[38] | 1 | SUBROUTINE updatereffrad(ngrid,nlayer, |
---|
| 2 | & rdust,rice,nuice, |
---|
| 3 | & reffrad,nueffrad, |
---|
[744] | 4 | & pq,tauscaling,tau,pplay) |
---|
| 5 | USE updaterad |
---|
[1036] | 6 | use tracer_mod, only: nqmx, igcm_dust_mass, igcm_dust_number, |
---|
| 7 | & igcm_h2o_ice, igcm_ccn_mass, radius, |
---|
| 8 | & igcm_ccn_number, nuice_ref, varian, |
---|
| 9 | & ref_r0, igcm_dust_submicron |
---|
[1224] | 10 | USE dimradmars_mod, only: nueffdust |
---|
[1226] | 11 | USE comcstfi_h |
---|
[38] | 12 | IMPLICIT NONE |
---|
| 13 | c======================================================================= |
---|
| 14 | c subject: |
---|
| 15 | c -------- |
---|
| 16 | c Subroutine designed to update the aerosol size distribution used by |
---|
| 17 | c the radiative transfer scheme. This size distribution is assumed |
---|
| 18 | c to be a log-normal distribution, with effective radius "reffrad" and |
---|
| 19 | c variance "nueffrad". |
---|
| 20 | c At firstcall, "rice" and "nuice" are not known, because |
---|
| 21 | c the H2O ice microphysical scheme is called after the radiative |
---|
| 22 | c transfer in physiq.F. That's why we assess the size of the |
---|
| 23 | c water-ice particles at firstcall (see part 1.2 below). |
---|
| 24 | c |
---|
| 25 | c author: |
---|
| 26 | c ------ |
---|
| 27 | c J.-B. Madeleine (2009-2010) |
---|
| 28 | c |
---|
| 29 | c======================================================================= |
---|
| 30 | c |
---|
| 31 | c Declarations : |
---|
| 32 | c ------------- |
---|
| 33 | c |
---|
[1047] | 34 | !#include "dimensions.h" |
---|
| 35 | !#include "dimphys.h" |
---|
[38] | 36 | #include "callkeys.h" |
---|
[1047] | 37 | !#include "dimradmars.h" |
---|
[1036] | 38 | !#include "tracer.h" |
---|
[1047] | 39 | ! naerkind is set in scatterers.h (built when compiling with makegcm -s #) |
---|
| 40 | #include"scatterers.h" |
---|
[38] | 41 | #include "aerkind.h" |
---|
[1047] | 42 | !#include "yomaer.h" |
---|
[38] | 43 | |
---|
| 44 | c----------------------------------------------------------------------- |
---|
| 45 | c Inputs: |
---|
| 46 | c ------ |
---|
| 47 | |
---|
| 48 | INTEGER ngrid,nlayer |
---|
| 49 | c Ice geometric mean radius (m) |
---|
[1047] | 50 | REAL :: rice(ngrid,nlayer) |
---|
[38] | 51 | c Estimated effective variance of the size distribution (n.u.) |
---|
[1047] | 52 | REAL :: nuice(ngrid,nlayer) |
---|
[38] | 53 | c Tracer mass mixing ratio (kg/kg) |
---|
| 54 | REAL pq(ngrid,nlayer,nqmx) |
---|
[1047] | 55 | REAL rdust(ngrid,nlayer) ! Dust geometric mean radius (m) |
---|
[744] | 56 | |
---|
| 57 | REAL pplay(ngrid,nlayer) ! altitude at the middle of the layers |
---|
| 58 | REAL tau(ngrid,naerkind) |
---|
[38] | 59 | |
---|
[744] | 60 | |
---|
[38] | 61 | c Outputs: |
---|
| 62 | c ------- |
---|
| 63 | |
---|
| 64 | c Aerosol effective radius used for radiative transfer (meter) |
---|
[1047] | 65 | REAL :: reffrad(ngrid,nlayer,naerkind) |
---|
[38] | 66 | c Aerosol effective variance used for radiative transfer (n.u.) |
---|
[1047] | 67 | REAL :: nueffrad(ngrid,nlayer,naerkind) |
---|
[38] | 68 | |
---|
| 69 | c Local variables: |
---|
| 70 | c --------------- |
---|
| 71 | |
---|
| 72 | INTEGER :: ig,l ! 3D grid indices |
---|
| 73 | INTEGER :: iaer ! Aerosol index |
---|
| 74 | |
---|
| 75 | c Number of cloud condensation nuclei near the surface |
---|
| 76 | c (only used at firstcall). This value is taken from |
---|
| 77 | c Montmessin et al. 2004 JGR 109 E10004 p5 (2E6 part m-3), and |
---|
| 78 | c converted to part kg-1 using a typical atmospheric density. |
---|
| 79 | |
---|
| 80 | REAL, PARAMETER :: ccn0 = 1.3E8 |
---|
[629] | 81 | |
---|
| 82 | c For microphysics only: |
---|
| 83 | REAL Mo,No ! Mass and number of ccn |
---|
[1047] | 84 | REAL rhocloud(ngrid,nlayer) ! Cloud density (kg.m-3) |
---|
| 85 | REAL tauscaling(ngrid) ! Convertion factor for qccn and Nccn |
---|
[38] | 86 | |
---|
[1224] | 87 | LOGICAL,SAVE :: firstcall=.true. |
---|
[38] | 88 | |
---|
| 89 | REAL CBRT |
---|
| 90 | EXTERNAL CBRT |
---|
| 91 | |
---|
| 92 | c================================================================== |
---|
[629] | 93 | c 1. Update radius from fields from dynamics or initial state |
---|
| 94 | c================================================================== |
---|
[38] | 95 | |
---|
[358] | 96 | c 1.1 Dust particles |
---|
| 97 | c ------------------ |
---|
| 98 | IF (doubleq.AND.active) THEN |
---|
| 99 | DO l=1,nlayer |
---|
| 100 | DO ig=1, ngrid |
---|
[744] | 101 | call updaterdust(pq(ig,l,igcm_dust_mass), |
---|
| 102 | & pq(ig,l,igcm_dust_number),rdust(ig,l)) |
---|
[358] | 103 | nueffdust(ig,l) = exp(varian**2.)-1. |
---|
| 104 | ENDDO |
---|
| 105 | ENDDO |
---|
| 106 | ELSE |
---|
| 107 | DO l=1,nlayer |
---|
| 108 | DO ig=1, ngrid |
---|
| 109 | rdust(ig,l) = 0.8E-6 |
---|
| 110 | nueffdust(ig,l) = 0.3 |
---|
| 111 | ENDDO |
---|
[38] | 112 | ENDDO |
---|
[358] | 113 | ENDIF |
---|
[629] | 114 | |
---|
[358] | 115 | c 1.2 Water-ice particles |
---|
| 116 | c ----------------------- |
---|
[744] | 117 | |
---|
| 118 | IF (water.AND.activice) THEN |
---|
| 119 | IF (microphys) THEN |
---|
[1208] | 120 | |
---|
| 121 | c At firstcall, the true number and true mass of cloud condensation nuclei are not known. |
---|
| 122 | c Indeed it is scaled on the prescribed dust opacity via a 'tauscaling' coefficient |
---|
| 123 | c computed after radiative transfer. If tauscaling is not in startfi, we make an assumption for its value. |
---|
| 124 | |
---|
[744] | 125 | IF (firstcall) THEN |
---|
[1208] | 126 | IF (minval(tauscaling).lt.0) tauscaling(:) = 1.e-3 ! default value when non-read in startfi is -1 |
---|
| 127 | IF (freedust) tauscaling(:) = 1. ! if freedust, enforce no rescaling at all |
---|
| 128 | firstcall = .false. |
---|
| 129 | ENDIF |
---|
| 130 | |
---|
| 131 | DO l=1,nlayer |
---|
| 132 | DO ig=1,ngrid |
---|
| 133 | call updaterice_micro(pq(ig,l,igcm_h2o_ice), |
---|
| 134 | & pq(ig,l,igcm_ccn_mass), |
---|
| 135 | & pq(ig,l,igcm_ccn_number), |
---|
| 136 | & tauscaling(ig),rice(ig,l), |
---|
| 137 | & rhocloud(ig,l)) |
---|
| 138 | nuice(ig,l) = nuice_ref |
---|
[358] | 139 | ENDDO |
---|
[1208] | 140 | ENDDO |
---|
[744] | 141 | |
---|
| 142 | ELSE ! if not microphys |
---|
| 143 | |
---|
| 144 | DO l=1,nlayer |
---|
| 145 | DO ig=1,ngrid |
---|
| 146 | call updaterice_typ(pq(ig,l,igcm_h2o_ice), |
---|
| 147 | & tau(ig,1),pplay(ig,l),rice(ig,l)) |
---|
| 148 | nuice(ig,l) = nuice_ref |
---|
[629] | 149 | ENDDO |
---|
[744] | 150 | ENDDO |
---|
| 151 | |
---|
| 152 | ENDIF ! of if microphys |
---|
| 153 | ENDIF ! of if (water.AND.activice) |
---|
[38] | 154 | |
---|
| 155 | c================================================================== |
---|
| 156 | c 2. Radius used in the radiative transfer code (reffrad) |
---|
| 157 | c================================================================== |
---|
| 158 | |
---|
| 159 | DO iaer = 1, naerkind ! Loop on aerosol kind |
---|
| 160 | aerkind: SELECT CASE (name_iaer(iaer)) |
---|
| 161 | c================================================================== |
---|
| 162 | CASE("dust_conrath") aerkind ! Typical dust profile |
---|
| 163 | c================================================================== |
---|
| 164 | DO l=1,nlayer |
---|
| 165 | DO ig=1,ngrid |
---|
[358] | 166 | reffrad(ig,l,iaer) = rdust(ig,l) * |
---|
| 167 | & (1.e0 + nueffdust(ig,l))**2.5 |
---|
[38] | 168 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
| 169 | ENDDO |
---|
| 170 | ENDDO |
---|
| 171 | c================================================================== |
---|
| 172 | CASE("dust_doubleq") aerkind! Two-moment scheme for dust |
---|
| 173 | c================================================================== |
---|
| 174 | DO l=1,nlayer |
---|
| 175 | DO ig=1,ngrid |
---|
[358] | 176 | reffrad(ig,l,iaer) = rdust(ig,l) * ref_r0 |
---|
[38] | 177 | nueffrad(ig,l,iaer) = nueffdust(ig,l) |
---|
| 178 | ENDDO |
---|
| 179 | ENDDO |
---|
| 180 | c================================================================== |
---|
| 181 | CASE("dust_submicron") aerkind ! Small dust population |
---|
| 182 | c================================================================== |
---|
| 183 | DO l=1,nlayer |
---|
| 184 | DO ig=1,ngrid |
---|
| 185 | reffrad(ig,l,iaer)=radius(igcm_dust_submicron) |
---|
| 186 | nueffrad(ig,l,iaer)=0.03 |
---|
| 187 | ENDDO |
---|
| 188 | ENDDO |
---|
| 189 | c================================================================== |
---|
| 190 | CASE("h2o_ice") aerkind ! Water ice crystals |
---|
| 191 | c================================================================== |
---|
| 192 | DO l=1,nlayer |
---|
| 193 | DO ig=1,ngrid |
---|
[358] | 194 | c About reffice, do not confuse the mass mean radius |
---|
| 195 | c (rayon moyen massique) and the number median radius |
---|
| 196 | c (or geometric mean radius, rayon moyen géométrique). |
---|
| 197 | c rice is a mass mean radius, whereas rdust |
---|
| 198 | c is a geometric mean radius: |
---|
| 199 | c number median rad = mass mean rad x exp(-1.5 sigma0^2) |
---|
| 200 | c (Montmessin et al. 2004 paragraph 30). Therefore: |
---|
[38] | 201 | reffrad(ig,l,iaer)=rice(ig,l)*(1.+nuice_ref) |
---|
| 202 | nueffrad(ig,l,iaer)=nuice_ref |
---|
| 203 | ENDDO |
---|
| 204 | ENDDO |
---|
| 205 | c================================================================== |
---|
| 206 | END SELECT aerkind |
---|
| 207 | ENDDO ! iaer (loop on aerosol kind) |
---|
| 208 | |
---|
| 209 | RETURN |
---|
| 210 | END |
---|