[38] | 1 | SUBROUTINE updatereffrad(ngrid,nlayer, |
---|
| 2 | & rdust,rice,nuice, |
---|
| 3 | & reffrad,nueffrad, |
---|
[744] | 4 | & pq,tauscaling,tau,pplay) |
---|
| 5 | USE updaterad |
---|
[38] | 6 | IMPLICIT NONE |
---|
| 7 | c======================================================================= |
---|
| 8 | c subject: |
---|
| 9 | c -------- |
---|
| 10 | c Subroutine designed to update the aerosol size distribution used by |
---|
| 11 | c the radiative transfer scheme. This size distribution is assumed |
---|
| 12 | c to be a log-normal distribution, with effective radius "reffrad" and |
---|
| 13 | c variance "nueffrad". |
---|
| 14 | c At firstcall, "rice" and "nuice" are not known, because |
---|
| 15 | c the H2O ice microphysical scheme is called after the radiative |
---|
| 16 | c transfer in physiq.F. That's why we assess the size of the |
---|
| 17 | c water-ice particles at firstcall (see part 1.2 below). |
---|
| 18 | c |
---|
| 19 | c author: |
---|
| 20 | c ------ |
---|
| 21 | c J.-B. Madeleine (2009-2010) |
---|
| 22 | c |
---|
| 23 | c======================================================================= |
---|
| 24 | c |
---|
| 25 | c Declarations : |
---|
| 26 | c ------------- |
---|
| 27 | c |
---|
| 28 | #include "dimensions.h" |
---|
| 29 | #include "dimphys.h" |
---|
| 30 | #include "comcstfi.h" |
---|
| 31 | #include "callkeys.h" |
---|
| 32 | #include "dimradmars.h" |
---|
| 33 | #include "tracer.h" |
---|
| 34 | #include "aerkind.h" |
---|
| 35 | #include "yomaer.h" |
---|
| 36 | |
---|
| 37 | c----------------------------------------------------------------------- |
---|
| 38 | c Inputs: |
---|
| 39 | c ------ |
---|
| 40 | |
---|
| 41 | INTEGER ngrid,nlayer |
---|
| 42 | c Ice geometric mean radius (m) |
---|
| 43 | REAL :: rice(ngridmx,nlayermx) |
---|
| 44 | c Estimated effective variance of the size distribution (n.u.) |
---|
| 45 | REAL :: nuice(ngridmx,nlayermx) |
---|
| 46 | c Tracer mass mixing ratio (kg/kg) |
---|
| 47 | REAL pq(ngrid,nlayer,nqmx) |
---|
[744] | 48 | REAL rdust(ngridmx,nlayermx) ! Dust geometric mean radius (m) |
---|
| 49 | |
---|
| 50 | REAL pplay(ngrid,nlayer) ! altitude at the middle of the layers |
---|
| 51 | REAL tau(ngrid,naerkind) |
---|
[38] | 52 | |
---|
[744] | 53 | |
---|
[38] | 54 | c Outputs: |
---|
| 55 | c ------- |
---|
| 56 | |
---|
| 57 | c Aerosol effective radius used for radiative transfer (meter) |
---|
| 58 | REAL :: reffrad(ngridmx,nlayermx,naerkind) |
---|
| 59 | c Aerosol effective variance used for radiative transfer (n.u.) |
---|
| 60 | REAL :: nueffrad(ngridmx,nlayermx,naerkind) |
---|
| 61 | |
---|
| 62 | c Local variables: |
---|
| 63 | c --------------- |
---|
| 64 | |
---|
| 65 | INTEGER :: ig,l ! 3D grid indices |
---|
| 66 | INTEGER :: iaer ! Aerosol index |
---|
| 67 | |
---|
| 68 | c Number of cloud condensation nuclei near the surface |
---|
| 69 | c (only used at firstcall). This value is taken from |
---|
| 70 | c Montmessin et al. 2004 JGR 109 E10004 p5 (2E6 part m-3), and |
---|
| 71 | c converted to part kg-1 using a typical atmospheric density. |
---|
| 72 | |
---|
| 73 | REAL, PARAMETER :: ccn0 = 1.3E8 |
---|
[629] | 74 | |
---|
| 75 | c For microphysics only: |
---|
| 76 | REAL Mo,No ! Mass and number of ccn |
---|
| 77 | REAL rhocloud(ngridmx,nlayermx) ! Cloud density (kg.m-3) |
---|
| 78 | REAL tauscaling(ngridmx) ! Convertion factor for qccn and Nccn |
---|
[38] | 79 | |
---|
[629] | 80 | LOGICAL firstcall |
---|
| 81 | DATA firstcall/.true./ |
---|
| 82 | SAVE firstcall |
---|
[38] | 83 | |
---|
| 84 | REAL CBRT |
---|
| 85 | EXTERNAL CBRT |
---|
| 86 | |
---|
[420] | 87 | REAL,SAVE :: nueffdust(ngridmx,nlayermx) ! Dust effective variance |
---|
[358] | 88 | |
---|
[38] | 89 | c Local saved variables: |
---|
| 90 | c --------------------- |
---|
| 91 | |
---|
[629] | 92 | |
---|
[38] | 93 | c================================================================== |
---|
[629] | 94 | c 1. Update radius from fields from dynamics or initial state |
---|
| 95 | c================================================================== |
---|
[38] | 96 | |
---|
[358] | 97 | c 1.1 Dust particles |
---|
| 98 | c ------------------ |
---|
| 99 | IF (doubleq.AND.active) THEN |
---|
| 100 | DO l=1,nlayer |
---|
| 101 | DO ig=1, ngrid |
---|
[744] | 102 | call updaterdust(pq(ig,l,igcm_dust_mass), |
---|
| 103 | & pq(ig,l,igcm_dust_number),rdust(ig,l)) |
---|
[358] | 104 | nueffdust(ig,l) = exp(varian**2.)-1. |
---|
| 105 | ENDDO |
---|
| 106 | ENDDO |
---|
| 107 | ELSE |
---|
| 108 | DO l=1,nlayer |
---|
| 109 | DO ig=1, ngrid |
---|
| 110 | rdust(ig,l) = 0.8E-6 |
---|
| 111 | nueffdust(ig,l) = 0.3 |
---|
| 112 | ENDDO |
---|
[38] | 113 | ENDDO |
---|
[358] | 114 | ENDIF |
---|
[629] | 115 | |
---|
[358] | 116 | c 1.2 Water-ice particles |
---|
| 117 | c ----------------------- |
---|
[744] | 118 | |
---|
| 119 | IF (water.AND.activice) THEN |
---|
| 120 | IF (microphys) THEN |
---|
| 121 | |
---|
| 122 | IF (firstcall) THEN |
---|
[629] | 123 | DO l=1,nlayer |
---|
| 124 | DO ig=1,ngrid |
---|
[744] | 125 | call updaterice_micro(pq(ig,l,igcm_h2o_ice), |
---|
| 126 | & pq(ig,l,igcm_ccn_mass), |
---|
| 127 | & pq(ig,l,igcm_ccn_number), |
---|
| 128 | & 1.e-3,rice(ig,l), |
---|
| 129 | & rhocloud(ig,l)) |
---|
[629] | 130 | nuice(ig,l) = nuice_ref |
---|
| 131 | ENDDO |
---|
[358] | 132 | ENDDO |
---|
[629] | 133 | firstcall = .false. |
---|
| 134 | c At firstcall, the true number and true mass of cloud condensation nuclei are not known. |
---|
| 135 | c Indeed it is scaled on the prescribed dust opacity via a 'tauscaling' coefficient |
---|
| 136 | c computed after radiative transfer. |
---|
| 137 | ELSE |
---|
| 138 | DO l=1,nlayer |
---|
| 139 | DO ig=1,ngrid |
---|
[744] | 140 | call updaterice_micro(pq(ig,l,igcm_h2o_ice), |
---|
| 141 | & pq(ig,l,igcm_ccn_mass), |
---|
| 142 | & pq(ig,l,igcm_ccn_number), |
---|
| 143 | & tauscaling(ig),rice(ig,l), |
---|
| 144 | & rhocloud(ig,l)) |
---|
[629] | 145 | nuice(ig,l) = nuice_ref |
---|
[744] | 146 | ENDDO |
---|
| 147 | ENDDO |
---|
| 148 | ENDIF ! of if firstcall |
---|
| 149 | |
---|
| 150 | ELSE ! if not microphys |
---|
| 151 | |
---|
| 152 | DO l=1,nlayer |
---|
| 153 | DO ig=1,ngrid |
---|
| 154 | call updaterice_typ(pq(ig,l,igcm_h2o_ice), |
---|
| 155 | & tau(ig,1),pplay(ig,l),rice(ig,l)) |
---|
| 156 | nuice(ig,l) = nuice_ref |
---|
[629] | 157 | ENDDO |
---|
[744] | 158 | ENDDO |
---|
| 159 | |
---|
| 160 | ENDIF ! of if microphys |
---|
| 161 | ENDIF ! of if (water.AND.activice) |
---|
[38] | 162 | |
---|
| 163 | c================================================================== |
---|
| 164 | c 2. Radius used in the radiative transfer code (reffrad) |
---|
| 165 | c================================================================== |
---|
| 166 | |
---|
| 167 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
| 168 | aerkind: SELECT CASE (name_iaer(iaer)) |
---|
| 169 | c================================================================== |
---|
| 170 | CASE("dust_conrath") aerkind ! Typical dust profile |
---|
| 171 | c================================================================== |
---|
| 172 | DO l=1,nlayer |
---|
| 173 | DO ig=1,ngrid |
---|
[358] | 174 | reffrad(ig,l,iaer) = rdust(ig,l) * |
---|
| 175 | & (1.e0 + nueffdust(ig,l))**2.5 |
---|
[38] | 176 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
| 177 | ENDDO |
---|
| 178 | ENDDO |
---|
| 179 | c================================================================== |
---|
| 180 | CASE("dust_doubleq") aerkind! Two-moment scheme for dust |
---|
| 181 | c================================================================== |
---|
| 182 | DO l=1,nlayer |
---|
| 183 | DO ig=1,ngrid |
---|
[358] | 184 | reffrad(ig,l,iaer) = rdust(ig,l) * ref_r0 |
---|
[38] | 185 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
| 186 | ENDDO |
---|
| 187 | ENDDO |
---|
| 188 | c================================================================== |
---|
| 189 | CASE("dust_submicron") aerkind ! Small dust population |
---|
| 190 | c================================================================== |
---|
| 191 | DO l=1,nlayer |
---|
| 192 | DO ig=1,ngrid |
---|
| 193 | reffrad(ig,l,iaer)=radius(igcm_dust_submicron) |
---|
| 194 | nueffrad(ig,l,iaer)=0.03 |
---|
| 195 | ENDDO |
---|
| 196 | ENDDO |
---|
| 197 | c================================================================== |
---|
| 198 | CASE("h2o_ice") aerkind ! Water ice crystals |
---|
| 199 | c================================================================== |
---|
| 200 | DO l=1,nlayer |
---|
| 201 | DO ig=1,ngrid |
---|
[358] | 202 | c About reffice, do not confuse the mass mean radius |
---|
| 203 | c (rayon moyen massique) and the number median radius |
---|
| 204 | c (or geometric mean radius, rayon moyen géométrique). |
---|
| 205 | c rice is a mass mean radius, whereas rdust |
---|
| 206 | c is a geometric mean radius: |
---|
| 207 | c number median rad = mass mean rad x exp(-1.5 sigma0^2) |
---|
| 208 | c (Montmessin et al. 2004 paragraph 30). Therefore: |
---|
[38] | 209 | reffrad(ig,l,iaer)=rice(ig,l)*(1.+nuice_ref) |
---|
| 210 | nueffrad(ig,l,iaer)=nuice_ref |
---|
| 211 | ENDDO |
---|
| 212 | ENDDO |
---|
| 213 | c================================================================== |
---|
| 214 | END SELECT aerkind |
---|
| 215 | ENDDO ! iaer (loop on aerosol kind) |
---|
| 216 | |
---|
| 217 | RETURN |
---|
| 218 | END |
---|