1 | !======================================================================= |
---|
2 | ! THERMCELL_MAIN_MARS |
---|
3 | !======================================================================= |
---|
4 | ! This routine is called by calltherm_interface and is inside a sub-timestep |
---|
5 | ! loop. It computes thermals properties from parametrized entrainment and |
---|
6 | ! detrainment rate as well as the source profile. |
---|
7 | ! Mass flux are then computed and temperature and CO2 MMR are transported. |
---|
8 | !======================================================================= |
---|
9 | ! Author : A. Colaitis 2011-01-05 (with updates 2011-2013) |
---|
10 | ! after C. Rio and F. Hourdin |
---|
11 | ! Institution : Laboratoire de Meteorologie Dynamique (LMD) Paris, France |
---|
12 | ! ----------------------------------------------------------------------- |
---|
13 | ! Corresponding author : A. Spiga aymeric.spiga_AT_upmc.fr |
---|
14 | ! ----------------------------------------------------------------------- |
---|
15 | ! ASSOCIATED FILES |
---|
16 | ! --> calltherm_interface.F90 |
---|
17 | ! --> thermcell_dqup.F90 |
---|
18 | ! --> comtherm_h.F90 |
---|
19 | !======================================================================= |
---|
20 | ! Reference paper: |
---|
21 | ! A. Colaïtis, A. Spiga, F. Hourdin, C. Rio, F. Forget, and E. Millour. |
---|
22 | ! A thermal plume model for the Martian convective boundary layer. |
---|
23 | ! Journal of Geophysical Research (Planets), 118:1468-1487, July 2013. |
---|
24 | ! http://dx.doi.org/10.1002/jgre.20104 |
---|
25 | ! http://arxiv.org/abs/1306.6215 |
---|
26 | ! ----------------------------------------------------------------------- |
---|
27 | ! Reference paper for terrestrial plume model: |
---|
28 | ! C. Rio and F. Hourdin. |
---|
29 | ! A thermal plume model for the convective boundary layer : Representation of cumulus clouds. |
---|
30 | ! Journal of the Atmospheric Sciences, 65:407-425, 2008. |
---|
31 | ! ----------------------------------------------------------------------- |
---|
32 | |
---|
33 | SUBROUTINE thermcell_main_mars(ngrid,nlayer,nq,igcm_co2 & |
---|
34 | & ,ptimestep & |
---|
35 | & ,pplay,pplev,pphi,zlev,zlay & |
---|
36 | & ,pu,pv,pt,pq,pq2 & |
---|
37 | & ,pdtadj,pdqadj & |
---|
38 | & ,fm,entr,detr,lmax,zmax,limz & |
---|
39 | & ,zw2,fraca & |
---|
40 | & ,zpopsk,heatFlux,heatFlux_down & |
---|
41 | & ,buoyancyOut, buoyancyEst) |
---|
42 | |
---|
43 | USE comtherm_h |
---|
44 | #ifndef MESOSCALE |
---|
45 | use planetwide_mod, only: planetwide_maxval |
---|
46 | #endif |
---|
47 | ! SHARED VARIABLES. This needs adaptations in another climate model. |
---|
48 | ! contains physical constant values such as |
---|
49 | ! "g" : gravitational acceleration (m.s-2) |
---|
50 | ! "r" : recuced gas constant (J.K-1.mol-1) |
---|
51 | USE comcstfi_h |
---|
52 | |
---|
53 | IMPLICIT NONE |
---|
54 | |
---|
55 | !======================================================================= |
---|
56 | |
---|
57 | ! ============== INPUTS ============== |
---|
58 | |
---|
59 | INTEGER, INTENT(IN) :: ngrid ! number of horizontal grid points |
---|
60 | INTEGER, INTENT(IN) :: nlayer ! number of vertical grid points |
---|
61 | INTEGER, INTENT(IN) :: nq ! number of tracer species |
---|
62 | INTEGER, INTENT(IN) :: igcm_co2 ! index of the CO2 tracer in mixing ratio array |
---|
63 | ! --> 0 if no tracer is CO2 (or no tracer at all) |
---|
64 | ! --> this prepares special treatment for polar night mixing |
---|
65 | REAL, INTENT(IN) :: ptimestep !subtimestep (s) |
---|
66 | REAL, INTENT(IN) :: pt(ngrid,nlayer) !temperature (K) |
---|
67 | REAL, INTENT(IN) :: pu(ngrid,nlayer) !u component of the wind (ms-1) |
---|
68 | REAL, INTENT(IN) :: pv(ngrid,nlayer) !v component of the wind (ms-1) |
---|
69 | REAL, INTENT(IN) :: pq(ngrid,nlayer,nq) !tracer concentration (kg/kg) |
---|
70 | REAL, INTENT(IN) :: pq2(ngrid,nlayer) ! Turbulent Kinetic Energy |
---|
71 | REAL, INTENT(IN) :: pplay(ngrid,nlayer) !Pressure at the middle of the layers (Pa) |
---|
72 | REAL, INTENT(IN) :: pplev(ngrid,nlayer+1) !intermediate pressure levels (Pa) |
---|
73 | REAL, INTENT(IN) :: pphi(ngrid,nlayer) !Geopotential at the middle of the layers (m2s-2) |
---|
74 | REAL, INTENT(IN) :: zlay(ngrid,nlayer) ! altitude at the middle of the layers |
---|
75 | REAL, INTENT(IN) :: zlev(ngrid,nlayer+1) ! altitude at layer boundaries |
---|
76 | |
---|
77 | ! ============== OUTPUTS ============== |
---|
78 | |
---|
79 | ! TEMPERATURE |
---|
80 | REAL, INTENT(OUT) :: pdtadj(ngrid,nlayer) !temperature change from thermals dT/dt (K/s) |
---|
81 | |
---|
82 | ! DIAGNOSTICS |
---|
83 | REAL, INTENT(OUT) :: zw2(ngrid,nlayer+1) ! vertical velocity (m/s) |
---|
84 | REAL, INTENT(OUT) :: heatFlux(ngrid,nlayer) ! interface heatflux |
---|
85 | REAL, INTENT(OUT) :: heatFlux_down(ngrid,nlayer) ! interface heat flux from downdraft |
---|
86 | |
---|
87 | INTEGER, INTENT(OUT) :: limz ! limit vertical index for integration |
---|
88 | |
---|
89 | ! ============== LOCAL ================ |
---|
90 | REAL :: pdqadj(ngrid,nlayer,nq) !tracer change from thermals dq/dt, only for CO2 (the rest can be advected outside of the loop) |
---|
91 | |
---|
92 | ! dummy variables when output not needed : |
---|
93 | |
---|
94 | REAL :: buoyancyOut(ngrid,nlayer) ! interlayer buoyancy term |
---|
95 | REAL :: buoyancyEst(ngrid,nlayer) ! interlayer estimated buoyancy term |
---|
96 | |
---|
97 | ! ============== LOCAL ================ |
---|
98 | |
---|
99 | INTEGER ig,k,l,ll,iq |
---|
100 | INTEGER lmax(ngrid),lmin(ngrid),lalim(ngrid) |
---|
101 | REAL zmax(ngrid) |
---|
102 | REAL ztva(ngrid,nlayer),zw_est(ngrid,nlayer+1),ztva_est(ngrid,nlayer) |
---|
103 | REAL zh(ngrid,nlayer) |
---|
104 | REAL zdthladj(ngrid,nlayer) |
---|
105 | REAL zdthladj_down(ngrid,nlayer) |
---|
106 | REAL ztvd(ngrid,nlayer) |
---|
107 | REAL ztv(ngrid,nlayer) |
---|
108 | REAL zu(ngrid,nlayer),zv(ngrid,nlayer),zo(ngrid,nlayer) |
---|
109 | REAL zva(ngrid,nlayer) |
---|
110 | REAL zua(ngrid,nlayer) |
---|
111 | |
---|
112 | REAL zta(ngrid,nlayer) |
---|
113 | REAL fraca(ngrid,nlayer+1) |
---|
114 | REAL q2(ngrid,nlayer) |
---|
115 | REAL rho(ngrid,nlayer),rhobarz(ngrid,nlayer),masse(ngrid,nlayer) |
---|
116 | REAL zpopsk(ngrid,nlayer) |
---|
117 | |
---|
118 | REAL wmax(ngrid) |
---|
119 | REAL fm(ngrid,nlayer+1),entr(ngrid,nlayer),detr(ngrid,nlayer) |
---|
120 | |
---|
121 | REAL fm_down(ngrid,nlayer+1) |
---|
122 | |
---|
123 | REAL ztla(ngrid,nlayer) |
---|
124 | |
---|
125 | REAL f_star(ngrid,nlayer+1),entr_star(ngrid,nlayer) |
---|
126 | REAL detr_star(ngrid,nlayer) |
---|
127 | REAL alim_star_tot(ngrid) |
---|
128 | REAL alim_star(ngrid,nlayer) |
---|
129 | REAL alim_star_clos(ngrid,nlayer) |
---|
130 | REAL f(ngrid) |
---|
131 | |
---|
132 | REAL detrmod(ngrid,nlayer) |
---|
133 | |
---|
134 | REAL teta_th_int(ngrid,nlayer) |
---|
135 | REAL teta_env_int(ngrid,nlayer) |
---|
136 | REAL teta_down_int(ngrid,nlayer) |
---|
137 | |
---|
138 | CHARACTER (LEN=80) :: abort_message |
---|
139 | INTEGER ndt |
---|
140 | |
---|
141 | ! ============= PLUME VARIABLES ============ |
---|
142 | |
---|
143 | REAL w_est(ngrid,nlayer+1) |
---|
144 | REAL wa_moy(ngrid,nlayer+1) |
---|
145 | REAL wmaxa(ngrid) |
---|
146 | REAL zdz,zbuoy(ngrid,nlayer),zw2m |
---|
147 | LOGICAL activecell(ngrid),activetmp(ngrid) |
---|
148 | INTEGER tic |
---|
149 | |
---|
150 | ! ========================================== |
---|
151 | |
---|
152 | ! ============= HEIGHT VARIABLES =========== |
---|
153 | |
---|
154 | REAL num(ngrid) |
---|
155 | REAL denom(ngrid) |
---|
156 | REAL zlevinter(ngrid) |
---|
157 | |
---|
158 | ! ========================================= |
---|
159 | |
---|
160 | ! ============= CLOSURE VARIABLES ========= |
---|
161 | |
---|
162 | REAL zdenom(ngrid) |
---|
163 | REAL alim_star2(ngrid) |
---|
164 | REAL alim_star_tot_clos(ngrid) |
---|
165 | INTEGER llmax |
---|
166 | |
---|
167 | ! ========================================= |
---|
168 | |
---|
169 | ! ============= FLUX2 VARIABLES =========== |
---|
170 | |
---|
171 | INTEGER ncorecfm1,ncorecfm2,ncorecfm3,ncorecalpha |
---|
172 | INTEGER ncorecfm4,ncorecfm5,ncorecfm6,ncorecfm7,ncorecfm8 |
---|
173 | REAL zfm |
---|
174 | REAL f_old,ddd0,eee0,ddd,eee,zzz |
---|
175 | REAL fomass_max,alphamax |
---|
176 | |
---|
177 | ! ========================================= |
---|
178 | |
---|
179 | ! ============== Theta_M Variables ======== |
---|
180 | |
---|
181 | REAL m_co2, m_noco2, A , B |
---|
182 | SAVE A, B |
---|
183 | REAL zhc(ngrid,nlayer) |
---|
184 | REAL ratiom(ngrid,nlayer) |
---|
185 | |
---|
186 | !$OMP THREADPRIVATE(A,B) |
---|
187 | |
---|
188 | ! ========================================= |
---|
189 | |
---|
190 | !----------------------------------------------------------------------- |
---|
191 | ! initialization: |
---|
192 | ! --------------- |
---|
193 | |
---|
194 | entr(:,:)=0. ! entrainment mass flux |
---|
195 | detr(:,:)=0. ! detrainment mass flux |
---|
196 | fm(:,:)=0. ! upward mass flux |
---|
197 | zhc(:,:)=pt(:,:)/zpopsk(:,:) ! potential temperature |
---|
198 | ndt=1 |
---|
199 | |
---|
200 | !....................................................................... |
---|
201 | ! Special treatment for co2: |
---|
202 | !....................................................................... |
---|
203 | ! ********************************************************************** |
---|
204 | ! In order to take into account the effect of vertical molar mass |
---|
205 | ! gradient on convection, we define modified theta that depends |
---|
206 | ! on the mass mixing ratio of Co2 in the cell. |
---|
207 | ! See for details: |
---|
208 | ! |
---|
209 | ! Forget, F. and Millour, E. et al. "Non condensable gas enrichment and depletion |
---|
210 | ! in the martian polar regions", third international workshop on the Mars Atmosphere: |
---|
211 | ! Modeling and Observations, 1447, 9106. year: 2008 |
---|
212 | ! |
---|
213 | ! This is especially important for modelling polar convection. |
---|
214 | ! ********************************************************************** |
---|
215 | if (igcm_co2.ne.0) then |
---|
216 | |
---|
217 | m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
---|
218 | m_noco2 = 33.37E-3 ! Non condensible mol mass (kg/mol) |
---|
219 | ! Compute A and B coefficient use to compute |
---|
220 | ! mean molecular mass Mair defined by |
---|
221 | ! 1/Mair = q(igcm_co2)/m_co2 + (1-q(igcm_co2))/m_noco2 |
---|
222 | ! 1/Mair = A*q(igcm_co2) + B |
---|
223 | A =(1/m_co2 - 1/m_noco2) |
---|
224 | B=1/m_noco2 |
---|
225 | |
---|
226 | ! Special case if one of the tracers is CO2 gas |
---|
227 | DO l=1,nlayer |
---|
228 | DO ig=1,ngrid |
---|
229 | ztv(ig,l) = zhc(ig,l)*(A*pq(ig,l,igcm_co2)+B) |
---|
230 | ENDDO |
---|
231 | ENDDO |
---|
232 | else |
---|
233 | ztv(:,:)=zhc(:,:) |
---|
234 | end if |
---|
235 | |
---|
236 | !------------------------------------------------------------------------ |
---|
237 | ! where are the different quantities defined ? |
---|
238 | !------------------------------------------------------------------------ |
---|
239 | ! -------------------- |
---|
240 | ! |
---|
241 | ! |
---|
242 | ! + + + + + + + + + + + |
---|
243 | ! |
---|
244 | ! |
---|
245 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
246 | ! wh,wt,wo ... |
---|
247 | ! |
---|
248 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
249 | ! |
---|
250 | ! |
---|
251 | ! -------------------- zlev(1) |
---|
252 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
253 | ! |
---|
254 | ! |
---|
255 | |
---|
256 | !----------------------------------------------------------------------- |
---|
257 | ! Densities at layer and layer interface (see above), mass: |
---|
258 | !----------------------------------------------------------------------- |
---|
259 | |
---|
260 | rho(:,:)=pplay(:,:)/(r*pt(:,:)) |
---|
261 | |
---|
262 | rhobarz(:,1)=rho(:,1) |
---|
263 | |
---|
264 | do l=2,nlayer |
---|
265 | rhobarz(:,l)=pplev(:,l)/(r*0.5*(pt(:,l)+pt(:,l-1))) |
---|
266 | enddo |
---|
267 | |
---|
268 | ! mass computation |
---|
269 | do l=1,nlayer |
---|
270 | masse(:,l)=(pplev(:,l)-pplev(:,l+1))/g |
---|
271 | enddo |
---|
272 | |
---|
273 | |
---|
274 | !----------------------------------------------------------------- |
---|
275 | ! Schematic representation of an updraft: |
---|
276 | !------------------------------------------------------------------ |
---|
277 | ! |
---|
278 | ! /|\ |
---|
279 | ! -------- | F_k+1 ------- |
---|
280 | ! ----> D_k |
---|
281 | ! /|\ <---- E_k , A_k |
---|
282 | ! -------- | F_k --------- |
---|
283 | ! ----> D_k-1 |
---|
284 | ! <---- E_k-1 , A_k-1 |
---|
285 | ! |
---|
286 | ! |
---|
287 | ! --------------------------- |
---|
288 | ! |
---|
289 | ! ----- F_lmax+1=0 ---------- \ |
---|
290 | ! lmax (zmax) | |
---|
291 | ! --------------------------- | |
---|
292 | ! | |
---|
293 | ! --------------------------- | |
---|
294 | ! | |
---|
295 | ! --------------------------- | |
---|
296 | ! | |
---|
297 | ! --------------------------- | |
---|
298 | ! | |
---|
299 | ! --------------------------- | |
---|
300 | ! | E |
---|
301 | ! --------------------------- | D |
---|
302 | ! | |
---|
303 | ! --------------------------- | |
---|
304 | ! | |
---|
305 | ! --------------------------- \ | |
---|
306 | ! lalim | | |
---|
307 | ! --------------------------- | | |
---|
308 | ! | | |
---|
309 | ! --------------------------- | | |
---|
310 | ! | A | |
---|
311 | ! --------------------------- | | |
---|
312 | ! | | |
---|
313 | ! --------------------------- | | |
---|
314 | ! lmin (=1 pour le moment) | | |
---|
315 | ! ----- F_lmin=0 ------------ / / |
---|
316 | ! |
---|
317 | ! --------------------------- |
---|
318 | ! ////////////////////////// |
---|
319 | ! |
---|
320 | |
---|
321 | !============================================================================= |
---|
322 | ! Mars version: no phase change is considered, we use a "dry" definition |
---|
323 | ! for the potential temperature. |
---|
324 | !============================================================================= |
---|
325 | |
---|
326 | !------------------------------------------------------------------ |
---|
327 | ! 1. alim_star is the source layer vertical profile in the lowest layers |
---|
328 | ! of the thermal plume. Computed from the air buoyancy |
---|
329 | ! 2. lmin and lalim are the indices of begining and end of source profile |
---|
330 | !------------------------------------------------------------------ |
---|
331 | ! |
---|
332 | entr_star(:,:)=0. ; detr_star(:,:)=0. |
---|
333 | alim_star(:,:)=0. ; alim_star_tot(:)=0. |
---|
334 | lmin(:)=1 |
---|
335 | |
---|
336 | !----------------------------------------------------------------------------- |
---|
337 | ! 3. wmax and zmax are maximum vertical velocity and altitude of a |
---|
338 | ! conservative plume (entrainment = detrainment = 0) using only |
---|
339 | ! the source layer. This is a CAPE computation used for determining |
---|
340 | ! the closure mass flux. |
---|
341 | !----------------------------------------------------------------------------- |
---|
342 | |
---|
343 | ! =========================================================================== |
---|
344 | ! ===================== PLUME =============================================== |
---|
345 | ! =========================================================================== |
---|
346 | |
---|
347 | ! Initialization |
---|
348 | ztva(:,:)=ztv(:,:) ! temperature in the updraft = temperature of the env. |
---|
349 | ztva_est(:,:)=ztva(:,:) ! estimated temp. in the updraft |
---|
350 | ztla(:,:)=0. !intermediary variable |
---|
351 | zdz=0. !layer thickness |
---|
352 | zbuoy(:,:)=0. !buoyancy |
---|
353 | w_est(:,:)=0. !estimated vertical velocity |
---|
354 | f_star(:,:)=0. !non-dimensional upward mass flux f* |
---|
355 | wa_moy(:,:)=0. !vertical velocity |
---|
356 | |
---|
357 | ! Some more initializations |
---|
358 | wmaxa(:)=0. |
---|
359 | lalim(:)=1 |
---|
360 | |
---|
361 | !------------------------------------------------------------------------- |
---|
362 | ! We consider as an activecell columns where the two first layers are |
---|
363 | ! convectively unstable |
---|
364 | ! When it is the case, we compute the source layer profile (alim_star) |
---|
365 | ! see paper appendix 4.1 for details on the source layer |
---|
366 | !------------------------------------------------------------------------- |
---|
367 | |
---|
368 | activecell(:)=ztv(:,1)>ztv(:,2) |
---|
369 | do ig=1,ngrid |
---|
370 | if (ztv(ig,1)>=(ztv(ig,2))) then |
---|
371 | alim_star(ig,1)=MAX((ztv(ig,1)-ztv(ig,2)),0.) & |
---|
372 | & *sqrt(zlev(ig,2)) |
---|
373 | lalim(ig)=2 |
---|
374 | alim_star_tot(ig)=alim_star_tot(ig)+alim_star(ig,1) |
---|
375 | endif |
---|
376 | enddo |
---|
377 | |
---|
378 | do l=2,nlayer-1 |
---|
379 | do ig=1,ngrid |
---|
380 | if (ztv(ig,l)>(ztv(ig,l+1)) .and. ztv(ig,1)>=ztv(ig,l) & |
---|
381 | & .and. (alim_star(ig,l-1).ne. 0.)) then |
---|
382 | alim_star(ig,l)=MAX((ztv(ig,l)-ztv(ig,l+1)),0.) & |
---|
383 | & *sqrt(zlev(ig,l+1)) |
---|
384 | lalim(ig)=l+1 |
---|
385 | alim_star_tot(ig)=alim_star_tot(ig)+alim_star(ig,l) |
---|
386 | endif |
---|
387 | enddo |
---|
388 | enddo |
---|
389 | do l=1,nlayer |
---|
390 | do ig=1,ngrid |
---|
391 | if (alim_star_tot(ig) > 1.e-10 ) then |
---|
392 | alim_star(ig,l)=alim_star(ig,l)/alim_star_tot(ig) |
---|
393 | endif |
---|
394 | enddo |
---|
395 | enddo |
---|
396 | |
---|
397 | alim_star_tot(:)=1. |
---|
398 | |
---|
399 | ! We compute the initial squared velocity (zw2) and non-dimensional upward mass flux |
---|
400 | ! (f_star) in the first and second layer from the source profile. |
---|
401 | |
---|
402 | do ig=1,ngrid |
---|
403 | if (activecell(ig)) then |
---|
404 | ztla(ig,1)=ztv(ig,1) |
---|
405 | f_star(ig,1)=0. |
---|
406 | f_star(ig,2)=alim_star(ig,1) |
---|
407 | zw2(ig,2)=2.*g*(ztv(ig,1)-ztv(ig,2))/ztv(ig,2) & |
---|
408 | & *(zlev(ig,2)-zlev(ig,1)) & |
---|
409 | & *0.4*pphi(ig,1)/(pphi(ig,2)-pphi(ig,1)) !0.4=von Karman constant |
---|
410 | w_est(ig,2)=zw2(ig,2) |
---|
411 | endif |
---|
412 | enddo |
---|
413 | |
---|
414 | !============================================================================== |
---|
415 | !============================================================================== |
---|
416 | !============================================================================== |
---|
417 | ! LOOP ON VERTICAL LEVELS |
---|
418 | !============================================================================== |
---|
419 | do l=2,nlayer-1 |
---|
420 | !============================================================================== |
---|
421 | !============================================================================== |
---|
422 | !============================================================================== |
---|
423 | |
---|
424 | |
---|
425 | ! is the thermal plume still active ? |
---|
426 | do ig=1,ngrid |
---|
427 | activecell(ig)=activecell(ig) & |
---|
428 | & .and. zw2(ig,l)>1.e-10 & |
---|
429 | & .and. f_star(ig,l)+alim_star(ig,l)>1.e-10 |
---|
430 | enddo |
---|
431 | |
---|
432 | !--------------------------------------------------------------------------- |
---|
433 | ! |
---|
434 | ! .I. INITIALIZATION |
---|
435 | ! |
---|
436 | ! Computations of the temperature and buoyancy properties in layer l, |
---|
437 | ! without accounting for entrainment and detrainment. We are therefore |
---|
438 | ! assuming constant temperature in the updraft |
---|
439 | ! |
---|
440 | ! This computation yields an estimation of the buoyancy (zbuoy) and thereforce |
---|
441 | ! an estimation of the velocity squared (w_est) |
---|
442 | !--------------------------------------------------------------------------- |
---|
443 | |
---|
444 | do ig=1,ngrid |
---|
445 | if(activecell(ig)) then |
---|
446 | ztva_est(ig,l)=ztla(ig,l-1) |
---|
447 | |
---|
448 | zdz=zlev(ig,l+1)-zlev(ig,l) |
---|
449 | zbuoy(ig,l)=g*(ztva_est(ig,l)-ztv(ig,l))/ztv(ig,l) |
---|
450 | |
---|
451 | ! Estimated vertical velocity squared |
---|
452 | ! (discretized version of equation 12 in paragraph 40 of paper) |
---|
453 | |
---|
454 | if (((a1*zbuoy(ig,l)/w_est(ig,l)-b1) .gt. 0.) .and. (w_est(ig,l) .ne. 0.)) then |
---|
455 | w_est(ig,l+1)=Max(0.0001,w_est(ig,l)+2.*zdz*a1*zbuoy(ig,l)-2.*zdz*w_est(ig,l)*b1 & |
---|
456 | & -2.*(1.-omega)*zdz*w_est(ig,l)*ae*(a1*zbuoy(ig,l)/w_est(ig,l)-b1)**be) |
---|
457 | else |
---|
458 | w_est(ig,l+1)=Max(0.0001,w_est(ig,l)+2.*zdz*a1inv*zbuoy(ig,l)-2.*zdz*w_est(ig,l)*b1inv) |
---|
459 | endif |
---|
460 | if (w_est(ig,l+1).lt.0.) then |
---|
461 | w_est(ig,l+1)=zw2(ig,l) |
---|
462 | endif |
---|
463 | endif ! of if(activecell(ig)) |
---|
464 | enddo ! of do ig=1,ngrid |
---|
465 | |
---|
466 | !------------------------------------------------- |
---|
467 | ! Compute corresponding non-dimensional (ND) entrainment and detrainment rates |
---|
468 | !------------------------------------------------- |
---|
469 | |
---|
470 | do ig=1,ngrid |
---|
471 | if (activecell(ig)) then |
---|
472 | |
---|
473 | zw2m=w_est(ig,l+1) |
---|
474 | zdz=zlev(ig,l+1)-zlev(ig,l) |
---|
475 | |
---|
476 | if((a1*(zbuoy(ig,l)/zw2m)-b1).gt.0.) then |
---|
477 | |
---|
478 | ! ND entrainment rate, see equation 16 of paper (paragraph 43) |
---|
479 | |
---|
480 | entr_star(ig,l)=f_star(ig,l)*zdz* & |
---|
481 | & MAX(0.,ae*(a1*(zbuoy(ig,l)/zw2m)-b1)**be) |
---|
482 | |
---|
483 | else |
---|
484 | entr_star(ig,l)=0. |
---|
485 | endif |
---|
486 | |
---|
487 | if(zbuoy(ig,l) .gt. 0.) then |
---|
488 | if(l .lt. lalim(ig)) then |
---|
489 | |
---|
490 | detr_star(ig,l)=0. |
---|
491 | else |
---|
492 | |
---|
493 | ! ND detrainment rate, see paragraph 44 of paper |
---|
494 | |
---|
495 | detr_star(ig,l) = f_star(ig,l)*zdz*ad |
---|
496 | |
---|
497 | endif |
---|
498 | else |
---|
499 | detr_star(ig,l)=f_star(ig,l)*zdz* & |
---|
500 | & MAX(ad,bd*zbuoy(ig,l)/zw2m) |
---|
501 | |
---|
502 | endif |
---|
503 | |
---|
504 | ! If we are still in the source layer, we define the source layer entr. rate (alim_star) as the |
---|
505 | ! maximum between the source entrainment rate and the estimated entrainment rate. |
---|
506 | |
---|
507 | if (l.lt.lalim(ig)) then |
---|
508 | alim_star(ig,l)=max(alim_star(ig,l),entr_star(ig,l)) |
---|
509 | entr_star(ig,l)=0. |
---|
510 | endif |
---|
511 | |
---|
512 | ! Compute the non-dimensional upward mass flux at layer l+1 |
---|
513 | ! using equation 11 of appendix 4.2 in paper |
---|
514 | |
---|
515 | f_star(ig,l+1)=f_star(ig,l)+alim_star(ig,l)+entr_star(ig,l) & |
---|
516 | & -detr_star(ig,l) |
---|
517 | |
---|
518 | endif ! of if (activecell(ig)) |
---|
519 | enddo ! of do ig=1,ngrid |
---|
520 | |
---|
521 | ! ----------------------------------------------------------------------------------- |
---|
522 | ! |
---|
523 | ! .II. CONVERGENCE LOOP |
---|
524 | ! |
---|
525 | ! We have estimated a vertical velocity profile and refined the source layer profile |
---|
526 | ! We now conduct iterations to compute: |
---|
527 | ! |
---|
528 | ! - the temperature inside the updraft from the estimated entrainment/source, detrainment, |
---|
529 | ! and upward mass flux. |
---|
530 | ! - the buoyancy from the new temperature inside the updraft |
---|
531 | ! - the vertical velocity from the new buoyancy |
---|
532 | ! - the entr., detr. and upward mass flux from the new buoyancy and vertical velocity |
---|
533 | ! |
---|
534 | ! This loop (tic) converges quickly. We have hardcoded 6 iterations from empirical observations. |
---|
535 | ! Convergence occurs in 1 or 2 iterations in most cases. |
---|
536 | ! ----------------------------------------------------------------------------------- |
---|
537 | |
---|
538 | ! ----------------------------------------------------------------------------------- |
---|
539 | ! ----------------------------------------------------------------------------------- |
---|
540 | DO tic=0,5 ! internal convergence loop |
---|
541 | ! ----------------------------------------------------------------------------------- |
---|
542 | ! ----------------------------------------------------------------------------------- |
---|
543 | |
---|
544 | ! Is the cell still active ? |
---|
545 | activetmp(:)=activecell(:) .and. f_star(:,l+1)>1.e-10 |
---|
546 | |
---|
547 | ! If the cell is active, compute temperature inside updraft |
---|
548 | do ig=1,ngrid |
---|
549 | if (activetmp(ig)) then |
---|
550 | |
---|
551 | ztla(ig,l)=(f_star(ig,l)*ztla(ig,l-1)+ & |
---|
552 | & (alim_star(ig,l)+entr_star(ig,l))*ztv(ig,l)) & |
---|
553 | & /(f_star(ig,l+1)+detr_star(ig,l)) |
---|
554 | endif |
---|
555 | enddo |
---|
556 | |
---|
557 | ! Is the cell still active with respect to temperature variations ? |
---|
558 | activetmp(:)=activetmp(:).and.(abs(ztla(:,l)-ztva(:,l)).gt.0.01) |
---|
559 | |
---|
560 | ! Compute new buoyancy and vertical velocity |
---|
561 | do ig=1,ngrid |
---|
562 | zdz=zlev(ig,l+1)-zlev(ig,l) |
---|
563 | if (activetmp(ig)) then |
---|
564 | ztva(ig,l) = ztla(ig,l) |
---|
565 | zbuoy(ig,l)=g*(ztva(ig,l)-ztv(ig,l))/ztv(ig,l) |
---|
566 | |
---|
567 | ! (discretized version of equation 12 in paragraph 40 of paper) |
---|
568 | if (((a1*zbuoy(ig,l)/zw2(ig,l)-b1) .gt. 0.) .and. & |
---|
569 | (zw2(ig,l) .ne. 0.) ) then |
---|
570 | zw2(ig,l+1)=Max(0.,zw2(ig,l)+2.*zdz*a1*zbuoy(ig,l)- & |
---|
571 | 2.*zdz*zw2(ig,l)*b1-2.*(1.-omega)*zdz*zw2(ig,l)* & |
---|
572 | ae*(a1*zbuoy(ig,l)/zw2(ig,l)-b1)**be) |
---|
573 | else |
---|
574 | zw2(ig,l+1)=Max(0.,zw2(ig,l)+2.*zdz*a1inv*zbuoy(ig,l) & |
---|
575 | -2.*zdz*zw2(ig,l)*b1inv) |
---|
576 | endif |
---|
577 | endif |
---|
578 | enddo |
---|
579 | |
---|
580 | ! ================ RECOMPUTE ENTR, DETR, and F FROM NEW W2 =================== |
---|
581 | ! ND entrainment rate, see equation 16 of paper (paragraph 43) |
---|
582 | ! ND detrainment rate, see paragraph 44 of paper |
---|
583 | |
---|
584 | do ig=1,ngrid |
---|
585 | if (activetmp(ig)) then |
---|
586 | |
---|
587 | zw2m=zw2(ig,l+1) |
---|
588 | zdz=zlev(ig,l+1)-zlev(ig,l) |
---|
589 | if(zw2m .gt. 0) then |
---|
590 | if((a1*(zbuoy(ig,l)/zw2m)-b1) .gt. 0.) then |
---|
591 | entr_star(ig,l)=f_star(ig,l)*zdz* & |
---|
592 | & MAX(0.,ae*(a1*(zbuoy(ig,l)/zw2m)-b1)**be) |
---|
593 | else |
---|
594 | entr_star(ig,l)=0. |
---|
595 | endif |
---|
596 | |
---|
597 | if(zbuoy(ig,l) .gt. 0.) then |
---|
598 | if(l .lt. lalim(ig)) then |
---|
599 | |
---|
600 | detr_star(ig,l)=0. |
---|
601 | |
---|
602 | else |
---|
603 | detr_star(ig,l) = f_star(ig,l)*zdz*ad |
---|
604 | |
---|
605 | endif |
---|
606 | else |
---|
607 | detr_star(ig,l)=f_star(ig,l)*zdz* & |
---|
608 | & MAX(ad,bd*zbuoy(ig,l)/zw2m) |
---|
609 | |
---|
610 | endif |
---|
611 | else |
---|
612 | entr_star(ig,l)=0. |
---|
613 | detr_star(ig,l)=0. |
---|
614 | endif ! of if(zw2m .gt. 0) |
---|
615 | |
---|
616 | ! If we are still in the source layer, we define the source layer entr. rate (alim_star) as the |
---|
617 | ! maximum between the source entrainment rate and the estimated entrainment rate. |
---|
618 | |
---|
619 | if (l.lt.lalim(ig)) then |
---|
620 | alim_star(ig,l)=max(alim_star(ig,l),entr_star(ig,l)) |
---|
621 | entr_star(ig,l)=0. |
---|
622 | endif |
---|
623 | |
---|
624 | ! Compute the non-dimensional upward mass flux at layer l+1 |
---|
625 | ! using equation 11 of appendix 4.2 in paper |
---|
626 | |
---|
627 | f_star(ig,l+1)=f_star(ig,l)+alim_star(ig,l)+entr_star(ig,l) & |
---|
628 | & -detr_star(ig,l) |
---|
629 | |
---|
630 | endif ! of if (activetmp(ig)) |
---|
631 | enddo ! of do ig=1,ngrid |
---|
632 | ! ----------------------------------------------------------------------------------- |
---|
633 | ! ----------------------------------------------------------------------------------- |
---|
634 | ENDDO ! of internal convergence loop DO tic=0,5 |
---|
635 | ! ----------------------------------------------------------------------------------- |
---|
636 | ! ----------------------------------------------------------------------------------- |
---|
637 | |
---|
638 | !--------------------------------------------------------------------------- |
---|
639 | ! Miscellaneous computations for height |
---|
640 | !--------------------------------------------------------------------------- |
---|
641 | |
---|
642 | do ig=1,ngrid |
---|
643 | if (zw2(ig,l+1)>0. .and. zw2(ig,l+1).lt.1.e-10) then |
---|
644 | IF (thermverbose) THEN |
---|
645 | print*,'thermcell_plume, particular case in velocity profile' |
---|
646 | ENDIF |
---|
647 | zw2(ig,l+1)=0. |
---|
648 | endif |
---|
649 | |
---|
650 | if (zw2(ig,l+1).lt.0.) then |
---|
651 | zw2(ig,l+1)=0. |
---|
652 | endif |
---|
653 | wa_moy(ig,l+1)=sqrt(zw2(ig,l+1)) |
---|
654 | |
---|
655 | if (wa_moy(ig,l+1).gt.wmaxa(ig)) then |
---|
656 | wmaxa(ig)=wa_moy(ig,l+1) |
---|
657 | endif |
---|
658 | enddo |
---|
659 | |
---|
660 | !========================================================================= |
---|
661 | !========================================================================= |
---|
662 | !========================================================================= |
---|
663 | ! END OF THE LOOP ON VERTICAL LEVELS |
---|
664 | enddo ! of do l=2,nlayer-1 |
---|
665 | !========================================================================= |
---|
666 | !========================================================================= |
---|
667 | !========================================================================= |
---|
668 | |
---|
669 | ! Recompute the source layer total entrainment alim_star_tot |
---|
670 | ! as alim_star may have been modified in the above loop. Renormalization of |
---|
671 | ! alim_star. |
---|
672 | |
---|
673 | do ig=1,ngrid |
---|
674 | alim_star_tot(ig)=0. |
---|
675 | enddo |
---|
676 | do ig=1,ngrid |
---|
677 | do l=1,lalim(ig)-1 |
---|
678 | alim_star_tot(ig)=alim_star_tot(ig)+alim_star(ig,l) |
---|
679 | enddo |
---|
680 | enddo |
---|
681 | |
---|
682 | do l=1,nlayer |
---|
683 | do ig=1,ngrid |
---|
684 | if (alim_star_tot(ig) > 1.e-10 ) then |
---|
685 | alim_star(ig,l)=alim_star(ig,l)/alim_star_tot(ig) |
---|
686 | endif |
---|
687 | enddo |
---|
688 | enddo |
---|
689 | |
---|
690 | ! =========================================================================== |
---|
691 | ! ================= FIN PLUME =============================================== |
---|
692 | ! =========================================================================== |
---|
693 | |
---|
694 | ! =========================================================================== |
---|
695 | ! ================= HEIGHT ================================================== |
---|
696 | ! =========================================================================== |
---|
697 | |
---|
698 | ! WARNING, W2 (squared velocity) IS TRANSFORMED IN ITS SQUARE ROOT HERE |
---|
699 | |
---|
700 | !------------------------------------------------------------------------------- |
---|
701 | ! Computations of the thermal height zmax and maximum vertical velocity wmax |
---|
702 | !------------------------------------------------------------------------------- |
---|
703 | |
---|
704 | ! Index of the thermal plume height |
---|
705 | do ig=1,ngrid |
---|
706 | lmax(ig)=lalim(ig) |
---|
707 | enddo |
---|
708 | do ig=1,ngrid |
---|
709 | do l=nlayer,lalim(ig)+1,-1 |
---|
710 | if (zw2(ig,l).le.1.e-10) then |
---|
711 | lmax(ig)=l-1 |
---|
712 | endif |
---|
713 | enddo |
---|
714 | enddo |
---|
715 | |
---|
716 | ! Particular case when the thermal reached the model top, which is not a good sign |
---|
717 | do ig=1,ngrid |
---|
718 | if ( zw2(ig,nlayer) > 1.e-10 ) then |
---|
719 | print*,'thermcell_main_mars: WARNING !!!!! W2 non-zero in last layer for ig=',ig |
---|
720 | lmax(ig)=nlayer |
---|
721 | endif |
---|
722 | enddo |
---|
723 | |
---|
724 | ! Maximum vertical velocity zw2 |
---|
725 | do ig=1,ngrid |
---|
726 | wmax(ig)=0. |
---|
727 | enddo |
---|
728 | |
---|
729 | do l=1,nlayer |
---|
730 | do ig=1,ngrid |
---|
731 | if (l.le.lmax(ig)) then |
---|
732 | if (zw2(ig,l).lt.0.)then |
---|
733 | ! print*,'pb2 zw2<0',zw2(ig,l) |
---|
734 | zw2(ig,l)=0. |
---|
735 | endif |
---|
736 | zw2(ig,l)=sqrt(zw2(ig,l)) |
---|
737 | wmax(ig)=max(wmax(ig),zw2(ig,l)) |
---|
738 | else |
---|
739 | zw2(ig,l)=0. |
---|
740 | endif |
---|
741 | enddo |
---|
742 | enddo |
---|
743 | |
---|
744 | ! Height of the thermal plume, defined as the following: |
---|
745 | ! zmax=Integral[z*w(z)*dz]/Integral[w(z)*dz] |
---|
746 | ! |
---|
747 | do ig=1,ngrid |
---|
748 | zmax(ig)=0. |
---|
749 | zlevinter(ig)=zlev(ig,1) |
---|
750 | enddo |
---|
751 | |
---|
752 | num(:)=0. |
---|
753 | denom(:)=0. |
---|
754 | do ig=1,ngrid |
---|
755 | do l=1,nlayer |
---|
756 | num(ig)=num(ig)+zw2(ig,l)*zlev(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
757 | denom(ig)=denom(ig)+zw2(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
758 | enddo |
---|
759 | enddo |
---|
760 | do ig=1,ngrid |
---|
761 | if (denom(ig).gt.1.e-10) then |
---|
762 | zmax(ig)=2.*num(ig)/denom(ig) |
---|
763 | endif |
---|
764 | enddo |
---|
765 | |
---|
766 | ! =========================================================================== |
---|
767 | ! ================= FIN HEIGHT ============================================== |
---|
768 | ! =========================================================================== |
---|
769 | |
---|
770 | #ifdef MESOSCALE |
---|
771 | limz= nlayer-5 ! the most important is limz > max(PBLheight)+2 |
---|
772 | ! nlayer-5 is more than enough! |
---|
773 | #else |
---|
774 | call planetwide_maxval(lmax,limz) |
---|
775 | limz=limz+2 |
---|
776 | #endif |
---|
777 | |
---|
778 | if (limz .ge. nlayer) then |
---|
779 | print*,'thermals have reached last layer of the model' |
---|
780 | print*,'this is not good !' |
---|
781 | limz=nlayer |
---|
782 | endif |
---|
783 | ! alim_star_clos is the source profile used for closure. It consists of the |
---|
784 | ! modified source profile in the source layers, and the entrainment profile |
---|
785 | ! above it. |
---|
786 | |
---|
787 | alim_star_clos(:,:)=entr_star(:,:)+alim_star(:,:) |
---|
788 | |
---|
789 | ! =========================================================================== |
---|
790 | ! ============= CLOSURE ===================================================== |
---|
791 | ! =========================================================================== |
---|
792 | |
---|
793 | !------------------------------------------------------------------------------- |
---|
794 | ! Closure, determination of the upward mass flux |
---|
795 | !------------------------------------------------------------------------------- |
---|
796 | ! Init. |
---|
797 | |
---|
798 | alim_star2(:)=0. |
---|
799 | alim_star_tot_clos(:)=0. |
---|
800 | f(:)=0. |
---|
801 | |
---|
802 | ! llmax is the index of the heighest thermal in the simulation domain |
---|
803 | #ifdef MESOSCALE |
---|
804 | !! AS: THIS IS PARALLEL SENSITIVE!!!!! to be corrected? |
---|
805 | llmax=1 |
---|
806 | do ig=1,ngrid |
---|
807 | if (lalim(ig)>llmax) llmax=lalim(ig) |
---|
808 | enddo |
---|
809 | #else |
---|
810 | call planetwide_maxval(lalim,llmax) |
---|
811 | #endif |
---|
812 | |
---|
813 | ! Integral of a**2/(rho* Delta z), see equation 13 of appendix 4.2 in paper |
---|
814 | |
---|
815 | do k=1,llmax-1 |
---|
816 | do ig=1,ngrid |
---|
817 | if (k<lalim(ig)) then |
---|
818 | alim_star2(ig)=alim_star2(ig)+alim_star_clos(ig,k)*alim_star_clos(ig,k) & |
---|
819 | & /(rho(ig,k)*(zlev(ig,k+1)-zlev(ig,k))) |
---|
820 | alim_star_tot_clos(ig)=alim_star_tot_clos(ig)+alim_star_clos(ig,k) |
---|
821 | endif |
---|
822 | enddo |
---|
823 | enddo |
---|
824 | |
---|
825 | ! Closure mass flux, equation 13 of appendix 4.2 in paper |
---|
826 | |
---|
827 | do ig=1,ngrid |
---|
828 | if (alim_star2(ig)>1.e-10) then |
---|
829 | f(ig)=wmax(ig)*alim_star_tot_clos(ig)/ & |
---|
830 | & (max(500.,zmax(ig))*r_aspect_thermals*alim_star2(ig)) |
---|
831 | |
---|
832 | endif |
---|
833 | enddo |
---|
834 | |
---|
835 | ! =========================================================================== |
---|
836 | ! ============= FIN CLOSURE ================================================= |
---|
837 | ! =========================================================================== |
---|
838 | |
---|
839 | |
---|
840 | ! =========================================================================== |
---|
841 | ! ============= FLUX2 ======================================================= |
---|
842 | ! =========================================================================== |
---|
843 | |
---|
844 | !------------------------------------------------------------------------------- |
---|
845 | ! With the closure mass flux, we can compute the entrainment, detrainment and |
---|
846 | ! upward mass flux from the non-dimensional ones. |
---|
847 | !------------------------------------------------------------------------------- |
---|
848 | |
---|
849 | fomass_max=0.8 !maximum mass fraction of a cell that can go upward in an |
---|
850 | ! updraft |
---|
851 | alphamax=0.5 !maximum updraft coverage in a cell |
---|
852 | |
---|
853 | |
---|
854 | ! these variables allow to follow corrections made to the mass flux when thermverbose=.true. |
---|
855 | ncorecfm1=0 |
---|
856 | ncorecfm2=0 |
---|
857 | ncorecfm3=0 |
---|
858 | ncorecfm4=0 |
---|
859 | ncorecfm5=0 |
---|
860 | ncorecfm6=0 |
---|
861 | ncorecfm7=0 |
---|
862 | ncorecfm8=0 |
---|
863 | ncorecalpha=0 |
---|
864 | |
---|
865 | !------------------------------------------------------------------------- |
---|
866 | ! Multiply by the closure mass flux |
---|
867 | !------------------------------------------------------------------------- |
---|
868 | |
---|
869 | do l=1,limz |
---|
870 | entr(:,l)=f(:)*(entr_star(:,l)+alim_star(:,l)) |
---|
871 | detr(:,l)=f(:)*detr_star(:,l) |
---|
872 | enddo |
---|
873 | |
---|
874 | ! Reconstruct the updraft mass flux everywhere |
---|
875 | |
---|
876 | do l=1,limz |
---|
877 | do ig=1,ngrid |
---|
878 | if (l.lt.lmax(ig)) then |
---|
879 | fm(ig,l+1)=fm(ig,l)+entr(ig,l)-detr(ig,l) |
---|
880 | elseif(l.eq.lmax(ig)) then |
---|
881 | fm(ig,l+1)=0. |
---|
882 | detr(ig,l)=fm(ig,l)+entr(ig,l) |
---|
883 | else |
---|
884 | fm(ig,l+1)=0. |
---|
885 | endif |
---|
886 | enddo |
---|
887 | enddo |
---|
888 | |
---|
889 | |
---|
890 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
891 | ! |
---|
892 | ! Now we will reconstruct once again the upward |
---|
893 | ! mass flux, but we will apply corrections |
---|
894 | ! in some cases. We can compare to the |
---|
895 | ! previously computed mass flux (above) |
---|
896 | ! |
---|
897 | ! This verification is done level by level |
---|
898 | ! |
---|
899 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
900 | |
---|
901 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
902 | |
---|
903 | do l=1,limz !loop on the levels |
---|
904 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
905 | |
---|
906 | ! Upward mass flux at level l+1 |
---|
907 | |
---|
908 | do ig=1,ngrid |
---|
909 | if (l.lt.lmax(ig)) then |
---|
910 | fm(ig,l+1)=fm(ig,l)+entr(ig,l)-detr(ig,l) |
---|
911 | elseif(l.eq.lmax(ig)) then |
---|
912 | fm(ig,l+1)=0. |
---|
913 | detr(ig,l)=fm(ig,l)+entr(ig,l) |
---|
914 | else |
---|
915 | fm(ig,l+1)=0. |
---|
916 | endif |
---|
917 | enddo |
---|
918 | |
---|
919 | |
---|
920 | !------------------------------------------------------------------------- |
---|
921 | ! Upward mass flux should be positive |
---|
922 | !------------------------------------------------------------------------- |
---|
923 | |
---|
924 | do ig=1,ngrid |
---|
925 | |
---|
926 | if (fm(ig,l+1).lt.0.) then |
---|
927 | if((l+1) .eq. lmax(ig)) then |
---|
928 | detr(ig,l)=detr(ig,l)+fm(ig,l+1) |
---|
929 | fm(ig,l+1)=0. |
---|
930 | entr(ig,l+1)=0. |
---|
931 | ncorecfm2=ncorecfm2+1 |
---|
932 | else |
---|
933 | IF (thermverbose) THEN |
---|
934 | print*,'fm(l+1)<0 : ig, l+1,lmax :',ig,l+1,lmax(ig),fm(ig,l+1) |
---|
935 | ENDIF |
---|
936 | ncorecfm1=ncorecfm1+1 |
---|
937 | fm(ig,l+1)=fm(ig,l) |
---|
938 | detr(ig,l)=entr(ig,l) |
---|
939 | endif |
---|
940 | endif |
---|
941 | |
---|
942 | enddo |
---|
943 | |
---|
944 | !------------------------------------------------------------------------- |
---|
945 | ! Detrainment should be lower than upward mass flux |
---|
946 | !------------------------------------------------------------------------- |
---|
947 | |
---|
948 | do ig=1,ngrid |
---|
949 | if (detr(ig,l).gt.fm(ig,l)) then |
---|
950 | ncorecfm6=ncorecfm6+1 |
---|
951 | detr(ig,l)=fm(ig,l) |
---|
952 | entr(ig,l)=fm(ig,l+1) |
---|
953 | |
---|
954 | ! When detrainment is stronger than upward mass flux, and we are above the |
---|
955 | ! thermal last level, the plume is stopped |
---|
956 | |
---|
957 | if(l.gt.lmax(ig)) then |
---|
958 | detr(ig,l)=0. |
---|
959 | fm(ig,l+1)=0. |
---|
960 | entr(ig,l)=0. |
---|
961 | endif |
---|
962 | |
---|
963 | endif |
---|
964 | |
---|
965 | enddo |
---|
966 | |
---|
967 | !------------------------------------------------------------------------- |
---|
968 | ! Check again for mass flux positivity |
---|
969 | !------------------------------------------------------------------------- |
---|
970 | |
---|
971 | do ig=1,ngrid |
---|
972 | if (fm(ig,l+1).lt.0.) then |
---|
973 | detr(ig,l)=detr(ig,l)+fm(ig,l+1) |
---|
974 | fm(ig,l+1)=0. |
---|
975 | ncorecfm2=ncorecfm2+1 |
---|
976 | endif |
---|
977 | enddo |
---|
978 | |
---|
979 | !----------------------------------------------------------------------- |
---|
980 | ! Fractional coverage should be less than 1 |
---|
981 | !----------------------------------------------------------------------- |
---|
982 | |
---|
983 | do ig=1,ngrid |
---|
984 | if (zw2(ig,l+1).gt.1.e-10) then |
---|
985 | zfm=rhobarz(ig,l+1)*zw2(ig,l+1)*alphamax |
---|
986 | if ( fm(ig,l+1) .gt. zfm) then |
---|
987 | f_old=fm(ig,l+1) |
---|
988 | fm(ig,l+1)=zfm |
---|
989 | detr(ig,l)=detr(ig,l)+f_old-fm(ig,l+1) |
---|
990 | ncorecalpha=ncorecalpha+1 |
---|
991 | endif |
---|
992 | endif |
---|
993 | |
---|
994 | enddo |
---|
995 | |
---|
996 | enddo ! on vertical levels |
---|
997 | |
---|
998 | !----------------------------------------------------------------------- |
---|
999 | ! |
---|
1000 | ! We limit the total mass going from one level to the next, compared to the |
---|
1001 | ! initial total mass fo the cell |
---|
1002 | ! |
---|
1003 | !----------------------------------------------------------------------- |
---|
1004 | |
---|
1005 | do l=1,limz |
---|
1006 | do ig=1,ngrid |
---|
1007 | eee0=entr(ig,l) |
---|
1008 | ddd0=detr(ig,l) |
---|
1009 | eee=entr(ig,l)-masse(ig,l)*fomass_max/ptimestep |
---|
1010 | ddd=detr(ig,l)-eee |
---|
1011 | if (eee.gt.0.) then |
---|
1012 | ncorecfm3=ncorecfm3+1 |
---|
1013 | entr(ig,l)=entr(ig,l)-eee |
---|
1014 | if ( ddd.gt.0.) then |
---|
1015 | ! The entrainment is too strong but we can compensate the excess by a detrainment decrease |
---|
1016 | detr(ig,l)=ddd |
---|
1017 | else |
---|
1018 | ! The entrainment is too strong and we compensate the excess by a stronger entrainment |
---|
1019 | ! in the layer above |
---|
1020 | if(l.eq.lmax(ig)) then |
---|
1021 | detr(ig,l)=fm(ig,l)+entr(ig,l) |
---|
1022 | else |
---|
1023 | entr(ig,l+1)=entr(ig,l+1)-ddd |
---|
1024 | detr(ig,l)=0. |
---|
1025 | fm(ig,l+1)=fm(ig,l)+entr(ig,l) |
---|
1026 | detr(ig,l)=0. |
---|
1027 | endif |
---|
1028 | endif |
---|
1029 | endif |
---|
1030 | enddo |
---|
1031 | enddo |
---|
1032 | |
---|
1033 | ! Check again that everything cancels at zmax |
---|
1034 | do ig=1,ngrid |
---|
1035 | fm(ig,lmax(ig)+1)=0. |
---|
1036 | entr(ig,lmax(ig))=0. |
---|
1037 | detr(ig,lmax(ig))=fm(ig,lmax(ig))+entr(ig,lmax(ig)) |
---|
1038 | enddo |
---|
1039 | |
---|
1040 | !----------------------------------------------------------------------- |
---|
1041 | ! Summary of the number of modifications that were necessary (if thermverbose=.true. |
---|
1042 | ! and only if there were a lot of them) |
---|
1043 | !----------------------------------------------------------------------- |
---|
1044 | |
---|
1045 | !IM 090508 beg |
---|
1046 | IF (thermverbose) THEN |
---|
1047 | if (ncorecfm1+ncorecfm2+ncorecfm3+ncorecfm4+ncorecfm5+ncorecalpha > ngrid/4. ) then |
---|
1048 | print*,'thermcell warning : large number of corrections' |
---|
1049 | print*,'PB thermcell : on a du coriger ',ncorecfm1,'x fm1',& |
---|
1050 | & ncorecfm2,'x fm2',ncorecfm3,'x fm3 et', & |
---|
1051 | & ncorecfm4,'x fm4',ncorecfm5,'x fm5 et', & |
---|
1052 | & ncorecfm6,'x fm6', & |
---|
1053 | & ncorecfm7,'x fm7', & |
---|
1054 | & ncorecfm8,'x fm8', & |
---|
1055 | & ncorecalpha,'x alpha' |
---|
1056 | endif |
---|
1057 | ENDIF |
---|
1058 | |
---|
1059 | ! =========================================================================== |
---|
1060 | ! ============= FIN FLUX2 =================================================== |
---|
1061 | ! =========================================================================== |
---|
1062 | |
---|
1063 | |
---|
1064 | ! =========================================================================== |
---|
1065 | ! ============= TRANSPORT =================================================== |
---|
1066 | ! =========================================================================== |
---|
1067 | |
---|
1068 | !------------------------------------------------------------------ |
---|
1069 | ! vertical transport computation |
---|
1070 | !------------------------------------------------------------------ |
---|
1071 | |
---|
1072 | ! ------------------------------------------------------------------ |
---|
1073 | ! IN THE UPDRAFT |
---|
1074 | ! ------------------------------------------------------------------ |
---|
1075 | |
---|
1076 | zdthladj(:,:)=0. |
---|
1077 | ! Based on equation 14 in appendix 4.2 |
---|
1078 | |
---|
1079 | do ig=1,ngrid |
---|
1080 | if(lmax(ig) .gt. 1) then |
---|
1081 | do k=1,lmax(ig) |
---|
1082 | zdthladj(ig,k)=(1./masse(ig,k))*(fm(ig,k+1)*ztv(ig,k+1)- & |
---|
1083 | & fm(ig,k)*ztv(ig,k)+fm(ig,k)*ztva(ig,k)-fm(ig,k+1)*ztva(ig,k+1)) |
---|
1084 | if (ztv(ig,k) + ptimestep*zdthladj(ig,k) .le. 0.) then |
---|
1085 | IF (thermverbose) THEN |
---|
1086 | print*,'Teta<0 in thermcell_dTeta up: qenv .. dq : ', ztv(ig,k),ptimestep*zdthladj(ig,k) |
---|
1087 | ENDIF |
---|
1088 | if(ztv(ig,k) .gt. 0.) then |
---|
1089 | zdthladj(ig,k)=0. |
---|
1090 | endif |
---|
1091 | endif |
---|
1092 | enddo |
---|
1093 | endif |
---|
1094 | enddo |
---|
1095 | |
---|
1096 | ! ------------------------------------------------------------------ |
---|
1097 | ! DOWNDRAFT PARAMETERIZATION |
---|
1098 | ! ------------------------------------------------------------------ |
---|
1099 | |
---|
1100 | ztvd(:,:)=ztv(:,:) |
---|
1101 | fm_down(:,:)=0. |
---|
1102 | do ig=1,ngrid |
---|
1103 | if (lmax(ig) .gt. 1) then |
---|
1104 | do l=1,lmax(ig) |
---|
1105 | if(zlay(ig,l) .le. zmax(ig)) then |
---|
1106 | |
---|
1107 | ! see equation 18 of paragraph 48 in paper |
---|
1108 | fm_down(ig,l) =fm(ig,l)* & |
---|
1109 | & max(fdfu,-4*max(0.,(zlay(ig,l)/zmax(ig)))-0.6) |
---|
1110 | endif |
---|
1111 | |
---|
1112 | if(zlay(ig,l) .le. zmax(ig)) then |
---|
1113 | ! see equation 19 of paragraph 49 in paper |
---|
1114 | ztvd(ig,l)=min(ztv(ig,l),ztv(ig,l)*((zlay(ig,l)/zmax(ig))/400. + 0.997832)) |
---|
1115 | else |
---|
1116 | ztvd(ig,l)=ztv(ig,l) |
---|
1117 | endif |
---|
1118 | |
---|
1119 | enddo |
---|
1120 | endif |
---|
1121 | enddo |
---|
1122 | |
---|
1123 | ! ------------------------------------------------------------------ |
---|
1124 | ! TRANSPORT IN DOWNDRAFT |
---|
1125 | ! ------------------------------------------------------------------ |
---|
1126 | |
---|
1127 | zdthladj_down(:,:)=0. |
---|
1128 | |
---|
1129 | do ig=1,ngrid |
---|
1130 | if(lmax(ig) .gt. 1) then |
---|
1131 | ! No downdraft in the very-near surface layer, we begin at k=3 |
---|
1132 | ! Based on equation 14 in appendix 4.2 |
---|
1133 | |
---|
1134 | do k=3,lmax(ig) |
---|
1135 | zdthladj_down(ig,k)=(1./masse(ig,k))*(fm_down(ig,k+1)*ztv(ig,k+1)- & |
---|
1136 | & fm_down(ig,k)*ztv(ig,k)+fm_down(ig,k)*ztvd(ig,k)-fm_down(ig,k+1)*ztvd(ig,k+1)) |
---|
1137 | if (ztv(ig,k) + ptimestep*zdthladj_down(ig,k) .le. 0.) then |
---|
1138 | IF (thermverbose) THEN |
---|
1139 | print*,'q<0 in thermcell_dTeta down: qenv .. dq : ', ztv(ig,k),ptimestep*zdthladj_down(ig,k) |
---|
1140 | ENDIF |
---|
1141 | if(ztv(ig,k) .gt. 0.) then |
---|
1142 | zdthladj(ig,k)=0. |
---|
1143 | endif |
---|
1144 | endif |
---|
1145 | enddo |
---|
1146 | endif |
---|
1147 | enddo |
---|
1148 | |
---|
1149 | !------------------------------------------------------------------ |
---|
1150 | ! Final fraction coverage with the clean upward mass flux, computed at interfaces |
---|
1151 | !------------------------------------------------------------------ |
---|
1152 | fraca(:,:)=0. |
---|
1153 | do l=2,limz |
---|
1154 | do ig=1,ngrid |
---|
1155 | if (zw2(ig,l).gt.1.e-10) then |
---|
1156 | fraca(ig,l)=fm(ig,l)/(rhobarz(ig,l)*zw2(ig,l)) |
---|
1157 | else |
---|
1158 | fraca(ig,l)=0. |
---|
1159 | endif |
---|
1160 | enddo |
---|
1161 | enddo |
---|
1162 | |
---|
1163 | !------------------------------------------------------------------ |
---|
1164 | ! Transport of C02 Tracer |
---|
1165 | !------------------------------------------------------------------ |
---|
1166 | |
---|
1167 | ! We only transport co2 tracer because it is coupled to the scheme through theta_m |
---|
1168 | ! The rest is transported outside the sub-timestep loop |
---|
1169 | |
---|
1170 | ratiom(:,:)=1. |
---|
1171 | |
---|
1172 | if (igcm_co2.ne.0) then |
---|
1173 | detrmod(:,:)=0. |
---|
1174 | do k=1,limz |
---|
1175 | do ig=1,ngrid |
---|
1176 | detrmod(ig,k)=fm(ig,k)-fm(ig,k+1) & |
---|
1177 | & +entr(ig,k) |
---|
1178 | if (detrmod(ig,k).lt.0.) then |
---|
1179 | entr(ig,k)=entr(ig,k)-detrmod(ig,k) |
---|
1180 | detrmod(ig,k)=0. |
---|
1181 | endif |
---|
1182 | enddo |
---|
1183 | enddo |
---|
1184 | |
---|
1185 | call thermcell_dqup(ngrid,nlayer,ptimestep & |
---|
1186 | & ,fm,entr,detrmod, & |
---|
1187 | & masse,pq(:,:,igcm_co2),pdqadj(:,:,igcm_co2),ndt,limz) |
---|
1188 | |
---|
1189 | ! Compute the ratio between theta and theta_m |
---|
1190 | |
---|
1191 | do l=1,limz |
---|
1192 | do ig=1,ngrid |
---|
1193 | ratiom(ig,l)=1./(A*(pq(ig,l,igcm_co2)+pdqadj(ig,l,igcm_co2)*ptimestep)+B) |
---|
1194 | enddo |
---|
1195 | enddo |
---|
1196 | |
---|
1197 | endif |
---|
1198 | |
---|
1199 | !------------------------------------------------------------------ |
---|
1200 | ! incrementation dt |
---|
1201 | !------------------------------------------------------------------ |
---|
1202 | |
---|
1203 | pdtadj(:,:)=0. |
---|
1204 | do l=1,limz |
---|
1205 | do ig=1,ngrid |
---|
1206 | pdtadj(ig,l)=(zdthladj(ig,l)+zdthladj_down(ig,l))*zpopsk(ig,l)*ratiom(ig,l) |
---|
1207 | enddo |
---|
1208 | enddo |
---|
1209 | |
---|
1210 | ! =========================================================================== |
---|
1211 | ! ============= FIN TRANSPORT =============================================== |
---|
1212 | ! =========================================================================== |
---|
1213 | |
---|
1214 | |
---|
1215 | !------------------------------------------------------------------ |
---|
1216 | ! Diagnostics for outputs |
---|
1217 | !------------------------------------------------------------------ |
---|
1218 | ! We compute interface values for teta env and th. The last interface |
---|
1219 | ! value does not matter, as the mass flux is 0 there. |
---|
1220 | |
---|
1221 | |
---|
1222 | do l=1,nlayer-1 |
---|
1223 | do ig=1,ngrid |
---|
1224 | teta_th_int(ig,l)=0.5*(ztva(ig,l+1)+ztva(ig,l))*ratiom(ig,l) |
---|
1225 | teta_down_int(ig,l) = 0.5*(ztvd(ig,l+1)+ztvd(ig,l))*ratiom(ig,l) |
---|
1226 | teta_env_int(ig,l)=0.5*(ztv(ig,l+1)+ztv(ig,l))*ratiom(ig,l) |
---|
1227 | enddo |
---|
1228 | enddo |
---|
1229 | do ig=1,ngrid |
---|
1230 | teta_th_int(ig,nlayer)=teta_th_int(ig,nlayer-1) |
---|
1231 | teta_env_int(ig,nlayer)=teta_env_int(ig,nlayer-1) |
---|
1232 | teta_down_int(ig,nlayer)=teta_down_int(ig,nlayer-1) |
---|
1233 | enddo |
---|
1234 | heatFlux(:,:)=0. |
---|
1235 | buoyancyOut(:,:)=0. |
---|
1236 | buoyancyEst(:,:)=0. |
---|
1237 | heatFlux_down(:,:)=0. |
---|
1238 | do l=1,limz |
---|
1239 | do ig=1,ngrid |
---|
1240 | heatFlux(ig,l)=fm(ig,l)*(teta_th_int(ig,l)-teta_env_int(ig,l))/(rhobarz(ig,l)) |
---|
1241 | buoyancyOut(ig,l)=g*(ztva(ig,l)-ztv(ig,l))/ztv(ig,l) |
---|
1242 | buoyancyEst(ig,l)=g*(ztva_est(ig,l)-ztv(ig,l))/ztv(ig,l) |
---|
1243 | heatFlux_down(ig,l)=fm_down(ig,l)*(teta_down_int(ig,l)-teta_env_int(ig,l))/rhobarz(ig,l) |
---|
1244 | enddo |
---|
1245 | enddo |
---|
1246 | |
---|
1247 | return |
---|
1248 | end |
---|