| 1 | SUBROUTINE updatereffrad(ngrid,nlayer, |
|---|
| 2 | & rdust,rice,nuice, |
|---|
| 3 | & reffrad,nueffrad, |
|---|
| 4 | & pq,tauscaling,tau,pplay) |
|---|
| 5 | USE updaterad |
|---|
| 6 | use tracer_mod, only: nqmx, igcm_dust_mass, igcm_dust_number, |
|---|
| 7 | & igcm_h2o_ice, igcm_ccn_mass, radius, |
|---|
| 8 | & igcm_ccn_number, nuice_ref, varian, |
|---|
| 9 | & ref_r0, igcm_dust_submicron |
|---|
| 10 | USE dimradmars_mod, only: nueffdust,naerkind, |
|---|
| 11 | & name_iaer, |
|---|
| 12 | & iaer_dust_conrath,iaer_dust_doubleq, |
|---|
| 13 | & iaer_dust_submicron,iaer_h2o_ice |
|---|
| 14 | USE comcstfi_h |
|---|
| 15 | IMPLICIT NONE |
|---|
| 16 | c======================================================================= |
|---|
| 17 | c subject: |
|---|
| 18 | c -------- |
|---|
| 19 | c Subroutine designed to update the aerosol size distribution used by |
|---|
| 20 | c the radiative transfer scheme. This size distribution is assumed |
|---|
| 21 | c to be a log-normal distribution, with effective radius "reffrad" and |
|---|
| 22 | c variance "nueffrad". |
|---|
| 23 | c At firstcall, "rice" and "nuice" are not known, because |
|---|
| 24 | c the H2O ice microphysical scheme is called after the radiative |
|---|
| 25 | c transfer in physiq.F. That's why we assess the size of the |
|---|
| 26 | c water-ice particles at firstcall (see part 1.2 below). |
|---|
| 27 | c |
|---|
| 28 | c author: |
|---|
| 29 | c ------ |
|---|
| 30 | c J.-B. Madeleine (2009-2010) |
|---|
| 31 | c |
|---|
| 32 | c======================================================================= |
|---|
| 33 | c |
|---|
| 34 | c Declarations : |
|---|
| 35 | c ------------- |
|---|
| 36 | c |
|---|
| 37 | #include "callkeys.h" |
|---|
| 38 | |
|---|
| 39 | c----------------------------------------------------------------------- |
|---|
| 40 | c Inputs: |
|---|
| 41 | c ------ |
|---|
| 42 | |
|---|
| 43 | INTEGER ngrid,nlayer |
|---|
| 44 | c Ice geometric mean radius (m) |
|---|
| 45 | REAL :: rice(ngrid,nlayer) |
|---|
| 46 | c Estimated effective variance of the size distribution (n.u.) |
|---|
| 47 | REAL :: nuice(ngrid,nlayer) |
|---|
| 48 | c Tracer mass mixing ratio (kg/kg) |
|---|
| 49 | REAL pq(ngrid,nlayer,nqmx) |
|---|
| 50 | REAL rdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
|---|
| 51 | |
|---|
| 52 | REAL pplay(ngrid,nlayer) ! altitude at the middle of the layers |
|---|
| 53 | REAL tau(ngrid,naerkind) |
|---|
| 54 | |
|---|
| 55 | |
|---|
| 56 | c Outputs: |
|---|
| 57 | c ------- |
|---|
| 58 | |
|---|
| 59 | c Aerosol effective radius used for radiative transfer (meter) |
|---|
| 60 | REAL :: reffrad(ngrid,nlayer,naerkind) |
|---|
| 61 | c Aerosol effective variance used for radiative transfer (n.u.) |
|---|
| 62 | REAL :: nueffrad(ngrid,nlayer,naerkind) |
|---|
| 63 | |
|---|
| 64 | c Local variables: |
|---|
| 65 | c --------------- |
|---|
| 66 | |
|---|
| 67 | INTEGER :: ig,l ! 3D grid indices |
|---|
| 68 | INTEGER :: iaer ! Aerosol index |
|---|
| 69 | |
|---|
| 70 | c Number of cloud condensation nuclei near the surface |
|---|
| 71 | c (only used at firstcall). This value is taken from |
|---|
| 72 | c Montmessin et al. 2004 JGR 109 E10004 p5 (2E6 part m-3), and |
|---|
| 73 | c converted to part kg-1 using a typical atmospheric density. |
|---|
| 74 | |
|---|
| 75 | REAL, PARAMETER :: ccn0 = 1.3E8 |
|---|
| 76 | |
|---|
| 77 | c For microphysics only: |
|---|
| 78 | REAL Mo,No ! Mass and number of ccn |
|---|
| 79 | REAL rhocloud(ngrid,nlayer) ! Cloud density (kg.m-3) |
|---|
| 80 | REAL tauscaling(ngrid) ! Convertion factor for qccn and Nccn |
|---|
| 81 | |
|---|
| 82 | LOGICAL,SAVE :: firstcall=.true. |
|---|
| 83 | |
|---|
| 84 | REAL CBRT |
|---|
| 85 | EXTERNAL CBRT |
|---|
| 86 | |
|---|
| 87 | c================================================================== |
|---|
| 88 | c 1. Update radius from fields from dynamics or initial state |
|---|
| 89 | c================================================================== |
|---|
| 90 | |
|---|
| 91 | c 1.1 Dust particles |
|---|
| 92 | c ------------------ |
|---|
| 93 | IF (doubleq.AND.active) THEN |
|---|
| 94 | DO l=1,nlayer |
|---|
| 95 | DO ig=1, ngrid |
|---|
| 96 | call updaterdust(pq(ig,l,igcm_dust_mass), |
|---|
| 97 | & pq(ig,l,igcm_dust_number),rdust(ig,l)) |
|---|
| 98 | nueffdust(ig,l) = exp(varian**2.)-1. |
|---|
| 99 | ENDDO |
|---|
| 100 | ENDDO |
|---|
| 101 | ELSE |
|---|
| 102 | DO l=1,nlayer |
|---|
| 103 | DO ig=1, ngrid |
|---|
| 104 | rdust(ig,l) = 0.8E-6 |
|---|
| 105 | nueffdust(ig,l) = 0.3 |
|---|
| 106 | ENDDO |
|---|
| 107 | ENDDO |
|---|
| 108 | ENDIF |
|---|
| 109 | |
|---|
| 110 | c 1.2 Water-ice particles |
|---|
| 111 | c ----------------------- |
|---|
| 112 | |
|---|
| 113 | IF (water.AND.activice) THEN |
|---|
| 114 | IF (microphys) THEN |
|---|
| 115 | |
|---|
| 116 | c At firstcall, the true number and true mass of cloud condensation nuclei are not known. |
|---|
| 117 | c Indeed it is scaled on the prescribed dust opacity via a 'tauscaling' coefficient |
|---|
| 118 | c computed after radiative transfer. If tauscaling is not in startfi, we make an assumption for its value. |
|---|
| 119 | |
|---|
| 120 | IF (firstcall) THEN |
|---|
| 121 | IF (minval(tauscaling).lt.0) tauscaling(:) = 1.e-3 ! default value when non-read in startfi is -1 |
|---|
| 122 | IF (freedust) tauscaling(:) = 1. ! if freedust, enforce no rescaling at all |
|---|
| 123 | firstcall = .false. |
|---|
| 124 | ENDIF |
|---|
| 125 | |
|---|
| 126 | DO l=1,nlayer |
|---|
| 127 | DO ig=1,ngrid |
|---|
| 128 | call updaterice_micro(pq(ig,l,igcm_h2o_ice), |
|---|
| 129 | & pq(ig,l,igcm_ccn_mass), |
|---|
| 130 | & pq(ig,l,igcm_ccn_number), |
|---|
| 131 | & tauscaling(ig),rice(ig,l), |
|---|
| 132 | & rhocloud(ig,l)) |
|---|
| 133 | nuice(ig,l) = nuice_ref |
|---|
| 134 | ENDDO |
|---|
| 135 | ENDDO |
|---|
| 136 | |
|---|
| 137 | ELSE ! if not microphys |
|---|
| 138 | |
|---|
| 139 | DO l=1,nlayer |
|---|
| 140 | DO ig=1,ngrid |
|---|
| 141 | call updaterice_typ(pq(ig,l,igcm_h2o_ice), |
|---|
| 142 | & tau(ig,1),pplay(ig,l),rice(ig,l)) |
|---|
| 143 | nuice(ig,l) = nuice_ref |
|---|
| 144 | ENDDO |
|---|
| 145 | ENDDO |
|---|
| 146 | |
|---|
| 147 | ENDIF ! of if microphys |
|---|
| 148 | ENDIF ! of if (water.AND.activice) |
|---|
| 149 | |
|---|
| 150 | c================================================================== |
|---|
| 151 | c 2. Radius used in the radiative transfer code (reffrad) |
|---|
| 152 | c================================================================== |
|---|
| 153 | |
|---|
| 154 | DO iaer = 1, naerkind ! Loop on aerosol kind |
|---|
| 155 | aerkind: SELECT CASE (name_iaer(iaer)) |
|---|
| 156 | c================================================================== |
|---|
| 157 | CASE("dust_conrath") aerkind ! Typical dust profile |
|---|
| 158 | c================================================================== |
|---|
| 159 | DO l=1,nlayer |
|---|
| 160 | DO ig=1,ngrid |
|---|
| 161 | reffrad(ig,l,iaer) = rdust(ig,l) * |
|---|
| 162 | & (1.e0 + nueffdust(ig,l))**2.5 |
|---|
| 163 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
|---|
| 164 | ENDDO |
|---|
| 165 | ENDDO |
|---|
| 166 | c================================================================== |
|---|
| 167 | CASE("dust_doubleq") aerkind! Two-moment scheme for dust |
|---|
| 168 | c================================================================== |
|---|
| 169 | DO l=1,nlayer |
|---|
| 170 | DO ig=1,ngrid |
|---|
| 171 | reffrad(ig,l,iaer) = rdust(ig,l) * ref_r0 |
|---|
| 172 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
|---|
| 173 | ENDDO |
|---|
| 174 | ENDDO |
|---|
| 175 | c================================================================== |
|---|
| 176 | CASE("dust_submicron") aerkind ! Small dust population |
|---|
| 177 | c================================================================== |
|---|
| 178 | DO l=1,nlayer |
|---|
| 179 | DO ig=1,ngrid |
|---|
| 180 | reffrad(ig,l,iaer)=radius(igcm_dust_submicron) |
|---|
| 181 | nueffrad(ig,l,iaer)=0.03 |
|---|
| 182 | ENDDO |
|---|
| 183 | ENDDO |
|---|
| 184 | c================================================================== |
|---|
| 185 | CASE("h2o_ice") aerkind ! Water ice crystals |
|---|
| 186 | c================================================================== |
|---|
| 187 | DO l=1,nlayer |
|---|
| 188 | DO ig=1,ngrid |
|---|
| 189 | c About reffice, do not confuse the mass mean radius |
|---|
| 190 | c (rayon moyen massique) and the number median radius |
|---|
| 191 | c (or geometric mean radius, rayon moyen géométrique). |
|---|
| 192 | c rice is a mass mean radius, whereas rdust |
|---|
| 193 | c is a geometric mean radius: |
|---|
| 194 | c number median rad = mass mean rad x exp(-1.5 sigma0^2) |
|---|
| 195 | c (Montmessin et al. 2004 paragraph 30). Therefore: |
|---|
| 196 | reffrad(ig,l,iaer)=rice(ig,l)*(1.+nuice_ref) |
|---|
| 197 | nueffrad(ig,l,iaer)=nuice_ref |
|---|
| 198 | ENDDO |
|---|
| 199 | ENDDO |
|---|
| 200 | c================================================================== |
|---|
| 201 | END SELECT aerkind |
|---|
| 202 | ENDDO ! iaer (loop on aerosol kind) |
|---|
| 203 | |
|---|
| 204 | RETURN |
|---|
| 205 | END |
|---|