1 | MODULE updatereffrad_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | SUBROUTINE updatereffrad(ngrid,nlayer, |
---|
8 | & rdust,rstormdust,rtopdust,rice,nuice, |
---|
9 | & reffrad,nueffrad, riceco2, nuiceco2, |
---|
10 | & pq,tauscaling,tau,pplay, pt) |
---|
11 | USE updaterad, ONLY: updaterdust, updaterice_micro, |
---|
12 | & updaterice_microco2, updaterice_typ |
---|
13 | use tracer_mod, only: nqmx, igcm_dust_mass, igcm_dust_number, |
---|
14 | & igcm_h2o_ice, igcm_ccn_mass, radius, |
---|
15 | & igcm_co2_ice, nuiceco2_ref, |
---|
16 | & igcm_ccnco2_number, igcm_ccnco2_mass, |
---|
17 | & igcm_ccnco2_h2o_number, |
---|
18 | & igcm_ccnco2_h2o_mass_ice, |
---|
19 | & igcm_ccnco2_h2o_mass_ccn, |
---|
20 | & igcm_ccn_number, nuice_ref, varian, |
---|
21 | & ref_r0, igcm_dust_submicron, |
---|
22 | & igcm_stormdust_mass,igcm_stormdust_number, |
---|
23 | & igcm_topdust_mass,igcm_topdust_number, |
---|
24 | & rho_ice |
---|
25 | USE dimradmars_mod, only: nueffdust,naerkind, |
---|
26 | & name_iaer, |
---|
27 | & iaer_dust_conrath,iaer_dust_doubleq, |
---|
28 | & iaer_dust_submicron,iaer_h2o_ice, |
---|
29 | & iaer_stormdust_doubleq,iaer_topdust_doubleq |
---|
30 | use dust_param_mod, only: doubleq, active |
---|
31 | IMPLICIT NONE |
---|
32 | c======================================================================= |
---|
33 | c subject: |
---|
34 | c -------- |
---|
35 | c Subroutine designed to update the aerosol size distribution used by |
---|
36 | c the radiative transfer scheme. This size distribution is assumed |
---|
37 | c to be a log-normal distribution, with effective radius "reffrad" and |
---|
38 | c variance "nueffrad". |
---|
39 | c At firstcall, "rice" and "nuice" are not known, because |
---|
40 | c the H2O ice microphysical scheme is called after the radiative |
---|
41 | c transfer in physiq.F. That's why we assess the size of the |
---|
42 | c water-ice particles at firstcall (see part 1.2 below). |
---|
43 | c |
---|
44 | c author: |
---|
45 | c ------ |
---|
46 | c J.-B. Madeleine (2009-2010) |
---|
47 | c |
---|
48 | c======================================================================= |
---|
49 | c |
---|
50 | c Declarations : |
---|
51 | c ------------- |
---|
52 | c |
---|
53 | include "callkeys.h" |
---|
54 | |
---|
55 | c----------------------------------------------------------------------- |
---|
56 | c Inputs/outputs: |
---|
57 | c ------ |
---|
58 | |
---|
59 | INTEGER, INTENT(in) :: ngrid,nlayer |
---|
60 | c Ice geometric mean radius (m) |
---|
61 | REAL, INTENT(out) :: rice(ngrid,nlayer) |
---|
62 | c Estimated effective variance of the size distribution (n.u.) |
---|
63 | REAL, INTENT(out) :: nuice(ngrid,nlayer) |
---|
64 | c Tracer mass mixing ratio (kg/kg) |
---|
65 | REAL, INTENT(in) :: pq(ngrid,nlayer,nqmx) |
---|
66 | REAL, INTENT(out) :: rdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
---|
67 | REAL, INTENT(out) :: rstormdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
---|
68 | REAL, INTENT(out) :: rtopdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
---|
69 | REAL, INTENT(in) :: pplay(ngrid,nlayer) ! altitude at the middle of the layers |
---|
70 | REAL, INTENT(in) :: tau(ngrid,naerkind) |
---|
71 | c Aerosol effective radius used for radiative transfer (meter) |
---|
72 | REAL, INTENT(out) :: reffrad(ngrid,nlayer,naerkind) |
---|
73 | c Aerosol effective variance used for radiative transfer (n.u.) |
---|
74 | REAL, INTENT(out) :: nueffrad(ngrid,nlayer,naerkind) |
---|
75 | REAL, INTENT(in) :: tauscaling(ngrid) ! Convertion factor for qccn and Nccn |
---|
76 | c CO2 ice mean radius (m) |
---|
77 | double precision, INTENT(out) :: riceco2(ngrid,nlayer) ! co2 ice radius |
---|
78 | REAL, INTENT(out) :: nuiceco2(ngrid,nlayer) |
---|
79 | REAL, INTENT(in) :: pt(ngrid,nlayer) ! temperature |
---|
80 | |
---|
81 | c Local variables: |
---|
82 | c --------------- |
---|
83 | |
---|
84 | INTEGER :: ig,l ! 3D grid indices |
---|
85 | INTEGER :: iaer ! Aerosol index |
---|
86 | |
---|
87 | c Number of cloud condensation nuclei near the surface |
---|
88 | c (only used at firstcall). This value is taken from |
---|
89 | c Montmessin et al. 2004 JGR 109 E10004 p5 (2E6 part m-3), and |
---|
90 | c converted to part kg-1 using a typical atmospheric density. |
---|
91 | |
---|
92 | REAL, PARAMETER :: ccn0 = 1.3E8 |
---|
93 | |
---|
94 | c For microphysics only: |
---|
95 | REAL Mo,No ! Mass and number of ccn |
---|
96 | REAL rhocloud(ngrid,nlayer) ! Cloud density (kg.m-3) |
---|
97 | c For CO2 microphysics only: |
---|
98 | REAL :: rhocloudco2(ngrid, nlayer) ! co2 cloud density |
---|
99 | |
---|
100 | LOGICAL,SAVE :: firstcall=.true. |
---|
101 | REAL Nccnco2, Qccnco2 |
---|
102 | REAL Nccnco2_h2o, Qccnco2_h2o |
---|
103 | REAL CBRT |
---|
104 | EXTERNAL CBRT |
---|
105 | |
---|
106 | |
---|
107 | !$OMP THREADPRIVATE(firstcall) |
---|
108 | |
---|
109 | c================================================================== |
---|
110 | c 1. Update radius from fields from dynamics or initial state |
---|
111 | c================================================================== |
---|
112 | |
---|
113 | c 1.1 Dust particles |
---|
114 | c ------------------ |
---|
115 | IF (doubleq.AND.active) THEN |
---|
116 | DO l=1,nlayer |
---|
117 | DO ig=1, ngrid |
---|
118 | call updaterdust(pq(ig,l,igcm_dust_mass), |
---|
119 | & pq(ig,l,igcm_dust_number),rdust(ig,l)) |
---|
120 | nueffdust(ig,l) = exp(varian**2.)-1. |
---|
121 | ENDDO |
---|
122 | ENDDO |
---|
123 | ELSE |
---|
124 | DO l=1,nlayer |
---|
125 | DO ig=1, ngrid |
---|
126 | rdust(ig,l) = 0.8E-6 |
---|
127 | nueffdust(ig,l) = 0.3 |
---|
128 | ENDDO |
---|
129 | ENDDO |
---|
130 | ENDIF |
---|
131 | |
---|
132 | ! updating radius of stormdust particles |
---|
133 | IF (rdstorm.AND.active) THEN |
---|
134 | DO l=1,nlayer |
---|
135 | DO ig=1, ngrid |
---|
136 | call updaterdust(pq(ig,l,igcm_stormdust_mass), |
---|
137 | & pq(ig,l,igcm_stormdust_number),rstormdust(ig,l)) |
---|
138 | nueffdust(ig,l) = exp(varian**2.)-1. |
---|
139 | ENDDO |
---|
140 | ENDDO |
---|
141 | ENDIF |
---|
142 | |
---|
143 | ! updating radius of topdust particles |
---|
144 | IF (slpwind.AND.active) THEN |
---|
145 | DO l=1,nlayer |
---|
146 | DO ig=1, ngrid |
---|
147 | call updaterdust(pq(ig,l,igcm_topdust_mass), |
---|
148 | & pq(ig,l,igcm_topdust_number),rtopdust(ig,l)) |
---|
149 | nueffdust(ig,l) = exp(varian**2.)-1. |
---|
150 | ENDDO |
---|
151 | ENDDO |
---|
152 | ENDIF |
---|
153 | |
---|
154 | c 1.2 Water-ice particles |
---|
155 | c ----------------------- |
---|
156 | |
---|
157 | IF (water.AND.activice) THEN |
---|
158 | IF (microphys) THEN |
---|
159 | |
---|
160 | c At firstcall, the true number and true mass of cloud condensation nuclei are not known. |
---|
161 | c Indeed it is scaled on the prescribed dust opacity via a 'tauscaling' coefficient |
---|
162 | c computed after radiative transfer. If tauscaling is not in startfi, we make an assumption for its value. |
---|
163 | |
---|
164 | IF (firstcall) THEN |
---|
165 | !IF (minval(tauscaling).lt.0) tauscaling(:) = 1.e-3 ! default value when non-read in startfi is -1 |
---|
166 | !IF (freedust) tauscaling(:) = 1. ! if freedust, enforce no rescaling at all |
---|
167 | firstcall = .false. |
---|
168 | ENDIF |
---|
169 | |
---|
170 | DO l=1,nlayer |
---|
171 | DO ig=1,ngrid |
---|
172 | call updaterice_micro(pq(ig,l,igcm_h2o_ice), |
---|
173 | & pq(ig,l,igcm_ccn_mass), |
---|
174 | & pq(ig,l,igcm_ccn_number), |
---|
175 | & tauscaling(ig),rice(ig,l), |
---|
176 | & rhocloud(ig,l)) |
---|
177 | nuice(ig,l) = nuice_ref |
---|
178 | ENDDO |
---|
179 | ENDDO |
---|
180 | |
---|
181 | ELSE ! if not microphys |
---|
182 | |
---|
183 | DO l=1,nlayer |
---|
184 | DO ig=1,ngrid |
---|
185 | call updaterice_typ(pq(ig,l,igcm_h2o_ice), |
---|
186 | & tau(ig,1),pplay(ig,l),rice(ig,l)) |
---|
187 | nuice(ig,l) = nuice_ref |
---|
188 | ENDDO |
---|
189 | ENDDO |
---|
190 | |
---|
191 | ENDIF ! of if microphys |
---|
192 | ENDIF ! of if (water.AND.activice) |
---|
193 | |
---|
194 | |
---|
195 | c 1.3 CO2-ice particles |
---|
196 | |
---|
197 | IF (co2clouds.AND.activeco2ice) THEN |
---|
198 | DO l=1,nlayer |
---|
199 | DO ig=1,ngrid |
---|
200 | Nccnco2 = pq(ig,l,igcm_ccnco2_number) |
---|
201 | Qccnco2 = pq(ig,l,igcm_ccnco2_mass) |
---|
202 | Nccnco2_h2o = 0. |
---|
203 | Qccnco2_h2o = 0. |
---|
204 | if (co2useh2o) then |
---|
205 | Nccnco2_h2o = pq(ig,l,igcm_ccnco2_h2o_number) |
---|
206 | Qccnco2_h2o = pq(ig,l,igcm_ccnco2_h2o_mass_ice) |
---|
207 | & + pq(ig,l,igcm_ccnco2_h2o_mass_ccn) |
---|
208 | Nccnco2 = Nccnco2 - Nccnco2_h2o |
---|
209 | Qccnco2 = Qccnco2 - Qccnco2_h2o |
---|
210 | end if |
---|
211 | |
---|
212 | call updaterice_microco2(dble(pq(ig,l,igcm_co2_ice)), |
---|
213 | & dble(Qccnco2), dble(Nccnco2), |
---|
214 | & dble(Qccnco2_h2o), |
---|
215 | & dble(Nccnco2_h2o), |
---|
216 | & pt(ig,l), |
---|
217 | & tauscaling(ig),riceco2(ig,l), |
---|
218 | & rhocloudco2(ig,l)) |
---|
219 | nuiceco2(ig,l) = nuiceco2_ref |
---|
220 | END DO |
---|
221 | ENDDO |
---|
222 | ENDIF ! of if (co2clouds.AND.activeco2ice) |
---|
223 | |
---|
224 | c================================================================== |
---|
225 | c 2. Radius used in the radiative transfer code (reffrad) |
---|
226 | c================================================================== |
---|
227 | |
---|
228 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
229 | aerkind: SELECT CASE (name_iaer(iaer)) |
---|
230 | c================================================================== |
---|
231 | CASE("dust_conrath") aerkind ! Typical dust profile |
---|
232 | c================================================================== |
---|
233 | DO l=1,nlayer |
---|
234 | DO ig=1,ngrid |
---|
235 | reffrad(ig,l,iaer) = rdust(ig,l) * |
---|
236 | & (1.e0 + nueffdust(ig,l))**2.5 |
---|
237 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
238 | ENDDO |
---|
239 | ENDDO |
---|
240 | c================================================================== |
---|
241 | CASE("dust_doubleq") aerkind! Two-moment scheme for dust |
---|
242 | c================================================================== |
---|
243 | DO l=1,nlayer |
---|
244 | DO ig=1,ngrid |
---|
245 | reffrad(ig,l,iaer) = rdust(ig,l) * ref_r0 |
---|
246 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
247 | ENDDO |
---|
248 | ENDDO |
---|
249 | c================================================================== |
---|
250 | CASE("dust_submicron") aerkind ! Small dust population |
---|
251 | c================================================================== |
---|
252 | DO l=1,nlayer |
---|
253 | DO ig=1,ngrid |
---|
254 | reffrad(ig,l,iaer)=radius(igcm_dust_submicron) |
---|
255 | nueffrad(ig,l,iaer)=0.03 |
---|
256 | ENDDO |
---|
257 | ENDDO |
---|
258 | c================================================================== |
---|
259 | CASE("h2o_ice") aerkind ! Water ice crystals |
---|
260 | c================================================================== |
---|
261 | DO l=1,nlayer |
---|
262 | DO ig=1,ngrid |
---|
263 | c About reffice, do not confuse the mass mean radius |
---|
264 | c (rayon moyen massique) and the number median radius |
---|
265 | c (or geometric mean radius, rayon moyen géométrique). |
---|
266 | c rice is a mass mean radius, whereas rdust |
---|
267 | c is a geometric mean radius: |
---|
268 | c number median rad = mass mean rad x exp(-1.5 sigma0^2) |
---|
269 | c (Montmessin et al. 2004 paragraph 30). Therefore: |
---|
270 | reffrad(ig,l,iaer)=rice(ig,l)*(1.+nuice_ref) |
---|
271 | nueffrad(ig,l,iaer)=nuice_ref |
---|
272 | ENDDO |
---|
273 | ENDDO |
---|
274 | c================================================================== |
---|
275 | CASE("co2_ice") aerkind ! CO2 ice crystals |
---|
276 | c================================================================== |
---|
277 | DO l=1,nlayer |
---|
278 | DO ig=1,ngrid |
---|
279 | reffrad(ig,l,iaer)=real(riceco2(ig,l))*(1.+nuiceco2_ref) |
---|
280 | nueffrad(ig,l,iaer)=nuiceco2_ref |
---|
281 | ENDDO |
---|
282 | ENDDO |
---|
283 | c================================================================== |
---|
284 | CASE("stormdust_doubleq") aerkind! Two-moment scheme for |
---|
285 | c stormdust; same distribution than normal dust |
---|
286 | c================================================================== |
---|
287 | DO l=1,nlayer |
---|
288 | DO ig=1,ngrid |
---|
289 | reffrad(ig,l,iaer) = rstormdust(ig,l) * ref_r0 |
---|
290 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
291 | ENDDO |
---|
292 | ENDDO |
---|
293 | c================================================================== |
---|
294 | CASE("topdust_doubleq") aerkind! MV18: Two-moment scheme for |
---|
295 | c topdust; same distribution than normal dust |
---|
296 | c================================================================== |
---|
297 | DO l=1,nlayer |
---|
298 | DO ig=1,ngrid |
---|
299 | reffrad(ig,l,iaer) = rtopdust(ig,l) * ref_r0 |
---|
300 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
301 | ENDDO |
---|
302 | ENDDO |
---|
303 | c================================================================== |
---|
304 | END SELECT aerkind |
---|
305 | ENDDO ! iaer (loop on aerosol kind) |
---|
306 | |
---|
307 | END SUBROUTINE updatereffrad |
---|
308 | |
---|
309 | END MODULE updatereffrad_mod |
---|