1 | SUBROUTINE updatereffrad(ngrid,nlayer, |
---|
2 | & rdust,rice,nuice, |
---|
3 | & reffrad,nueffrad, |
---|
4 | & pq,tauscaling) |
---|
5 | |
---|
6 | IMPLICIT NONE |
---|
7 | c======================================================================= |
---|
8 | c subject: |
---|
9 | c -------- |
---|
10 | c Subroutine designed to update the aerosol size distribution used by |
---|
11 | c the radiative transfer scheme. This size distribution is assumed |
---|
12 | c to be a log-normal distribution, with effective radius "reffrad" and |
---|
13 | c variance "nueffrad". |
---|
14 | c At firstcall, "rice" and "nuice" are not known, because |
---|
15 | c the H2O ice microphysical scheme is called after the radiative |
---|
16 | c transfer in physiq.F. That's why we assess the size of the |
---|
17 | c water-ice particles at firstcall (see part 1.2 below). |
---|
18 | c |
---|
19 | c author: |
---|
20 | c ------ |
---|
21 | c J.-B. Madeleine (2009-2010) |
---|
22 | c |
---|
23 | c======================================================================= |
---|
24 | c |
---|
25 | c Declarations : |
---|
26 | c ------------- |
---|
27 | c |
---|
28 | #include "dimensions.h" |
---|
29 | #include "dimphys.h" |
---|
30 | #include "comcstfi.h" |
---|
31 | #include "callkeys.h" |
---|
32 | #include "dimradmars.h" |
---|
33 | #include "tracer.h" |
---|
34 | #include "aerkind.h" |
---|
35 | #include "yomaer.h" |
---|
36 | |
---|
37 | c----------------------------------------------------------------------- |
---|
38 | c Inputs: |
---|
39 | c ------ |
---|
40 | |
---|
41 | INTEGER ngrid,nlayer |
---|
42 | c Ice geometric mean radius (m) |
---|
43 | REAL :: rice(ngridmx,nlayermx) |
---|
44 | c Estimated effective variance of the size distribution (n.u.) |
---|
45 | REAL :: nuice(ngridmx,nlayermx) |
---|
46 | c Tracer mass mixing ratio (kg/kg) |
---|
47 | REAL pq(ngrid,nlayer,nqmx) |
---|
48 | real rdust(ngridmx,nlayermx) ! Dust geometric mean radius (m) |
---|
49 | |
---|
50 | c Outputs: |
---|
51 | c ------- |
---|
52 | |
---|
53 | c Aerosol effective radius used for radiative transfer (meter) |
---|
54 | REAL :: reffrad(ngridmx,nlayermx,naerkind) |
---|
55 | c Aerosol effective variance used for radiative transfer (n.u.) |
---|
56 | REAL :: nueffrad(ngridmx,nlayermx,naerkind) |
---|
57 | |
---|
58 | c Local variables: |
---|
59 | c --------------- |
---|
60 | |
---|
61 | INTEGER :: ig,l ! 3D grid indices |
---|
62 | INTEGER :: iaer ! Aerosol index |
---|
63 | |
---|
64 | c Number of cloud condensation nuclei near the surface |
---|
65 | c (only used at firstcall). This value is taken from |
---|
66 | c Montmessin et al. 2004 JGR 109 E10004 p5 (2E6 part m-3), and |
---|
67 | c converted to part kg-1 using a typical atmospheric density. |
---|
68 | |
---|
69 | REAL, PARAMETER :: ccn0 = 1.3E8 |
---|
70 | |
---|
71 | c For microphysics only: |
---|
72 | REAL Mo,No ! Mass and number of ccn |
---|
73 | REAL rhocloud(ngridmx,nlayermx) ! Cloud density (kg.m-3) |
---|
74 | REAL tauscaling(ngridmx) ! Convertion factor for qccn and Nccn |
---|
75 | |
---|
76 | LOGICAL firstcall |
---|
77 | DATA firstcall/.true./ |
---|
78 | SAVE firstcall |
---|
79 | |
---|
80 | REAL CBRT |
---|
81 | EXTERNAL CBRT |
---|
82 | |
---|
83 | REAL,SAVE :: nueffdust(ngridmx,nlayermx) ! Dust effective variance |
---|
84 | |
---|
85 | c Local saved variables: |
---|
86 | c --------------------- |
---|
87 | |
---|
88 | |
---|
89 | c================================================================== |
---|
90 | c 1. Update radius from fields from dynamics or initial state |
---|
91 | c================================================================== |
---|
92 | |
---|
93 | c 1.1 Dust particles |
---|
94 | c ------------------ |
---|
95 | IF (doubleq.AND.active) THEN |
---|
96 | DO l=1,nlayer |
---|
97 | DO ig=1, ngrid |
---|
98 | rdust(ig,l) = |
---|
99 | & CBRT(r3n_q*pq(ig,l,igcm_dust_mass)/ |
---|
100 | & max(pq(ig,l,igcm_dust_number),0.01)) |
---|
101 | rdust(ig,l)=min(max(rdust(ig,l),1.e-10),500.e-6) |
---|
102 | nueffdust(ig,l) = exp(varian**2.)-1. |
---|
103 | ENDDO |
---|
104 | ENDDO |
---|
105 | ELSE |
---|
106 | DO l=1,nlayer |
---|
107 | DO ig=1, ngrid |
---|
108 | rdust(ig,l) = 0.8E-6 |
---|
109 | nueffdust(ig,l) = 0.3 |
---|
110 | ENDDO |
---|
111 | ENDDO |
---|
112 | ENDIF |
---|
113 | |
---|
114 | c 1.2 Water-ice particles |
---|
115 | c ----------------------- |
---|
116 | IF (water.AND.activice) THEN |
---|
117 | IF ((firstcall).or.(microphys.eqv..false.)) THEN |
---|
118 | DO l=1,nlayer |
---|
119 | DO ig=1,ngrid |
---|
120 | rice(ig,l) = max(CBRT( |
---|
121 | & (pq(ig,l,igcm_h2o_ice)/rho_ice + |
---|
122 | & ccn0*(4./3.)*pi*rdust(ig,l)**3.) / |
---|
123 | & (ccn0*4./3.*pi)),rdust(ig,l) ) |
---|
124 | rice(ig,l)=min(max(rice(ig,l),1.e-10),500.e-6) |
---|
125 | nuice(ig,l) = nuice_ref |
---|
126 | ENDDO |
---|
127 | ENDDO |
---|
128 | firstcall = .false. |
---|
129 | c At firstcall, the true number and true mass of cloud condensation nuclei are not known. |
---|
130 | c Indeed it is scaled on the prescribed dust opacity via a 'tauscaling' coefficient |
---|
131 | c computed after radiative transfer. |
---|
132 | c Therefore, we use a typical value ccn0 at firstcall, like it is done without microphysics. |
---|
133 | ELSE |
---|
134 | DO l=1,nlayer |
---|
135 | DO ig=1,ngrid |
---|
136 | Mo = pq(ig,l,igcm_h2o_ice) + |
---|
137 | & pq(ig,l,igcm_ccn_mass)* tauscaling(ig) + 1.e-30 |
---|
138 | No = pq(ig,l,igcm_ccn_number)* tauscaling(ig)+ 1e-30 |
---|
139 | rhocloud(ig,l) = pq(ig,l,igcm_h2o_ice)*rho_ice / Mo |
---|
140 | & + pq(ig,l,igcm_ccn_mass)*tauscaling(ig)*rho_dust/Mo |
---|
141 | rhocloud(ig,l) = |
---|
142 | & min(max(rhocloud(ig,l),rho_ice),rho_dust) |
---|
143 | rice(ig,l) = |
---|
144 | & CBRT( Mo/No * 0.75 / pi / rhocloud(ig,l)) |
---|
145 | rice(ig,l)=min(max(rice(ig,l),1.e-10),500.e-6) |
---|
146 | nuice(ig,l) = nuice_ref |
---|
147 | ENDDO |
---|
148 | ENDDO |
---|
149 | ENDIF ! of if ((firstcall).or.(microphys.eq.false)) |
---|
150 | ENDIF ! of if (water.AND.activice) |
---|
151 | |
---|
152 | |
---|
153 | c================================================================== |
---|
154 | c 2. Radius used in the radiative transfer code (reffrad) |
---|
155 | c================================================================== |
---|
156 | |
---|
157 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
158 | aerkind: SELECT CASE (name_iaer(iaer)) |
---|
159 | c================================================================== |
---|
160 | CASE("dust_conrath") aerkind ! Typical dust profile |
---|
161 | c================================================================== |
---|
162 | DO l=1,nlayer |
---|
163 | DO ig=1,ngrid |
---|
164 | reffrad(ig,l,iaer) = rdust(ig,l) * |
---|
165 | & (1.e0 + nueffdust(ig,l))**2.5 |
---|
166 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
167 | ENDDO |
---|
168 | ENDDO |
---|
169 | c================================================================== |
---|
170 | CASE("dust_doubleq") aerkind! Two-moment scheme for dust |
---|
171 | c================================================================== |
---|
172 | DO l=1,nlayer |
---|
173 | DO ig=1,ngrid |
---|
174 | reffrad(ig,l,iaer) = rdust(ig,l) * ref_r0 |
---|
175 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
176 | ENDDO |
---|
177 | ENDDO |
---|
178 | c================================================================== |
---|
179 | CASE("dust_submicron") aerkind ! Small dust population |
---|
180 | c================================================================== |
---|
181 | DO l=1,nlayer |
---|
182 | DO ig=1,ngrid |
---|
183 | reffrad(ig,l,iaer)=radius(igcm_dust_submicron) |
---|
184 | nueffrad(ig,l,iaer)=0.03 |
---|
185 | ENDDO |
---|
186 | ENDDO |
---|
187 | c================================================================== |
---|
188 | CASE("h2o_ice") aerkind ! Water ice crystals |
---|
189 | c================================================================== |
---|
190 | DO l=1,nlayer |
---|
191 | DO ig=1,ngrid |
---|
192 | c About reffice, do not confuse the mass mean radius |
---|
193 | c (rayon moyen massique) and the number median radius |
---|
194 | c (or geometric mean radius, rayon moyen géométrique). |
---|
195 | c rice is a mass mean radius, whereas rdust |
---|
196 | c is a geometric mean radius: |
---|
197 | c number median rad = mass mean rad x exp(-1.5 sigma0^2) |
---|
198 | c (Montmessin et al. 2004 paragraph 30). Therefore: |
---|
199 | reffrad(ig,l,iaer)=rice(ig,l)*(1.+nuice_ref) |
---|
200 | nueffrad(ig,l,iaer)=nuice_ref |
---|
201 | ENDDO |
---|
202 | ENDDO |
---|
203 | c================================================================== |
---|
204 | END SELECT aerkind |
---|
205 | ENDDO ! iaer (loop on aerosol kind) |
---|
206 | |
---|
207 | RETURN |
---|
208 | END |
---|