1 | SUBROUTINE vdifc(ngrid,nlay,nq,co2ice,ppopsk, |
---|
2 | $ ptimestep,pcapcal,lecrit, |
---|
3 | $ pplay,pplev,pzlay,pzlev,pz0, |
---|
4 | $ pu,pv,ph,pq,ptsrf,pemis,pqsurf, |
---|
5 | $ pdufi,pdvfi,pdhfi,pdqfi,pfluxsrf, |
---|
6 | $ pdudif,pdvdif,pdhdif,pdtsrf,pq2, |
---|
7 | $ pdqdif,pdqsdif,wstar,zcdv_true,zcdh_true, |
---|
8 | $ hfmax,sensibFlux) |
---|
9 | |
---|
10 | use tracer_mod, only: noms, igcm_dust_mass, igcm_dust_number, |
---|
11 | & igcm_dust_submicron, igcm_h2o_vap, |
---|
12 | & igcm_h2o_ice, alpha_lift |
---|
13 | use surfdat_h, only: watercaptag, frost_albedo_threshold, dryness |
---|
14 | USE comcstfi_h |
---|
15 | use turb_mod, only: turb_resolved, ustar, tstar |
---|
16 | IMPLICIT NONE |
---|
17 | |
---|
18 | c======================================================================= |
---|
19 | c |
---|
20 | c subject: |
---|
21 | c -------- |
---|
22 | c Turbulent diffusion (mixing) for potential T, U, V and tracer |
---|
23 | c |
---|
24 | c Shema implicite |
---|
25 | c On commence par rajouter au variables x la tendance physique |
---|
26 | c et on resoult en fait: |
---|
27 | c x(t+1) = x(t) + dt * (dx/dt)phys(t) + dt * (dx/dt)difv(t+1) |
---|
28 | c |
---|
29 | c author: |
---|
30 | c ------ |
---|
31 | c Hourdin/Forget/Fournier |
---|
32 | c======================================================================= |
---|
33 | |
---|
34 | c----------------------------------------------------------------------- |
---|
35 | c declarations: |
---|
36 | c ------------- |
---|
37 | |
---|
38 | !#include "dimensions.h" |
---|
39 | !#include "dimphys.h" |
---|
40 | #include "callkeys.h" |
---|
41 | !#include "surfdat.h" |
---|
42 | !#include "comgeomfi.h" |
---|
43 | !#include "tracer.h" |
---|
44 | #include "microphys.h" |
---|
45 | |
---|
46 | c |
---|
47 | c arguments: |
---|
48 | c ---------- |
---|
49 | |
---|
50 | INTEGER,INTENT(IN) :: ngrid,nlay |
---|
51 | REAL,INTENT(IN) :: ptimestep |
---|
52 | REAL,INTENT(IN) :: pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
53 | REAL,INTENT(IN) :: pzlay(ngrid,nlay),pzlev(ngrid,nlay+1) |
---|
54 | REAL,INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) |
---|
55 | REAL,INTENT(IN) :: ph(ngrid,nlay) |
---|
56 | REAL,INTENT(IN) :: ptsrf(ngrid),pemis(ngrid) |
---|
57 | REAL,INTENT(IN) :: pdufi(ngrid,nlay),pdvfi(ngrid,nlay) |
---|
58 | REAL,INTENT(IN) :: pdhfi(ngrid,nlay) |
---|
59 | REAL,INTENT(IN) :: pfluxsrf(ngrid) |
---|
60 | REAL,INTENT(OUT) :: pdudif(ngrid,nlay),pdvdif(ngrid,nlay) |
---|
61 | REAL,INTENT(OUT) :: pdtsrf(ngrid),pdhdif(ngrid,nlay) |
---|
62 | REAL,INTENT(IN) :: pcapcal(ngrid) |
---|
63 | REAL,INTENT(INOUT) :: pq2(ngrid,nlay+1) |
---|
64 | |
---|
65 | c Argument added for condensation: |
---|
66 | REAL,INTENT(IN) :: co2ice (ngrid), ppopsk(ngrid,nlay) |
---|
67 | logical,INTENT(IN) :: lecrit |
---|
68 | |
---|
69 | REAL,INTENT(IN) :: pz0(ngrid) ! surface roughness length (m) |
---|
70 | |
---|
71 | c Argument added to account for subgrid gustiness : |
---|
72 | |
---|
73 | REAL wstar(ngrid), hfmax(ngrid)!, zi(ngrid) |
---|
74 | |
---|
75 | c Traceurs : |
---|
76 | integer,intent(in) :: nq |
---|
77 | REAL,INTENT(IN) :: pqsurf(ngrid,nq) |
---|
78 | real,intent(in) :: pq(ngrid,nlay,nq), pdqfi(ngrid,nlay,nq) |
---|
79 | real,intent(out) :: pdqdif(ngrid,nlay,nq) |
---|
80 | real,intent(out) :: pdqsdif(ngrid,nq) |
---|
81 | |
---|
82 | c local: |
---|
83 | c ------ |
---|
84 | |
---|
85 | REAL :: pt(ngrid,nlay) |
---|
86 | |
---|
87 | INTEGER ilev,ig,ilay,nlev |
---|
88 | |
---|
89 | REAL z4st,zdplanck(ngrid) |
---|
90 | REAL zkv(ngrid,nlay+1),zkh(ngrid,nlay+1) |
---|
91 | REAL zkq(ngrid,nlay+1) |
---|
92 | REAL zcdv(ngrid),zcdh(ngrid) |
---|
93 | REAL zcdv_true(ngrid),zcdh_true(ngrid) ! drag coeff are used by the LES to recompute u* and hfx |
---|
94 | REAL zu(ngrid,nlay),zv(ngrid,nlay) |
---|
95 | REAL zh(ngrid,nlay) |
---|
96 | REAL ztsrf2(ngrid) |
---|
97 | REAL z1(ngrid),z2(ngrid) |
---|
98 | REAL za(ngrid,nlay),zb(ngrid,nlay) |
---|
99 | REAL zb0(ngrid,nlay) |
---|
100 | REAL zc(ngrid,nlay),zd(ngrid,nlay) |
---|
101 | REAL zcst1 |
---|
102 | REAL zu2(ngrid) |
---|
103 | |
---|
104 | EXTERNAL SSUM,SCOPY |
---|
105 | REAL SSUM |
---|
106 | LOGICAL,SAVE :: firstcall=.true. |
---|
107 | |
---|
108 | |
---|
109 | c variable added for CO2 condensation: |
---|
110 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
111 | REAL hh , zhcond(ngrid,nlay) |
---|
112 | REAL,PARAMETER :: latcond=5.9e5 |
---|
113 | REAL,PARAMETER :: tcond1mb=136.27 |
---|
114 | REAL,SAVE :: acond,bcond |
---|
115 | |
---|
116 | c For latent heat release from ground ice sublimation |
---|
117 | ! REAL tsrf_lw(ngrid) |
---|
118 | ! REAL alpha |
---|
119 | REAL T1,T2 |
---|
120 | SAVE T1,T2 |
---|
121 | DATA T1,T2/-604.3,1080.7/ ! zeros of latent heat equation for ice |
---|
122 | |
---|
123 | c Tracers : |
---|
124 | c ~~~~~~~ |
---|
125 | INTEGER iq |
---|
126 | REAL zq(ngrid,nlay,nq) |
---|
127 | REAL zq1temp(ngrid) |
---|
128 | REAL rho(ngrid) ! near surface air density |
---|
129 | REAL qsat(ngrid) |
---|
130 | |
---|
131 | REAL kmixmin |
---|
132 | |
---|
133 | c Mass-variation scheme : |
---|
134 | c ~~~~~~~ |
---|
135 | |
---|
136 | INTEGER j,l |
---|
137 | REAL zcondicea(ngrid,nlay) |
---|
138 | REAL zt(ngrid,nlay),ztcond(ngrid,nlay+1) |
---|
139 | REAL betam(ngrid,nlay),dmice(ngrid,nlay) |
---|
140 | REAL pdtc(ngrid,nlay) |
---|
141 | REAL zhs(ngrid,nlay) |
---|
142 | REAL,SAVE :: ccond |
---|
143 | |
---|
144 | c Theta_m formulation for mass-variation scheme : |
---|
145 | c ~~~~~~~ |
---|
146 | |
---|
147 | INTEGER,SAVE :: ico2 |
---|
148 | INTEGER llnt(ngrid) |
---|
149 | REAL,SAVE :: m_co2, m_noco2, A , B |
---|
150 | REAL vmr_co2(ngrid,nlay) |
---|
151 | REAL qco2,mmean |
---|
152 | |
---|
153 | REAL,INTENT(OUT) :: sensibFlux(ngrid) |
---|
154 | |
---|
155 | c ** un petit test de coherence |
---|
156 | c -------------------------- |
---|
157 | |
---|
158 | IF (firstcall) THEN |
---|
159 | c To compute: Tcond= 1./(bcond-acond*log(.0095*p)) (p in pascal) |
---|
160 | bcond=1./tcond1mb |
---|
161 | acond=r/latcond |
---|
162 | ccond=cpp/(g*latcond) |
---|
163 | PRINT*,'In vdifc: Tcond(P=1mb)=',tcond1mb,' Lcond=',latcond |
---|
164 | PRINT*,' acond,bcond,ccond',acond,bcond,ccond |
---|
165 | |
---|
166 | |
---|
167 | ico2=0 |
---|
168 | |
---|
169 | if (tracer) then |
---|
170 | c Prepare Special treatment if one of the tracer is CO2 gas |
---|
171 | do iq=1,nq |
---|
172 | if (noms(iq).eq."co2") then |
---|
173 | ico2=iq |
---|
174 | m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
---|
175 | m_noco2 = 33.37E-3 ! Non condensible mol mass (kg/mol) |
---|
176 | c Compute A and B coefficient use to compute |
---|
177 | c mean molecular mass Mair defined by |
---|
178 | c 1/Mair = q(ico2)/m_co2 + (1-q(ico2))/m_noco2 |
---|
179 | c 1/Mair = A*q(ico2) + B |
---|
180 | A =(1/m_co2 - 1/m_noco2) |
---|
181 | B=1/m_noco2 |
---|
182 | endif |
---|
183 | enddo |
---|
184 | end if |
---|
185 | |
---|
186 | firstcall=.false. |
---|
187 | ENDIF |
---|
188 | |
---|
189 | |
---|
190 | c----------------------------------------------------------------------- |
---|
191 | c 1. initialisation |
---|
192 | c ----------------- |
---|
193 | |
---|
194 | nlev=nlay+1 |
---|
195 | |
---|
196 | ! initialize output tendencies to zero: |
---|
197 | pdudif(1:ngrid,1:nlay)=0 |
---|
198 | pdvdif(1:ngrid,1:nlay)=0 |
---|
199 | pdhdif(1:ngrid,1:nlay)=0 |
---|
200 | pdtsrf(1:ngrid)=0 |
---|
201 | pdqdif(1:ngrid,1:nlay,1:nq)=0 |
---|
202 | pdqsdif(1:ngrid,1:nq)=0 |
---|
203 | |
---|
204 | c ** calcul de rho*dz et dt*rho/dz=dt*rho**2 g/dp |
---|
205 | c avec rho=p/RT=p/ (R Theta) (p/ps)**kappa |
---|
206 | c ---------------------------------------- |
---|
207 | |
---|
208 | DO ilay=1,nlay |
---|
209 | DO ig=1,ngrid |
---|
210 | za(ig,ilay)=(pplev(ig,ilay)-pplev(ig,ilay+1))/g |
---|
211 | ! Mass variation scheme: |
---|
212 | betam(ig,ilay)=-za(ig,ilay)*latcond/(cpp*ppopsk(ig,ilay)) |
---|
213 | ENDDO |
---|
214 | ENDDO |
---|
215 | |
---|
216 | zcst1=4.*g*ptimestep/(r*r) |
---|
217 | DO ilev=2,nlev-1 |
---|
218 | DO ig=1,ngrid |
---|
219 | zb0(ig,ilev)=pplev(ig,ilev)* |
---|
220 | s (pplev(ig,1)/pplev(ig,ilev))**rcp / |
---|
221 | s (ph(ig,ilev-1)+ph(ig,ilev)) |
---|
222 | zb0(ig,ilev)=zcst1*zb0(ig,ilev)*zb0(ig,ilev)/ |
---|
223 | s (pplay(ig,ilev-1)-pplay(ig,ilev)) |
---|
224 | ENDDO |
---|
225 | ENDDO |
---|
226 | DO ig=1,ngrid |
---|
227 | zb0(ig,1)=ptimestep*pplev(ig,1)/(r*ptsrf(ig)) |
---|
228 | ENDDO |
---|
229 | |
---|
230 | c ** diagnostique pour l'initialisation |
---|
231 | c ---------------------------------- |
---|
232 | |
---|
233 | IF(lecrit) THEN |
---|
234 | ig=ngrid/2+1 |
---|
235 | PRINT*,'Pression (mbar) ,altitude (km),u,v,theta, rho dz' |
---|
236 | DO ilay=1,nlay |
---|
237 | WRITE(*,'(6f11.5)') |
---|
238 | s .01*pplay(ig,ilay),.001*pzlay(ig,ilay), |
---|
239 | s pu(ig,ilay),pv(ig,ilay),ph(ig,ilay),za(ig,ilay) |
---|
240 | ENDDO |
---|
241 | PRINT*,'Pression (mbar) ,altitude (km),zb' |
---|
242 | DO ilev=1,nlay |
---|
243 | WRITE(*,'(3f15.7)') |
---|
244 | s .01*pplev(ig,ilev),.001*pzlev(ig,ilev), |
---|
245 | s zb0(ig,ilev) |
---|
246 | ENDDO |
---|
247 | ENDIF |
---|
248 | |
---|
249 | c ----------------------------------- |
---|
250 | c Potential Condensation temperature: |
---|
251 | c ----------------------------------- |
---|
252 | |
---|
253 | c Compute CO2 Volume mixing ratio |
---|
254 | c ------------------------------- |
---|
255 | if (callcond.and.(ico2.ne.0)) then |
---|
256 | DO ilev=1,nlay |
---|
257 | DO ig=1,ngrid |
---|
258 | qco2=MAX(1.E-30 |
---|
259 | & ,pq(ig,ilev,ico2)+pdqfi(ig,ilev,ico2)*ptimestep) |
---|
260 | c Mean air molecular mass = 1/(q(ico2)/m_co2 + (1-q(ico2))/m_noco2) |
---|
261 | mmean=1/(A*qco2 +B) |
---|
262 | vmr_co2(ig,ilev) = qco2*mmean/m_co2 |
---|
263 | ENDDO |
---|
264 | ENDDO |
---|
265 | else |
---|
266 | DO ilev=1,nlay |
---|
267 | DO ig=1,ngrid |
---|
268 | vmr_co2(ig,ilev)=0.95 |
---|
269 | ENDDO |
---|
270 | ENDDO |
---|
271 | end if |
---|
272 | |
---|
273 | c forecast of atmospheric temperature zt and frost temperature ztcond |
---|
274 | c -------------------------------------------------------------------- |
---|
275 | |
---|
276 | if (callcond) then |
---|
277 | DO ilev=1,nlay |
---|
278 | DO ig=1,ngrid |
---|
279 | ztcond(ig,ilev)= |
---|
280 | & 1./(bcond-acond*log(.01*vmr_co2(ig,ilev)*pplay(ig,ilev))) |
---|
281 | if (pplay(ig,ilev).lt.1e-4) ztcond(ig,ilev)=0.0 !mars Monica |
---|
282 | ! zhcond(ig,ilev) = |
---|
283 | ! & (1./(bcond-acond*log(.0095*pplay(ig,ilev))))/ppopsk(ig,ilev) |
---|
284 | zhcond(ig,ilev) = ztcond(ig,ilev)/ppopsk(ig,ilev) |
---|
285 | END DO |
---|
286 | END DO |
---|
287 | ztcond(:,nlay+1)=ztcond(:,nlay) |
---|
288 | else |
---|
289 | zhcond(:,:) = 0 |
---|
290 | ztcond(:,:) = 0 |
---|
291 | end if |
---|
292 | |
---|
293 | |
---|
294 | c----------------------------------------------------------------------- |
---|
295 | c 2. ajout des tendances physiques |
---|
296 | c ----------------------------- |
---|
297 | |
---|
298 | DO ilev=1,nlay |
---|
299 | DO ig=1,ngrid |
---|
300 | zu(ig,ilev)=pu(ig,ilev)+pdufi(ig,ilev)*ptimestep |
---|
301 | zv(ig,ilev)=pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep |
---|
302 | zh(ig,ilev)=ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
---|
303 | ! zh(ig,ilev)=max(zh(ig,ilev),zhcond(ig,ilev)) |
---|
304 | ENDDO |
---|
305 | ENDDO |
---|
306 | if(tracer) then |
---|
307 | DO iq =1, nq |
---|
308 | DO ilev=1,nlay |
---|
309 | DO ig=1,ngrid |
---|
310 | zq(ig,ilev,iq)=pq(ig,ilev,iq)+pdqfi(ig,ilev,iq)*ptimestep |
---|
311 | ENDDO |
---|
312 | ENDDO |
---|
313 | ENDDO |
---|
314 | end if |
---|
315 | |
---|
316 | c----------------------------------------------------------------------- |
---|
317 | c 3. schema de turbulence |
---|
318 | c -------------------- |
---|
319 | |
---|
320 | c ** source d'energie cinetique turbulente a la surface |
---|
321 | c (condition aux limites du schema de diffusion turbulente |
---|
322 | c dans la couche limite |
---|
323 | c --------------------- |
---|
324 | |
---|
325 | CALL vdif_cd(ngrid,nlay,pz0,g,pzlay,pu,pv,wstar,ptsrf,ph |
---|
326 | & ,zcdv_true,zcdh_true) |
---|
327 | |
---|
328 | zu2(:)=pu(:,1)*pu(:,1)+pv(:,1)*pv(:,1) |
---|
329 | |
---|
330 | IF (callrichsl) THEN |
---|
331 | zcdv(:)=zcdv_true(:)*sqrt(zu2(:)+ |
---|
332 | & (log(1.+0.7*wstar(:) + 2.3*wstar(:)**2))**2) |
---|
333 | zcdh(:)=zcdh_true(:)*sqrt(zu2(:)+ |
---|
334 | & (log(1.+0.7*wstar(:) + 2.3*wstar(:)**2))**2) |
---|
335 | |
---|
336 | ustar(:)=sqrt(zcdv_true(:))*sqrt(zu2(:)+ |
---|
337 | & (log(1.+0.7*wstar(:) + 2.3*wstar(:)**2))**2) |
---|
338 | |
---|
339 | tstar(:)=0. |
---|
340 | DO ig=1,ngrid |
---|
341 | IF (zcdh_true(ig) .ne. 0.) THEN ! When Cd=Ch=0, u*=t*=0 |
---|
342 | tstar(ig)=(ph(ig,1)-ptsrf(ig))*zcdh(ig)/ustar(ig) |
---|
343 | ENDIF |
---|
344 | ENDDO |
---|
345 | |
---|
346 | ELSE |
---|
347 | zcdv(:)=zcdv_true(:)*sqrt(zu2(:)) ! 1 / bulk aerodynamic momentum conductance |
---|
348 | zcdh(:)=zcdh_true(:)*sqrt(zu2(:)) ! 1 / bulk aerodynamic heat conductance |
---|
349 | ustar(:)=sqrt(zcdv_true(:))*sqrt(zu2(:)) |
---|
350 | tstar(:)=(ph(:,1)-ptsrf(:))*zcdh_true(:)/sqrt(zcdv_true(:)) |
---|
351 | ENDIF |
---|
352 | |
---|
353 | ! Some usefull diagnostics for the new surface layer parametrization : |
---|
354 | |
---|
355 | ! call WRITEDIAGFI(ngrid,'vdifc_zcdv_true', |
---|
356 | ! & 'momentum drag','no units', |
---|
357 | ! & 2,zcdv_true) |
---|
358 | ! call WRITEDIAGFI(ngrid,'vdifc_zcdh_true', |
---|
359 | ! & 'heat drag','no units', |
---|
360 | ! & 2,zcdh_true) |
---|
361 | ! call WRITEDIAGFI(ngrid,'vdifc_ust', |
---|
362 | ! & 'friction velocity','m/s',2,ust) |
---|
363 | ! call WRITEDIAGFI(ngrid,'vdifc_tst', |
---|
364 | ! & 'friction temperature','K',2,tst) |
---|
365 | ! call WRITEDIAGFI(ngrid,'vdifc_zcdv', |
---|
366 | ! & 'aerodyn momentum conductance','m/s', |
---|
367 | ! & 2,zcdv) |
---|
368 | ! call WRITEDIAGFI(ngrid,'vdifc_zcdh', |
---|
369 | ! & 'aerodyn heat conductance','m/s', |
---|
370 | ! & 2,zcdh) |
---|
371 | |
---|
372 | c ** schema de diffusion turbulente dans la couche limite |
---|
373 | c ---------------------------------------------------- |
---|
374 | IF (.not. callyamada4) THEN |
---|
375 | |
---|
376 | CALL vdif_kc(ngrid,nlay,nq,ptimestep,g,pzlev,pzlay |
---|
377 | & ,pu,pv,ph,zcdv_true |
---|
378 | & ,pq2,zkv,zkh,zq) |
---|
379 | |
---|
380 | ELSE |
---|
381 | |
---|
382 | pt(:,:)=ph(:,:)*ppopsk(:,:) |
---|
383 | CALL yamada4(ngrid,nlay,nq,ptimestep,g,r,pplev,pt |
---|
384 | s ,pzlev,pzlay,pu,pv,ph,pq,zcdv_true,pq2,zkv,zkh,zkq,ustar |
---|
385 | s ,9) |
---|
386 | ENDIF |
---|
387 | |
---|
388 | if ((doubleq).and.(ngrid.eq.1)) then |
---|
389 | kmixmin = 80. !80.! minimum eddy mix coeff in 1D |
---|
390 | do ilev=1,nlay |
---|
391 | do ig=1,ngrid |
---|
392 | zkh(ig,ilev) = max(kmixmin,zkh(ig,ilev)) |
---|
393 | zkv(ig,ilev) = max(kmixmin,zkv(ig,ilev)) |
---|
394 | end do |
---|
395 | end do |
---|
396 | end if |
---|
397 | |
---|
398 | c ** diagnostique pour le schema de turbulence |
---|
399 | c ----------------------------------------- |
---|
400 | |
---|
401 | IF(lecrit) THEN |
---|
402 | PRINT* |
---|
403 | PRINT*,'Diagnostic for the vertical turbulent mixing' |
---|
404 | PRINT*,'Cd for momentum and potential temperature' |
---|
405 | |
---|
406 | PRINT*,zcdv(ngrid/2+1),zcdh(ngrid/2+1) |
---|
407 | PRINT*,'Mixing coefficient for momentum and pot.temp.' |
---|
408 | DO ilev=1,nlay |
---|
409 | PRINT*,zkv(ngrid/2+1,ilev),zkh(ngrid/2+1,ilev) |
---|
410 | ENDDO |
---|
411 | ENDIF |
---|
412 | |
---|
413 | |
---|
414 | |
---|
415 | |
---|
416 | c----------------------------------------------------------------------- |
---|
417 | c 4. inversion pour l'implicite sur u |
---|
418 | c -------------------------------- |
---|
419 | |
---|
420 | c ** l'equation est |
---|
421 | c u(t+1) = u(t) + dt * {(du/dt)phys}(t) + dt * {(du/dt)difv}(t+1) |
---|
422 | c avec |
---|
423 | c /zu/ = u(t) + dt * {(du/dt)phys}(t) (voir paragraphe 2.) |
---|
424 | c et |
---|
425 | c dt * {(du/dt)difv}(t+1) = dt * {(d/dz)[ Ku (du/dz) ]}(t+1) |
---|
426 | c donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
427 | c et /zkv/ = Ku |
---|
428 | |
---|
429 | CALL multipl((nlay-1)*ngrid,zkv(1,2),zb0(1,2),zb(1,2)) |
---|
430 | CALL multipl(ngrid,zcdv,zb0,zb) |
---|
431 | |
---|
432 | DO ig=1,ngrid |
---|
433 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
434 | zc(ig,nlay)=za(ig,nlay)*zu(ig,nlay)*z1(ig) |
---|
435 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
436 | ENDDO |
---|
437 | |
---|
438 | DO ilay=nlay-1,1,-1 |
---|
439 | DO ig=1,ngrid |
---|
440 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
441 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
442 | zc(ig,ilay)=(za(ig,ilay)*zu(ig,ilay)+ |
---|
443 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
444 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
445 | ENDDO |
---|
446 | ENDDO |
---|
447 | |
---|
448 | DO ig=1,ngrid |
---|
449 | zu(ig,1)=zc(ig,1) |
---|
450 | ENDDO |
---|
451 | DO ilay=2,nlay |
---|
452 | DO ig=1,ngrid |
---|
453 | zu(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zu(ig,ilay-1) |
---|
454 | ENDDO |
---|
455 | ENDDO |
---|
456 | |
---|
457 | |
---|
458 | |
---|
459 | |
---|
460 | |
---|
461 | c----------------------------------------------------------------------- |
---|
462 | c 5. inversion pour l'implicite sur v |
---|
463 | c -------------------------------- |
---|
464 | |
---|
465 | c ** l'equation est |
---|
466 | c v(t+1) = v(t) + dt * {(dv/dt)phys}(t) + dt * {(dv/dt)difv}(t+1) |
---|
467 | c avec |
---|
468 | c /zv/ = v(t) + dt * {(dv/dt)phys}(t) (voir paragraphe 2.) |
---|
469 | c et |
---|
470 | c dt * {(dv/dt)difv}(t+1) = dt * {(d/dz)[ Kv (dv/dz) ]}(t+1) |
---|
471 | c donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
472 | c et /zkv/ = Kv |
---|
473 | |
---|
474 | DO ig=1,ngrid |
---|
475 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
476 | zc(ig,nlay)=za(ig,nlay)*zv(ig,nlay)*z1(ig) |
---|
477 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
478 | ENDDO |
---|
479 | |
---|
480 | DO ilay=nlay-1,1,-1 |
---|
481 | DO ig=1,ngrid |
---|
482 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
483 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
484 | zc(ig,ilay)=(za(ig,ilay)*zv(ig,ilay)+ |
---|
485 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
486 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
487 | ENDDO |
---|
488 | ENDDO |
---|
489 | |
---|
490 | DO ig=1,ngrid |
---|
491 | zv(ig,1)=zc(ig,1) |
---|
492 | ENDDO |
---|
493 | DO ilay=2,nlay |
---|
494 | DO ig=1,ngrid |
---|
495 | zv(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zv(ig,ilay-1) |
---|
496 | ENDDO |
---|
497 | ENDDO |
---|
498 | |
---|
499 | |
---|
500 | |
---|
501 | |
---|
502 | |
---|
503 | c----------------------------------------------------------------------- |
---|
504 | c 6. inversion pour l'implicite sur h sans oublier le couplage |
---|
505 | c avec le sol (conduction) |
---|
506 | c ------------------------ |
---|
507 | |
---|
508 | c ** l'equation est |
---|
509 | c h(t+1) = h(t) + dt * {(dh/dt)phys}(t) + dt * {(dh/dt)difv}(t+1) |
---|
510 | c avec |
---|
511 | c /zh/ = h(t) + dt * {(dh/dt)phys}(t) (voir paragraphe 2.) |
---|
512 | c et |
---|
513 | c dt * {(dh/dt)difv}(t+1) = dt * {(d/dz)[ Kh (dh/dz) ]}(t+1) |
---|
514 | c donc les entrees sont /zcdh/ pour la condition de raccord au sol |
---|
515 | c et /zkh/ = Kh |
---|
516 | c ------------- |
---|
517 | |
---|
518 | c Mass variation scheme: |
---|
519 | CALL multipl((nlay-1)*ngrid,zkh(1,2),zb0(1,2),zb(1,2)) |
---|
520 | CALL multipl(ngrid,zcdh,zb0,zb) |
---|
521 | |
---|
522 | c on initialise dm c |
---|
523 | |
---|
524 | pdtc(:,:)=0. |
---|
525 | zt(:,:)=0. |
---|
526 | dmice(:,:)=0. |
---|
527 | |
---|
528 | c ** calcul de (d Planck / dT) a la temperature d'interface |
---|
529 | c ------------------------------------------------------ |
---|
530 | |
---|
531 | z4st=4.*5.67e-8*ptimestep |
---|
532 | IF (tke_heat_flux .eq. 0.) THEN |
---|
533 | DO ig=1,ngrid |
---|
534 | zdplanck(ig)=z4st*pemis(ig)*ptsrf(ig)*ptsrf(ig)*ptsrf(ig) |
---|
535 | ENDDO |
---|
536 | ELSE |
---|
537 | zdplanck(:)=0. |
---|
538 | ENDIF |
---|
539 | |
---|
540 | ! calcul de zc et zd pour la couche top en prenant en compte le terme |
---|
541 | ! de variation de masse (on fait une boucle pour que ça converge) |
---|
542 | |
---|
543 | ! Identification des points de grilles qui ont besoin de la correction |
---|
544 | |
---|
545 | llnt(:)=1 |
---|
546 | IF (.not.turb_resolved) THEN |
---|
547 | IF (callcond) THEN |
---|
548 | DO ig=1,ngrid |
---|
549 | DO l=1,nlay |
---|
550 | if(zh(ig,l) .lt. zhcond(ig,l)) then |
---|
551 | llnt(ig)=300 |
---|
552 | ! 200 and 100 do not go beyond month 9 with normal dissipation |
---|
553 | goto 5 |
---|
554 | endif |
---|
555 | ENDDO |
---|
556 | 5 continue |
---|
557 | ENDDO |
---|
558 | ENDIF |
---|
559 | |
---|
560 | ENDIF |
---|
561 | |
---|
562 | DO ig=1,ngrid |
---|
563 | |
---|
564 | ! Initialization of z1 and zd, which do not depend on dmice |
---|
565 | |
---|
566 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
567 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
568 | |
---|
569 | DO ilay=nlay-1,1,-1 |
---|
570 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
571 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
572 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
573 | ENDDO |
---|
574 | |
---|
575 | ! Convergence loop |
---|
576 | |
---|
577 | DO j=1,llnt(ig) |
---|
578 | |
---|
579 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
580 | zc(ig,nlay)=za(ig,nlay)*zh(ig,nlay) |
---|
581 | & -betam(ig,nlay)*dmice(ig,nlay) |
---|
582 | zc(ig,nlay)=zc(ig,nlay)*z1(ig) |
---|
583 | ! zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
584 | |
---|
585 | ! calcul de zc et zd pour les couches du haut vers le bas |
---|
586 | |
---|
587 | DO ilay=nlay-1,1,-1 |
---|
588 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
589 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
590 | zc(ig,ilay)=(za(ig,ilay)*zh(ig,ilay)+ |
---|
591 | $ zb(ig,ilay+1)*zc(ig,ilay+1)- |
---|
592 | $ betam(ig,ilay)*dmice(ig,ilay))*z1(ig) |
---|
593 | ! zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
594 | ENDDO |
---|
595 | |
---|
596 | c ** calcul de la temperature_d'interface et de sa tendance. |
---|
597 | c on ecrit que la somme des flux est nulle a l'interface |
---|
598 | c a t + \delta t, |
---|
599 | c c'est a dire le flux radiatif a {t + \delta t} |
---|
600 | c + le flux turbulent a {t + \delta t} |
---|
601 | c qui s'ecrit K (T1-Tsurf) avec T1 = d1 Tsurf + c1 |
---|
602 | c (notation K dt = /cpp*b/) |
---|
603 | c + le flux dans le sol a t |
---|
604 | c + l'evolution du flux dans le sol lorsque la temperature d'interface |
---|
605 | c passe de sa valeur a t a sa valeur a {t + \delta t}. |
---|
606 | c ---------------------------------------------------- |
---|
607 | |
---|
608 | z1(ig)=pcapcal(ig)*ptsrf(ig)+cpp*zb(ig,1)*zc(ig,1) |
---|
609 | s +zdplanck(ig)*ptsrf(ig)+ pfluxsrf(ig)*ptimestep |
---|
610 | z2(ig)= pcapcal(ig)+cpp*zb(ig,1)*(1.-zd(ig,1))+zdplanck(ig) |
---|
611 | ztsrf2(ig)=z1(ig)/z2(ig) |
---|
612 | ! pdtsrf(ig)=(ztsrf2(ig)-ptsrf(ig))/ptimestep !incremented outside loop |
---|
613 | zhs(ig,1)=zc(ig,1)+zd(ig,1)*ztsrf2(ig) |
---|
614 | |
---|
615 | c ** et a partir de la temperature au sol on remonte |
---|
616 | c ----------------------------------------------- |
---|
617 | |
---|
618 | DO ilay=2,nlay |
---|
619 | zhs(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zhs(ig,ilay-1) |
---|
620 | ENDDO |
---|
621 | DO ilay=1,nlay |
---|
622 | zt(ig,ilay)=zhs(ig,ilay)*ppopsk(ig,ilay) |
---|
623 | ENDDO |
---|
624 | |
---|
625 | c Condensation/sublimation in the atmosphere |
---|
626 | c ------------------------------------------ |
---|
627 | c (computation of zcondicea and dmice) |
---|
628 | |
---|
629 | zcondicea(ig,:)=0. |
---|
630 | pdtc(ig,:)=0. |
---|
631 | |
---|
632 | DO l=nlay , 1, -1 |
---|
633 | IF(zt(ig,l).LT.ztcond(ig,l)) THEN |
---|
634 | pdtc(ig,l)=(ztcond(ig,l) - zt(ig,l))/ptimestep |
---|
635 | zcondicea(ig,l)=(pplev(ig,l)-pplev(ig,l+1)) |
---|
636 | & *ccond*pdtc(ig,l) |
---|
637 | dmice(ig,l)= dmice(ig,l) + zcondicea(ig,l)*ptimestep |
---|
638 | END IF |
---|
639 | ENDDO |
---|
640 | |
---|
641 | ENDDO !of Do j=1,XXX |
---|
642 | |
---|
643 | ENDDO !of Do ig=1,nlay |
---|
644 | |
---|
645 | pdtsrf(:)=(ztsrf2(:)-ptsrf(:))/ptimestep |
---|
646 | |
---|
647 | DO ig=1,ngrid ! computing sensible heat flux (atm => surface) |
---|
648 | sensibFlux(ig)=cpp*zb(ig,1)/ptimestep*(zhs(ig,1)-ztsrf2(ig)) |
---|
649 | ENDDO |
---|
650 | |
---|
651 | c----------------------------------------------------------------------- |
---|
652 | c TRACERS |
---|
653 | c ------- |
---|
654 | |
---|
655 | if(tracer) then |
---|
656 | |
---|
657 | c Using the wind modified by friction for lifting and sublimation |
---|
658 | c ---------------------------------------------------------------- |
---|
659 | |
---|
660 | ! This is computed above and takes into account surface-atmosphere flux |
---|
661 | ! enhancement by subgrid gustiness and atmospheric-stability related |
---|
662 | ! variations of transfer coefficients. |
---|
663 | |
---|
664 | ! DO ig=1,ngrid |
---|
665 | ! zu2(ig)=zu(ig,1)*zu(ig,1)+zv(ig,1)*zv(ig,1) |
---|
666 | ! zcdv(ig)=zcdv_true(ig)*sqrt(zu2(ig)) |
---|
667 | ! zcdh(ig)=zcdh_true(ig)*sqrt(zu2(ig)) |
---|
668 | ! ENDDO |
---|
669 | |
---|
670 | c Calcul du flux vertical au bas de la premiere couche (dust) : |
---|
671 | c ----------------------------------------------------------- |
---|
672 | do ig=1,ngrid |
---|
673 | rho(ig) = zb0(ig,1) /ptimestep |
---|
674 | c zb(ig,1) = 0. |
---|
675 | end do |
---|
676 | c Dust lifting: |
---|
677 | if (lifting) then |
---|
678 | #ifndef MESOSCALE |
---|
679 | if (doubleq.AND.submicron) then |
---|
680 | do ig=1,ngrid |
---|
681 | c if(co2ice(ig).lt.1) then |
---|
682 | pdqsdif(ig,igcm_dust_mass) = |
---|
683 | & -alpha_lift(igcm_dust_mass) |
---|
684 | pdqsdif(ig,igcm_dust_number) = |
---|
685 | & -alpha_lift(igcm_dust_number) |
---|
686 | pdqsdif(ig,igcm_dust_submicron) = |
---|
687 | & -alpha_lift(igcm_dust_submicron) |
---|
688 | c end if |
---|
689 | end do |
---|
690 | else if (doubleq) then |
---|
691 | do ig=1,ngrid |
---|
692 | if(co2ice(ig).lt.1) then ! soulevement pas constant |
---|
693 | pdqsdif(ig,igcm_dust_mass) = |
---|
694 | & -alpha_lift(igcm_dust_mass) |
---|
695 | pdqsdif(ig,igcm_dust_number) = |
---|
696 | & -alpha_lift(igcm_dust_number) |
---|
697 | end if |
---|
698 | end do |
---|
699 | else if (submicron) then |
---|
700 | do ig=1,ngrid |
---|
701 | pdqsdif(ig,igcm_dust_submicron) = |
---|
702 | & -alpha_lift(igcm_dust_submicron) |
---|
703 | end do |
---|
704 | else |
---|
705 | #endif |
---|
706 | call dustlift(ngrid,nlay,nq,rho,zcdh_true,zcdh,co2ice, |
---|
707 | & pdqsdif) |
---|
708 | #ifndef MESOSCALE |
---|
709 | endif !doubleq.AND.submicron |
---|
710 | #endif |
---|
711 | else |
---|
712 | pdqsdif(1:ngrid,1:nq) = 0. |
---|
713 | end if |
---|
714 | |
---|
715 | c OU calcul de la valeur de q a la surface (water) : |
---|
716 | c ---------------------------------------- |
---|
717 | if (water) then |
---|
718 | call watersat(ngrid,ptsrf,pplev(1,1),qsat) |
---|
719 | end if |
---|
720 | |
---|
721 | c Inversion pour l'implicite sur q |
---|
722 | c -------------------------------- |
---|
723 | do iq=1,nq |
---|
724 | CALL multipl((nlay-1)*ngrid,zkh(1,2),zb0(1,2),zb(1,2)) |
---|
725 | |
---|
726 | if ((water).and.(iq.eq.igcm_h2o_vap)) then |
---|
727 | c This line is required to account for turbulent transport |
---|
728 | c from surface (e.g. ice) to mid-layer of atmosphere: |
---|
729 | CALL multipl(ngrid,zcdv,zb0,zb(1,1)) |
---|
730 | CALL multipl(ngrid,dryness,zb(1,1),zb(1,1)) |
---|
731 | else ! (re)-initialize zb(:,1) |
---|
732 | zb(1:ngrid,1)=0 |
---|
733 | end if |
---|
734 | |
---|
735 | DO ig=1,ngrid |
---|
736 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
737 | zc(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
738 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
739 | ENDDO |
---|
740 | |
---|
741 | DO ilay=nlay-1,2,-1 |
---|
742 | DO ig=1,ngrid |
---|
743 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
744 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
745 | zc(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ |
---|
746 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
747 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
748 | ENDDO |
---|
749 | ENDDO |
---|
750 | |
---|
751 | if (water.and.(iq.eq.igcm_h2o_ice)) then |
---|
752 | ! special case for water ice tracer: do not include |
---|
753 | ! h2o ice tracer from surface (which is set when handling |
---|
754 | ! h2o vapour case (see further down). |
---|
755 | DO ig=1,ngrid |
---|
756 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
---|
757 | $ zb(ig,2)*(1.-zd(ig,2))) |
---|
758 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
759 | $ zb(ig,2)*zc(ig,2)) *z1(ig) |
---|
760 | ENDDO |
---|
761 | else ! general case |
---|
762 | DO ig=1,ngrid |
---|
763 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
---|
764 | $ zb(ig,2)*(1.-zd(ig,2))) |
---|
765 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
766 | $ zb(ig,2)*zc(ig,2) + |
---|
767 | $ (-pdqsdif(ig,iq)) *ptimestep) *z1(ig) !tracer flux from surface |
---|
768 | ENDDO |
---|
769 | endif ! of if (water.and.(iq.eq.igcm_h2o_ice)) |
---|
770 | |
---|
771 | IF ((water).and.(iq.eq.igcm_h2o_vap)) then |
---|
772 | c Calculation for turbulent exchange with the surface (for ice) |
---|
773 | DO ig=1,ngrid |
---|
774 | zd(ig,1)=zb(ig,1)*z1(ig) |
---|
775 | zq1temp(ig)=zc(ig,1)+ zd(ig,1)*qsat(ig) |
---|
776 | |
---|
777 | pdqsdif(ig,igcm_h2o_ice)=rho(ig)*dryness(ig)*zcdv(ig) |
---|
778 | & *(zq1temp(ig)-qsat(ig)) |
---|
779 | c write(*,*)'flux vers le sol=',pdqsdif(ig,nq) |
---|
780 | END DO |
---|
781 | |
---|
782 | DO ig=1,ngrid |
---|
783 | if(.not.watercaptag(ig)) then |
---|
784 | if ((-pdqsdif(ig,igcm_h2o_ice)*ptimestep) |
---|
785 | & .gt.pqsurf(ig,igcm_h2o_ice)) then |
---|
786 | c write(*,*)'on sublime plus que qsurf!' |
---|
787 | pdqsdif(ig,igcm_h2o_ice)= |
---|
788 | & -pqsurf(ig,igcm_h2o_ice)/ptimestep |
---|
789 | c write(*,*)'flux vers le sol=',pdqsdif(ig,nq) |
---|
790 | z1(ig)=1./(za(ig,1)+ zb(ig,2)*(1.-zd(ig,2))) |
---|
791 | zc(ig,1)=(za(ig,1)*zq(ig,1,igcm_h2o_vap)+ |
---|
792 | $ zb(ig,2)*zc(ig,2) + |
---|
793 | $ (-pdqsdif(ig,igcm_h2o_ice)) *ptimestep) *z1(ig) |
---|
794 | zq1temp(ig)=zc(ig,1) |
---|
795 | endif |
---|
796 | endif ! if (.not.watercaptag(ig)) |
---|
797 | c Starting upward calculations for water : |
---|
798 | zq(ig,1,igcm_h2o_vap)=zq1temp(ig) |
---|
799 | |
---|
800 | !c Take into account H2O latent heat in surface energy budget |
---|
801 | !c We solve dT/dt = (2834.3-0.28*(T-To)-0.004*(T-To)^2)*1e3*iceflux/cpp |
---|
802 | ! tsrf_lw(ig) = ptsrf(ig) + pdtsrf(ig) *ptimestep |
---|
803 | ! |
---|
804 | ! alpha = exp(-4*abs(T1-T2)*pdqsdif(ig,igcm_h2o_ice) |
---|
805 | ! & *ptimestep/pcapcal(ig)) |
---|
806 | ! |
---|
807 | ! tsrf_lw(ig) = (tsrf_lw(ig)*(T2-alpha*T1)+T1*T2*(alpha-1)) |
---|
808 | ! & /(tsrf_lw(ig)*(1-alpha)+alpha*T2-T1) ! surface temperature at t+1 |
---|
809 | ! |
---|
810 | ! pdtsrf(ig) = (tsrf_lw(ig)-ptsrf(ig))/ptimestep |
---|
811 | |
---|
812 | if(pqsurf(ig,igcm_h2o_ice) |
---|
813 | & +pdqsdif(ig,igcm_h2o_ice)*ptimestep |
---|
814 | & .gt.frost_albedo_threshold) ! if there is still ice, T cannot exceed To |
---|
815 | & pdtsrf(ig) = min(pdtsrf(ig),(To-ptsrf(ig))/ptimestep) ! ice melt case |
---|
816 | |
---|
817 | ENDDO ! of DO ig=1,ngrid |
---|
818 | ELSE |
---|
819 | c Starting upward calculations for simple mixing of tracer (dust) |
---|
820 | DO ig=1,ngrid |
---|
821 | zq(ig,1,iq)=zc(ig,1) |
---|
822 | ENDDO |
---|
823 | END IF ! of IF ((water).and.(iq.eq.igcm_h2o_vap)) |
---|
824 | |
---|
825 | DO ilay=2,nlay |
---|
826 | DO ig=1,ngrid |
---|
827 | zq(ig,ilay,iq)=zc(ig,ilay)+zd(ig,ilay)*zq(ig,ilay-1,iq) |
---|
828 | ENDDO |
---|
829 | ENDDO |
---|
830 | enddo ! of do iq=1,nq |
---|
831 | end if ! of if(tracer) |
---|
832 | |
---|
833 | |
---|
834 | c----------------------------------------------------------------------- |
---|
835 | c 8. calcul final des tendances de la diffusion verticale |
---|
836 | c ---------------------------------------------------- |
---|
837 | |
---|
838 | DO ilev = 1, nlay |
---|
839 | DO ig=1,ngrid |
---|
840 | pdudif(ig,ilev)=( zu(ig,ilev)- |
---|
841 | $ (pu(ig,ilev)+pdufi(ig,ilev)*ptimestep) )/ptimestep |
---|
842 | pdvdif(ig,ilev)=( zv(ig,ilev)- |
---|
843 | $ (pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep) )/ptimestep |
---|
844 | hh = ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
---|
845 | $ + (latcond*dmice(ig,ilev)/cpp)/ppopsk(ig,ilev) |
---|
846 | pdhdif(ig,ilev)=( zhs(ig,ilev)- hh )/ptimestep |
---|
847 | ENDDO |
---|
848 | ENDDO |
---|
849 | |
---|
850 | if (tracer) then |
---|
851 | DO iq = 1, nq |
---|
852 | DO ilev = 1, nlay |
---|
853 | DO ig=1,ngrid |
---|
854 | pdqdif(ig,ilev,iq)=(zq(ig,ilev,iq)- |
---|
855 | $ (pq(ig,ilev,iq) + pdqfi(ig,ilev,iq)*ptimestep))/ptimestep |
---|
856 | ENDDO |
---|
857 | ENDDO |
---|
858 | ENDDO |
---|
859 | end if |
---|
860 | |
---|
861 | c ** diagnostique final |
---|
862 | c ------------------ |
---|
863 | |
---|
864 | IF(lecrit) THEN |
---|
865 | PRINT*,'In vdif' |
---|
866 | PRINT*,'Ts (t) and Ts (t+st)' |
---|
867 | WRITE(*,'(a10,3a15)') |
---|
868 | s 'theta(t)','theta(t+dt)','u(t)','u(t+dt)' |
---|
869 | PRINT*,ptsrf(ngrid/2+1),ztsrf2(ngrid/2+1) |
---|
870 | DO ilev=1,nlay |
---|
871 | WRITE(*,'(4f15.7)') |
---|
872 | s ph(ngrid/2+1,ilev),zhs(ngrid/2+1,ilev), |
---|
873 | s pu(ngrid/2+1,ilev),zu(ngrid/2+1,ilev) |
---|
874 | |
---|
875 | ENDDO |
---|
876 | ENDIF |
---|
877 | |
---|
878 | RETURN |
---|
879 | END SUBROUTINE vdifc |
---|