- hdo_vap ----------------------------------- |
---|
1096 | |
---|
1097 | c hdo_ice has already been with along h2o_ice |
---|
1098 | c amongst "normal" tracers (ie not h2o_vap) |
---|
1099 | |
---|
1100 | if (hdo.and.(iq.eq.igcm_hdo_vap)) then |
---|
1101 | zb(1:ngrid,2:nlay)=zkh(1:ngrid,2:nlay)*zb0(1:ngrid,2:nlay) |
---|
1102 | zb(1:ngrid,1)=0 |
---|
1103 | |
---|
1104 | DO ig=1,ngrid |
---|
1105 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
1106 | zc(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
1107 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
1108 | ENDDO |
---|
1109 | |
---|
1110 | DO ilay=nlay-1,2,-1 |
---|
1111 | DO ig=1,ngrid |
---|
1112 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
1113 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
1114 | zc(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ |
---|
1115 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
1116 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
1117 | ENDDO |
---|
1118 | ENDDO |
---|
1119 | hdoflux_meshavg(:) = 0. |
---|
1120 | DO islope = 1,nslope |
---|
1121 | |
---|
1122 | pdqsdif_tmphdo(:,:) = pdqsdif(:,:,islope) |
---|
1123 | & /cos(pi*def_slope_mean(islope)/180.) |
---|
1124 | |
---|
1125 | call watersat(ngrid,pdtsrf(:,islope)*ptimestep + |
---|
1126 | & ptsrf(:,islope),pplev(:,1),qsat_tmp) |
---|
1127 | |
---|
1128 | CALL hdo_surfex(ngrid,nlay,nq,ptimestep, |
---|
1129 | & zt,pplay,zq,pqsurf(:,:,islope), |
---|
1130 | & saved_h2o_vap,qsat_tmp, |
---|
1131 | & pdqsdif_tmphdo, |
---|
1132 | & dwatercap_dif(:,islope)/cos(pi*def_slope_mean(islope)/180.), |
---|
1133 | & hdoflux(:,islope)) |
---|
1134 | |
---|
1135 | pdqsdif(:,:,islope) = pdqsdif_tmphdo(:,:) * |
---|
1136 | & cos(pi*def_slope_mean(islope)/180.) |
---|
1137 | DO ig = 1,ngrid |
---|
1138 | hdoflux_meshavg(ig) = hdoflux_meshavg(ig) + |
---|
1139 | & hdoflux(ig,islope)*subslope_dist(ig,islope) |
---|
1140 | |
---|
1141 | ENDDO !ig = 1,ngrid |
---|
1142 | ENDDO !islope = 1,nslope |
---|
1143 | |
---|
1144 | DO ig=1,ngrid |
---|
1145 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
---|
1146 | $ zb(ig,2)*(1.-zd(ig,2))) |
---|
1147 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
1148 | $ zb(ig,2)*zc(ig,2) + |
---|
1149 | $ (-hdoflux_meshavg(ig)) *ptimestep) *z1(ig) !tracer flux from surface |
---|
1150 | ENDDO |
---|
1151 | |
---|
1152 | DO ig=1,ngrid |
---|
1153 | zq(ig,1,iq)=zc(ig,1) |
---|
1154 | DO ilay=2,nlay |
---|
1155 | zq(ig,ilay,iq)=zc(ig,ilay)+zd(ig,ilay)*zq(ig,ilay-1,iq) |
---|
1156 | ENDDO |
---|
1157 | ENDDO |
---|
1158 | endif ! (hdo.and.(iq.eq.igcm_hdo_vap)) |
---|
1159 | |
---|
1160 | c --------- end of hdo ---------------------------- |
---|
1161 | |
---|
1162 | enddo ! of do iq=1,nq |
---|
1163 | |
---|
1164 | c --------- end of tracers ---------------------------- |
---|
1165 | |
---|
1166 | call write_output("surf_h2o_lh", |
---|
1167 | & "Ground ice latent heat flux", |
---|
1168 | & "W.m-2",surf_h2o_lh(:,iflat)) |
---|
1169 | |
---|
1170 | C Diagnostic output for HDO |
---|
1171 | ! if (hdo) then |
---|
1172 | ! CALL write_output('hdoflux', |
---|
1173 | ! & 'hdoflux', |
---|
1174 | ! & ' ',hdoflux_meshavg(:)) |
---|
1175 | ! CALL write_output('h2oflux', |
---|
1176 | ! & 'h2oflux', |
---|
1177 | ! & ' ',h2oflux(:)) |
---|
1178 | ! endif |
---|
1179 | |
---|
1180 | c----------------------------------------------------------------------- |
---|
1181 | c 8. calcul final des tendances de la diffusion verticale |
---|
1182 | c ---------------------------------------------------- |
---|
1183 | |
---|
1184 | DO ilev = 1, nlay |
---|
1185 | DO ig=1,ngrid |
---|
1186 | pdudif(ig,ilev)=( zu(ig,ilev)- |
---|
1187 | $ (pu(ig,ilev)+pdufi(ig,ilev)*ptimestep) )/ptimestep |
---|
1188 | pdvdif(ig,ilev)=( zv(ig,ilev)- |
---|
1189 | $ (pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep) )/ptimestep |
---|
1190 | hh = ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
---|
1191 | $ + (latcond*dmice(ig,ilev)/cpp)/ppopsk(ig,ilev) |
---|
1192 | pdhdif(ig,ilev)=( zhs(ig,ilev)- hh )/ptimestep |
---|
1193 | ENDDO |
---|
1194 | ENDDO |
---|
1195 | |
---|
1196 | pdqdif(1:ngrid,1:nlay,1:nq)=(zq(1:ngrid,1:nlay,1:nq)- |
---|
1197 | & (pq(1:ngrid,1:nlay,1:nq) |
---|
1198 | & +pdqfi(1:ngrid,1:nlay,1:nq) |
---|
1199 | & *ptimestep))/ptimestep |
---|
1200 | |
---|
1201 | c ** diagnostique final |
---|
1202 | c ------------------ |
---|
1203 | |
---|
1204 | IF(lecrit) THEN |
---|
1205 | PRINT*,'In vdif' |
---|
1206 | PRINT*,'Ts (t) and Ts (t+st)' |
---|
1207 | WRITE(*,'(a10,3a15)') |
---|
1208 | s 'theta(t)','theta(t+dt)','u(t)','u(t+dt)' |
---|
1209 | PRINT*,ptsrf(ngrid/2+1,:),ztsrf2(ngrid/2+1) |
---|
1210 | DO ilev=1,nlay |
---|
1211 | WRITE(*,'(4f15.7)') |
---|
1212 | s ph(ngrid/2+1,ilev),zhs(ngrid/2+1,ilev), |
---|
1213 | s pu(ngrid/2+1,ilev),zu(ngrid/2+1,ilev) |
---|
1214 | |
---|
1215 | ENDDO |
---|
1216 | ENDIF |
---|
1217 | |
---|
1218 | END SUBROUTINE vdifc |
---|
1219 | |
---|
1220 | c==================================== |
---|
1221 | |
---|
1222 | SUBROUTINE make_tsub(naersize,dtsurf,qsurf,ptimestep, |
---|
1223 | $ dtmax,watercaptag,ntsub) |
---|
1224 | |
---|
1225 | c Pas de temps adaptatif en estimant le taux de sublimation |
---|
1226 | c et en adaptant avec un critere "dtmax" du chauffage a accomoder |
---|
1227 | c dtmax est regle empiriquement (pour l'instant) a 0.5 K |
---|
1228 | |
---|
1229 | integer,intent(in) :: naersize |
---|
1230 | real,intent(in) :: dtsurf(naersize) |
---|
1231 | real,intent(in) :: qsurf(naersize) |
---|
1232 | logical,intent(in) :: watercaptag(naersize) |
---|
1233 | real,intent(in) :: ptimestep |
---|
1234 | real,intent(in) :: dtmax |
---|
1235 | real :: ztsub(naersize) |
---|
1236 | integer :: i |
---|
1237 | integer,intent(out) :: ntsub(naersize) |
---|
1238 | |
---|
1239 | do i=1,naersize |
---|
1240 | if ((qsurf(i).eq.0).and. |
---|
1241 | & (.not.watercaptag(i))) then |
---|
1242 | ntsub(i) = 1 |
---|
1243 | else |
---|
1244 | ztsub(i) = ptimestep * dtsurf(i) / dtmax |
---|
1245 | ntsub(i) = ceiling(abs(ztsub(i))) |
---|
1246 | endif ! (qsurf(i).eq.0) then |
---|
1247 | c |
---|
1248 | c write(78,*), dtsurf*ptimestep, dtsurf, ntsub |
---|
1249 | enddo! 1=1,ngrid |
---|
1250 | |
---|
1251 | |
---|
1252 | |
---|
1253 | END SUBROUTINE make_tsub |
---|
1254 | END MODULE vdifc_mod |
---|