[1969] | 1 | MODULE vdifc_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[38] | 7 | SUBROUTINE vdifc(ngrid,nlay,nq,co2ice,ppopsk, |
---|
| 8 | $ ptimestep,pcapcal,lecrit, |
---|
| 9 | $ pplay,pplev,pzlay,pzlev,pz0, |
---|
| 10 | $ pu,pv,ph,pq,ptsrf,pemis,pqsurf, |
---|
| 11 | $ pdufi,pdvfi,pdhfi,pdqfi,pfluxsrf, |
---|
| 12 | $ pdudif,pdvdif,pdhdif,pdtsrf,pq2, |
---|
[660] | 13 | $ pdqdif,pdqsdif,wstar,zcdv_true,zcdh_true, |
---|
[1996] | 14 | $ hfmax,pcondicea_co2microp,sensibFlux, |
---|
| 15 | $ dustliftday,local_time) |
---|
[1236] | 16 | |
---|
[1036] | 17 | use tracer_mod, only: noms, igcm_dust_mass, igcm_dust_number, |
---|
| 18 | & igcm_dust_submicron, igcm_h2o_vap, |
---|
[1974] | 19 | & igcm_h2o_ice, alpha_lift, |
---|
| 20 | & igcm_stormdust_mass, igcm_stormdust_number |
---|
[1224] | 21 | use surfdat_h, only: watercaptag, frost_albedo_threshold, dryness |
---|
[1969] | 22 | USE comcstfi_h, ONLY: cpp, r, rcp, g |
---|
[1996] | 23 | use watersat_mod, only: watersat |
---|
[1242] | 24 | use turb_mod, only: turb_resolved, ustar, tstar |
---|
[2160] | 25 | use compute_dtau_mod, only: ti_injection_sol,tf_injection_sol |
---|
[38] | 26 | IMPLICIT NONE |
---|
| 27 | |
---|
| 28 | c======================================================================= |
---|
| 29 | c |
---|
| 30 | c subject: |
---|
| 31 | c -------- |
---|
| 32 | c Turbulent diffusion (mixing) for potential T, U, V and tracer |
---|
| 33 | c |
---|
| 34 | c Shema implicite |
---|
| 35 | c On commence par rajouter au variables x la tendance physique |
---|
| 36 | c et on resoult en fait: |
---|
| 37 | c x(t+1) = x(t) + dt * (dx/dt)phys(t) + dt * (dx/dt)difv(t+1) |
---|
| 38 | c |
---|
| 39 | c author: |
---|
| 40 | c ------ |
---|
| 41 | c Hourdin/Forget/Fournier |
---|
| 42 | c======================================================================= |
---|
| 43 | |
---|
| 44 | c----------------------------------------------------------------------- |
---|
| 45 | c declarations: |
---|
| 46 | c ------------- |
---|
| 47 | |
---|
[1944] | 48 | include "callkeys.h" |
---|
| 49 | include "microphys.h" |
---|
[38] | 50 | |
---|
| 51 | c |
---|
| 52 | c arguments: |
---|
| 53 | c ---------- |
---|
| 54 | |
---|
[1036] | 55 | INTEGER,INTENT(IN) :: ngrid,nlay |
---|
| 56 | REAL,INTENT(IN) :: ptimestep |
---|
| 57 | REAL,INTENT(IN) :: pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 58 | REAL,INTENT(IN) :: pzlay(ngrid,nlay),pzlev(ngrid,nlay+1) |
---|
| 59 | REAL,INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) |
---|
| 60 | REAL,INTENT(IN) :: ph(ngrid,nlay) |
---|
| 61 | REAL,INTENT(IN) :: ptsrf(ngrid),pemis(ngrid) |
---|
| 62 | REAL,INTENT(IN) :: pdufi(ngrid,nlay),pdvfi(ngrid,nlay) |
---|
| 63 | REAL,INTENT(IN) :: pdhfi(ngrid,nlay) |
---|
| 64 | REAL,INTENT(IN) :: pfluxsrf(ngrid) |
---|
| 65 | REAL,INTENT(OUT) :: pdudif(ngrid,nlay),pdvdif(ngrid,nlay) |
---|
| 66 | REAL,INTENT(OUT) :: pdtsrf(ngrid),pdhdif(ngrid,nlay) |
---|
[1130] | 67 | REAL,INTENT(IN) :: pcapcal(ngrid) |
---|
| 68 | REAL,INTENT(INOUT) :: pq2(ngrid,nlay+1) |
---|
[38] | 69 | |
---|
| 70 | c Argument added for condensation: |
---|
[1036] | 71 | REAL,INTENT(IN) :: co2ice (ngrid), ppopsk(ngrid,nlay) |
---|
| 72 | logical,INTENT(IN) :: lecrit |
---|
[1996] | 73 | REAL,INTENT(IN) :: pcondicea_co2microp(ngrid,nlay)! tendency due to CO2 condensation (kg/kg.s-1) |
---|
| 74 | |
---|
[1036] | 75 | REAL,INTENT(IN) :: pz0(ngrid) ! surface roughness length (m) |
---|
[224] | 76 | |
---|
[256] | 77 | c Argument added to account for subgrid gustiness : |
---|
| 78 | |
---|
[1944] | 79 | REAL,INTENT(IN) :: wstar(ngrid), hfmax(ngrid)!, zi(ngrid) |
---|
[256] | 80 | |
---|
[38] | 81 | c Traceurs : |
---|
[1036] | 82 | integer,intent(in) :: nq |
---|
| 83 | REAL,INTENT(IN) :: pqsurf(ngrid,nq) |
---|
| 84 | real,intent(in) :: pq(ngrid,nlay,nq), pdqfi(ngrid,nlay,nq) |
---|
| 85 | real,intent(out) :: pdqdif(ngrid,nlay,nq) |
---|
[1974] | 86 | real,intent(out) :: pdqsdif(ngrid,nq) |
---|
| 87 | REAL,INTENT(in) :: dustliftday(ngrid) |
---|
| 88 | REAL,INTENT(in) :: local_time(ngrid) |
---|
[38] | 89 | |
---|
| 90 | c local: |
---|
| 91 | c ------ |
---|
| 92 | |
---|
[1130] | 93 | REAL :: pt(ngrid,nlay) |
---|
[473] | 94 | |
---|
[38] | 95 | INTEGER ilev,ig,ilay,nlev |
---|
| 96 | |
---|
[1047] | 97 | REAL z4st,zdplanck(ngrid) |
---|
| 98 | REAL zkv(ngrid,nlay+1),zkh(ngrid,nlay+1) |
---|
| 99 | REAL zkq(ngrid,nlay+1) |
---|
| 100 | REAL zcdv(ngrid),zcdh(ngrid) |
---|
| 101 | REAL zcdv_true(ngrid),zcdh_true(ngrid) ! drag coeff are used by the LES to recompute u* and hfx |
---|
| 102 | REAL zu(ngrid,nlay),zv(ngrid,nlay) |
---|
| 103 | REAL zh(ngrid,nlay) |
---|
| 104 | REAL ztsrf2(ngrid) |
---|
| 105 | REAL z1(ngrid),z2(ngrid) |
---|
| 106 | REAL za(ngrid,nlay),zb(ngrid,nlay) |
---|
| 107 | REAL zb0(ngrid,nlay) |
---|
| 108 | REAL zc(ngrid,nlay),zd(ngrid,nlay) |
---|
[38] | 109 | REAL zcst1 |
---|
[1047] | 110 | REAL zu2(ngrid) |
---|
[38] | 111 | |
---|
| 112 | EXTERNAL SSUM,SCOPY |
---|
| 113 | REAL SSUM |
---|
[1036] | 114 | LOGICAL,SAVE :: firstcall=.true. |
---|
[38] | 115 | |
---|
[626] | 116 | |
---|
[38] | 117 | c variable added for CO2 condensation: |
---|
| 118 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1047] | 119 | REAL hh , zhcond(ngrid,nlay) |
---|
| 120 | REAL,PARAMETER :: latcond=5.9e5 |
---|
| 121 | REAL,PARAMETER :: tcond1mb=136.27 |
---|
| 122 | REAL,SAVE :: acond,bcond |
---|
[669] | 123 | |
---|
[2179] | 124 | c For latent heat release from ground water ice sublimation |
---|
| 125 | REAL tsrf_lh(ngrid) ! temporary surface temperature |
---|
| 126 | REAL lh ! latent heat, formulation given in the Technical Document: |
---|
| 127 | ! "Modeling water ice sublimation under Phoenix-like conditions", Montmessin et al. 2004 |
---|
[1047] | 128 | ! REAL tsrf_lw(ngrid) |
---|
[1036] | 129 | ! REAL alpha |
---|
[2179] | 130 | ! REAL T1,T2 |
---|
| 131 | ! SAVE T1,T2 |
---|
| 132 | ! DATA T1,T2/-604.3,1080.7/ ! zeros of latent heat equation for ice |
---|
[38] | 133 | |
---|
| 134 | c Tracers : |
---|
| 135 | c ~~~~~~~ |
---|
| 136 | INTEGER iq |
---|
[1047] | 137 | REAL zq(ngrid,nlay,nq) |
---|
| 138 | REAL zq1temp(ngrid) |
---|
| 139 | REAL rho(ngrid) ! near surface air density |
---|
| 140 | REAL qsat(ngrid) |
---|
[38] | 141 | |
---|
| 142 | REAL kmixmin |
---|
| 143 | |
---|
[473] | 144 | c Mass-variation scheme : |
---|
| 145 | c ~~~~~~~ |
---|
| 146 | |
---|
| 147 | INTEGER j,l |
---|
[1047] | 148 | REAL zcondicea(ngrid,nlay) |
---|
| 149 | REAL zt(ngrid,nlay),ztcond(ngrid,nlay+1) |
---|
| 150 | REAL betam(ngrid,nlay),dmice(ngrid,nlay) |
---|
| 151 | REAL pdtc(ngrid,nlay) |
---|
| 152 | REAL zhs(ngrid,nlay) |
---|
| 153 | REAL,SAVE :: ccond |
---|
[473] | 154 | |
---|
| 155 | c Theta_m formulation for mass-variation scheme : |
---|
| 156 | c ~~~~~~~ |
---|
| 157 | |
---|
[1047] | 158 | INTEGER,SAVE :: ico2 |
---|
| 159 | INTEGER llnt(ngrid) |
---|
| 160 | REAL,SAVE :: m_co2, m_noco2, A , B |
---|
| 161 | REAL vmr_co2(ngrid,nlay) |
---|
[473] | 162 | REAL qco2,mmean |
---|
| 163 | |
---|
[1047] | 164 | REAL,INTENT(OUT) :: sensibFlux(ngrid) |
---|
[660] | 165 | |
---|
[38] | 166 | c ** un petit test de coherence |
---|
| 167 | c -------------------------- |
---|
| 168 | |
---|
[1779] | 169 | ! AS: OK firstcall absolute |
---|
[38] | 170 | IF (firstcall) THEN |
---|
| 171 | c To compute: Tcond= 1./(bcond-acond*log(.0095*p)) (p in pascal) |
---|
| 172 | bcond=1./tcond1mb |
---|
| 173 | acond=r/latcond |
---|
[473] | 174 | ccond=cpp/(g*latcond) |
---|
[38] | 175 | PRINT*,'In vdifc: Tcond(P=1mb)=',tcond1mb,' Lcond=',latcond |
---|
[473] | 176 | PRINT*,' acond,bcond,ccond',acond,bcond,ccond |
---|
[38] | 177 | |
---|
[473] | 178 | |
---|
| 179 | ico2=0 |
---|
| 180 | |
---|
| 181 | if (tracer) then |
---|
| 182 | c Prepare Special treatment if one of the tracer is CO2 gas |
---|
[1036] | 183 | do iq=1,nq |
---|
[473] | 184 | if (noms(iq).eq."co2") then |
---|
| 185 | ico2=iq |
---|
| 186 | m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
---|
| 187 | m_noco2 = 33.37E-3 ! Non condensible mol mass (kg/mol) |
---|
| 188 | c Compute A and B coefficient use to compute |
---|
| 189 | c mean molecular mass Mair defined by |
---|
| 190 | c 1/Mair = q(ico2)/m_co2 + (1-q(ico2))/m_noco2 |
---|
| 191 | c 1/Mair = A*q(ico2) + B |
---|
| 192 | A =(1/m_co2 - 1/m_noco2) |
---|
| 193 | B=1/m_noco2 |
---|
| 194 | endif |
---|
| 195 | enddo |
---|
| 196 | end if |
---|
| 197 | |
---|
[38] | 198 | firstcall=.false. |
---|
| 199 | ENDIF |
---|
| 200 | |
---|
| 201 | |
---|
| 202 | c----------------------------------------------------------------------- |
---|
| 203 | c 1. initialisation |
---|
| 204 | c ----------------- |
---|
| 205 | |
---|
| 206 | nlev=nlay+1 |
---|
| 207 | |
---|
[1035] | 208 | ! initialize output tendencies to zero: |
---|
| 209 | pdudif(1:ngrid,1:nlay)=0 |
---|
| 210 | pdvdif(1:ngrid,1:nlay)=0 |
---|
| 211 | pdhdif(1:ngrid,1:nlay)=0 |
---|
| 212 | pdtsrf(1:ngrid)=0 |
---|
| 213 | pdqdif(1:ngrid,1:nlay,1:nq)=0 |
---|
| 214 | pdqsdif(1:ngrid,1:nq)=0 |
---|
| 215 | |
---|
[38] | 216 | c ** calcul de rho*dz et dt*rho/dz=dt*rho**2 g/dp |
---|
| 217 | c avec rho=p/RT=p/ (R Theta) (p/ps)**kappa |
---|
| 218 | c ---------------------------------------- |
---|
| 219 | |
---|
| 220 | DO ilay=1,nlay |
---|
| 221 | DO ig=1,ngrid |
---|
| 222 | za(ig,ilay)=(pplev(ig,ilay)-pplev(ig,ilay+1))/g |
---|
[473] | 223 | ! Mass variation scheme: |
---|
| 224 | betam(ig,ilay)=-za(ig,ilay)*latcond/(cpp*ppopsk(ig,ilay)) |
---|
[38] | 225 | ENDDO |
---|
| 226 | ENDDO |
---|
| 227 | |
---|
| 228 | zcst1=4.*g*ptimestep/(r*r) |
---|
| 229 | DO ilev=2,nlev-1 |
---|
| 230 | DO ig=1,ngrid |
---|
| 231 | zb0(ig,ilev)=pplev(ig,ilev)* |
---|
| 232 | s (pplev(ig,1)/pplev(ig,ilev))**rcp / |
---|
| 233 | s (ph(ig,ilev-1)+ph(ig,ilev)) |
---|
| 234 | zb0(ig,ilev)=zcst1*zb0(ig,ilev)*zb0(ig,ilev)/ |
---|
| 235 | s (pplay(ig,ilev-1)-pplay(ig,ilev)) |
---|
| 236 | ENDDO |
---|
| 237 | ENDDO |
---|
| 238 | DO ig=1,ngrid |
---|
[473] | 239 | zb0(ig,1)=ptimestep*pplev(ig,1)/(r*ptsrf(ig)) |
---|
[38] | 240 | ENDDO |
---|
| 241 | |
---|
| 242 | c ** diagnostique pour l'initialisation |
---|
| 243 | c ---------------------------------- |
---|
| 244 | |
---|
| 245 | IF(lecrit) THEN |
---|
| 246 | ig=ngrid/2+1 |
---|
| 247 | PRINT*,'Pression (mbar) ,altitude (km),u,v,theta, rho dz' |
---|
| 248 | DO ilay=1,nlay |
---|
| 249 | WRITE(*,'(6f11.5)') |
---|
| 250 | s .01*pplay(ig,ilay),.001*pzlay(ig,ilay), |
---|
| 251 | s pu(ig,ilay),pv(ig,ilay),ph(ig,ilay),za(ig,ilay) |
---|
| 252 | ENDDO |
---|
| 253 | PRINT*,'Pression (mbar) ,altitude (km),zb' |
---|
| 254 | DO ilev=1,nlay |
---|
| 255 | WRITE(*,'(3f15.7)') |
---|
| 256 | s .01*pplev(ig,ilev),.001*pzlev(ig,ilev), |
---|
| 257 | s zb0(ig,ilev) |
---|
| 258 | ENDDO |
---|
| 259 | ENDIF |
---|
| 260 | |
---|
[473] | 261 | c ----------------------------------- |
---|
[38] | 262 | c Potential Condensation temperature: |
---|
| 263 | c ----------------------------------- |
---|
| 264 | |
---|
[473] | 265 | c Compute CO2 Volume mixing ratio |
---|
| 266 | c ------------------------------- |
---|
| 267 | if (callcond.and.(ico2.ne.0)) then |
---|
| 268 | DO ilev=1,nlay |
---|
| 269 | DO ig=1,ngrid |
---|
[529] | 270 | qco2=MAX(1.E-30 |
---|
| 271 | & ,pq(ig,ilev,ico2)+pdqfi(ig,ilev,ico2)*ptimestep) |
---|
[473] | 272 | c Mean air molecular mass = 1/(q(ico2)/m_co2 + (1-q(ico2))/m_noco2) |
---|
| 273 | mmean=1/(A*qco2 +B) |
---|
| 274 | vmr_co2(ig,ilev) = qco2*mmean/m_co2 |
---|
| 275 | ENDDO |
---|
| 276 | ENDDO |
---|
| 277 | else |
---|
| 278 | DO ilev=1,nlay |
---|
| 279 | DO ig=1,ngrid |
---|
| 280 | vmr_co2(ig,ilev)=0.95 |
---|
| 281 | ENDDO |
---|
| 282 | ENDDO |
---|
| 283 | end if |
---|
[38] | 284 | |
---|
[473] | 285 | c forecast of atmospheric temperature zt and frost temperature ztcond |
---|
| 286 | c -------------------------------------------------------------------- |
---|
[38] | 287 | |
---|
[473] | 288 | if (callcond) then |
---|
| 289 | DO ilev=1,nlay |
---|
| 290 | DO ig=1,ngrid |
---|
[884] | 291 | ztcond(ig,ilev)= |
---|
| 292 | & 1./(bcond-acond*log(.01*vmr_co2(ig,ilev)*pplay(ig,ilev))) |
---|
| 293 | if (pplay(ig,ilev).lt.1e-4) ztcond(ig,ilev)=0.0 !mars Monica |
---|
[473] | 294 | ! zhcond(ig,ilev) = |
---|
| 295 | ! & (1./(bcond-acond*log(.0095*pplay(ig,ilev))))/ppopsk(ig,ilev) |
---|
| 296 | zhcond(ig,ilev) = ztcond(ig,ilev)/ppopsk(ig,ilev) |
---|
| 297 | END DO |
---|
| 298 | END DO |
---|
[884] | 299 | ztcond(:,nlay+1)=ztcond(:,nlay) |
---|
[473] | 300 | else |
---|
[884] | 301 | zhcond(:,:) = 0 |
---|
| 302 | ztcond(:,:) = 0 |
---|
[473] | 303 | end if |
---|
| 304 | |
---|
| 305 | |
---|
[38] | 306 | c----------------------------------------------------------------------- |
---|
| 307 | c 2. ajout des tendances physiques |
---|
| 308 | c ----------------------------- |
---|
| 309 | |
---|
| 310 | DO ilev=1,nlay |
---|
| 311 | DO ig=1,ngrid |
---|
| 312 | zu(ig,ilev)=pu(ig,ilev)+pdufi(ig,ilev)*ptimestep |
---|
| 313 | zv(ig,ilev)=pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep |
---|
| 314 | zh(ig,ilev)=ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
---|
[473] | 315 | ! zh(ig,ilev)=max(zh(ig,ilev),zhcond(ig,ilev)) |
---|
[38] | 316 | ENDDO |
---|
| 317 | ENDDO |
---|
| 318 | if(tracer) then |
---|
| 319 | DO iq =1, nq |
---|
| 320 | DO ilev=1,nlay |
---|
| 321 | DO ig=1,ngrid |
---|
| 322 | zq(ig,ilev,iq)=pq(ig,ilev,iq)+pdqfi(ig,ilev,iq)*ptimestep |
---|
| 323 | ENDDO |
---|
| 324 | ENDDO |
---|
| 325 | ENDDO |
---|
| 326 | end if |
---|
| 327 | |
---|
| 328 | c----------------------------------------------------------------------- |
---|
| 329 | c 3. schema de turbulence |
---|
| 330 | c -------------------- |
---|
| 331 | |
---|
| 332 | c ** source d'energie cinetique turbulente a la surface |
---|
| 333 | c (condition aux limites du schema de diffusion turbulente |
---|
| 334 | c dans la couche limite |
---|
| 335 | c --------------------- |
---|
| 336 | |
---|
[499] | 337 | CALL vdif_cd(ngrid,nlay,pz0,g,pzlay,pu,pv,wstar,ptsrf,ph |
---|
[1236] | 338 | & ,zcdv_true,zcdh_true) |
---|
[256] | 339 | |
---|
[290] | 340 | zu2(:)=pu(:,1)*pu(:,1)+pv(:,1)*pv(:,1) |
---|
[256] | 341 | |
---|
[291] | 342 | IF (callrichsl) THEN |
---|
[545] | 343 | zcdv(:)=zcdv_true(:)*sqrt(zu2(:)+ |
---|
| 344 | & (log(1.+0.7*wstar(:) + 2.3*wstar(:)**2))**2) |
---|
| 345 | zcdh(:)=zcdh_true(:)*sqrt(zu2(:)+ |
---|
| 346 | & (log(1.+0.7*wstar(:) + 2.3*wstar(:)**2))**2) |
---|
[496] | 347 | |
---|
[1242] | 348 | ustar(:)=sqrt(zcdv_true(:))*sqrt(zu2(:)+ |
---|
[545] | 349 | & (log(1.+0.7*wstar(:) + 2.3*wstar(:)**2))**2) |
---|
| 350 | |
---|
[1242] | 351 | tstar(:)=0. |
---|
[545] | 352 | DO ig=1,ngrid |
---|
| 353 | IF (zcdh_true(ig) .ne. 0.) THEN ! When Cd=Ch=0, u*=t*=0 |
---|
[1242] | 354 | tstar(ig)=(ph(ig,1)-ptsrf(ig))*zcdh(ig)/ustar(ig) |
---|
[545] | 355 | ENDIF |
---|
| 356 | ENDDO |
---|
| 357 | |
---|
[284] | 358 | ELSE |
---|
[545] | 359 | zcdv(:)=zcdv_true(:)*sqrt(zu2(:)) ! 1 / bulk aerodynamic momentum conductance |
---|
| 360 | zcdh(:)=zcdh_true(:)*sqrt(zu2(:)) ! 1 / bulk aerodynamic heat conductance |
---|
[1242] | 361 | ustar(:)=sqrt(zcdv_true(:))*sqrt(zu2(:)) |
---|
| 362 | tstar(:)=(ph(:,1)-ptsrf(:))*zcdh_true(:)/sqrt(zcdv_true(:)) |
---|
[290] | 363 | ENDIF |
---|
[38] | 364 | |
---|
[529] | 365 | ! Some usefull diagnostics for the new surface layer parametrization : |
---|
[290] | 366 | |
---|
[1130] | 367 | ! call WRITEDIAGFI(ngrid,'vdifc_zcdv_true', |
---|
[256] | 368 | ! & 'momentum drag','no units', |
---|
| 369 | ! & 2,zcdv_true) |
---|
[1130] | 370 | ! call WRITEDIAGFI(ngrid,'vdifc_zcdh_true', |
---|
[256] | 371 | ! & 'heat drag','no units', |
---|
| 372 | ! & 2,zcdh_true) |
---|
[1130] | 373 | ! call WRITEDIAGFI(ngrid,'vdifc_ust', |
---|
[473] | 374 | ! & 'friction velocity','m/s',2,ust) |
---|
[1130] | 375 | ! call WRITEDIAGFI(ngrid,'vdifc_tst', |
---|
[473] | 376 | ! & 'friction temperature','K',2,tst) |
---|
[1130] | 377 | ! call WRITEDIAGFI(ngrid,'vdifc_zcdv', |
---|
[268] | 378 | ! & 'aerodyn momentum conductance','m/s', |
---|
[256] | 379 | ! & 2,zcdv) |
---|
[1130] | 380 | ! call WRITEDIAGFI(ngrid,'vdifc_zcdh', |
---|
[268] | 381 | ! & 'aerodyn heat conductance','m/s', |
---|
[256] | 382 | ! & 2,zcdh) |
---|
| 383 | |
---|
[38] | 384 | c ** schema de diffusion turbulente dans la couche limite |
---|
| 385 | c ---------------------------------------------------- |
---|
[1240] | 386 | IF (.not. callyamada4) THEN |
---|
[529] | 387 | |
---|
[1130] | 388 | CALL vdif_kc(ngrid,nlay,nq,ptimestep,g,pzlev,pzlay |
---|
[38] | 389 | & ,pu,pv,ph,zcdv_true |
---|
[325] | 390 | & ,pq2,zkv,zkh,zq) |
---|
[529] | 391 | |
---|
[544] | 392 | ELSE |
---|
[38] | 393 | |
---|
[555] | 394 | pt(:,:)=ph(:,:)*ppopsk(:,:) |
---|
[1036] | 395 | CALL yamada4(ngrid,nlay,nq,ptimestep,g,r,pplev,pt |
---|
[1242] | 396 | s ,pzlev,pzlay,pu,pv,ph,pq,zcdv_true,pq2,zkv,zkh,zkq,ustar |
---|
[652] | 397 | s ,9) |
---|
[544] | 398 | ENDIF |
---|
| 399 | |
---|
[38] | 400 | if ((doubleq).and.(ngrid.eq.1)) then |
---|
| 401 | kmixmin = 80. !80.! minimum eddy mix coeff in 1D |
---|
| 402 | do ilev=1,nlay |
---|
| 403 | do ig=1,ngrid |
---|
| 404 | zkh(ig,ilev) = max(kmixmin,zkh(ig,ilev)) |
---|
| 405 | zkv(ig,ilev) = max(kmixmin,zkv(ig,ilev)) |
---|
| 406 | end do |
---|
| 407 | end do |
---|
| 408 | end if |
---|
| 409 | |
---|
| 410 | c ** diagnostique pour le schema de turbulence |
---|
| 411 | c ----------------------------------------- |
---|
| 412 | |
---|
| 413 | IF(lecrit) THEN |
---|
| 414 | PRINT* |
---|
| 415 | PRINT*,'Diagnostic for the vertical turbulent mixing' |
---|
| 416 | PRINT*,'Cd for momentum and potential temperature' |
---|
| 417 | |
---|
| 418 | PRINT*,zcdv(ngrid/2+1),zcdh(ngrid/2+1) |
---|
| 419 | PRINT*,'Mixing coefficient for momentum and pot.temp.' |
---|
| 420 | DO ilev=1,nlay |
---|
| 421 | PRINT*,zkv(ngrid/2+1,ilev),zkh(ngrid/2+1,ilev) |
---|
| 422 | ENDDO |
---|
| 423 | ENDIF |
---|
| 424 | |
---|
| 425 | |
---|
| 426 | |
---|
| 427 | |
---|
| 428 | c----------------------------------------------------------------------- |
---|
| 429 | c 4. inversion pour l'implicite sur u |
---|
| 430 | c -------------------------------- |
---|
| 431 | |
---|
| 432 | c ** l'equation est |
---|
| 433 | c u(t+1) = u(t) + dt * {(du/dt)phys}(t) + dt * {(du/dt)difv}(t+1) |
---|
| 434 | c avec |
---|
| 435 | c /zu/ = u(t) + dt * {(du/dt)phys}(t) (voir paragraphe 2.) |
---|
| 436 | c et |
---|
| 437 | c dt * {(du/dt)difv}(t+1) = dt * {(d/dz)[ Ku (du/dz) ]}(t+1) |
---|
| 438 | c donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 439 | c et /zkv/ = Ku |
---|
| 440 | |
---|
| 441 | CALL multipl((nlay-1)*ngrid,zkv(1,2),zb0(1,2),zb(1,2)) |
---|
| 442 | CALL multipl(ngrid,zcdv,zb0,zb) |
---|
| 443 | |
---|
| 444 | DO ig=1,ngrid |
---|
| 445 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 446 | zc(ig,nlay)=za(ig,nlay)*zu(ig,nlay)*z1(ig) |
---|
| 447 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 448 | ENDDO |
---|
| 449 | |
---|
| 450 | DO ilay=nlay-1,1,-1 |
---|
| 451 | DO ig=1,ngrid |
---|
| 452 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 453 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 454 | zc(ig,ilay)=(za(ig,ilay)*zu(ig,ilay)+ |
---|
| 455 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
| 456 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 457 | ENDDO |
---|
| 458 | ENDDO |
---|
| 459 | |
---|
| 460 | DO ig=1,ngrid |
---|
| 461 | zu(ig,1)=zc(ig,1) |
---|
| 462 | ENDDO |
---|
| 463 | DO ilay=2,nlay |
---|
| 464 | DO ig=1,ngrid |
---|
| 465 | zu(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zu(ig,ilay-1) |
---|
| 466 | ENDDO |
---|
| 467 | ENDDO |
---|
| 468 | |
---|
| 469 | |
---|
| 470 | |
---|
| 471 | |
---|
| 472 | |
---|
| 473 | c----------------------------------------------------------------------- |
---|
| 474 | c 5. inversion pour l'implicite sur v |
---|
| 475 | c -------------------------------- |
---|
| 476 | |
---|
| 477 | c ** l'equation est |
---|
| 478 | c v(t+1) = v(t) + dt * {(dv/dt)phys}(t) + dt * {(dv/dt)difv}(t+1) |
---|
| 479 | c avec |
---|
| 480 | c /zv/ = v(t) + dt * {(dv/dt)phys}(t) (voir paragraphe 2.) |
---|
| 481 | c et |
---|
| 482 | c dt * {(dv/dt)difv}(t+1) = dt * {(d/dz)[ Kv (dv/dz) ]}(t+1) |
---|
| 483 | c donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 484 | c et /zkv/ = Kv |
---|
| 485 | |
---|
| 486 | DO ig=1,ngrid |
---|
| 487 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 488 | zc(ig,nlay)=za(ig,nlay)*zv(ig,nlay)*z1(ig) |
---|
| 489 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 490 | ENDDO |
---|
| 491 | |
---|
| 492 | DO ilay=nlay-1,1,-1 |
---|
| 493 | DO ig=1,ngrid |
---|
| 494 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 495 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 496 | zc(ig,ilay)=(za(ig,ilay)*zv(ig,ilay)+ |
---|
| 497 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
| 498 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 499 | ENDDO |
---|
| 500 | ENDDO |
---|
| 501 | |
---|
| 502 | DO ig=1,ngrid |
---|
| 503 | zv(ig,1)=zc(ig,1) |
---|
| 504 | ENDDO |
---|
| 505 | DO ilay=2,nlay |
---|
| 506 | DO ig=1,ngrid |
---|
| 507 | zv(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zv(ig,ilay-1) |
---|
| 508 | ENDDO |
---|
| 509 | ENDDO |
---|
| 510 | |
---|
| 511 | |
---|
| 512 | |
---|
| 513 | |
---|
| 514 | |
---|
| 515 | c----------------------------------------------------------------------- |
---|
| 516 | c 6. inversion pour l'implicite sur h sans oublier le couplage |
---|
| 517 | c avec le sol (conduction) |
---|
| 518 | c ------------------------ |
---|
| 519 | |
---|
| 520 | c ** l'equation est |
---|
| 521 | c h(t+1) = h(t) + dt * {(dh/dt)phys}(t) + dt * {(dh/dt)difv}(t+1) |
---|
| 522 | c avec |
---|
| 523 | c /zh/ = h(t) + dt * {(dh/dt)phys}(t) (voir paragraphe 2.) |
---|
| 524 | c et |
---|
| 525 | c dt * {(dh/dt)difv}(t+1) = dt * {(d/dz)[ Kh (dh/dz) ]}(t+1) |
---|
| 526 | c donc les entrees sont /zcdh/ pour la condition de raccord au sol |
---|
| 527 | c et /zkh/ = Kh |
---|
| 528 | c ------------- |
---|
| 529 | |
---|
[473] | 530 | c Mass variation scheme: |
---|
[38] | 531 | CALL multipl((nlay-1)*ngrid,zkh(1,2),zb0(1,2),zb(1,2)) |
---|
| 532 | CALL multipl(ngrid,zcdh,zb0,zb) |
---|
| 533 | |
---|
[473] | 534 | c on initialise dm c |
---|
| 535 | |
---|
| 536 | pdtc(:,:)=0. |
---|
| 537 | zt(:,:)=0. |
---|
| 538 | dmice(:,:)=0. |
---|
[38] | 539 | |
---|
| 540 | c ** calcul de (d Planck / dT) a la temperature d'interface |
---|
| 541 | c ------------------------------------------------------ |
---|
| 542 | |
---|
| 543 | z4st=4.*5.67e-8*ptimestep |
---|
[544] | 544 | IF (tke_heat_flux .eq. 0.) THEN |
---|
[38] | 545 | DO ig=1,ngrid |
---|
| 546 | zdplanck(ig)=z4st*pemis(ig)*ptsrf(ig)*ptsrf(ig)*ptsrf(ig) |
---|
| 547 | ENDDO |
---|
[544] | 548 | ELSE |
---|
| 549 | zdplanck(:)=0. |
---|
| 550 | ENDIF |
---|
[38] | 551 | |
---|
[473] | 552 | ! calcul de zc et zd pour la couche top en prenant en compte le terme |
---|
[2080] | 553 | ! de variation de masse (on fait une boucle pour que \E7a converge) |
---|
[473] | 554 | |
---|
| 555 | ! Identification des points de grilles qui ont besoin de la correction |
---|
| 556 | |
---|
| 557 | llnt(:)=1 |
---|
[1236] | 558 | IF (.not.turb_resolved) THEN |
---|
[884] | 559 | IF (callcond) THEN |
---|
| 560 | DO ig=1,ngrid |
---|
[473] | 561 | DO l=1,nlay |
---|
| 562 | if(zh(ig,l) .lt. zhcond(ig,l)) then |
---|
| 563 | llnt(ig)=300 |
---|
| 564 | ! 200 and 100 do not go beyond month 9 with normal dissipation |
---|
| 565 | goto 5 |
---|
| 566 | endif |
---|
| 567 | ENDDO |
---|
[884] | 568 | 5 continue |
---|
| 569 | ENDDO |
---|
| 570 | ENDIF |
---|
[473] | 571 | |
---|
[529] | 572 | ENDIF |
---|
| 573 | |
---|
[473] | 574 | DO ig=1,ngrid |
---|
| 575 | |
---|
| 576 | ! Initialization of z1 and zd, which do not depend on dmice |
---|
| 577 | |
---|
| 578 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 579 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 580 | |
---|
| 581 | DO ilay=nlay-1,1,-1 |
---|
| 582 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 583 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 584 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 585 | ENDDO |
---|
| 586 | |
---|
| 587 | ! Convergence loop |
---|
| 588 | |
---|
| 589 | DO j=1,llnt(ig) |
---|
| 590 | |
---|
| 591 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 592 | zc(ig,nlay)=za(ig,nlay)*zh(ig,nlay) |
---|
| 593 | & -betam(ig,nlay)*dmice(ig,nlay) |
---|
| 594 | zc(ig,nlay)=zc(ig,nlay)*z1(ig) |
---|
| 595 | ! zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 596 | |
---|
| 597 | ! calcul de zc et zd pour les couches du haut vers le bas |
---|
| 598 | |
---|
| 599 | DO ilay=nlay-1,1,-1 |
---|
| 600 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 601 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 602 | zc(ig,ilay)=(za(ig,ilay)*zh(ig,ilay)+ |
---|
| 603 | $ zb(ig,ilay+1)*zc(ig,ilay+1)- |
---|
| 604 | $ betam(ig,ilay)*dmice(ig,ilay))*z1(ig) |
---|
| 605 | ! zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 606 | ENDDO |
---|
| 607 | |
---|
[38] | 608 | c ** calcul de la temperature_d'interface et de sa tendance. |
---|
| 609 | c on ecrit que la somme des flux est nulle a l'interface |
---|
| 610 | c a t + \delta t, |
---|
| 611 | c c'est a dire le flux radiatif a {t + \delta t} |
---|
| 612 | c + le flux turbulent a {t + \delta t} |
---|
| 613 | c qui s'ecrit K (T1-Tsurf) avec T1 = d1 Tsurf + c1 |
---|
| 614 | c (notation K dt = /cpp*b/) |
---|
| 615 | c + le flux dans le sol a t |
---|
| 616 | c + l'evolution du flux dans le sol lorsque la temperature d'interface |
---|
| 617 | c passe de sa valeur a t a sa valeur a {t + \delta t}. |
---|
| 618 | c ---------------------------------------------------- |
---|
| 619 | |
---|
| 620 | z1(ig)=pcapcal(ig)*ptsrf(ig)+cpp*zb(ig,1)*zc(ig,1) |
---|
| 621 | s +zdplanck(ig)*ptsrf(ig)+ pfluxsrf(ig)*ptimestep |
---|
| 622 | z2(ig)= pcapcal(ig)+cpp*zb(ig,1)*(1.-zd(ig,1))+zdplanck(ig) |
---|
| 623 | ztsrf2(ig)=z1(ig)/z2(ig) |
---|
[473] | 624 | ! pdtsrf(ig)=(ztsrf2(ig)-ptsrf(ig))/ptimestep !incremented outside loop |
---|
| 625 | zhs(ig,1)=zc(ig,1)+zd(ig,1)*ztsrf2(ig) |
---|
[38] | 626 | |
---|
| 627 | c ** et a partir de la temperature au sol on remonte |
---|
| 628 | c ----------------------------------------------- |
---|
| 629 | |
---|
[473] | 630 | DO ilay=2,nlay |
---|
| 631 | zhs(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zhs(ig,ilay-1) |
---|
| 632 | ENDDO |
---|
| 633 | DO ilay=1,nlay |
---|
| 634 | zt(ig,ilay)=zhs(ig,ilay)*ppopsk(ig,ilay) |
---|
| 635 | ENDDO |
---|
| 636 | |
---|
| 637 | c Condensation/sublimation in the atmosphere |
---|
| 638 | c ------------------------------------------ |
---|
| 639 | c (computation of zcondicea and dmice) |
---|
| 640 | |
---|
[1996] | 641 | IF (.NOT. co2clouds) then |
---|
| 642 | DO l=nlay , 1, -1 |
---|
[473] | 643 | IF(zt(ig,l).LT.ztcond(ig,l)) THEN |
---|
| 644 | pdtc(ig,l)=(ztcond(ig,l) - zt(ig,l))/ptimestep |
---|
| 645 | zcondicea(ig,l)=(pplev(ig,l)-pplev(ig,l+1)) |
---|
| 646 | & *ccond*pdtc(ig,l) |
---|
| 647 | dmice(ig,l)= dmice(ig,l) + zcondicea(ig,l)*ptimestep |
---|
| 648 | END IF |
---|
[1996] | 649 | ENDDO |
---|
| 650 | ELSE |
---|
| 651 | DO l=nlay , 1, -1 |
---|
| 652 | zcondicea(ig,l)= 0.!pcondicea_co2microp(ig,l)* |
---|
| 653 | c & (pplev(ig,l) - pplev(ig,l+1))/g |
---|
| 654 | dmice(ig,l)= 0.!dmice(ig,l) + zcondicea(ig,l)*ptimestep |
---|
| 655 | pdtc(ig,l)=0. |
---|
| 656 | ENDDO |
---|
| 657 | ENDIF |
---|
| 658 | |
---|
| 659 | ENDDO!of Do j=1,XXX |
---|
[38] | 660 | |
---|
[1996] | 661 | ENDDO !of Do ig=1,ngrid |
---|
[38] | 662 | |
---|
[473] | 663 | pdtsrf(:)=(ztsrf2(:)-ptsrf(:))/ptimestep |
---|
[669] | 664 | |
---|
[660] | 665 | DO ig=1,ngrid ! computing sensible heat flux (atm => surface) |
---|
| 666 | sensibFlux(ig)=cpp*zb(ig,1)/ptimestep*(zhs(ig,1)-ztsrf2(ig)) |
---|
| 667 | ENDDO |
---|
[473] | 668 | |
---|
[38] | 669 | c----------------------------------------------------------------------- |
---|
| 670 | c TRACERS |
---|
| 671 | c ------- |
---|
| 672 | |
---|
| 673 | if(tracer) then |
---|
| 674 | |
---|
| 675 | c Using the wind modified by friction for lifting and sublimation |
---|
| 676 | c ---------------------------------------------------------------- |
---|
| 677 | |
---|
[529] | 678 | ! This is computed above and takes into account surface-atmosphere flux |
---|
| 679 | ! enhancement by subgrid gustiness and atmospheric-stability related |
---|
| 680 | ! variations of transfer coefficients. |
---|
| 681 | |
---|
| 682 | ! DO ig=1,ngrid |
---|
| 683 | ! zu2(ig)=zu(ig,1)*zu(ig,1)+zv(ig,1)*zv(ig,1) |
---|
| 684 | ! zcdv(ig)=zcdv_true(ig)*sqrt(zu2(ig)) |
---|
| 685 | ! zcdh(ig)=zcdh_true(ig)*sqrt(zu2(ig)) |
---|
| 686 | ! ENDDO |
---|
| 687 | |
---|
[38] | 688 | c Calcul du flux vertical au bas de la premiere couche (dust) : |
---|
| 689 | c ----------------------------------------------------------- |
---|
[1047] | 690 | do ig=1,ngrid |
---|
[38] | 691 | rho(ig) = zb0(ig,1) /ptimestep |
---|
| 692 | c zb(ig,1) = 0. |
---|
| 693 | end do |
---|
| 694 | c Dust lifting: |
---|
| 695 | if (lifting) then |
---|
[310] | 696 | #ifndef MESOSCALE |
---|
[38] | 697 | if (doubleq.AND.submicron) then |
---|
| 698 | do ig=1,ngrid |
---|
| 699 | c if(co2ice(ig).lt.1) then |
---|
| 700 | pdqsdif(ig,igcm_dust_mass) = |
---|
| 701 | & -alpha_lift(igcm_dust_mass) |
---|
| 702 | pdqsdif(ig,igcm_dust_number) = |
---|
| 703 | & -alpha_lift(igcm_dust_number) |
---|
| 704 | pdqsdif(ig,igcm_dust_submicron) = |
---|
| 705 | & -alpha_lift(igcm_dust_submicron) |
---|
| 706 | c end if |
---|
| 707 | end do |
---|
| 708 | else if (doubleq) then |
---|
[1974] | 709 | if (dustinjection.eq.0) then !injection scheme 0 (old) |
---|
| 710 | !or 2 (injection in CL) |
---|
| 711 | do ig=1,ngrid |
---|
[1455] | 712 | if(co2ice(ig).lt.1) then ! pas de soulevement si glace CO2 |
---|
[38] | 713 | pdqsdif(ig,igcm_dust_mass) = |
---|
| 714 | & -alpha_lift(igcm_dust_mass) |
---|
| 715 | pdqsdif(ig,igcm_dust_number) = |
---|
[520] | 716 | & -alpha_lift(igcm_dust_number) |
---|
| 717 | end if |
---|
[1974] | 718 | end do |
---|
| 719 | elseif(dustinjection.eq.1)then ! dust injection scheme = 1 injection from surface |
---|
| 720 | do ig=1,ngrid |
---|
| 721 | if(co2ice(ig).lt.1) then ! pas de soulevement si glace CO2 |
---|
[2160] | 722 | IF((ti_injection_sol.LE.local_time(ig)).and. |
---|
| 723 | & (local_time(ig).LE.tf_injection_sol)) THEN |
---|
[1974] | 724 | if (rdstorm) then !Rocket dust storm scheme |
---|
| 725 | pdqsdif(ig,igcm_stormdust_mass) = |
---|
| 726 | & -alpha_lift(igcm_stormdust_mass) |
---|
| 727 | & *dustliftday(ig) |
---|
| 728 | pdqsdif(ig,igcm_stormdust_number) = |
---|
| 729 | & -alpha_lift(igcm_stormdust_number) |
---|
| 730 | & *dustliftday(ig) |
---|
| 731 | pdqsdif(ig,igcm_dust_mass)= 0. |
---|
| 732 | pdqsdif(ig,igcm_dust_number)= 0. |
---|
| 733 | else |
---|
| 734 | pdqsdif(ig,igcm_dust_mass)= |
---|
| 735 | & -dustliftday(ig)* |
---|
| 736 | & alpha_lift(igcm_dust_mass) |
---|
| 737 | pdqsdif(ig,igcm_dust_number)= |
---|
| 738 | & -dustliftday(ig)* |
---|
| 739 | & alpha_lift(igcm_dust_number) |
---|
| 740 | endif |
---|
| 741 | if (submicron) then |
---|
| 742 | pdqsdif(ig,igcm_dust_submicron) = 0. |
---|
| 743 | endif ! if (submicron) |
---|
| 744 | ELSE ! outside dust injection time frame |
---|
[2080] | 745 | pdqsdif(ig,igcm_dust_mass)= 0. |
---|
| 746 | pdqsdif(ig,igcm_dust_number)= 0. |
---|
| 747 | if (rdstorm) then |
---|
[1974] | 748 | pdqsdif(ig,igcm_stormdust_mass)= 0. |
---|
| 749 | pdqsdif(ig,igcm_stormdust_number)= 0. |
---|
[2080] | 750 | end if |
---|
[1974] | 751 | ENDIF |
---|
| 752 | |
---|
| 753 | end if ! of if(co2ice(ig).lt.1) |
---|
| 754 | end do |
---|
| 755 | endif ! end if dustinjection |
---|
[38] | 756 | else if (submicron) then |
---|
| 757 | do ig=1,ngrid |
---|
| 758 | pdqsdif(ig,igcm_dust_submicron) = |
---|
| 759 | & -alpha_lift(igcm_dust_submicron) |
---|
| 760 | end do |
---|
| 761 | else |
---|
[1236] | 762 | #endif |
---|
[38] | 763 | call dustlift(ngrid,nlay,nq,rho,zcdh_true,zcdh,co2ice, |
---|
| 764 | & pdqsdif) |
---|
[1236] | 765 | #ifndef MESOSCALE |
---|
[38] | 766 | endif !doubleq.AND.submicron |
---|
[310] | 767 | #endif |
---|
[38] | 768 | else |
---|
| 769 | pdqsdif(1:ngrid,1:nq) = 0. |
---|
| 770 | end if |
---|
| 771 | |
---|
| 772 | c OU calcul de la valeur de q a la surface (water) : |
---|
| 773 | c ---------------------------------------- |
---|
| 774 | if (water) then |
---|
[1047] | 775 | call watersat(ngrid,ptsrf,pplev(1,1),qsat) |
---|
[38] | 776 | end if |
---|
| 777 | |
---|
| 778 | c Inversion pour l'implicite sur q |
---|
| 779 | c -------------------------------- |
---|
[1974] | 780 | do iq=1,nq !for all tracers including stormdust |
---|
[38] | 781 | CALL multipl((nlay-1)*ngrid,zkh(1,2),zb0(1,2),zb(1,2)) |
---|
| 782 | |
---|
| 783 | if ((water).and.(iq.eq.igcm_h2o_vap)) then |
---|
| 784 | c This line is required to account for turbulent transport |
---|
| 785 | c from surface (e.g. ice) to mid-layer of atmosphere: |
---|
| 786 | CALL multipl(ngrid,zcdv,zb0,zb(1,1)) |
---|
| 787 | CALL multipl(ngrid,dryness,zb(1,1),zb(1,1)) |
---|
| 788 | else ! (re)-initialize zb(:,1) |
---|
| 789 | zb(1:ngrid,1)=0 |
---|
| 790 | end if |
---|
| 791 | |
---|
| 792 | DO ig=1,ngrid |
---|
| 793 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 794 | zc(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
| 795 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 796 | ENDDO |
---|
| 797 | |
---|
| 798 | DO ilay=nlay-1,2,-1 |
---|
| 799 | DO ig=1,ngrid |
---|
| 800 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 801 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 802 | zc(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ |
---|
| 803 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
| 804 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 805 | ENDDO |
---|
| 806 | ENDDO |
---|
| 807 | |
---|
| 808 | if (water.and.(iq.eq.igcm_h2o_ice)) then |
---|
| 809 | ! special case for water ice tracer: do not include |
---|
| 810 | ! h2o ice tracer from surface (which is set when handling |
---|
[473] | 811 | ! h2o vapour case (see further down). |
---|
[38] | 812 | DO ig=1,ngrid |
---|
| 813 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
---|
| 814 | $ zb(ig,2)*(1.-zd(ig,2))) |
---|
| 815 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
| 816 | $ zb(ig,2)*zc(ig,2)) *z1(ig) |
---|
| 817 | ENDDO |
---|
| 818 | else ! general case |
---|
| 819 | DO ig=1,ngrid |
---|
| 820 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
---|
| 821 | $ zb(ig,2)*(1.-zd(ig,2))) |
---|
| 822 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
| 823 | $ zb(ig,2)*zc(ig,2) + |
---|
| 824 | $ (-pdqsdif(ig,iq)) *ptimestep) *z1(ig) !tracer flux from surface |
---|
| 825 | ENDDO |
---|
| 826 | endif ! of if (water.and.(iq.eq.igcm_h2o_ice)) |
---|
| 827 | |
---|
| 828 | IF ((water).and.(iq.eq.igcm_h2o_vap)) then |
---|
| 829 | c Calculation for turbulent exchange with the surface (for ice) |
---|
| 830 | DO ig=1,ngrid |
---|
| 831 | zd(ig,1)=zb(ig,1)*z1(ig) |
---|
| 832 | zq1temp(ig)=zc(ig,1)+ zd(ig,1)*qsat(ig) |
---|
| 833 | |
---|
| 834 | pdqsdif(ig,igcm_h2o_ice)=rho(ig)*dryness(ig)*zcdv(ig) |
---|
| 835 | & *(zq1temp(ig)-qsat(ig)) |
---|
| 836 | c write(*,*)'flux vers le sol=',pdqsdif(ig,nq) |
---|
| 837 | END DO |
---|
| 838 | |
---|
| 839 | DO ig=1,ngrid |
---|
| 840 | if(.not.watercaptag(ig)) then |
---|
| 841 | if ((-pdqsdif(ig,igcm_h2o_ice)*ptimestep) |
---|
| 842 | & .gt.pqsurf(ig,igcm_h2o_ice)) then |
---|
| 843 | c write(*,*)'on sublime plus que qsurf!' |
---|
| 844 | pdqsdif(ig,igcm_h2o_ice)= |
---|
| 845 | & -pqsurf(ig,igcm_h2o_ice)/ptimestep |
---|
| 846 | c write(*,*)'flux vers le sol=',pdqsdif(ig,nq) |
---|
| 847 | z1(ig)=1./(za(ig,1)+ zb(ig,2)*(1.-zd(ig,2))) |
---|
| 848 | zc(ig,1)=(za(ig,1)*zq(ig,1,igcm_h2o_vap)+ |
---|
| 849 | $ zb(ig,2)*zc(ig,2) + |
---|
| 850 | $ (-pdqsdif(ig,igcm_h2o_ice)) *ptimestep) *z1(ig) |
---|
| 851 | zq1temp(ig)=zc(ig,1) |
---|
| 852 | endif |
---|
| 853 | endif ! if (.not.watercaptag(ig)) |
---|
| 854 | c Starting upward calculations for water : |
---|
[669] | 855 | zq(ig,1,igcm_h2o_vap)=zq1temp(ig) |
---|
| 856 | |
---|
[742] | 857 | !c Take into account H2O latent heat in surface energy budget |
---|
| 858 | !c We solve dT/dt = (2834.3-0.28*(T-To)-0.004*(T-To)^2)*1e3*iceflux/cpp |
---|
| 859 | ! tsrf_lw(ig) = ptsrf(ig) + pdtsrf(ig) *ptimestep |
---|
| 860 | ! |
---|
| 861 | ! alpha = exp(-4*abs(T1-T2)*pdqsdif(ig,igcm_h2o_ice) |
---|
| 862 | ! & *ptimestep/pcapcal(ig)) |
---|
| 863 | ! |
---|
| 864 | ! tsrf_lw(ig) = (tsrf_lw(ig)*(T2-alpha*T1)+T1*T2*(alpha-1)) |
---|
| 865 | ! & /(tsrf_lw(ig)*(1-alpha)+alpha*T2-T1) ! surface temperature at t+1 |
---|
| 866 | ! |
---|
| 867 | ! pdtsrf(ig) = (tsrf_lw(ig)-ptsrf(ig))/ptimestep |
---|
[2179] | 868 | c Take into account the H2O latent heat impact on the surface temperature |
---|
[2218] | 869 | if (latentheat_surfwater) then |
---|
[2179] | 870 | tsrf_lh(ig) = ptsrf(ig) + pdtsrf(ig) *ptimestep |
---|
| 871 | lh=(2834.3-0.28*(tsrf_lh(ig)-To)- |
---|
| 872 | & 0.004*(tsrf_lh(ig)-To)*(tsrf_lh(ig)-To))*1.e+3 |
---|
| 873 | pdtsrf(ig)= pdtsrf(ig) + pdqsdif(ig,igcm_h2o_ice)*lh |
---|
| 874 | & /pcapcal(ig) |
---|
| 875 | endif |
---|
[669] | 876 | |
---|
| 877 | if(pqsurf(ig,igcm_h2o_ice) |
---|
| 878 | & +pdqsdif(ig,igcm_h2o_ice)*ptimestep |
---|
| 879 | & .gt.frost_albedo_threshold) ! if there is still ice, T cannot exceed To |
---|
| 880 | & pdtsrf(ig) = min(pdtsrf(ig),(To-ptsrf(ig))/ptimestep) ! ice melt case |
---|
| 881 | |
---|
[38] | 882 | ENDDO ! of DO ig=1,ngrid |
---|
| 883 | ELSE |
---|
| 884 | c Starting upward calculations for simple mixing of tracer (dust) |
---|
| 885 | DO ig=1,ngrid |
---|
| 886 | zq(ig,1,iq)=zc(ig,1) |
---|
| 887 | ENDDO |
---|
| 888 | END IF ! of IF ((water).and.(iq.eq.igcm_h2o_vap)) |
---|
| 889 | |
---|
| 890 | DO ilay=2,nlay |
---|
| 891 | DO ig=1,ngrid |
---|
[626] | 892 | zq(ig,ilay,iq)=zc(ig,ilay)+zd(ig,ilay)*zq(ig,ilay-1,iq) |
---|
[38] | 893 | ENDDO |
---|
| 894 | ENDDO |
---|
| 895 | enddo ! of do iq=1,nq |
---|
| 896 | end if ! of if(tracer) |
---|
[669] | 897 | |
---|
[38] | 898 | |
---|
| 899 | c----------------------------------------------------------------------- |
---|
| 900 | c 8. calcul final des tendances de la diffusion verticale |
---|
| 901 | c ---------------------------------------------------- |
---|
| 902 | |
---|
| 903 | DO ilev = 1, nlay |
---|
| 904 | DO ig=1,ngrid |
---|
| 905 | pdudif(ig,ilev)=( zu(ig,ilev)- |
---|
| 906 | $ (pu(ig,ilev)+pdufi(ig,ilev)*ptimestep) )/ptimestep |
---|
| 907 | pdvdif(ig,ilev)=( zv(ig,ilev)- |
---|
| 908 | $ (pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep) )/ptimestep |
---|
[473] | 909 | hh = ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
---|
| 910 | $ + (latcond*dmice(ig,ilev)/cpp)/ppopsk(ig,ilev) |
---|
| 911 | pdhdif(ig,ilev)=( zhs(ig,ilev)- hh )/ptimestep |
---|
[38] | 912 | ENDDO |
---|
| 913 | ENDDO |
---|
| 914 | |
---|
| 915 | if (tracer) then |
---|
| 916 | DO iq = 1, nq |
---|
| 917 | DO ilev = 1, nlay |
---|
| 918 | DO ig=1,ngrid |
---|
| 919 | pdqdif(ig,ilev,iq)=(zq(ig,ilev,iq)- |
---|
| 920 | $ (pq(ig,ilev,iq) + pdqfi(ig,ilev,iq)*ptimestep))/ptimestep |
---|
| 921 | ENDDO |
---|
| 922 | ENDDO |
---|
| 923 | ENDDO |
---|
| 924 | end if |
---|
| 925 | |
---|
| 926 | c ** diagnostique final |
---|
| 927 | c ------------------ |
---|
| 928 | |
---|
| 929 | IF(lecrit) THEN |
---|
| 930 | PRINT*,'In vdif' |
---|
| 931 | PRINT*,'Ts (t) and Ts (t+st)' |
---|
| 932 | WRITE(*,'(a10,3a15)') |
---|
| 933 | s 'theta(t)','theta(t+dt)','u(t)','u(t+dt)' |
---|
| 934 | PRINT*,ptsrf(ngrid/2+1),ztsrf2(ngrid/2+1) |
---|
| 935 | DO ilev=1,nlay |
---|
| 936 | WRITE(*,'(4f15.7)') |
---|
[473] | 937 | s ph(ngrid/2+1,ilev),zhs(ngrid/2+1,ilev), |
---|
[38] | 938 | s pu(ngrid/2+1,ilev),zu(ngrid/2+1,ilev) |
---|
| 939 | |
---|
| 940 | ENDDO |
---|
| 941 | ENDIF |
---|
| 942 | |
---|
[1036] | 943 | END SUBROUTINE vdifc |
---|
[1969] | 944 | |
---|
| 945 | END MODULE vdifc_mod |
---|