1 | SUBROUTINE SWR_FOUQUART ( KDLON, KFLEV, KNU |
---|
2 | S , aerosol,QVISsQREF3d,omegaVIS3d,gVIS3d |
---|
3 | & , albedo,PDSIG,PPSOL,PRMU,PSEC |
---|
4 | S , PFD,PFU ) |
---|
5 | |
---|
6 | use dimradmars_mod, only: sunfr, ndlo2, nsun, |
---|
7 | & ndlon, nflev, naerkind |
---|
8 | use yomlw_h, only: nlaylte |
---|
9 | IMPLICIT NONE |
---|
10 | C |
---|
11 | #include "callkeys.h" |
---|
12 | |
---|
13 | C |
---|
14 | C SWR - Continuum scattering computations |
---|
15 | C |
---|
16 | C PURPOSE. |
---|
17 | C -------- |
---|
18 | C Computes the reflectivity and transmissivity in case oF |
---|
19 | C Continuum scattering |
---|
20 | c F. Forget (1999) |
---|
21 | c |
---|
22 | c BASED ON MORCRETTE EARTH MODEL |
---|
23 | C (See radiation's part of the ecmwf research department |
---|
24 | C documentation, and Fouquart and BonneL (1980) |
---|
25 | C |
---|
26 | C IMPLICIT ARGUMENTS : |
---|
27 | C -------------------- |
---|
28 | C |
---|
29 | C ==== INPUTS === |
---|
30 | c |
---|
31 | c KDLON : number of horizontal grid points |
---|
32 | c KFLEV : number of vertical layers |
---|
33 | c KNU : Solar band # (1 or 2) |
---|
34 | c aerosol aerosol extinction optical depth |
---|
35 | c at reference wavelength "longrefvis" set |
---|
36 | c in dimradmars_mod , in each layer, for one of |
---|
37 | c the "naerkind" kind of aerosol optical properties. |
---|
38 | c albedo hemispheric surface albedo |
---|
39 | c albedo (i,1) : mean albedo for solar band#1 |
---|
40 | c (see below) |
---|
41 | c albedo (i,2) : mean albedo for solar band#2 |
---|
42 | c (see below) |
---|
43 | c PDSIG layer thickness in sigma coordinates |
---|
44 | c PPSOL Surface pressure (Pa) |
---|
45 | c PRMU: cos of solar zenith angle (=1 when sun at zenith) |
---|
46 | c (CORRECTED for high zenith angle (atmosphere), unlike mu0) |
---|
47 | c PSEC =1./PRMU |
---|
48 | |
---|
49 | C ==== OUTPUTS === |
---|
50 | c |
---|
51 | c PFD : downward flux in spectral band #INU in a given mesh |
---|
52 | c (normalized to the total incident flux at the top of the atmosphere) |
---|
53 | c PFU : upward flux in specatral band #INU in a given mesh |
---|
54 | c (normalized to the total incident flux at the top of the atmosphere) |
---|
55 | C |
---|
56 | C |
---|
57 | C METHOD. |
---|
58 | C ------- |
---|
59 | C |
---|
60 | C Computes continuum fluxes corresponding to aerosoL |
---|
61 | C Or/and rayleigh scattering (no molecular gas absorption) |
---|
62 | C |
---|
63 | C----------------------------------------------------------------------- |
---|
64 | C |
---|
65 | C |
---|
66 | C----------------------------------------------------------------------- |
---|
67 | C |
---|
68 | |
---|
69 | C ARGUMENTS |
---|
70 | C --------- |
---|
71 | INTEGER KDLON, KFLEV, KNU |
---|
72 | REAL aerosol(NDLO2,KFLEV,naerkind), albedo(NDLO2,2), |
---|
73 | S PDSIG(NDLO2,KFLEV),PSEC(NDLO2) |
---|
74 | |
---|
75 | REAL QVISsQREF3d(NDLO2,KFLEV,nsun,naerkind) |
---|
76 | REAL omegaVIS3d(NDLO2,KFLEV,nsun,naerkind) |
---|
77 | REAL gVIS3d(NDLO2,KFLEV,nsun,naerkind) |
---|
78 | |
---|
79 | REAL PPSOL(NDLO2) |
---|
80 | REAL PFD(NDLO2,KFLEV+1),PFU(NDLO2,KFLEV+1) |
---|
81 | REAL PRMU(NDLO2) |
---|
82 | |
---|
83 | C LOCAL ARRAYS |
---|
84 | C ------------ |
---|
85 | |
---|
86 | INTEGER jk,ja,jl,jae, jkl,jklp1,jkm1,jaj |
---|
87 | REAL ZTRAY, ZRATIO,ZGAR, ZFF |
---|
88 | real zfacoa,zcorae |
---|
89 | real ZMUE, zgap,zbmu0, zww,zto,zden,zmu1,zbmu1,zden1,zre11 |
---|
90 | |
---|
91 | REAL ZC1I(NDLON,NFLEV+1), ZGG(NDLON), ZREF(NDLON) |
---|
92 | S , ZRE1(NDLON), ZRE2(NDLON) |
---|
93 | S , ZRMUZ(NDLON), ZRNEB(NDLON), ZR21(NDLON) |
---|
94 | S , ZR23(NDLON), ZSS1(NDLON), ZTO1(NDLON), ZTR(NDLON,2,NFLEV+1) |
---|
95 | S , ZTR1(NDLON), ZTR2(NDLON), ZW(NDLON) |
---|
96 | |
---|
97 | REAL ZRAY1(NDLO2,NFLEV+1), ZRAY2(NDLO2,NFLEV+1) |
---|
98 | s , ZREFZ(NDLO2,2,NFLEV+1) |
---|
99 | S , ZRMUE(NDLO2,NFLEV+1) |
---|
100 | S , ZCGAZ(NDLO2,NFLEV),ZPIZAZ(NDLO2,NFLEV),ZTAUAZ(NDLO2,NFLEV) |
---|
101 | |
---|
102 | REAL ZRAYL(NDLON) |
---|
103 | S , ZRJ(NDLON,6,NFLEV+1) |
---|
104 | S , ZRK(NDLON,6,NFLEV+1) |
---|
105 | S , ZTRA1(NDLON,NFLEV+1), ZTRA2(NDLON,NFLEV+1) |
---|
106 | |
---|
107 | c Function |
---|
108 | c -------- |
---|
109 | real CVMGT |
---|
110 | |
---|
111 | C -------------------------------- |
---|
112 | C OPTICAL PARAMETERS FOR AEROSOLS |
---|
113 | C ------------------------------- |
---|
114 | C |
---|
115 | DO JK = 1 , nlaylte+1 |
---|
116 | DO JA = 1 , 6 |
---|
117 | DO JL = 1 , KDLON |
---|
118 | ZRJ(JL,JA,JK) = 0. |
---|
119 | ZRK(JL,JA,JK) = 0. |
---|
120 | END DO |
---|
121 | END DO |
---|
122 | END DO |
---|
123 | |
---|
124 | c Computing TOTAL single scattering parameters by adding |
---|
125 | c properties of all the NAERKIND kind of aerosols |
---|
126 | |
---|
127 | DO JK = 1 , nlaylte |
---|
128 | DO JL = 1 , KDLON |
---|
129 | ZCGAZ(JL,JK) = 0. |
---|
130 | ZPIZAZ(JL,JK) = 0. |
---|
131 | ZTAUAZ(JL,JK) = 0. |
---|
132 | END DO |
---|
133 | DO 106 JAE=1,naerkind |
---|
134 | DO 105 JL = 1 , KDLON |
---|
135 | c Mean Extinction optical depth in the spectral band |
---|
136 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
137 | ZTAUAZ(JL,JK)=ZTAUAZ(JL,JK) |
---|
138 | S +aerosol(JL,JK,JAE)*QVISsQREF3d(JL,JK,KNU,JAE) |
---|
139 | c Single scattering albedo |
---|
140 | c ~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
141 | ZPIZAZ(JL,JK)=ZPIZAZ(JL,JK)+aerosol(JL,JK,JAE)* |
---|
142 | S QVISsQREF3d(JL,JK,KNU,JAE)* |
---|
143 | & omegaVIS3d(JL,JK,KNU,JAE) |
---|
144 | c Assymetry factor |
---|
145 | c ~~~~~~~~~~~~~~~~ |
---|
146 | ZCGAZ(JL,JK) = ZCGAZ(JL,JK) +aerosol(JL,JK,JAE)* |
---|
147 | S QVISsQREF3d(JL,JK,KNU,JAE)* |
---|
148 | & omegaVIS3d(JL,JK,KNU,JAE)*gVIS3d(JL,JK,KNU,JAE) |
---|
149 | 105 CONTINUE |
---|
150 | 106 CONTINUE |
---|
151 | END DO |
---|
152 | C |
---|
153 | DO JK = 1 , nlaylte |
---|
154 | DO JL = 1 , KDLON |
---|
155 | ZCGAZ(JL,JK) = CVMGT( 0., ZCGAZ(JL,JK) / ZPIZAZ(JL,JK), |
---|
156 | S (ZPIZAZ(JL,JK).EQ.0) ) |
---|
157 | ZPIZAZ(JL,JK) = CVMGT( 1., ZPIZAZ(JL,JK) / ZTAUAZ(JL,JK), |
---|
158 | S (ZTAUAZ(JL,JK).EQ.0) ) |
---|
159 | END DO |
---|
160 | END DO |
---|
161 | |
---|
162 | C -------------------------------- |
---|
163 | C INCLUDING RAYLEIGH SCATERRING |
---|
164 | C ------------------------------- |
---|
165 | if (rayleigh) then |
---|
166 | |
---|
167 | call swrayleigh(kdlon,knu,ppsol,prmu,ZRAYL) |
---|
168 | |
---|
169 | c Modifying mean aerosol parameters to account rayleigh scat by gas: |
---|
170 | |
---|
171 | DO JK = 1 , nlaylte |
---|
172 | DO JL = 1 , KDLON |
---|
173 | c Rayleigh opacity in each layer : |
---|
174 | ZTRAY = ZRAYL(JL) * PDSIG(JL,JK) |
---|
175 | c ratio Tau(rayleigh) / Tau (total) |
---|
176 | ZRATIO = ZTRAY / (ZTRAY + ZTAUAZ(JL,JK)) |
---|
177 | ZGAR = ZCGAZ(JL,JK) |
---|
178 | ZFF = ZGAR * ZGAR |
---|
179 | ZTAUAZ(JL,JK)=ZTRAY+ZTAUAZ(JL,JK)*(1.-ZPIZAZ(JL,JK)*ZFF) |
---|
180 | ZCGAZ(JL,JK) = ZGAR * (1. - ZRATIO) / (1. + ZGAR) |
---|
181 | ZPIZAZ(JL,JK) =ZRATIO+(1.-ZRATIO)*ZPIZAZ(JL,JK)*(1.-ZFF) |
---|
182 | S / (1. -ZPIZAZ(JL,JK) * ZFF) |
---|
183 | END DO |
---|
184 | END DO |
---|
185 | end if |
---|
186 | |
---|
187 | |
---|
188 | C ---------------------------------------------- |
---|
189 | C TOTAL EFFECTIVE CLOUDINESS ABOVE A GIVEN LEVEL |
---|
190 | C ---------------------------------------------- |
---|
191 | C |
---|
192 | 200 CONTINUE |
---|
193 | |
---|
194 | DO JL = 1 , KDLON |
---|
195 | ZR23(JL) = 0. |
---|
196 | ZC1I(JL,nlaylte+1) = 0. |
---|
197 | END DO |
---|
198 | |
---|
199 | DO JK = 1 , nlaylte |
---|
200 | JKL = nlaylte+1 - JK |
---|
201 | JKLP1 = JKL + 1 |
---|
202 | DO JL = 1 , KDLON |
---|
203 | ZFACOA = 1.-ZPIZAZ(JL,JKL)*ZCGAZ(JL,JKL)*ZCGAZ(JL,JKL) |
---|
204 | ZCORAE = ZFACOA * ZTAUAZ(JL,JKL) * PSEC(JL) |
---|
205 | ZR21(JL) = EXP(-ZCORAE ) |
---|
206 | ZSS1(JL) = 1.0-ZR21(JL) |
---|
207 | ZC1I(JL,JKL) = 1.0-(1.0-ZSS1(JL))*(1.0-ZC1I(JL,JKLP1)) |
---|
208 | END DO |
---|
209 | END DO |
---|
210 | |
---|
211 | C ----------------------------------------------- |
---|
212 | C REFLECTIVITY/TRANSMISSIVITY FOR PURE SCATTERING |
---|
213 | C ----------------------------------------------- |
---|
214 | C |
---|
215 | DO JL = 1 , KDLON |
---|
216 | ZRAY1(JL,nlaylte+1) = 0. |
---|
217 | ZRAY2(JL,nlaylte+1) = 0. |
---|
218 | ZREFZ(JL,2,1) = albedo(JL,KNU) |
---|
219 | ZREFZ(JL,1,1) = albedo(JL,KNU) |
---|
220 | ZTRA1(JL,nlaylte+1) = 1. |
---|
221 | ZTRA2(JL,nlaylte+1) = 1. |
---|
222 | END DO |
---|
223 | |
---|
224 | DO JK = 2 , nlaylte+1 |
---|
225 | JKM1 = JK-1 |
---|
226 | DO 342 JL = 1 , KDLON |
---|
227 | ZRNEB(JL)= 1.e-5 ! used to be "cloudiness" (PCLDSW in Morcrette) |
---|
228 | |
---|
229 | ZRE1(JL)=0. |
---|
230 | ZTR1(JL)=0. |
---|
231 | ZRE2(JL)=0. |
---|
232 | ZTR2(JL)=0. |
---|
233 | |
---|
234 | C EQUIVALENT ZENITH ANGLE |
---|
235 | c ~~~~~~~~~~~~~~~~~~~~~~~ |
---|
236 | ZMUE = (1.-ZC1I(JL,JK)) * PSEC(JL) |
---|
237 | S + ZC1I(JL,JK) * 1.66 |
---|
238 | ZRMUE(JL,JK) = 1./ZMUE |
---|
239 | |
---|
240 | C ------------------------------------------------------------------ |
---|
241 | C REFLECT./TRANSMISSIVITY DUE TO AEROSOLS (and rayleigh ?) |
---|
242 | C ------------------------------------------------------------------ |
---|
243 | |
---|
244 | ZGAP = ZCGAZ(JL,JKM1) |
---|
245 | ZBMU0 = 0.5 - 0.75 * ZGAP / ZMUE |
---|
246 | ZWW =ZPIZAZ(JL,JKM1) |
---|
247 | ZTO = ZTAUAZ(JL,JKM1) |
---|
248 | ZDEN = 1. + (1. - ZWW + ZBMU0 * ZWW) * ZTO * ZMUE |
---|
249 | S + (1-ZWW) * (1. - ZWW +2.*ZBMU0*ZWW)*ZTO*ZTO*ZMUE*ZMUE |
---|
250 | ZRAY1(JL,JKM1) = ZBMU0 * ZWW * ZTO * ZMUE / ZDEN |
---|
251 | ZTRA1(JL,JKM1) = 1. / ZDEN |
---|
252 | C |
---|
253 | ZMU1 = 0.5 |
---|
254 | ZBMU1 = 0.5 - 0.75 * ZGAP * ZMU1 |
---|
255 | ZDEN1= 1. + (1. - ZWW + ZBMU1 * ZWW) * ZTO / ZMU1 |
---|
256 | S + (1-ZWW) * (1. - ZWW +2.*ZBMU1*ZWW)*ZTO*ZTO/ZMU1/ZMU1 |
---|
257 | ZRAY2(JL,JKM1) = ZBMU1 * ZWW * ZTO / ZMU1 / ZDEN1 |
---|
258 | ZTRA2(JL,JKM1) = 1. / ZDEN1 |
---|
259 | |
---|
260 | ZGG(JL) = ZCGAZ(JL,JKM1) |
---|
261 | ZW(JL) =ZPIZAZ(JL,JKM1) |
---|
262 | ZREF(JL) = ZREFZ(JL,1,JKM1) |
---|
263 | ZRMUZ(JL) = ZRMUE(JL,JK) |
---|
264 | ZTO1(JL) = ZTAUAZ(JL,JKM1)/ZPIZAZ(JL,JKM1) |
---|
265 | |
---|
266 | 342 CONTINUE |
---|
267 | |
---|
268 | C |
---|
269 | CALL DEDD ( KDLON |
---|
270 | S , ZGG,ZREF,ZRMUZ,ZTO1,ZW |
---|
271 | S , ZRE1,ZRE2,ZTR1,ZTR2 ) |
---|
272 | C |
---|
273 | DO JL = 1 , KDLON |
---|
274 | C |
---|
275 | ZREFZ(JL,1,JK) = (1.-ZRNEB(JL)) * (ZRAY1(JL,JKM1) |
---|
276 | S + ZREFZ(JL,1,JKM1) * ZTRA1(JL,JKM1) |
---|
277 | S * ZTRA2(JL,JKM1) |
---|
278 | S / (1.-ZRAY2(JL,JKM1)*ZREFZ(JL,1,JKM1))) |
---|
279 | S + ZRNEB(JL) * ZRE2(JL) |
---|
280 | C |
---|
281 | ZTR(JL,1,JKM1) = ZRNEB(JL) * ZTR2(JL) + (ZTRA1(JL,JKM1) |
---|
282 | S / (1.-ZRAY2(JL,JKM1)*ZREFZ(JL,1,JKM1))) |
---|
283 | S * (1.-ZRNEB(JL)) |
---|
284 | C |
---|
285 | ZREFZ(JL,2,JK) = (1.-ZRNEB(JL)) * (ZRAY1(JL,JKM1) |
---|
286 | S + ZREFZ(JL,2,JKM1) * ZTRA1(JL,JKM1) |
---|
287 | S * ZTRA2(JL,JKM1) ) |
---|
288 | S + ZRNEB(JL) * ZRE1(JL) |
---|
289 | C |
---|
290 | ZTR(JL,2,JKM1) = ZRNEB(JL) * ZTR1(JL) |
---|
291 | S + ZTRA1(JL,JKM1) * (1.-ZRNEB(JL)) |
---|
292 | C |
---|
293 | END DO |
---|
294 | END DO |
---|
295 | C |
---|
296 | C |
---|
297 | C ------------------------------------------------------------------ |
---|
298 | C |
---|
299 | C * 3.5 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
---|
300 | C ------------------------------------------------- |
---|
301 | C |
---|
302 | 350 CONTINUE |
---|
303 | C |
---|
304 | IF (KNU.EQ.1) THEN |
---|
305 | JAJ = 2 |
---|
306 | DO 351 JL = 1 , KDLON |
---|
307 | ZRJ(JL,JAJ,nlaylte+1) = 1. |
---|
308 | ZRK(JL,JAJ,nlaylte+1) = ZREFZ(JL, 1,nlaylte+1) |
---|
309 | 351 CONTINUE |
---|
310 | C |
---|
311 | DO 353 JK = 1 , nlaylte |
---|
312 | JKL = nlaylte+1 - JK |
---|
313 | JKLP1 = JKL + 1 |
---|
314 | DO 352 JL = 1 , KDLON |
---|
315 | ZRE11= ZRJ(JL,JAJ,JKLP1) * ZTR(JL, 1,JKL) |
---|
316 | ZRJ(JL,JAJ,JKL) = ZRE11 |
---|
317 | ZRK(JL,JAJ,JKL) = ZRE11 * ZREFZ(JL, 1,JKL) |
---|
318 | 352 CONTINUE |
---|
319 | 353 CONTINUE |
---|
320 | 354 CONTINUE |
---|
321 | C |
---|
322 | ELSE |
---|
323 | C |
---|
324 | DO 358 JAJ = 1 , 2 |
---|
325 | DO 355 JL = 1 , KDLON |
---|
326 | ZRJ(JL,JAJ,nlaylte+1) = 1. |
---|
327 | ZRK(JL,JAJ,nlaylte+1) = ZREFZ(JL,JAJ,nlaylte+1) |
---|
328 | 355 CONTINUE |
---|
329 | C |
---|
330 | DO 357 JK = 1 , nlaylte |
---|
331 | JKL = nlaylte+1 - JK |
---|
332 | JKLP1 = JKL + 1 |
---|
333 | DO 356 JL = 1 , KDLON |
---|
334 | ZRE11= ZRJ(JL,JAJ,JKLP1) * ZTR(JL,JAJ,JKL) |
---|
335 | ZRJ(JL,JAJ,JKL) = ZRE11 |
---|
336 | ZRK(JL,JAJ,JKL) = ZRE11 * ZREFZ(JL,JAJ,JKL) |
---|
337 | 356 CONTINUE |
---|
338 | 357 CONTINUE |
---|
339 | 358 CONTINUE |
---|
340 | END IF |
---|
341 | |
---|
342 | C |
---|
343 | C |
---|
344 | C |
---|
345 | C ------------------------------------------------------------------ |
---|
346 | C --------------- |
---|
347 | C DOWNWARD FLUXES |
---|
348 | C --------------- |
---|
349 | C |
---|
350 | JAJ = 2 |
---|
351 | |
---|
352 | do JK = 1 , nlaylte+1 |
---|
353 | JKL = nlaylte+1 - JK + 1 |
---|
354 | DO JL = 1 , KDLON |
---|
355 | PFD(JL,JKL) = ZRJ(JL,JAJ,JKL) * sunfr(KNU) |
---|
356 | end do |
---|
357 | end do |
---|
358 | C |
---|
359 | C ------------- |
---|
360 | C UPWARD FLUXES |
---|
361 | C ------------- |
---|
362 | DO JK = 1 , nlaylte+1 |
---|
363 | DO JL = 1 , KDLON |
---|
364 | c ZRK = upward flux / incident top flux |
---|
365 | PFU(JL,JK) = ZRK(JL,JAJ,JK) * sunfr(KNU) |
---|
366 | END DO |
---|
367 | END DO |
---|
368 | |
---|
369 | C |
---|
370 | RETURN |
---|
371 | END |
---|
372 | |
---|
373 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
374 | |
---|
375 | SUBROUTINE DEDD (KDLON,PGG,PREF,PRMUZ,PTO1,PW |
---|
376 | S , PRE1,PRE2,PTR1,PTR2 ) |
---|
377 | use dimradmars_mod, only: ndlo2 |
---|
378 | implicit none |
---|
379 | C |
---|
380 | C |
---|
381 | C**** *DEDD* - DELTA-EDDINGTON IN A CLOUDY LAYER |
---|
382 | C |
---|
383 | C PURPOSE. |
---|
384 | C -------- |
---|
385 | C COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY OF A CLOUDY |
---|
386 | C LAYER USING THE DELTA-EDDINGTON'S APPROXIMATION. |
---|
387 | C |
---|
388 | C** INTERFACE. |
---|
389 | C ---------- |
---|
390 | C *DEDD* IS CALLED BY *SW*. |
---|
391 | C |
---|
392 | C SUBROUTINE DEDD (KDLON,PGG,PREF,PRMUZ,PTO1,PW |
---|
393 | C S , PRE1,PRE2,PTR1,PTR2 ) |
---|
394 | C |
---|
395 | C EXPLICIT ARGUMENTS : |
---|
396 | C -------------------- |
---|
397 | C PGG : (NDLON) ; ASSYMETRY FACTOR |
---|
398 | C PREF : (NDLON) ; REFLECTIVITY OF THE UNDERLYING LAYER |
---|
399 | C PRMUZ : (NDLON) ; COSINE OF SOLAR ZENITH ANGLE |
---|
400 | C PTO1 : (NDLON) ; OPTICAL THICKNESS |
---|
401 | C PW : (NDLON) ; SINGLE SCATTERING ALBEDO |
---|
402 | C ==== OUTPUTS === |
---|
403 | C PRE1 : (NDLON) ; LAYER REFLECTIVITY ASSUMING NO |
---|
404 | C ; REFLECTION FROM UNDERLYING LAYER |
---|
405 | C PTR1 : (NDLON) ; LAYER TRANSMISSIVITY ASSUMING NO |
---|
406 | C ; REFLECTION FROM UNDERLYING LAYER |
---|
407 | C PRE2 : (NDLON) ; LAYER REFLECTIVITY ASSUMING |
---|
408 | C ; REFLECTION FROM UNDERLYING LAYER |
---|
409 | C PTR2 : (NDLON) ; LAYER TRANSMISSIVITY ASSUMING |
---|
410 | C ; REFLECTION FROM UNDERLYING LAYER |
---|
411 | C |
---|
412 | C IMPLICIT ARGUMENTS : NONE |
---|
413 | C -------------------- |
---|
414 | C |
---|
415 | C METHOD. |
---|
416 | C ------- |
---|
417 | C |
---|
418 | C STANDARD DELTA-EDDINGTON LAYER CALCULATIONS. |
---|
419 | C |
---|
420 | C EXTERNALS. |
---|
421 | C ---------- |
---|
422 | C |
---|
423 | C NONE |
---|
424 | C |
---|
425 | C REFERENCE. |
---|
426 | C ---------- |
---|
427 | C |
---|
428 | C SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
429 | C ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE "IN CORE MODEL" |
---|
430 | C |
---|
431 | C AUTHOR. |
---|
432 | C ------- |
---|
433 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
434 | C |
---|
435 | C MODIFICATIONS. |
---|
436 | C -------------- |
---|
437 | C ORIGINAL : 88-12-15 |
---|
438 | C ------------------------------------------------------------------ |
---|
439 | C |
---|
440 | C* 0.1 ARGUMENTS |
---|
441 | C --------- |
---|
442 | INTEGER KDLON |
---|
443 | C |
---|
444 | REAL PGG(NDLO2),PREF(NDLO2),PRMUZ(NDLO2),PTO1(NDLO2),PW(NDLO2) |
---|
445 | REAL PRE1(NDLO2),PRE2(NDLO2),PTR1(NDLO2),PTR2(NDLO2) |
---|
446 | |
---|
447 | c local |
---|
448 | integer jl |
---|
449 | real*8 ZFF,ZGP,ZTOP,ZWCP,ZDT,ZX1,ZWM,ZRM2,ZRK,ZX2,ZRP,ZALPHA |
---|
450 | real*8 ZBETA,ZEXMU0,ZEXKP,ZEXKM,ZXP2P,ZXM2P,ZAP2B,ZAM2B |
---|
451 | real*8 ZA11,ZA12,ZA13,ZA22,ZA21,ZA23,ZDENA,ZC1A,ZC2A |
---|
452 | real*8 ZRI0A,ZRI1A,ZRI0B,ZRI1B |
---|
453 | real*8 ZB21,ZB22,ZB23,ZDENB,ZC1B,ZC2B |
---|
454 | real*8 ZRI0C,ZRI1C,ZRI0D,ZRI1D |
---|
455 | C |
---|
456 | C ------------------------------------------------------------------ |
---|
457 | C |
---|
458 | C* 1. DELTA-EDDINGTON CALCULATIONS |
---|
459 | C |
---|
460 | 100 CONTINUE |
---|
461 | C |
---|
462 | DO 131 JL = 1 , KDLON |
---|
463 | C |
---|
464 | C* 1.1 SET UP THE DELTA-MODIFIED PARAMETERS |
---|
465 | C |
---|
466 | 110 CONTINUE |
---|
467 | C |
---|
468 | ZFF = PGG(JL)*PGG(JL) |
---|
469 | ZGP = PGG(JL)/(1.+PGG(JL)) |
---|
470 | ZTOP = (1.- PW(JL) * ZFF) * PTO1(JL) |
---|
471 | ZWCP = (1-ZFF)* PW(JL) /(1.- PW(JL) * ZFF) |
---|
472 | ZDT = 2./3. |
---|
473 | ZX1 = 1.-ZWCP*ZGP |
---|
474 | ZWM = 1.-ZWCP |
---|
475 | ZRM2 = PRMUZ(JL) * PRMUZ(JL) |
---|
476 | ZRK = SQRT(3.*ZWM*ZX1) |
---|
477 | ZX2 = 4.*(1.-ZRK*ZRK*ZRM2) |
---|
478 | ZRP = SQRT(3.*ZWM/ZX1) |
---|
479 | ZALPHA = 3.*ZWCP*ZRM2*(1.+ZGP*ZWM)/ZX2 |
---|
480 | ZBETA = 3.*ZWCP* PRMUZ(JL) *(1.+3.*ZGP*ZRM2*ZWM)/ZX2 |
---|
481 | ZEXMU0 = EXP(-ZTOP/ PRMUZ(JL) ) |
---|
482 | ZEXKP = EXP(ZRK*ZTOP) |
---|
483 | ZEXKM = 1./ZEXKP |
---|
484 | ZXP2P = 1.+ZDT*ZRP |
---|
485 | ZXM2P = 1.-ZDT*ZRP |
---|
486 | ZAP2B = ZALPHA+ZDT*ZBETA |
---|
487 | ZAM2B = ZALPHA-ZDT*ZBETA |
---|
488 | C |
---|
489 | C* 1.2 WITHOUT REFLECTION FROM THE UNDERLYING LAYER |
---|
490 | C |
---|
491 | 120 CONTINUE |
---|
492 | C |
---|
493 | ZA11 = ZXP2P |
---|
494 | ZA12 = ZXM2P |
---|
495 | ZA13 = ZAP2B |
---|
496 | ZA22 = ZXP2P*ZEXKP |
---|
497 | ZA21 = ZXM2P*ZEXKM |
---|
498 | ZA23 = ZAM2B*ZEXMU0 |
---|
499 | ZDENA = ZA11 * ZA22 - ZA21 * ZA12 |
---|
500 | ZC1A = (ZA22*ZA13-ZA12*ZA23)/ZDENA |
---|
501 | ZC2A = (ZA11*ZA23-ZA21*ZA13)/ZDENA |
---|
502 | ZRI0A = ZC1A+ZC2A-ZALPHA |
---|
503 | ZRI1A = ZRP*(ZC1A-ZC2A)-ZBETA |
---|
504 | PRE1(JL) = (ZRI0A-ZDT*ZRI1A)/ PRMUZ(JL) |
---|
505 | ZRI0B = ZC1A*ZEXKM+ZC2A*ZEXKP-ZALPHA*ZEXMU0 |
---|
506 | ZRI1B = ZRP*(ZC1A*ZEXKM-ZC2A*ZEXKP)-ZBETA*ZEXMU0 |
---|
507 | PTR1(JL) = ZEXMU0+(ZRI0B+ZDT*ZRI1B)/ PRMUZ(JL) |
---|
508 | C |
---|
509 | C* 1.3 WITH REFLECTION FROM THE UNDERLYING LAYER |
---|
510 | C |
---|
511 | 130 CONTINUE |
---|
512 | C |
---|
513 | ZB21 = ZA21- PREF(JL) *ZXP2P*ZEXKM |
---|
514 | ZB22 = ZA22- PREF(JL) *ZXM2P*ZEXKP |
---|
515 | ZB23 = ZA23- PREF(JL) *ZEXMU0*(ZAP2B - PRMUZ(JL) ) |
---|
516 | ZDENB = ZA11 * ZB22 - ZB21 * ZA12 |
---|
517 | ZC1B = (ZB22*ZA13-ZA12*ZB23)/ZDENB |
---|
518 | ZC2B = (ZA11*ZB23-ZB21*ZA13)/ZDENB |
---|
519 | ZRI0C = ZC1B+ZC2B-ZALPHA |
---|
520 | ZRI1C = ZRP*(ZC1B-ZC2B)-ZBETA |
---|
521 | PRE2(JL) = (ZRI0C-ZDT*ZRI1C) / PRMUZ(JL) |
---|
522 | ZRI0D = ZC1B*ZEXKM + ZC2B*ZEXKP - ZALPHA*ZEXMU0 |
---|
523 | ZRI1D = ZRP * (ZC1B*ZEXKM - ZC2B*ZEXKP) - ZBETA*ZEXMU0 |
---|
524 | PTR2(JL) = ZEXMU0 + (ZRI0D + ZDT*ZRI1D) / PRMUZ(JL) |
---|
525 | C |
---|
526 | 131 CONTINUE |
---|
527 | RETURN |
---|
528 | END |
---|
529 | |
---|