| 1 | SUBROUTINE vdif_cd(ngrid,nlay,pz0, |
|---|
| 2 | & pg,pz,pu,pv,wstar,pts,ph,pcdv,pcdh) |
|---|
| 3 | USE comcstfi_h |
|---|
| 4 | use turb_mod, only: turb_resolved |
|---|
| 5 | IMPLICIT NONE |
|---|
| 6 | c======================================================================= |
|---|
| 7 | c |
|---|
| 8 | c Subject: computation of the surface drag coefficient using the |
|---|
| 9 | c ------- approch developed by Loui for ECMWF. |
|---|
| 10 | c |
|---|
| 11 | c Author: Frederic Hourdin 15 /10 /93 |
|---|
| 12 | c Modified by : Arnaud Colaitis 03/08/11 |
|---|
| 13 | c ------- |
|---|
| 14 | c |
|---|
| 15 | c Arguments: |
|---|
| 16 | c ---------- |
|---|
| 17 | c |
|---|
| 18 | c inputs: |
|---|
| 19 | c ------ |
|---|
| 20 | c ngrid size of the horizontal grid |
|---|
| 21 | c pg gravity (m s -2) |
|---|
| 22 | c pz(ngrid,nlay) height of layers |
|---|
| 23 | c pu(ngrid,nlay) u component of the wind |
|---|
| 24 | c pv(ngrid,nlay) v component of the wind |
|---|
| 25 | c pts(ngrid) surface temperature |
|---|
| 26 | c ph(ngrid) potential temperature T*(p/ps)^kappa |
|---|
| 27 | c |
|---|
| 28 | c outputs: |
|---|
| 29 | c -------- |
|---|
| 30 | c pcdv(ngrid) Cd for the wind |
|---|
| 31 | c pcdh(ngrid) Cd for potential temperature |
|---|
| 32 | c |
|---|
| 33 | c======================================================================= |
|---|
| 34 | c |
|---|
| 35 | c----------------------------------------------------------------------- |
|---|
| 36 | c Declarations: |
|---|
| 37 | c ------------- |
|---|
| 38 | |
|---|
| 39 | #include "callkeys.h" |
|---|
| 40 | |
|---|
| 41 | c Arguments: |
|---|
| 42 | c ---------- |
|---|
| 43 | |
|---|
| 44 | INTEGER, INTENT(IN) :: ngrid,nlay |
|---|
| 45 | REAL, INTENT(IN) :: pz0(ngrid) |
|---|
| 46 | REAL, INTENT(IN) :: pg,pz(ngrid,nlay) |
|---|
| 47 | REAL, INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) |
|---|
| 48 | REAL, INTENT(IN) :: pts(ngrid),ph(ngrid,nlay) |
|---|
| 49 | REAL, INTENT(IN) :: wstar(ngrid) |
|---|
| 50 | REAL, INTENT(OUT) :: pcdv(ngrid),pcdh(ngrid) ! momentum and heat drag coefficient |
|---|
| 51 | |
|---|
| 52 | c Local: |
|---|
| 53 | c ------ |
|---|
| 54 | |
|---|
| 55 | INTEGER ig |
|---|
| 56 | |
|---|
| 57 | REAL karman,nu ! Von Karman constant and fluid kinematic viscosity |
|---|
| 58 | LOGICAL firstcal |
|---|
| 59 | DATA karman,nu/.41,0.001/ |
|---|
| 60 | DATA firstcal/.true./ |
|---|
| 61 | SAVE karman,nu |
|---|
| 62 | |
|---|
| 63 | c Local(2): |
|---|
| 64 | c --------- |
|---|
| 65 | REAL z1,zcd0 |
|---|
| 66 | |
|---|
| 67 | REAL rib(ngrid) ! Bulk Richardson number |
|---|
| 68 | REAL rig(ngrid) ! Gradient Richardson number |
|---|
| 69 | REAL fm(ngrid) ! stability function for momentum |
|---|
| 70 | REAL fh(ngrid) ! stability function for heat |
|---|
| 71 | REAL z1z0,z1z0t ! ratios z1/z0 and z1/z0T |
|---|
| 72 | |
|---|
| 73 | c phim = 1+betam*zeta or (1-bm*zeta)**am |
|---|
| 74 | c phih = alphah + betah*zeta or alphah(1.-bh*zeta)**ah |
|---|
| 75 | REAL betam, betah, alphah, bm, bh, lambda |
|---|
| 76 | c ah and am are assumed to be -0.25 and -0.5 respectively |
|---|
| 77 | |
|---|
| 78 | REAL cdn(ngrid),chn(ngrid) ! neutral momentum and heat drag coefficient |
|---|
| 79 | REAL pz0t ! initial thermal roughness length. (local) |
|---|
| 80 | REAL ric ! critical richardson number |
|---|
| 81 | REAL reynolds(ngrid) ! reynolds number for UBL |
|---|
| 82 | REAL prandtl(ngrid) ! prandtl number for UBL |
|---|
| 83 | REAL pz0tcomp(ngrid) ! computed z0t |
|---|
| 84 | REAL ite |
|---|
| 85 | REAL residual |
|---|
| 86 | REAL zu2(ngrid) |
|---|
| 87 | c----------------------------------------------------------------------- |
|---|
| 88 | c couche de surface: |
|---|
| 89 | c ------------------ |
|---|
| 90 | |
|---|
| 91 | c Original formulation : |
|---|
| 92 | |
|---|
| 93 | if(.not.callrichsl) then |
|---|
| 94 | |
|---|
| 95 | DO ig=1,ngrid |
|---|
| 96 | z1=1.E+0 + pz(ig,1)/pz0(ig) |
|---|
| 97 | zcd0=karman/log(z1) |
|---|
| 98 | zcd0=zcd0*zcd0 |
|---|
| 99 | pcdv(ig)=zcd0 |
|---|
| 100 | pcdh(ig)=zcd0 |
|---|
| 101 | ENDDO |
|---|
| 102 | |
|---|
| 103 | ! print*,'old : cd,ch; ',pcdv,pcdh |
|---|
| 104 | else |
|---|
| 105 | |
|---|
| 106 | reynolds(:)=0. |
|---|
| 107 | |
|---|
| 108 | c New formulation (AC) : |
|---|
| 109 | |
|---|
| 110 | c phim = 1+betam*zeta or (1-bm*zeta)**am |
|---|
| 111 | c phih = alphah + betah*zeta or alphah(1.-bh*zeta)**ah |
|---|
| 112 | c am=-0.25, ah=-0.5 |
|---|
| 113 | |
|---|
| 114 | pz0t = 0. ! for the sake of simplicity |
|---|
| 115 | pz0tcomp(:) = 0.1*pz0(:) |
|---|
| 116 | rib(:)=0. |
|---|
| 117 | |
|---|
| 118 | pcdv(:)=0. |
|---|
| 119 | pcdh(:)=0. |
|---|
| 120 | |
|---|
| 121 | c this formulation assumes alphah=1., implying betah=betam |
|---|
| 122 | c We use Dyer et al. parameters, as they cover a broad range of Richardson numbers : |
|---|
| 123 | bm=16. !UBL |
|---|
| 124 | bh=16. !UBL |
|---|
| 125 | alphah=1. |
|---|
| 126 | betam=5. !SBL |
|---|
| 127 | betah=5. !SBL |
|---|
| 128 | lambda=(sqrt(bh/bm))/alphah |
|---|
| 129 | ric=betah/(betam**2) |
|---|
| 130 | |
|---|
| 131 | DO ig=1,ngrid |
|---|
| 132 | |
|---|
| 133 | ite=0. |
|---|
| 134 | residual=abs(pz0tcomp(ig)-pz0t) |
|---|
| 135 | |
|---|
| 136 | do while((residual .gt. 0.01*pz0(ig)) .and. (ite .lt. 10.)) |
|---|
| 137 | |
|---|
| 138 | pz0t=pz0tcomp(ig) |
|---|
| 139 | |
|---|
| 140 | if ((pu(ig,1) .ne. 0.) .or. (pv(ig,1) .ne. 0.)) then |
|---|
| 141 | |
|---|
| 142 | c Classical Richardson number formulation |
|---|
| 143 | |
|---|
| 144 | c rib(ig) = (pg/ph(ig,1))*pz(ig,1)*(ph(ig,1)-pts(ig)) |
|---|
| 145 | c & /(pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1)) |
|---|
| 146 | |
|---|
| 147 | c Richardson number formulation proposed by D.E. England et al. (1995) |
|---|
| 148 | |
|---|
| 149 | ! zu2=MAX(pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1),0.25*wstar(ig)**2) |
|---|
| 150 | ! zu2=pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1) |
|---|
| 151 | ! zu2(ig)=MAX(pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1), & |
|---|
| 152 | ! & (0.3*wstar(ig))**2) |
|---|
| 153 | zu2(ig)=pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1) |
|---|
| 154 | & + (log(1.+0.7*wstar(ig) + 2.3*wstar(ig)**2))**2 |
|---|
| 155 | if(turb_resolved) then |
|---|
| 156 | zu2(ig)=MAX(zu2(ig),1.) |
|---|
| 157 | endif |
|---|
| 158 | ! zu2(ig)=pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1) + (0.5*wstar(ig))**2 |
|---|
| 159 | |
|---|
| 160 | ! we add the wstar to simulate |
|---|
| 161 | ! bulk Ri changes due to subgrid wind feeding the thermals |
|---|
| 162 | |
|---|
| 163 | ! rig(ig) = (pg/ph(ig,1))*((pz(ig,1)-pz0(ig))**2 |
|---|
| 164 | ! & /(pz(ig,1)-pz0t))*(ph(ig,1)-pts(ig)) |
|---|
| 165 | ! & /zu2 |
|---|
| 166 | |
|---|
| 167 | rib(ig) = (pg/pts(ig)) |
|---|
| 168 | ! & *pz(ig,1)*pz0(ig)/sqrt(pz(ig,1)*pz0t) |
|---|
| 169 | & *sqrt(pz(ig,1)*pz0(ig)) |
|---|
| 170 | & *(((log(pz(ig,1)/pz0(ig)))**2)/(log(pz(ig,1)/pz0t))) |
|---|
| 171 | & *(ph(ig,1)-pts(ig)) |
|---|
| 172 | & /zu2(ig) |
|---|
| 173 | |
|---|
| 174 | else |
|---|
| 175 | print*,'warning, infinite Richardson at surface' |
|---|
| 176 | print*,pu(ig,1),pv(ig,1) |
|---|
| 177 | rib(ig) = ric ! traiter ce cas ! |
|---|
| 178 | endif |
|---|
| 179 | |
|---|
| 180 | z1z0=pz(ig,1)/pz0(ig) |
|---|
| 181 | z1z0t=pz(ig,1)/pz0t |
|---|
| 182 | |
|---|
| 183 | cdn(ig)=karman/log(z1z0) |
|---|
| 184 | cdn(ig)=cdn(ig)*cdn(ig) |
|---|
| 185 | chn(ig)=cdn(ig)*log(z1z0)/log(z1z0t) |
|---|
| 186 | |
|---|
| 187 | c Stable case : |
|---|
| 188 | if (rib(ig) .gt. 0.) then |
|---|
| 189 | c From D.E. England et al. (95) |
|---|
| 190 | prandtl(ig)=1. |
|---|
| 191 | if(rib(ig) .lt. ric) then |
|---|
| 192 | c Assuming alphah=1. and bh=bm for stable conditions : |
|---|
| 193 | fm(ig)=((ric-rib(ig))/ric)**2 |
|---|
| 194 | fh(ig)=((ric-rib(ig))/ric)**2 |
|---|
| 195 | else |
|---|
| 196 | c For Ri>Ric, we consider Ri->Infinity => no turbulent mixing at surface |
|---|
| 197 | ! fm(ig)=0. |
|---|
| 198 | ! fh(ig)=0. |
|---|
| 199 | fm(ig)=1. |
|---|
| 200 | fh(ig)=1. |
|---|
| 201 | endif |
|---|
| 202 | c Unstable case : |
|---|
| 203 | else |
|---|
| 204 | c From D.E. England et al. (95) |
|---|
| 205 | fm(ig)=sqrt(1.-lambda*bm*rib(ig)) |
|---|
| 206 | fh(ig)=(1./alphah)*((1.-lambda*bh*rib(ig))**0.5)* |
|---|
| 207 | & (1.-lambda*bm*rib(ig))**0.25 |
|---|
| 208 | prandtl(ig)=alphah*((1.-lambda*bm*rib(ig))**0.25)/ |
|---|
| 209 | & ((1.-lambda*bh*rib(ig))**0.5) |
|---|
| 210 | endif |
|---|
| 211 | |
|---|
| 212 | reynolds(ig)=karman*sqrt(fm(ig)) |
|---|
| 213 | & *sqrt(zu2(ig)) |
|---|
| 214 | c & *sqrt(pu(ig,1)**2 + pv(ig,1)**2) |
|---|
| 215 | & *pz0(ig)/(log(z1z0)*nu) |
|---|
| 216 | pz0tcomp(ig)=pz0(ig)*exp(-karman*7.3* |
|---|
| 217 | & (reynolds(ig)**0.25)*(prandtl(ig)**0.5)) |
|---|
| 218 | |
|---|
| 219 | |
|---|
| 220 | residual = abs(pz0t-pz0tcomp(ig)) |
|---|
| 221 | ite = ite+1 |
|---|
| 222 | ! print*, "iteration nnumber, residual",ite,residual |
|---|
| 223 | |
|---|
| 224 | enddo ! of while |
|---|
| 225 | |
|---|
| 226 | pz0t=0. |
|---|
| 227 | |
|---|
| 228 | c Drag computation : |
|---|
| 229 | |
|---|
| 230 | pcdv(ig)=cdn(ig)*fm(ig) |
|---|
| 231 | pcdh(ig)=chn(ig)*fh(ig) |
|---|
| 232 | |
|---|
| 233 | ENDDO |
|---|
| 234 | ! |
|---|
| 235 | ! print*,'new : cd,ch; ',pcdv,pcdh |
|---|
| 236 | |
|---|
| 237 | ! Some useful diagnostics : |
|---|
| 238 | |
|---|
| 239 | ! call WRITEDIAGFI(ngrid,'RiB', |
|---|
| 240 | ! & 'Bulk Richardson nb','no units', |
|---|
| 241 | ! & 2,rib) |
|---|
| 242 | ! call WRITEDIAGFI(ngrid,'RiG', |
|---|
| 243 | ! & 'Grad Richardson nb','no units', |
|---|
| 244 | ! & 2,rig) |
|---|
| 245 | ! call WRITEDIAGFI(ngrid,'Pr', |
|---|
| 246 | ! & 'Prandtl nb','no units', |
|---|
| 247 | ! & 0,prandtl) |
|---|
| 248 | ! call WRITEDIAGFI(ngrid,'Re', |
|---|
| 249 | ! & 'Reynolds nb','no units', |
|---|
| 250 | ! & 0,reynolds) |
|---|
| 251 | ! call WRITEDIAGFI(ngrid,'z0tcomp', |
|---|
| 252 | ! & 'computed z0t','m', |
|---|
| 253 | ! & 2,pz0tcomp) |
|---|
| 254 | |
|---|
| 255 | |
|---|
| 256 | endif !of if call richardson surface layer |
|---|
| 257 | |
|---|
| 258 | RETURN |
|---|
| 259 | END |
|---|