[1969] | 1 | MODULE updatereffrad_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[38] | 7 | SUBROUTINE updatereffrad(ngrid,nlayer, |
---|
[2199] | 8 | & rdust,rstormdust,rtopdust,rice,nuice, |
---|
[2447] | 9 | & reffrad,nueffrad, riceco2, nuiceco2, |
---|
[2494] | 10 | & pq,tauscaling,tau,pplay, pt) |
---|
[1969] | 11 | USE updaterad, ONLY: updaterdust, updaterice_micro, |
---|
[2447] | 12 | & updaterice_microco2, updaterice_typ |
---|
[1036] | 13 | use tracer_mod, only: nqmx, igcm_dust_mass, igcm_dust_number, |
---|
| 14 | & igcm_h2o_ice, igcm_ccn_mass, radius, |
---|
[2447] | 15 | & igcm_co2_ice, nuiceco2_ref, |
---|
| 16 | & igcm_ccnco2_number, igcm_ccnco2_mass, |
---|
[2562] | 17 | & igcm_ccnco2_h2o_number, |
---|
| 18 | & igcm_ccnco2_h2o_mass_ice, |
---|
| 19 | & igcm_ccnco2_h2o_mass_ccn, |
---|
[1036] | 20 | & igcm_ccn_number, nuice_ref, varian, |
---|
[1974] | 21 | & ref_r0, igcm_dust_submicron, |
---|
[2199] | 22 | & igcm_stormdust_mass,igcm_stormdust_number, |
---|
[2494] | 23 | & igcm_topdust_mass,igcm_topdust_number, |
---|
| 24 | & rho_ice |
---|
[1246] | 25 | USE dimradmars_mod, only: nueffdust,naerkind, |
---|
| 26 | & name_iaer, |
---|
| 27 | & iaer_dust_conrath,iaer_dust_doubleq, |
---|
[1974] | 28 | & iaer_dust_submicron,iaer_h2o_ice, |
---|
[2199] | 29 | & iaer_stormdust_doubleq,iaer_topdust_doubleq |
---|
[2409] | 30 | use dust_param_mod, only: doubleq, active |
---|
[38] | 31 | IMPLICIT NONE |
---|
| 32 | c======================================================================= |
---|
| 33 | c subject: |
---|
| 34 | c -------- |
---|
| 35 | c Subroutine designed to update the aerosol size distribution used by |
---|
| 36 | c the radiative transfer scheme. This size distribution is assumed |
---|
| 37 | c to be a log-normal distribution, with effective radius "reffrad" and |
---|
| 38 | c variance "nueffrad". |
---|
| 39 | c At firstcall, "rice" and "nuice" are not known, because |
---|
| 40 | c the H2O ice microphysical scheme is called after the radiative |
---|
| 41 | c transfer in physiq.F. That's why we assess the size of the |
---|
| 42 | c water-ice particles at firstcall (see part 1.2 below). |
---|
| 43 | c |
---|
| 44 | c author: |
---|
| 45 | c ------ |
---|
| 46 | c J.-B. Madeleine (2009-2010) |
---|
| 47 | c |
---|
| 48 | c======================================================================= |
---|
| 49 | c |
---|
| 50 | c Declarations : |
---|
| 51 | c ------------- |
---|
| 52 | c |
---|
[1969] | 53 | include "callkeys.h" |
---|
[38] | 54 | |
---|
| 55 | c----------------------------------------------------------------------- |
---|
[1974] | 56 | c Inputs/outputs: |
---|
[38] | 57 | c ------ |
---|
| 58 | |
---|
[1974] | 59 | INTEGER, INTENT(in) :: ngrid,nlayer |
---|
[38] | 60 | c Ice geometric mean radius (m) |
---|
[1974] | 61 | REAL, INTENT(out) :: rice(ngrid,nlayer) |
---|
[38] | 62 | c Estimated effective variance of the size distribution (n.u.) |
---|
[1974] | 63 | REAL, INTENT(out) :: nuice(ngrid,nlayer) |
---|
[38] | 64 | c Tracer mass mixing ratio (kg/kg) |
---|
[1974] | 65 | REAL, INTENT(in) :: pq(ngrid,nlayer,nqmx) |
---|
| 66 | REAL, INTENT(out) :: rdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
---|
[2199] | 67 | REAL, INTENT(out) :: rstormdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
---|
| 68 | REAL, INTENT(out) :: rtopdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
---|
[1974] | 69 | REAL, INTENT(in) :: pplay(ngrid,nlayer) ! altitude at the middle of the layers |
---|
| 70 | REAL, INTENT(in) :: tau(ngrid,naerkind) |
---|
[38] | 71 | c Aerosol effective radius used for radiative transfer (meter) |
---|
[1974] | 72 | REAL, INTENT(out) :: reffrad(ngrid,nlayer,naerkind) |
---|
[38] | 73 | c Aerosol effective variance used for radiative transfer (n.u.) |
---|
[1974] | 74 | REAL, INTENT(out) :: nueffrad(ngrid,nlayer,naerkind) |
---|
| 75 | REAL, INTENT(in) :: tauscaling(ngrid) ! Convertion factor for qccn and Nccn |
---|
[2447] | 76 | c CO2 ice mean radius (m) |
---|
[2459] | 77 | double precision, INTENT(out) :: riceco2(ngrid,nlayer) ! co2 ice radius |
---|
[2447] | 78 | REAL, INTENT(out) :: nuiceco2(ngrid,nlayer) |
---|
[2494] | 79 | REAL, INTENT(in) :: pt(ngrid,nlayer) ! temperature |
---|
[2447] | 80 | |
---|
[38] | 81 | c Local variables: |
---|
| 82 | c --------------- |
---|
| 83 | |
---|
| 84 | INTEGER :: ig,l ! 3D grid indices |
---|
| 85 | INTEGER :: iaer ! Aerosol index |
---|
| 86 | |
---|
| 87 | c Number of cloud condensation nuclei near the surface |
---|
| 88 | c (only used at firstcall). This value is taken from |
---|
| 89 | c Montmessin et al. 2004 JGR 109 E10004 p5 (2E6 part m-3), and |
---|
| 90 | c converted to part kg-1 using a typical atmospheric density. |
---|
| 91 | |
---|
[2660] | 92 | REAL, PARAMETER :: ccn0 = 1.3E8, threshold = 1e-30 ! limit value |
---|
[629] | 93 | |
---|
| 94 | c For microphysics only: |
---|
| 95 | REAL Mo,No ! Mass and number of ccn |
---|
[1047] | 96 | REAL rhocloud(ngrid,nlayer) ! Cloud density (kg.m-3) |
---|
[2447] | 97 | c For CO2 microphysics only: |
---|
| 98 | REAL :: rhocloudco2(ngrid, nlayer) ! co2 cloud density |
---|
[38] | 99 | |
---|
[1224] | 100 | LOGICAL,SAVE :: firstcall=.true. |
---|
[2660] | 101 | REAL Nccnco2, Qccnco2, Niceco2 |
---|
[2562] | 102 | REAL Nccnco2_h2o, Qccnco2_h2o |
---|
[38] | 103 | REAL CBRT |
---|
| 104 | EXTERNAL CBRT |
---|
| 105 | |
---|
[2584] | 106 | |
---|
| 107 | !$OMP THREADPRIVATE(firstcall) |
---|
| 108 | |
---|
[38] | 109 | c================================================================== |
---|
[629] | 110 | c 1. Update radius from fields from dynamics or initial state |
---|
| 111 | c================================================================== |
---|
[38] | 112 | |
---|
[358] | 113 | c 1.1 Dust particles |
---|
| 114 | c ------------------ |
---|
| 115 | IF (doubleq.AND.active) THEN |
---|
| 116 | DO l=1,nlayer |
---|
| 117 | DO ig=1, ngrid |
---|
[744] | 118 | call updaterdust(pq(ig,l,igcm_dust_mass), |
---|
| 119 | & pq(ig,l,igcm_dust_number),rdust(ig,l)) |
---|
[358] | 120 | nueffdust(ig,l) = exp(varian**2.)-1. |
---|
| 121 | ENDDO |
---|
| 122 | ENDDO |
---|
| 123 | ELSE |
---|
| 124 | DO l=1,nlayer |
---|
| 125 | DO ig=1, ngrid |
---|
| 126 | rdust(ig,l) = 0.8E-6 |
---|
| 127 | nueffdust(ig,l) = 0.3 |
---|
| 128 | ENDDO |
---|
[38] | 129 | ENDDO |
---|
[358] | 130 | ENDIF |
---|
[1974] | 131 | |
---|
| 132 | ! updating radius of stormdust particles |
---|
| 133 | IF (rdstorm.AND.active) THEN |
---|
| 134 | DO l=1,nlayer |
---|
| 135 | DO ig=1, ngrid |
---|
| 136 | call updaterdust(pq(ig,l,igcm_stormdust_mass), |
---|
| 137 | & pq(ig,l,igcm_stormdust_number),rstormdust(ig,l)) |
---|
| 138 | nueffdust(ig,l) = exp(varian**2.)-1. |
---|
| 139 | ENDDO |
---|
| 140 | ENDDO |
---|
| 141 | ENDIF |
---|
[2199] | 142 | |
---|
| 143 | ! updating radius of topdust particles |
---|
[2628] | 144 | IF (topflows.AND.active) THEN |
---|
[2199] | 145 | DO l=1,nlayer |
---|
| 146 | DO ig=1, ngrid |
---|
| 147 | call updaterdust(pq(ig,l,igcm_topdust_mass), |
---|
| 148 | & pq(ig,l,igcm_topdust_number),rtopdust(ig,l)) |
---|
| 149 | nueffdust(ig,l) = exp(varian**2.)-1. |
---|
| 150 | ENDDO |
---|
| 151 | ENDDO |
---|
| 152 | ENDIF |
---|
[629] | 153 | |
---|
[358] | 154 | c 1.2 Water-ice particles |
---|
| 155 | c ----------------------- |
---|
[744] | 156 | |
---|
| 157 | IF (water.AND.activice) THEN |
---|
| 158 | IF (microphys) THEN |
---|
[1208] | 159 | |
---|
| 160 | c At firstcall, the true number and true mass of cloud condensation nuclei are not known. |
---|
| 161 | c Indeed it is scaled on the prescribed dust opacity via a 'tauscaling' coefficient |
---|
| 162 | c computed after radiative transfer. If tauscaling is not in startfi, we make an assumption for its value. |
---|
| 163 | |
---|
[744] | 164 | IF (firstcall) THEN |
---|
[1974] | 165 | !IF (minval(tauscaling).lt.0) tauscaling(:) = 1.e-3 ! default value when non-read in startfi is -1 |
---|
| 166 | !IF (freedust) tauscaling(:) = 1. ! if freedust, enforce no rescaling at all |
---|
[1208] | 167 | firstcall = .false. |
---|
| 168 | ENDIF |
---|
| 169 | |
---|
| 170 | DO l=1,nlayer |
---|
| 171 | DO ig=1,ngrid |
---|
| 172 | call updaterice_micro(pq(ig,l,igcm_h2o_ice), |
---|
| 173 | & pq(ig,l,igcm_ccn_mass), |
---|
| 174 | & pq(ig,l,igcm_ccn_number), |
---|
| 175 | & tauscaling(ig),rice(ig,l), |
---|
| 176 | & rhocloud(ig,l)) |
---|
| 177 | nuice(ig,l) = nuice_ref |
---|
[358] | 178 | ENDDO |
---|
[1208] | 179 | ENDDO |
---|
[744] | 180 | |
---|
| 181 | ELSE ! if not microphys |
---|
| 182 | |
---|
| 183 | DO l=1,nlayer |
---|
| 184 | DO ig=1,ngrid |
---|
| 185 | call updaterice_typ(pq(ig,l,igcm_h2o_ice), |
---|
| 186 | & tau(ig,1),pplay(ig,l),rice(ig,l)) |
---|
| 187 | nuice(ig,l) = nuice_ref |
---|
[629] | 188 | ENDDO |
---|
[744] | 189 | ENDDO |
---|
| 190 | |
---|
| 191 | ENDIF ! of if microphys |
---|
| 192 | ENDIF ! of if (water.AND.activice) |
---|
[38] | 193 | |
---|
[2447] | 194 | |
---|
[2494] | 195 | c 1.3 CO2-ice particles |
---|
[2447] | 196 | |
---|
| 197 | IF (co2clouds.AND.activeco2ice) THEN |
---|
| 198 | DO l=1,nlayer |
---|
| 199 | DO ig=1,ngrid |
---|
[2660] | 200 | Niceco2 = max(pq(ig,l,igcm_co2_ice), threshold) |
---|
| 201 | Nccnco2 = max(pq(ig,l,igcm_ccnco2_number), |
---|
| 202 | & threshold) |
---|
| 203 | Qccnco2 = max(pq(ig,l,igcm_ccnco2_mass), |
---|
| 204 | & threshold) |
---|
[2562] | 205 | Nccnco2_h2o = 0. |
---|
| 206 | Qccnco2_h2o = 0. |
---|
| 207 | if (co2useh2o) then |
---|
[2660] | 208 | Nccnco2_h2o = max(pq(ig,l,igcm_ccnco2_h2o_number), |
---|
| 209 | & threshold) |
---|
| 210 | Qccnco2_h2o = max(pq(ig,l,igcm_ccnco2_h2o_mass_ice) |
---|
| 211 | & + pq(ig,l,igcm_ccnco2_h2o_mass_ccn), |
---|
| 212 | & threshold) |
---|
| 213 | |
---|
[2562] | 214 | Nccnco2 = Nccnco2 - Nccnco2_h2o |
---|
| 215 | Qccnco2 = Qccnco2 - Qccnco2_h2o |
---|
[2660] | 216 | if (Nccnco2 <= 0) then |
---|
| 217 | Nccnco2 = threshold |
---|
| 218 | Qccnco2 = threshold |
---|
| 219 | end if |
---|
[2562] | 220 | end if |
---|
[2660] | 221 | call updaterice_microco2(dble(Niceco2), |
---|
[2562] | 222 | & dble(Qccnco2), dble(Nccnco2), |
---|
| 223 | & dble(Qccnco2_h2o), |
---|
| 224 | & dble(Nccnco2_h2o), |
---|
[2494] | 225 | & pt(ig,l), |
---|
[2447] | 226 | & tauscaling(ig),riceco2(ig,l), |
---|
| 227 | & rhocloudco2(ig,l)) |
---|
| 228 | nuiceco2(ig,l) = nuiceco2_ref |
---|
| 229 | END DO |
---|
| 230 | ENDDO |
---|
| 231 | ENDIF ! of if (co2clouds.AND.activeco2ice) |
---|
| 232 | |
---|
[38] | 233 | c================================================================== |
---|
| 234 | c 2. Radius used in the radiative transfer code (reffrad) |
---|
| 235 | c================================================================== |
---|
| 236 | |
---|
| 237 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
| 238 | aerkind: SELECT CASE (name_iaer(iaer)) |
---|
| 239 | c================================================================== |
---|
| 240 | CASE("dust_conrath") aerkind ! Typical dust profile |
---|
| 241 | c================================================================== |
---|
| 242 | DO l=1,nlayer |
---|
| 243 | DO ig=1,ngrid |
---|
[358] | 244 | reffrad(ig,l,iaer) = rdust(ig,l) * |
---|
| 245 | & (1.e0 + nueffdust(ig,l))**2.5 |
---|
[38] | 246 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
| 247 | ENDDO |
---|
| 248 | ENDDO |
---|
| 249 | c================================================================== |
---|
| 250 | CASE("dust_doubleq") aerkind! Two-moment scheme for dust |
---|
| 251 | c================================================================== |
---|
| 252 | DO l=1,nlayer |
---|
| 253 | DO ig=1,ngrid |
---|
[358] | 254 | reffrad(ig,l,iaer) = rdust(ig,l) * ref_r0 |
---|
[38] | 255 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
| 256 | ENDDO |
---|
| 257 | ENDDO |
---|
| 258 | c================================================================== |
---|
| 259 | CASE("dust_submicron") aerkind ! Small dust population |
---|
| 260 | c================================================================== |
---|
| 261 | DO l=1,nlayer |
---|
| 262 | DO ig=1,ngrid |
---|
| 263 | reffrad(ig,l,iaer)=radius(igcm_dust_submicron) |
---|
| 264 | nueffrad(ig,l,iaer)=0.03 |
---|
| 265 | ENDDO |
---|
| 266 | ENDDO |
---|
| 267 | c================================================================== |
---|
| 268 | CASE("h2o_ice") aerkind ! Water ice crystals |
---|
| 269 | c================================================================== |
---|
| 270 | DO l=1,nlayer |
---|
| 271 | DO ig=1,ngrid |
---|
[358] | 272 | c About reffice, do not confuse the mass mean radius |
---|
| 273 | c (rayon moyen massique) and the number median radius |
---|
| 274 | c (or geometric mean radius, rayon moyen géométrique). |
---|
| 275 | c rice is a mass mean radius, whereas rdust |
---|
| 276 | c is a geometric mean radius: |
---|
| 277 | c number median rad = mass mean rad x exp(-1.5 sigma0^2) |
---|
| 278 | c (Montmessin et al. 2004 paragraph 30). Therefore: |
---|
[38] | 279 | reffrad(ig,l,iaer)=rice(ig,l)*(1.+nuice_ref) |
---|
| 280 | nueffrad(ig,l,iaer)=nuice_ref |
---|
| 281 | ENDDO |
---|
| 282 | ENDDO |
---|
| 283 | c================================================================== |
---|
[2447] | 284 | CASE("co2_ice") aerkind ! CO2 ice crystals |
---|
| 285 | c================================================================== |
---|
| 286 | DO l=1,nlayer |
---|
| 287 | DO ig=1,ngrid |
---|
[2494] | 288 | reffrad(ig,l,iaer)=real(riceco2(ig,l))*(1.+nuiceco2_ref) |
---|
[2447] | 289 | nueffrad(ig,l,iaer)=nuiceco2_ref |
---|
| 290 | ENDDO |
---|
| 291 | ENDDO |
---|
| 292 | c================================================================== |
---|
[1974] | 293 | CASE("stormdust_doubleq") aerkind! Two-moment scheme for |
---|
| 294 | c stormdust; same distribution than normal dust |
---|
| 295 | c================================================================== |
---|
| 296 | DO l=1,nlayer |
---|
| 297 | DO ig=1,ngrid |
---|
| 298 | reffrad(ig,l,iaer) = rstormdust(ig,l) * ref_r0 |
---|
| 299 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
| 300 | ENDDO |
---|
| 301 | ENDDO |
---|
| 302 | c================================================================== |
---|
[2199] | 303 | CASE("topdust_doubleq") aerkind! MV18: Two-moment scheme for |
---|
| 304 | c topdust; same distribution than normal dust |
---|
| 305 | c================================================================== |
---|
| 306 | DO l=1,nlayer |
---|
| 307 | DO ig=1,ngrid |
---|
| 308 | reffrad(ig,l,iaer) = rtopdust(ig,l) * ref_r0 |
---|
| 309 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
| 310 | ENDDO |
---|
| 311 | ENDDO |
---|
| 312 | c================================================================== |
---|
[38] | 313 | END SELECT aerkind |
---|
| 314 | ENDDO ! iaer (loop on aerosol kind) |
---|
| 315 | |
---|
[1969] | 316 | END SUBROUTINE updatereffrad |
---|
| 317 | |
---|
| 318 | END MODULE updatereffrad_mod |
---|