[1969] | 1 | MODULE updatereffrad_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[38] | 7 | SUBROUTINE updatereffrad(ngrid,nlayer, |
---|
[2199] | 8 | & rdust,rstormdust,rtopdust,rice,nuice, |
---|
[38] | 9 | & reffrad,nueffrad, |
---|
[744] | 10 | & pq,tauscaling,tau,pplay) |
---|
[1969] | 11 | USE updaterad, ONLY: updaterdust, updaterice_micro, |
---|
| 12 | & updaterice_typ |
---|
[1036] | 13 | use tracer_mod, only: nqmx, igcm_dust_mass, igcm_dust_number, |
---|
| 14 | & igcm_h2o_ice, igcm_ccn_mass, radius, |
---|
| 15 | & igcm_ccn_number, nuice_ref, varian, |
---|
[1974] | 16 | & ref_r0, igcm_dust_submicron, |
---|
[2199] | 17 | & igcm_stormdust_mass,igcm_stormdust_number, |
---|
| 18 | & igcm_topdust_mass,igcm_topdust_number |
---|
[1246] | 19 | USE dimradmars_mod, only: nueffdust,naerkind, |
---|
| 20 | & name_iaer, |
---|
| 21 | & iaer_dust_conrath,iaer_dust_doubleq, |
---|
[1974] | 22 | & iaer_dust_submicron,iaer_h2o_ice, |
---|
[2199] | 23 | & iaer_stormdust_doubleq,iaer_topdust_doubleq |
---|
[1969] | 24 | |
---|
[38] | 25 | IMPLICIT NONE |
---|
| 26 | c======================================================================= |
---|
| 27 | c subject: |
---|
| 28 | c -------- |
---|
| 29 | c Subroutine designed to update the aerosol size distribution used by |
---|
| 30 | c the radiative transfer scheme. This size distribution is assumed |
---|
| 31 | c to be a log-normal distribution, with effective radius "reffrad" and |
---|
| 32 | c variance "nueffrad". |
---|
| 33 | c At firstcall, "rice" and "nuice" are not known, because |
---|
| 34 | c the H2O ice microphysical scheme is called after the radiative |
---|
| 35 | c transfer in physiq.F. That's why we assess the size of the |
---|
| 36 | c water-ice particles at firstcall (see part 1.2 below). |
---|
| 37 | c |
---|
| 38 | c author: |
---|
| 39 | c ------ |
---|
| 40 | c J.-B. Madeleine (2009-2010) |
---|
| 41 | c |
---|
| 42 | c======================================================================= |
---|
| 43 | c |
---|
| 44 | c Declarations : |
---|
| 45 | c ------------- |
---|
| 46 | c |
---|
[1969] | 47 | include "callkeys.h" |
---|
[38] | 48 | |
---|
| 49 | c----------------------------------------------------------------------- |
---|
[1974] | 50 | c Inputs/outputs: |
---|
[38] | 51 | c ------ |
---|
| 52 | |
---|
[1974] | 53 | INTEGER, INTENT(in) :: ngrid,nlayer |
---|
[38] | 54 | c Ice geometric mean radius (m) |
---|
[1974] | 55 | REAL, INTENT(out) :: rice(ngrid,nlayer) |
---|
[38] | 56 | c Estimated effective variance of the size distribution (n.u.) |
---|
[1974] | 57 | REAL, INTENT(out) :: nuice(ngrid,nlayer) |
---|
[38] | 58 | c Tracer mass mixing ratio (kg/kg) |
---|
[1974] | 59 | REAL, INTENT(in) :: pq(ngrid,nlayer,nqmx) |
---|
| 60 | REAL, INTENT(out) :: rdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
---|
[2199] | 61 | REAL, INTENT(out) :: rstormdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
---|
| 62 | REAL, INTENT(out) :: rtopdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
---|
[1974] | 63 | REAL, INTENT(in) :: pplay(ngrid,nlayer) ! altitude at the middle of the layers |
---|
| 64 | REAL, INTENT(in) :: tau(ngrid,naerkind) |
---|
[38] | 65 | c Aerosol effective radius used for radiative transfer (meter) |
---|
[1974] | 66 | REAL, INTENT(out) :: reffrad(ngrid,nlayer,naerkind) |
---|
[38] | 67 | c Aerosol effective variance used for radiative transfer (n.u.) |
---|
[1974] | 68 | REAL, INTENT(out) :: nueffrad(ngrid,nlayer,naerkind) |
---|
| 69 | REAL, INTENT(in) :: tauscaling(ngrid) ! Convertion factor for qccn and Nccn |
---|
| 70 | |
---|
[38] | 71 | c Local variables: |
---|
| 72 | c --------------- |
---|
| 73 | |
---|
| 74 | INTEGER :: ig,l ! 3D grid indices |
---|
| 75 | INTEGER :: iaer ! Aerosol index |
---|
| 76 | |
---|
| 77 | c Number of cloud condensation nuclei near the surface |
---|
| 78 | c (only used at firstcall). This value is taken from |
---|
| 79 | c Montmessin et al. 2004 JGR 109 E10004 p5 (2E6 part m-3), and |
---|
| 80 | c converted to part kg-1 using a typical atmospheric density. |
---|
| 81 | |
---|
| 82 | REAL, PARAMETER :: ccn0 = 1.3E8 |
---|
[629] | 83 | |
---|
| 84 | c For microphysics only: |
---|
| 85 | REAL Mo,No ! Mass and number of ccn |
---|
[1047] | 86 | REAL rhocloud(ngrid,nlayer) ! Cloud density (kg.m-3) |
---|
[38] | 87 | |
---|
[1224] | 88 | LOGICAL,SAVE :: firstcall=.true. |
---|
[38] | 89 | |
---|
| 90 | REAL CBRT |
---|
| 91 | EXTERNAL CBRT |
---|
| 92 | |
---|
| 93 | c================================================================== |
---|
[629] | 94 | c 1. Update radius from fields from dynamics or initial state |
---|
| 95 | c================================================================== |
---|
[38] | 96 | |
---|
[358] | 97 | c 1.1 Dust particles |
---|
| 98 | c ------------------ |
---|
| 99 | IF (doubleq.AND.active) THEN |
---|
| 100 | DO l=1,nlayer |
---|
| 101 | DO ig=1, ngrid |
---|
[744] | 102 | call updaterdust(pq(ig,l,igcm_dust_mass), |
---|
| 103 | & pq(ig,l,igcm_dust_number),rdust(ig,l)) |
---|
[358] | 104 | nueffdust(ig,l) = exp(varian**2.)-1. |
---|
| 105 | ENDDO |
---|
| 106 | ENDDO |
---|
| 107 | ELSE |
---|
| 108 | DO l=1,nlayer |
---|
| 109 | DO ig=1, ngrid |
---|
| 110 | rdust(ig,l) = 0.8E-6 |
---|
| 111 | nueffdust(ig,l) = 0.3 |
---|
| 112 | ENDDO |
---|
[38] | 113 | ENDDO |
---|
[358] | 114 | ENDIF |
---|
[1974] | 115 | |
---|
| 116 | ! updating radius of stormdust particles |
---|
| 117 | IF (rdstorm.AND.active) THEN |
---|
| 118 | DO l=1,nlayer |
---|
| 119 | DO ig=1, ngrid |
---|
| 120 | call updaterdust(pq(ig,l,igcm_stormdust_mass), |
---|
| 121 | & pq(ig,l,igcm_stormdust_number),rstormdust(ig,l)) |
---|
| 122 | nueffdust(ig,l) = exp(varian**2.)-1. |
---|
| 123 | ENDDO |
---|
| 124 | ENDDO |
---|
| 125 | ENDIF |
---|
[2199] | 126 | |
---|
| 127 | ! updating radius of topdust particles |
---|
| 128 | IF (slpwind.AND.active) THEN |
---|
| 129 | DO l=1,nlayer |
---|
| 130 | DO ig=1, ngrid |
---|
| 131 | call updaterdust(pq(ig,l,igcm_topdust_mass), |
---|
| 132 | & pq(ig,l,igcm_topdust_number),rtopdust(ig,l)) |
---|
| 133 | nueffdust(ig,l) = exp(varian**2.)-1. |
---|
| 134 | ENDDO |
---|
| 135 | ENDDO |
---|
| 136 | ENDIF |
---|
[629] | 137 | |
---|
[358] | 138 | c 1.2 Water-ice particles |
---|
| 139 | c ----------------------- |
---|
[744] | 140 | |
---|
| 141 | IF (water.AND.activice) THEN |
---|
| 142 | IF (microphys) THEN |
---|
[1208] | 143 | |
---|
| 144 | c At firstcall, the true number and true mass of cloud condensation nuclei are not known. |
---|
| 145 | c Indeed it is scaled on the prescribed dust opacity via a 'tauscaling' coefficient |
---|
| 146 | c computed after radiative transfer. If tauscaling is not in startfi, we make an assumption for its value. |
---|
| 147 | |
---|
[744] | 148 | IF (firstcall) THEN |
---|
[1974] | 149 | !IF (minval(tauscaling).lt.0) tauscaling(:) = 1.e-3 ! default value when non-read in startfi is -1 |
---|
| 150 | !IF (freedust) tauscaling(:) = 1. ! if freedust, enforce no rescaling at all |
---|
[1208] | 151 | firstcall = .false. |
---|
| 152 | ENDIF |
---|
| 153 | |
---|
| 154 | DO l=1,nlayer |
---|
| 155 | DO ig=1,ngrid |
---|
| 156 | call updaterice_micro(pq(ig,l,igcm_h2o_ice), |
---|
| 157 | & pq(ig,l,igcm_ccn_mass), |
---|
| 158 | & pq(ig,l,igcm_ccn_number), |
---|
| 159 | & tauscaling(ig),rice(ig,l), |
---|
| 160 | & rhocloud(ig,l)) |
---|
| 161 | nuice(ig,l) = nuice_ref |
---|
[358] | 162 | ENDDO |
---|
[1208] | 163 | ENDDO |
---|
[744] | 164 | |
---|
| 165 | ELSE ! if not microphys |
---|
| 166 | |
---|
| 167 | DO l=1,nlayer |
---|
| 168 | DO ig=1,ngrid |
---|
| 169 | call updaterice_typ(pq(ig,l,igcm_h2o_ice), |
---|
| 170 | & tau(ig,1),pplay(ig,l),rice(ig,l)) |
---|
| 171 | nuice(ig,l) = nuice_ref |
---|
[629] | 172 | ENDDO |
---|
[744] | 173 | ENDDO |
---|
| 174 | |
---|
| 175 | ENDIF ! of if microphys |
---|
| 176 | ENDIF ! of if (water.AND.activice) |
---|
[38] | 177 | |
---|
| 178 | c================================================================== |
---|
| 179 | c 2. Radius used in the radiative transfer code (reffrad) |
---|
| 180 | c================================================================== |
---|
| 181 | |
---|
| 182 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
| 183 | aerkind: SELECT CASE (name_iaer(iaer)) |
---|
| 184 | c================================================================== |
---|
| 185 | CASE("dust_conrath") aerkind ! Typical dust profile |
---|
| 186 | c================================================================== |
---|
| 187 | DO l=1,nlayer |
---|
| 188 | DO ig=1,ngrid |
---|
[358] | 189 | reffrad(ig,l,iaer) = rdust(ig,l) * |
---|
| 190 | & (1.e0 + nueffdust(ig,l))**2.5 |
---|
[38] | 191 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
| 192 | ENDDO |
---|
| 193 | ENDDO |
---|
| 194 | c================================================================== |
---|
| 195 | CASE("dust_doubleq") aerkind! Two-moment scheme for dust |
---|
| 196 | c================================================================== |
---|
| 197 | DO l=1,nlayer |
---|
| 198 | DO ig=1,ngrid |
---|
[358] | 199 | reffrad(ig,l,iaer) = rdust(ig,l) * ref_r0 |
---|
[38] | 200 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
| 201 | ENDDO |
---|
| 202 | ENDDO |
---|
| 203 | c================================================================== |
---|
| 204 | CASE("dust_submicron") aerkind ! Small dust population |
---|
| 205 | c================================================================== |
---|
| 206 | DO l=1,nlayer |
---|
| 207 | DO ig=1,ngrid |
---|
| 208 | reffrad(ig,l,iaer)=radius(igcm_dust_submicron) |
---|
| 209 | nueffrad(ig,l,iaer)=0.03 |
---|
| 210 | ENDDO |
---|
| 211 | ENDDO |
---|
| 212 | c================================================================== |
---|
| 213 | CASE("h2o_ice") aerkind ! Water ice crystals |
---|
| 214 | c================================================================== |
---|
| 215 | DO l=1,nlayer |
---|
| 216 | DO ig=1,ngrid |
---|
[358] | 217 | c About reffice, do not confuse the mass mean radius |
---|
| 218 | c (rayon moyen massique) and the number median radius |
---|
| 219 | c (or geometric mean radius, rayon moyen géométrique). |
---|
| 220 | c rice is a mass mean radius, whereas rdust |
---|
| 221 | c is a geometric mean radius: |
---|
| 222 | c number median rad = mass mean rad x exp(-1.5 sigma0^2) |
---|
| 223 | c (Montmessin et al. 2004 paragraph 30). Therefore: |
---|
[38] | 224 | reffrad(ig,l,iaer)=rice(ig,l)*(1.+nuice_ref) |
---|
| 225 | nueffrad(ig,l,iaer)=nuice_ref |
---|
| 226 | ENDDO |
---|
| 227 | ENDDO |
---|
| 228 | c================================================================== |
---|
[1974] | 229 | CASE("stormdust_doubleq") aerkind! Two-moment scheme for |
---|
| 230 | c stormdust; same distribution than normal dust |
---|
| 231 | c================================================================== |
---|
| 232 | DO l=1,nlayer |
---|
| 233 | DO ig=1,ngrid |
---|
| 234 | reffrad(ig,l,iaer) = rstormdust(ig,l) * ref_r0 |
---|
| 235 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
| 236 | ENDDO |
---|
| 237 | ENDDO |
---|
| 238 | c================================================================== |
---|
[2199] | 239 | CASE("topdust_doubleq") aerkind! MV18: Two-moment scheme for |
---|
| 240 | c topdust; same distribution than normal dust |
---|
| 241 | c================================================================== |
---|
| 242 | DO l=1,nlayer |
---|
| 243 | DO ig=1,ngrid |
---|
| 244 | reffrad(ig,l,iaer) = rtopdust(ig,l) * ref_r0 |
---|
| 245 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
| 246 | ENDDO |
---|
| 247 | ENDDO |
---|
| 248 | c================================================================== |
---|
[38] | 249 | END SELECT aerkind |
---|
| 250 | ENDDO ! iaer (loop on aerosol kind) |
---|
| 251 | |
---|
[1969] | 252 | END SUBROUTINE updatereffrad |
---|
| 253 | |
---|
| 254 | END MODULE updatereffrad_mod |
---|