1 | MODULE vdif_cd_mod |
---|
2 | |
---|
3 | !======================================================================================================================! |
---|
4 | ! Subject: |
---|
5 | !--------- |
---|
6 | ! Module used to compute the exchange coefficient in the surface layers Cd; Ch |
---|
7 | !----------------------------------------------------------------------------------------------------------------------! |
---|
8 | ! Reference: |
---|
9 | !----------- |
---|
10 | ! Colaïtis, A., Spiga, A., Hourdin, F., Rio, C., Forget, F., and Millour, E. (2013), A thermal plume model for the Martian convective boundary layer, J. Geophys. Res. Planets, 118, 1468–1487, doi:10.1002/jgre.20104. |
---|
11 | ! |
---|
12 | !======================================================================================================================! |
---|
13 | |
---|
14 | IMPLICIT NONE |
---|
15 | |
---|
16 | CONTAINS |
---|
17 | |
---|
18 | SUBROUTINE vdif_cd(ngrid,nlay,nslope,pz0,pg,pz,pp,pu,pv,wstar,pts,ph,mumean,pqvap,pqsurf,write_outputs,pcdv,pcdh) |
---|
19 | |
---|
20 | use comcstfi_h |
---|
21 | use turb_mod, only: turb_resolved |
---|
22 | use watersat_mod, only: watersat |
---|
23 | use lmdz_atke_turbulence_ini, only : smmin, ric, cinf, cepsilon, pr_slope, pr_asym, pr_neut, ri0, ri1, cn, rpi |
---|
24 | use paleoclimate_mod, only: include_waterbuoyancy |
---|
25 | use write_output_mod, only: write_output |
---|
26 | use comslope_mod, ONLY: iflat |
---|
27 | IMPLICIT NONE |
---|
28 | include "callkeys.h" |
---|
29 | |
---|
30 | |
---|
31 | !======================================================================= |
---|
32 | ! |
---|
33 | ! Subject: computation of the surface drag coefficient using the |
---|
34 | ! ------- approch developed by Loui for ECMWF. |
---|
35 | ! |
---|
36 | ! Author: Frederic Hourdin 15 /10 /93 |
---|
37 | ! Modified by : Arnaud Colaitis 03/08/11; rewritten by LL to switch to F90 |
---|
38 | ! ------- |
---|
39 | ! |
---|
40 | ! Arguments: |
---|
41 | ! ---------- |
---|
42 | ! |
---|
43 | ! inputs: |
---|
44 | ! ------ |
---|
45 | ! ngrid size of the horizontal grid |
---|
46 | ! pg gravity (m s -2) |
---|
47 | ! pz(ngrid,nlay) height of layers |
---|
48 | ! pp(ngrid,nlay) pressure of layers |
---|
49 | ! pu(ngrid,nlay) u component of the wind |
---|
50 | ! pv(ngrid,nlay) v component of the wind |
---|
51 | ! pts(ngrid) surface temperature |
---|
52 | ! ph(ngrid) potential temperature T*(p/ps)^kappa |
---|
53 | ! mumean Molecular mass of the atmosphere (kg/mol) |
---|
54 | ! pqvap(ngrid,nlay) Water vapor mixing ratio (kg/kg) to account for vapor flottability |
---|
55 | ! pqsurf(ngrid) Water ice frost on the surface(kg/m^2) to account for vapor flottability |
---|
56 | ! |
---|
57 | ! outputs: |
---|
58 | ! -------- |
---|
59 | ! pcdv(ngrid) Cd for the wind |
---|
60 | ! pcdh(ngrid) Cd for potential temperature |
---|
61 | ! |
---|
62 | !======================================================================= |
---|
63 | |
---|
64 | |
---|
65 | !----------------------------------------------------------------------- |
---|
66 | ! Declarations: |
---|
67 | ! ------------- |
---|
68 | |
---|
69 | |
---|
70 | ! Arguments: |
---|
71 | |
---|
72 | ! Inputs: |
---|
73 | ! ---------- |
---|
74 | INTEGER, INTENT(IN) :: ngrid,nlay,nslope ! Number of points in the physical grid and atmospheric grid |
---|
75 | REAL, INTENT(IN) :: pz0(ngrid) ! Surface Roughness (m) |
---|
76 | REAL, INTENT(IN) :: pg ! Mars gravity (m/s^2) |
---|
77 | REAL, INTENT(IN) :: pz(ngrid,nlay),pp(ngrid,nlay) ! Layers pseudo altitudes (m) and pressure (Pa) |
---|
78 | REAL, INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) ! Zonal and Meriditionnal winds (m/s) |
---|
79 | REAL, INTENT(IN) :: pts(ngrid,nslope),ph(ngrid,nlay) ! Surface Temperature and atmospheric temperature (K) |
---|
80 | REAL, INTENT(IN) :: wstar(ngrid) ! Vertical velocity due to turbulence (m/s) |
---|
81 | REAL, INTENT(IN) :: mumean(ngrid) ! Molecular mass of the atmosphere (kg/mol) |
---|
82 | REAL, INTENT(IN) :: pqvap(ngrid,nlay) ! Water vapor mixing ratio (kg/kg) to account for vapor flottability |
---|
83 | REAL, INTENT(IN) :: pqsurf(ngrid,nslope) ! Water ice frost on the surface (kg/m^2) to account for vapor flottability |
---|
84 | LOGICAL, INTENT(IN) :: write_outputs ! write_output in xios or not. |
---|
85 | |
---|
86 | ! Outputs: |
---|
87 | ! ---------- |
---|
88 | REAL, INTENT(OUT) :: pcdv(ngrid,nslope) ! momentum drag coefficient (1) |
---|
89 | REAL, INTENT(OUT) :: pcdh(ngrid,nslope) ! heat drag coefficient (1) |
---|
90 | |
---|
91 | ! Local: |
---|
92 | ! ------ |
---|
93 | |
---|
94 | INTEGER ig,islope ! Loop variable |
---|
95 | |
---|
96 | REAL karman,nu ! Von Karman constant and fluid kinematic viscosity |
---|
97 | |
---|
98 | LOGICAL firstcal |
---|
99 | DATA karman,nu/.41,0.001/ |
---|
100 | DATA firstcal/.true./ |
---|
101 | SAVE karman,nu |
---|
102 | |
---|
103 | !$OMP THREADPRIVATE(karman,nu) |
---|
104 | |
---|
105 | REAL rib(ngrid,nslope) ! Bulk Richardson number [virtual or dry] (1) |
---|
106 | REAL rib_dry(ngrid,nslope) ! Dry bulk Richardson number [virtual or dry] (1) |
---|
107 | REAL fm(ngrid,nslope) ! stability function for momentum (1) |
---|
108 | REAL fh(ngrid,nslope) ! stability function for heat (1) |
---|
109 | |
---|
110 | ! Formalism for stability functions fm= 1/phim^2; fh = 1/(phim*phih) where |
---|
111 | ! phim = 1+betam*zeta or (1-bm*zeta)**am |
---|
112 | ! phih = alphah + betah*zeta or alphah(1.-bh*zeta)**ah |
---|
113 | ! ah and am are assumed to be -0.25 and -0.5 respectively |
---|
114 | ! lambda is an intermediate variable to simplify the expression |
---|
115 | REAL betam, betah, alphah, bm, bh, lambda |
---|
116 | |
---|
117 | REAL pz0t ! initial thermal roughness length z0t for the iterative scheme (m) |
---|
118 | REAL ric_colaitis ! critical richardson number (1) |
---|
119 | REAL reynolds(ngrid,nslope) ! Reynolds number (1) |
---|
120 | REAL prandtl(ngrid) ! Prandtl number (1) |
---|
121 | REAL pz0tcomp(ngrid) ! computed z0t during the iterative scheme (m) |
---|
122 | REAL z0t(ngrid,nslope) ! computed z0t at the last step the iterative scheme (m) |
---|
123 | REAL ite ! Number of iteration (1) |
---|
124 | REAL itemax ! Maximum number of iteration (1) |
---|
125 | REAL residual ! Residual between pz0t and pz0tcomp (m) |
---|
126 | REAL tol_iter ! Tolerance for the residual to ensure convergence (1= |
---|
127 | |
---|
128 | REAL zu2(ngrid) ! Near surface winds (m/s) |
---|
129 | |
---|
130 | REAL cdn(ngrid) ! neutral momentum drag coefficient (1) |
---|
131 | REAL chn(ngrid) ! neutral heat drag coefficient (1) |
---|
132 | REAL z1z0,z1z0t ! ratios z1/z0 and z1/z0T |
---|
133 | REAL z1,zcd0 ! Neutral roughness (m) and Cd/Ch coefficient when call richls is not called |
---|
134 | REAL tsurf_v(ngrid,nslope) ! Virtual surface temperature, accounting for vapor flottability |
---|
135 | REAL temp_v(ngrid) ! Potential virtual air temperature in the frist layer, accounting for vapor flottability |
---|
136 | REAL mu_h2o ! Molecular mass of water vapor (kg/mol) |
---|
137 | REAL tol_frost ! Tolerance to consider the effect of frost on the surface |
---|
138 | REAL qsat(ngrid) ! saturated mixing ratio of water vapor |
---|
139 | |
---|
140 | REAL sm ! Stability function computed with the ATKE scheme |
---|
141 | REAL f_ri_cd_min ! minimum of the stability function with the ATKE scheme |
---|
142 | |
---|
143 | ! Code: |
---|
144 | ! -------- |
---|
145 | |
---|
146 | ! Initialisation |
---|
147 | itemax= 10 |
---|
148 | tol_iter = 0.01 |
---|
149 | mu_h2o = 18e-3 |
---|
150 | tol_frost = 1e-4 |
---|
151 | reynolds(:,:) = 0. |
---|
152 | pz0t = 0. |
---|
153 | pz0tcomp(:) = 0.1*pz0(:) |
---|
154 | rib(:,:) = 0. |
---|
155 | rib_dry(:,:) = 0. |
---|
156 | pcdv(:,:) = 0. |
---|
157 | pcdh(:,:) = 0. |
---|
158 | z0t(:,:) = 0. |
---|
159 | fm(:,:) = 0. |
---|
160 | fh(:,:) = 0. |
---|
161 | f_ri_cd_min = 0.01 |
---|
162 | ! this formulation assumes alphah=1., implying betah=betam |
---|
163 | ! We use Dyer et al. parameters, as they cover a broad range of Richardson numbers : |
---|
164 | bm = 16. |
---|
165 | bh = 16. |
---|
166 | alphah = 1. |
---|
167 | betam = 5. |
---|
168 | betah = 5. |
---|
169 | lambda = (sqrt(bh/bm))/alphah |
---|
170 | |
---|
171 | ric_colaitis = betah/(betam**2) |
---|
172 | |
---|
173 | IF(include_waterbuoyancy) then |
---|
174 | temp_v(:) = ph(:,1)*(1.+pqvap(:,1)/(mu_h2o/mumean(:)))/(1.+pqvap(:,1)) |
---|
175 | DO islope = 1,nslope |
---|
176 | DO ig = 1,ngrid |
---|
177 | IF(pqsurf(ig,islope).gt.tol_frost) then |
---|
178 | call watersat(1,pts(ig,islope),pp(ig,1),qsat(ig)) |
---|
179 | tsurf_v(ig,islope) = pts(ig,islope)*(1.+qsat(ig)/(mu_h2o/mumean(ig)))/(1.+qsat(ig)) |
---|
180 | ELSE |
---|
181 | tsurf_v(ig,islope) = pts(ig,islope)*(1.+pqvap(ig,1)/(mu_h2o/mumean(ig)))/(1.+pqvap(ig,1)) |
---|
182 | ENDIF |
---|
183 | ENDDO |
---|
184 | ENDDO |
---|
185 | ELSE |
---|
186 | tsurf_v(:,:) = pts(:,:) |
---|
187 | temp_v(:) = ph(:,1) |
---|
188 | ENDIF |
---|
189 | |
---|
190 | IF(.not.callrichsl) then |
---|
191 | ! Original formulation as in LMDZ Earth: Cd = Ch = (kappa/(ln(1+z1/z0)))^2 |
---|
192 | ! NB: In forget et al., 1999, it's Cd = Ch = (kappa/(ln(z1/z0)))^2 |
---|
193 | DO ig = 1,ngrid |
---|
194 | z1 = 1.E+0 + pz(ig,1)/pz0(ig) |
---|
195 | zcd0 = karman/log(z1) |
---|
196 | zcd0 = zcd0*zcd0 |
---|
197 | DO islope = 1,nslope |
---|
198 | pcdv(ig,islope) = zcd0 |
---|
199 | pcdh(ig,islope) = zcd0 |
---|
200 | ENDDO |
---|
201 | ENDDO |
---|
202 | ELSE |
---|
203 | ! We follow the parameterization from Colaitis et al., 2013 (supplementary material) |
---|
204 | DO islope = 1,nslope |
---|
205 | DO ig=1,ngrid |
---|
206 | ite = 0. |
---|
207 | residual = 100*tol_iter*pz0(ig) |
---|
208 | z1z0=pz(ig,1)/pz0(ig) |
---|
209 | cdn(ig)=karman/log(z1z0) |
---|
210 | cdn(ig)=cdn(ig)*cdn(ig) |
---|
211 | DO WHILE((residual .gt. tol_iter*pz0(ig)) .and. (ite .lt. itemax)) |
---|
212 | ! Computations of z0T; iterated until z0T converges |
---|
213 | pz0t = pz0tcomp(ig) |
---|
214 | z1z0t=pz(ig,1)/pz0t |
---|
215 | chn(ig)=cdn(ig)*log(z1z0)/log(z1z0t) |
---|
216 | IF ((pu(ig,1) .ne. 0.) .or. (pv(ig,1) .ne. 0.)) then |
---|
217 | zu2(ig) = pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) + (log(1.+0.7*wstar(ig) + 2.3*wstar(ig)**2))**2 ! Near surface winds account for buoyancy |
---|
218 | IF(turb_resolved) zu2(ig)=MAX(zu2(ig),1.) |
---|
219 | ! Richardson number formulation proposed by D.E. England et al. (1995) |
---|
220 | rib(ig,islope) = (pg/tsurf_v(ig,islope))*sqrt(pz(ig,1)*pz0(ig))*(((log(pz(ig,1)/pz0(ig)))**2)/(log(pz(ig,1)/pz0t)))*(temp_v(ig)-tsurf_v(ig,islope))/zu2(ig) |
---|
221 | rib_dry(ig,islope) = (pg/pts(ig,islope))*sqrt(pz(ig,1)*pz0(ig))*(((log(pz(ig,1)/pz0(ig)))**2)/(log(pz(ig,1)/pz0t)))*(ph(ig,1)-pts(ig,islope))/zu2(ig) |
---|
222 | ELSE |
---|
223 | print*,'warning, infinite Richardson at surface' |
---|
224 | print*,pu(ig,1),pv(ig,1) |
---|
225 | rib(ig,islope) = ric_colaitis |
---|
226 | rib_dry(ig,islope) = ric_colaitis |
---|
227 | ENDIF |
---|
228 | ! Compute the stability functions fm; fh depending on the stability of the surface layer |
---|
229 | |
---|
230 | IF(callatke) THEN |
---|
231 | ! Computation following parameterizaiton from ATKE |
---|
232 | IF(rib(ig,islope) .gt. 0) THEN |
---|
233 | ! STABLE BOUNDARY LAYER :include_waterbuoyancy |
---|
234 | sm = MAX(smmin,cn*(1.-rib(ig,islope)/ric)) |
---|
235 | ! prandlt expression from venayagamoorthy and stretch 2010, Li et al 2019 |
---|
236 | prandtl(ig) = pr_neut*exp(-pr_slope/pr_neut*rib(ig,islope)+rib(ig,islope)/pr_neut) + rib(ig,islope) * pr_slope |
---|
237 | fm(ig,islope) = max((sm**(3./2.) * sqrt(cepsilon) * (1 - rib(ig,islope) / prandtl(ig))**(1./2.)),f_ri_cd_min) |
---|
238 | fh(ig,islope) = max((fm(ig,islope) / prandtl(ig)), f_ri_cd_min) |
---|
239 | ELSE |
---|
240 | ! UNSTABLE BOUNDARY LAYER : |
---|
241 | sm = 2./rpi * (cinf - cn) * atan(-rib(ig,islope)/ri0) + cn |
---|
242 | prandtl(ig) = -2./rpi * (pr_asym - pr_neut) * atan(rib(ig,islope)/ri1) + pr_neut |
---|
243 | fm(ig,islope) = MAX((sm**(3./2.) * sqrt(cepsilon) * (1 - rib(ig,islope) / prandtl(ig))**(1./2.)),f_ri_cd_min) |
---|
244 | fh(ig,islope) = MAX((fm(ig,islope) / prandtl(ig)), f_ri_cd_min) |
---|
245 | ENDIF ! Rib < 0 |
---|
246 | ELSE |
---|
247 | ! Computation following parameterizaiton from from D.E. England et al. (95) |
---|
248 | IF (rib(ig,islope) .gt. 0.) THEN |
---|
249 | ! STABLE BOUNDARY LAYER : |
---|
250 | prandtl(ig) = 1. |
---|
251 | IF(rib(ig,islope) .lt. ric_colaitis) THEN |
---|
252 | ! Assuming alphah=1. and bh=bm for stable conditions : |
---|
253 | fm(ig,islope) = ((ric_colaitis-rib(ig,islope))/ric_colaitis)**2 |
---|
254 | fh(ig,islope) = ((ric_colaitis-rib(ig,islope))/ric_colaitis)**2 |
---|
255 | ELSE |
---|
256 | ! For Ri>Ric, we consider Ri->Infinity => no turbulent mixing at surface |
---|
257 | fm(ig,islope) = 1. |
---|
258 | fh(ig,islope) = 1. |
---|
259 | ENDIF |
---|
260 | ELSE |
---|
261 | ! UNSTABLE BOUNDARY LAYER : |
---|
262 | fm(ig,islope) = sqrt(1.-lambda*bm*rib(ig,islope)) |
---|
263 | fh(ig,islope) = (1./alphah)*((1.-lambda*bh*rib(ig,islope))**0.5)*(1.-lambda*bm*rib(ig,islope))**0.25 |
---|
264 | prandtl(ig) = alphah*((1.-lambda*bm*rib(ig,islope))**0.25)/((1.-lambda*bh*rib(ig,islope))**0.5) |
---|
265 | ENDIF ! Rib < 0 |
---|
266 | ENDIF ! atke |
---|
267 | ! Recompute the reynolds and z0t |
---|
268 | reynolds(ig,islope) = karman*sqrt(fm(ig,islope))*sqrt(zu2(ig))*pz0(ig)/(log(z1z0)*nu) |
---|
269 | pz0tcomp(ig) = pz0(ig)*exp(-karman*7.3*(reynolds(ig,islope)**0.25)*(prandtl(ig)**0.5)+5*karman) |
---|
270 | residual = abs(pz0t-pz0tcomp(ig)) |
---|
271 | ite = ite+1 |
---|
272 | ENDDO ! of while |
---|
273 | |
---|
274 | ! Compute the coefficients Cdv; Cdh : neutral coefficient x stability functions |
---|
275 | pcdv(ig,islope)=cdn(ig)*fm(ig,islope) |
---|
276 | pcdh(ig,islope)=chn(ig)*fh(ig,islope) |
---|
277 | z0t(ig,islope) = pz0tcomp(ig) |
---|
278 | pz0t = 0. ! for next grid point |
---|
279 | ENDDO ! of ngrid |
---|
280 | enddo |
---|
281 | ENDIF !of if call richardson surface layer |
---|
282 | |
---|
283 | IF(write_outputs) then |
---|
284 | |
---|
285 | call write_output("rib_dry_vdif_cd","Dry Richardson number in vdif_cd","1",rib_dry(:,iflat)) |
---|
286 | |
---|
287 | call write_output("rib_vdif_cd","Richardson number in vdif_cd","1",rib(:,iflat)) |
---|
288 | |
---|
289 | call write_output("fm_vdif_cd","Momentum stability function in vdif_cd","1",fm(:,iflat)) |
---|
290 | |
---|
291 | call write_output("fh_vdif_cd","Heat stability function in vdif_cd","1",fh(:,iflat)) |
---|
292 | |
---|
293 | call write_output("z0t_vdif_cd","Thermal roughness length in vdif_cd","m",z0t(:,iflat)) |
---|
294 | |
---|
295 | call write_output("z0_vdif_cd","Momentum roughness length in vdif_cd","m",pz0(:)) |
---|
296 | |
---|
297 | call write_output("Reynolds_vdif_cd","Reynolds number in vdif_cd","1",reynolds(:,iflat)) |
---|
298 | |
---|
299 | ENDIF |
---|
300 | |
---|
301 | RETURN |
---|
302 | |
---|
303 | END SUBROUTINE vdif_cd |
---|
304 | |
---|
305 | END MODULE vdif_cd_mod |
---|
306 | |
---|
307 | |
---|
308 | |
---|
309 | |
---|
310 | |
---|
311 | |
---|
312 | |
---|
313 | |
---|
314 | |
---|
315 | |
---|
316 | |
---|
317 | |
---|