| 1 | MODULE updatereffrad_mod |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | SUBROUTINE updatereffrad(ngrid,nlayer, |
|---|
| 8 | & rdust,rstormdust,rtopdust,rice,nuice, |
|---|
| 9 | & reffrad,nueffrad, riceco2, nuiceco2, |
|---|
| 10 | & pq,tauscaling,tau,pplay, pt) |
|---|
| 11 | USE updaterad, ONLY: updaterdust, updaterice_micro, |
|---|
| 12 | & updaterice_microco2, updaterice_typ |
|---|
| 13 | use tracer_mod, only: nqmx, igcm_dust_mass, igcm_dust_number, |
|---|
| 14 | & igcm_h2o_ice, igcm_ccn_mass, radius, |
|---|
| 15 | & igcm_co2_ice, nuiceco2_ref, |
|---|
| 16 | & igcm_ccnco2_number, igcm_ccnco2_mass, |
|---|
| 17 | & igcm_ccn_number, nuice_ref, varian, |
|---|
| 18 | & ref_r0, igcm_dust_submicron, |
|---|
| 19 | & igcm_stormdust_mass,igcm_stormdust_number, |
|---|
| 20 | & igcm_topdust_mass,igcm_topdust_number, |
|---|
| 21 | & rho_ice |
|---|
| 22 | USE dimradmars_mod, only: nueffdust,naerkind, |
|---|
| 23 | & name_iaer, |
|---|
| 24 | & iaer_dust_conrath,iaer_dust_doubleq, |
|---|
| 25 | & iaer_dust_submicron,iaer_h2o_ice, |
|---|
| 26 | & iaer_stormdust_doubleq,iaer_topdust_doubleq |
|---|
| 27 | use dust_param_mod, only: doubleq, active |
|---|
| 28 | IMPLICIT NONE |
|---|
| 29 | c======================================================================= |
|---|
| 30 | c subject: |
|---|
| 31 | c -------- |
|---|
| 32 | c Subroutine designed to update the aerosol size distribution used by |
|---|
| 33 | c the radiative transfer scheme. This size distribution is assumed |
|---|
| 34 | c to be a log-normal distribution, with effective radius "reffrad" and |
|---|
| 35 | c variance "nueffrad". |
|---|
| 36 | c At firstcall, "rice" and "nuice" are not known, because |
|---|
| 37 | c the H2O ice microphysical scheme is called after the radiative |
|---|
| 38 | c transfer in physiq.F. That's why we assess the size of the |
|---|
| 39 | c water-ice particles at firstcall (see part 1.2 below). |
|---|
| 40 | c |
|---|
| 41 | c author: |
|---|
| 42 | c ------ |
|---|
| 43 | c J.-B. Madeleine (2009-2010) |
|---|
| 44 | c |
|---|
| 45 | c======================================================================= |
|---|
| 46 | c |
|---|
| 47 | c Declarations : |
|---|
| 48 | c ------------- |
|---|
| 49 | c |
|---|
| 50 | include "callkeys.h" |
|---|
| 51 | |
|---|
| 52 | c----------------------------------------------------------------------- |
|---|
| 53 | c Inputs/outputs: |
|---|
| 54 | c ------ |
|---|
| 55 | |
|---|
| 56 | INTEGER, INTENT(in) :: ngrid,nlayer |
|---|
| 57 | c Ice geometric mean radius (m) |
|---|
| 58 | REAL, INTENT(out) :: rice(ngrid,nlayer) |
|---|
| 59 | c Estimated effective variance of the size distribution (n.u.) |
|---|
| 60 | REAL, INTENT(out) :: nuice(ngrid,nlayer) |
|---|
| 61 | c Tracer mass mixing ratio (kg/kg) |
|---|
| 62 | REAL, INTENT(in) :: pq(ngrid,nlayer,nqmx) |
|---|
| 63 | REAL, INTENT(out) :: rdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
|---|
| 64 | REAL, INTENT(out) :: rstormdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
|---|
| 65 | REAL, INTENT(out) :: rtopdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
|---|
| 66 | REAL, INTENT(in) :: pplay(ngrid,nlayer) ! altitude at the middle of the layers |
|---|
| 67 | REAL, INTENT(in) :: tau(ngrid,naerkind) |
|---|
| 68 | c Aerosol effective radius used for radiative transfer (meter) |
|---|
| 69 | REAL, INTENT(out) :: reffrad(ngrid,nlayer,naerkind) |
|---|
| 70 | c Aerosol effective variance used for radiative transfer (n.u.) |
|---|
| 71 | REAL, INTENT(out) :: nueffrad(ngrid,nlayer,naerkind) |
|---|
| 72 | REAL, INTENT(in) :: tauscaling(ngrid) ! Convertion factor for qccn and Nccn |
|---|
| 73 | c CO2 ice mean radius (m) |
|---|
| 74 | double precision, INTENT(out) :: riceco2(ngrid,nlayer) ! co2 ice radius |
|---|
| 75 | REAL, INTENT(out) :: nuiceco2(ngrid,nlayer) |
|---|
| 76 | REAL, INTENT(in) :: pt(ngrid,nlayer) ! temperature |
|---|
| 77 | |
|---|
| 78 | c Local variables: |
|---|
| 79 | c --------------- |
|---|
| 80 | |
|---|
| 81 | INTEGER :: ig,l ! 3D grid indices |
|---|
| 82 | INTEGER :: iaer ! Aerosol index |
|---|
| 83 | |
|---|
| 84 | c Number of cloud condensation nuclei near the surface |
|---|
| 85 | c (only used at firstcall). This value is taken from |
|---|
| 86 | c Montmessin et al. 2004 JGR 109 E10004 p5 (2E6 part m-3), and |
|---|
| 87 | c converted to part kg-1 using a typical atmospheric density. |
|---|
| 88 | |
|---|
| 89 | REAL, PARAMETER :: ccn0 = 1.3E8 |
|---|
| 90 | |
|---|
| 91 | c For microphysics only: |
|---|
| 92 | REAL Mo,No ! Mass and number of ccn |
|---|
| 93 | REAL rhocloud(ngrid,nlayer) ! Cloud density (kg.m-3) |
|---|
| 94 | c For CO2 microphysics only: |
|---|
| 95 | REAL :: rhocloudco2(ngrid, nlayer) ! co2 cloud density |
|---|
| 96 | |
|---|
| 97 | LOGICAL,SAVE :: firstcall=.true. |
|---|
| 98 | |
|---|
| 99 | REAL CBRT |
|---|
| 100 | EXTERNAL CBRT |
|---|
| 101 | |
|---|
| 102 | c================================================================== |
|---|
| 103 | c 1. Update radius from fields from dynamics or initial state |
|---|
| 104 | c================================================================== |
|---|
| 105 | |
|---|
| 106 | c 1.1 Dust particles |
|---|
| 107 | c ------------------ |
|---|
| 108 | IF (doubleq.AND.active) THEN |
|---|
| 109 | DO l=1,nlayer |
|---|
| 110 | DO ig=1, ngrid |
|---|
| 111 | call updaterdust(pq(ig,l,igcm_dust_mass), |
|---|
| 112 | & pq(ig,l,igcm_dust_number),rdust(ig,l)) |
|---|
| 113 | nueffdust(ig,l) = exp(varian**2.)-1. |
|---|
| 114 | ENDDO |
|---|
| 115 | ENDDO |
|---|
| 116 | ELSE |
|---|
| 117 | DO l=1,nlayer |
|---|
| 118 | DO ig=1, ngrid |
|---|
| 119 | rdust(ig,l) = 0.8E-6 |
|---|
| 120 | nueffdust(ig,l) = 0.3 |
|---|
| 121 | ENDDO |
|---|
| 122 | ENDDO |
|---|
| 123 | ENDIF |
|---|
| 124 | |
|---|
| 125 | ! updating radius of stormdust particles |
|---|
| 126 | IF (rdstorm.AND.active) THEN |
|---|
| 127 | DO l=1,nlayer |
|---|
| 128 | DO ig=1, ngrid |
|---|
| 129 | call updaterdust(pq(ig,l,igcm_stormdust_mass), |
|---|
| 130 | & pq(ig,l,igcm_stormdust_number),rstormdust(ig,l)) |
|---|
| 131 | nueffdust(ig,l) = exp(varian**2.)-1. |
|---|
| 132 | ENDDO |
|---|
| 133 | ENDDO |
|---|
| 134 | ENDIF |
|---|
| 135 | |
|---|
| 136 | ! updating radius of topdust particles |
|---|
| 137 | IF (slpwind.AND.active) THEN |
|---|
| 138 | DO l=1,nlayer |
|---|
| 139 | DO ig=1, ngrid |
|---|
| 140 | call updaterdust(pq(ig,l,igcm_topdust_mass), |
|---|
| 141 | & pq(ig,l,igcm_topdust_number),rtopdust(ig,l)) |
|---|
| 142 | nueffdust(ig,l) = exp(varian**2.)-1. |
|---|
| 143 | ENDDO |
|---|
| 144 | ENDDO |
|---|
| 145 | ENDIF |
|---|
| 146 | |
|---|
| 147 | c 1.2 Water-ice particles |
|---|
| 148 | c ----------------------- |
|---|
| 149 | |
|---|
| 150 | IF (water.AND.activice) THEN |
|---|
| 151 | IF (microphys) THEN |
|---|
| 152 | |
|---|
| 153 | c At firstcall, the true number and true mass of cloud condensation nuclei are not known. |
|---|
| 154 | c Indeed it is scaled on the prescribed dust opacity via a 'tauscaling' coefficient |
|---|
| 155 | c computed after radiative transfer. If tauscaling is not in startfi, we make an assumption for its value. |
|---|
| 156 | |
|---|
| 157 | IF (firstcall) THEN |
|---|
| 158 | !IF (minval(tauscaling).lt.0) tauscaling(:) = 1.e-3 ! default value when non-read in startfi is -1 |
|---|
| 159 | !IF (freedust) tauscaling(:) = 1. ! if freedust, enforce no rescaling at all |
|---|
| 160 | firstcall = .false. |
|---|
| 161 | ENDIF |
|---|
| 162 | |
|---|
| 163 | DO l=1,nlayer |
|---|
| 164 | DO ig=1,ngrid |
|---|
| 165 | call updaterice_micro(pq(ig,l,igcm_h2o_ice), |
|---|
| 166 | & pq(ig,l,igcm_ccn_mass), |
|---|
| 167 | & pq(ig,l,igcm_ccn_number), |
|---|
| 168 | & tauscaling(ig),rice(ig,l), |
|---|
| 169 | & rhocloud(ig,l)) |
|---|
| 170 | nuice(ig,l) = nuice_ref |
|---|
| 171 | ENDDO |
|---|
| 172 | ENDDO |
|---|
| 173 | |
|---|
| 174 | ELSE ! if not microphys |
|---|
| 175 | |
|---|
| 176 | DO l=1,nlayer |
|---|
| 177 | DO ig=1,ngrid |
|---|
| 178 | call updaterice_typ(pq(ig,l,igcm_h2o_ice), |
|---|
| 179 | & tau(ig,1),pplay(ig,l),rice(ig,l)) |
|---|
| 180 | nuice(ig,l) = nuice_ref |
|---|
| 181 | ENDDO |
|---|
| 182 | ENDDO |
|---|
| 183 | |
|---|
| 184 | ENDIF ! of if microphys |
|---|
| 185 | ENDIF ! of if (water.AND.activice) |
|---|
| 186 | |
|---|
| 187 | |
|---|
| 188 | c 1.3 CO2-ice particles |
|---|
| 189 | |
|---|
| 190 | IF (co2clouds.AND.activeco2ice) THEN |
|---|
| 191 | DO l=1,nlayer |
|---|
| 192 | DO ig=1,ngrid |
|---|
| 193 | call updaterice_microco2(dble(pq(ig,l,igcm_co2_ice)), |
|---|
| 194 | & dble(pq(ig,l,igcm_ccnco2_mass)), |
|---|
| 195 | & dble(pq(ig,l,igcm_ccnco2_number)), |
|---|
| 196 | & pt(ig,l), |
|---|
| 197 | & tauscaling(ig),riceco2(ig,l), |
|---|
| 198 | & rhocloudco2(ig,l)) |
|---|
| 199 | nuiceco2(ig,l) = nuiceco2_ref |
|---|
| 200 | END DO |
|---|
| 201 | ENDDO |
|---|
| 202 | ENDIF ! of if (co2clouds.AND.activeco2ice) |
|---|
| 203 | |
|---|
| 204 | c================================================================== |
|---|
| 205 | c 2. Radius used in the radiative transfer code (reffrad) |
|---|
| 206 | c================================================================== |
|---|
| 207 | |
|---|
| 208 | DO iaer = 1, naerkind ! Loop on aerosol kind |
|---|
| 209 | aerkind: SELECT CASE (name_iaer(iaer)) |
|---|
| 210 | c================================================================== |
|---|
| 211 | CASE("dust_conrath") aerkind ! Typical dust profile |
|---|
| 212 | c================================================================== |
|---|
| 213 | DO l=1,nlayer |
|---|
| 214 | DO ig=1,ngrid |
|---|
| 215 | reffrad(ig,l,iaer) = rdust(ig,l) * |
|---|
| 216 | & (1.e0 + nueffdust(ig,l))**2.5 |
|---|
| 217 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
|---|
| 218 | ENDDO |
|---|
| 219 | ENDDO |
|---|
| 220 | c================================================================== |
|---|
| 221 | CASE("dust_doubleq") aerkind! Two-moment scheme for dust |
|---|
| 222 | c================================================================== |
|---|
| 223 | DO l=1,nlayer |
|---|
| 224 | DO ig=1,ngrid |
|---|
| 225 | reffrad(ig,l,iaer) = rdust(ig,l) * ref_r0 |
|---|
| 226 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
|---|
| 227 | ENDDO |
|---|
| 228 | ENDDO |
|---|
| 229 | c================================================================== |
|---|
| 230 | CASE("dust_submicron") aerkind ! Small dust population |
|---|
| 231 | c================================================================== |
|---|
| 232 | DO l=1,nlayer |
|---|
| 233 | DO ig=1,ngrid |
|---|
| 234 | reffrad(ig,l,iaer)=radius(igcm_dust_submicron) |
|---|
| 235 | nueffrad(ig,l,iaer)=0.03 |
|---|
| 236 | ENDDO |
|---|
| 237 | ENDDO |
|---|
| 238 | c================================================================== |
|---|
| 239 | CASE("h2o_ice") aerkind ! Water ice crystals |
|---|
| 240 | c================================================================== |
|---|
| 241 | DO l=1,nlayer |
|---|
| 242 | DO ig=1,ngrid |
|---|
| 243 | c About reffice, do not confuse the mass mean radius |
|---|
| 244 | c (rayon moyen massique) and the number median radius |
|---|
| 245 | c (or geometric mean radius, rayon moyen géométrique). |
|---|
| 246 | c rice is a mass mean radius, whereas rdust |
|---|
| 247 | c is a geometric mean radius: |
|---|
| 248 | c number median rad = mass mean rad x exp(-1.5 sigma0^2) |
|---|
| 249 | c (Montmessin et al. 2004 paragraph 30). Therefore: |
|---|
| 250 | reffrad(ig,l,iaer)=rice(ig,l)*(1.+nuice_ref) |
|---|
| 251 | nueffrad(ig,l,iaer)=nuice_ref |
|---|
| 252 | ENDDO |
|---|
| 253 | ENDDO |
|---|
| 254 | c================================================================== |
|---|
| 255 | CASE("co2_ice") aerkind ! CO2 ice crystals |
|---|
| 256 | c================================================================== |
|---|
| 257 | DO l=1,nlayer |
|---|
| 258 | DO ig=1,ngrid |
|---|
| 259 | reffrad(ig,l,iaer)=real(riceco2(ig,l))*(1.+nuiceco2_ref) |
|---|
| 260 | nueffrad(ig,l,iaer)=nuiceco2_ref |
|---|
| 261 | ENDDO |
|---|
| 262 | ENDDO |
|---|
| 263 | c================================================================== |
|---|
| 264 | CASE("stormdust_doubleq") aerkind! Two-moment scheme for |
|---|
| 265 | c stormdust; same distribution than normal dust |
|---|
| 266 | c================================================================== |
|---|
| 267 | DO l=1,nlayer |
|---|
| 268 | DO ig=1,ngrid |
|---|
| 269 | reffrad(ig,l,iaer) = rstormdust(ig,l) * ref_r0 |
|---|
| 270 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
|---|
| 271 | ENDDO |
|---|
| 272 | ENDDO |
|---|
| 273 | c================================================================== |
|---|
| 274 | CASE("topdust_doubleq") aerkind! MV18: Two-moment scheme for |
|---|
| 275 | c topdust; same distribution than normal dust |
|---|
| 276 | c================================================================== |
|---|
| 277 | DO l=1,nlayer |
|---|
| 278 | DO ig=1,ngrid |
|---|
| 279 | reffrad(ig,l,iaer) = rtopdust(ig,l) * ref_r0 |
|---|
| 280 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
|---|
| 281 | ENDDO |
|---|
| 282 | ENDDO |
|---|
| 283 | c================================================================== |
|---|
| 284 | END SELECT aerkind |
|---|
| 285 | ENDDO ! iaer (loop on aerosol kind) |
|---|
| 286 | |
|---|
| 287 | END SUBROUTINE updatereffrad |
|---|
| 288 | |
|---|
| 289 | END MODULE updatereffrad_mod |
|---|