[38] | 1 | SUBROUTINE updatereffrad(ngrid,nlayer, |
---|
| 2 | & rdust,rice,nuice, |
---|
| 3 | & reffrad,nueffrad, |
---|
[629] | 4 | & pq,tauscaling) |
---|
[38] | 5 | |
---|
| 6 | IMPLICIT NONE |
---|
| 7 | c======================================================================= |
---|
| 8 | c subject: |
---|
| 9 | c -------- |
---|
| 10 | c Subroutine designed to update the aerosol size distribution used by |
---|
| 11 | c the radiative transfer scheme. This size distribution is assumed |
---|
| 12 | c to be a log-normal distribution, with effective radius "reffrad" and |
---|
| 13 | c variance "nueffrad". |
---|
| 14 | c At firstcall, "rice" and "nuice" are not known, because |
---|
| 15 | c the H2O ice microphysical scheme is called after the radiative |
---|
| 16 | c transfer in physiq.F. That's why we assess the size of the |
---|
| 17 | c water-ice particles at firstcall (see part 1.2 below). |
---|
| 18 | c |
---|
| 19 | c author: |
---|
| 20 | c ------ |
---|
| 21 | c J.-B. Madeleine (2009-2010) |
---|
| 22 | c |
---|
| 23 | c======================================================================= |
---|
| 24 | c |
---|
| 25 | c Declarations : |
---|
| 26 | c ------------- |
---|
| 27 | c |
---|
| 28 | #include "dimensions.h" |
---|
| 29 | #include "dimphys.h" |
---|
| 30 | #include "comcstfi.h" |
---|
| 31 | #include "callkeys.h" |
---|
| 32 | #include "dimradmars.h" |
---|
| 33 | #include "tracer.h" |
---|
| 34 | #include "aerkind.h" |
---|
| 35 | #include "yomaer.h" |
---|
| 36 | |
---|
| 37 | c----------------------------------------------------------------------- |
---|
| 38 | c Inputs: |
---|
| 39 | c ------ |
---|
| 40 | |
---|
| 41 | INTEGER ngrid,nlayer |
---|
| 42 | c Ice geometric mean radius (m) |
---|
| 43 | REAL :: rice(ngridmx,nlayermx) |
---|
| 44 | c Estimated effective variance of the size distribution (n.u.) |
---|
| 45 | REAL :: nuice(ngridmx,nlayermx) |
---|
| 46 | c Tracer mass mixing ratio (kg/kg) |
---|
| 47 | REAL pq(ngrid,nlayer,nqmx) |
---|
| 48 | real rdust(ngridmx,nlayermx) ! Dust geometric mean radius (m) |
---|
| 49 | |
---|
| 50 | c Outputs: |
---|
| 51 | c ------- |
---|
| 52 | |
---|
| 53 | c Aerosol effective radius used for radiative transfer (meter) |
---|
| 54 | REAL :: reffrad(ngridmx,nlayermx,naerkind) |
---|
| 55 | c Aerosol effective variance used for radiative transfer (n.u.) |
---|
| 56 | REAL :: nueffrad(ngridmx,nlayermx,naerkind) |
---|
| 57 | |
---|
| 58 | c Local variables: |
---|
| 59 | c --------------- |
---|
| 60 | |
---|
| 61 | INTEGER :: ig,l ! 3D grid indices |
---|
| 62 | INTEGER :: iaer ! Aerosol index |
---|
| 63 | |
---|
| 64 | c Number of cloud condensation nuclei near the surface |
---|
| 65 | c (only used at firstcall). This value is taken from |
---|
| 66 | c Montmessin et al. 2004 JGR 109 E10004 p5 (2E6 part m-3), and |
---|
| 67 | c converted to part kg-1 using a typical atmospheric density. |
---|
| 68 | |
---|
| 69 | REAL, PARAMETER :: ccn0 = 1.3E8 |
---|
[629] | 70 | |
---|
| 71 | c For microphysics only: |
---|
| 72 | REAL Mo,No ! Mass and number of ccn |
---|
| 73 | REAL rhocloud(ngridmx,nlayermx) ! Cloud density (kg.m-3) |
---|
| 74 | REAL tauscaling(ngridmx) ! Convertion factor for qccn and Nccn |
---|
[38] | 75 | |
---|
[629] | 76 | LOGICAL firstcall |
---|
| 77 | DATA firstcall/.true./ |
---|
| 78 | SAVE firstcall |
---|
[38] | 79 | |
---|
| 80 | REAL CBRT |
---|
| 81 | EXTERNAL CBRT |
---|
| 82 | |
---|
[420] | 83 | REAL,SAVE :: nueffdust(ngridmx,nlayermx) ! Dust effective variance |
---|
[358] | 84 | |
---|
[38] | 85 | c Local saved variables: |
---|
| 86 | c --------------------- |
---|
| 87 | |
---|
[629] | 88 | |
---|
[38] | 89 | c================================================================== |
---|
[629] | 90 | c 1. Update radius from fields from dynamics or initial state |
---|
| 91 | c================================================================== |
---|
[38] | 92 | |
---|
[358] | 93 | c 1.1 Dust particles |
---|
| 94 | c ------------------ |
---|
| 95 | IF (doubleq.AND.active) THEN |
---|
| 96 | DO l=1,nlayer |
---|
| 97 | DO ig=1, ngrid |
---|
| 98 | rdust(ig,l) = |
---|
| 99 | & CBRT(r3n_q*pq(ig,l,igcm_dust_mass)/ |
---|
| 100 | & max(pq(ig,l,igcm_dust_number),0.01)) |
---|
| 101 | rdust(ig,l)=min(max(rdust(ig,l),1.e-10),500.e-6) |
---|
| 102 | nueffdust(ig,l) = exp(varian**2.)-1. |
---|
| 103 | ENDDO |
---|
| 104 | ENDDO |
---|
| 105 | ELSE |
---|
| 106 | DO l=1,nlayer |
---|
| 107 | DO ig=1, ngrid |
---|
| 108 | rdust(ig,l) = 0.8E-6 |
---|
| 109 | nueffdust(ig,l) = 0.3 |
---|
| 110 | ENDDO |
---|
[38] | 111 | ENDDO |
---|
[358] | 112 | ENDIF |
---|
[629] | 113 | |
---|
[358] | 114 | c 1.2 Water-ice particles |
---|
| 115 | c ----------------------- |
---|
[629] | 116 | IF (water.AND.activice) THEN |
---|
[631] | 117 | IF ((firstcall).or.(microphys.eqv..false.)) THEN |
---|
[629] | 118 | DO l=1,nlayer |
---|
| 119 | DO ig=1,ngrid |
---|
| 120 | rice(ig,l) = max(CBRT( |
---|
| 121 | & (pq(ig,l,igcm_h2o_ice)/rho_ice + |
---|
| 122 | & ccn0*(4./3.)*pi*rdust(ig,l)**3.) / |
---|
| 123 | & (ccn0*4./3.*pi)),rdust(ig,l) ) |
---|
[633] | 124 | rice(ig,l)=min(max(rice(ig,l),1.e-10),500.e-6) |
---|
[629] | 125 | nuice(ig,l) = nuice_ref |
---|
| 126 | ENDDO |
---|
[358] | 127 | ENDDO |
---|
[629] | 128 | firstcall = .false. |
---|
| 129 | c At firstcall, the true number and true mass of cloud condensation nuclei are not known. |
---|
| 130 | c Indeed it is scaled on the prescribed dust opacity via a 'tauscaling' coefficient |
---|
| 131 | c computed after radiative transfer. |
---|
| 132 | c Therefore, we use a typical value ccn0 at firstcall, like it is done without microphysics. |
---|
| 133 | ELSE |
---|
| 134 | DO l=1,nlayer |
---|
| 135 | DO ig=1,ngrid |
---|
| 136 | Mo = pq(ig,l,igcm_h2o_ice) + |
---|
| 137 | & pq(ig,l,igcm_ccn_mass)* tauscaling(ig) + 1.e-30 |
---|
| 138 | No = pq(ig,l,igcm_ccn_number)* tauscaling(ig)+ 1e-30 |
---|
| 139 | rhocloud(ig,l) = pq(ig,l,igcm_h2o_ice)*rho_ice / Mo |
---|
| 140 | & + pq(ig,l,igcm_ccn_mass)*tauscaling(ig)*rho_dust/Mo |
---|
| 141 | rhocloud(ig,l) = |
---|
| 142 | & min(max(rhocloud(ig,l),rho_ice),rho_dust) |
---|
| 143 | rice(ig,l) = |
---|
| 144 | & CBRT( Mo/No * 0.75 / pi / rhocloud(ig,l)) |
---|
[633] | 145 | rice(ig,l)=min(max(rice(ig,l),1.e-10),500.e-6) |
---|
[629] | 146 | nuice(ig,l) = nuice_ref |
---|
| 147 | ENDDO |
---|
| 148 | ENDDO |
---|
| 149 | ENDIF ! of if ((firstcall).or.(microphys.eq.false)) |
---|
[358] | 150 | ENDIF ! of if (water.AND.activice) |
---|
[626] | 151 | |
---|
[38] | 152 | |
---|
| 153 | c================================================================== |
---|
| 154 | c 2. Radius used in the radiative transfer code (reffrad) |
---|
| 155 | c================================================================== |
---|
| 156 | |
---|
| 157 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
| 158 | aerkind: SELECT CASE (name_iaer(iaer)) |
---|
| 159 | c================================================================== |
---|
| 160 | CASE("dust_conrath") aerkind ! Typical dust profile |
---|
| 161 | c================================================================== |
---|
| 162 | DO l=1,nlayer |
---|
| 163 | DO ig=1,ngrid |
---|
[358] | 164 | reffrad(ig,l,iaer) = rdust(ig,l) * |
---|
| 165 | & (1.e0 + nueffdust(ig,l))**2.5 |
---|
[38] | 166 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
| 167 | ENDDO |
---|
| 168 | ENDDO |
---|
| 169 | c================================================================== |
---|
| 170 | CASE("dust_doubleq") aerkind! Two-moment scheme for dust |
---|
| 171 | c================================================================== |
---|
| 172 | DO l=1,nlayer |
---|
| 173 | DO ig=1,ngrid |
---|
[358] | 174 | reffrad(ig,l,iaer) = rdust(ig,l) * ref_r0 |
---|
[38] | 175 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
| 176 | ENDDO |
---|
| 177 | ENDDO |
---|
| 178 | c================================================================== |
---|
| 179 | CASE("dust_submicron") aerkind ! Small dust population |
---|
| 180 | c================================================================== |
---|
| 181 | DO l=1,nlayer |
---|
| 182 | DO ig=1,ngrid |
---|
| 183 | reffrad(ig,l,iaer)=radius(igcm_dust_submicron) |
---|
| 184 | nueffrad(ig,l,iaer)=0.03 |
---|
| 185 | ENDDO |
---|
| 186 | ENDDO |
---|
| 187 | c================================================================== |
---|
| 188 | CASE("h2o_ice") aerkind ! Water ice crystals |
---|
| 189 | c================================================================== |
---|
| 190 | DO l=1,nlayer |
---|
| 191 | DO ig=1,ngrid |
---|
[358] | 192 | c About reffice, do not confuse the mass mean radius |
---|
| 193 | c (rayon moyen massique) and the number median radius |
---|
| 194 | c (or geometric mean radius, rayon moyen géométrique). |
---|
| 195 | c rice is a mass mean radius, whereas rdust |
---|
| 196 | c is a geometric mean radius: |
---|
| 197 | c number median rad = mass mean rad x exp(-1.5 sigma0^2) |
---|
| 198 | c (Montmessin et al. 2004 paragraph 30). Therefore: |
---|
[38] | 199 | reffrad(ig,l,iaer)=rice(ig,l)*(1.+nuice_ref) |
---|
| 200 | nueffrad(ig,l,iaer)=nuice_ref |
---|
| 201 | ENDDO |
---|
| 202 | ENDDO |
---|
| 203 | c================================================================== |
---|
| 204 | END SELECT aerkind |
---|
| 205 | ENDDO ! iaer (loop on aerosol kind) |
---|
| 206 | |
---|
| 207 | RETURN |
---|
| 208 | END |
---|