1 | SUBROUTINE surflayer_interpol(ngrid,nlay,pz0, |
---|
2 | & pg,pz,pu,pv,wmax,pts,ph,z_out,Teta_out,u_out,ustar,tstar) |
---|
3 | IMPLICIT NONE |
---|
4 | !======================================================================= |
---|
5 | ! |
---|
6 | ! Subject: interpolation of temperature and velocity norm in the surface layer |
---|
7 | ! by recomputation of surface layer quantities (Richardson, Prandtl, Reynolds, u*, teta*) |
---|
8 | ! ------- |
---|
9 | ! |
---|
10 | ! Author: Arnaud Colaitis 05/08/11 |
---|
11 | ! ------- |
---|
12 | ! |
---|
13 | ! Arguments: |
---|
14 | ! ---------- |
---|
15 | ! |
---|
16 | ! inputs: |
---|
17 | ! ------ |
---|
18 | ! ngrid size of the horizontal grid |
---|
19 | ! pg gravity (m s -2) |
---|
20 | ! pz(ngrid,nlay) height of layers |
---|
21 | ! pu(ngrid,nlay) u component of the wind |
---|
22 | ! pv(ngrid,nlay) v component of the wind |
---|
23 | ! pts(ngrid) surface temperature |
---|
24 | ! ph(ngrid) potential temperature T*(p/ps)^kappa |
---|
25 | ! |
---|
26 | ! |
---|
27 | !======================================================================= |
---|
28 | ! |
---|
29 | !----------------------------------------------------------------------- |
---|
30 | ! Declarations: |
---|
31 | ! ------------- |
---|
32 | |
---|
33 | #include "comcstfi.h" |
---|
34 | |
---|
35 | ! Arguments: |
---|
36 | ! ---------- |
---|
37 | |
---|
38 | INTEGER, INTENT(IN) :: ngrid,nlay |
---|
39 | REAL, INTENT(IN) :: pz0(ngrid) |
---|
40 | REAL, INTENT(IN) :: pg,pz(ngrid,nlay) |
---|
41 | REAL, INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) |
---|
42 | REAL, INTENT(IN) :: wmax(ngrid) |
---|
43 | REAL, INTENT(IN) :: pts(ngrid),ph(ngrid,nlay) |
---|
44 | REAL, INTENT(INOUT) :: z_out ! output height (in m above surface) |
---|
45 | REAL, INTENT(OUT) :: Teta_out(ngrid),u_out(ngrid)! interpolated fields at z_out : potential temperature and norm(uv) |
---|
46 | REAL, INTENT(OUT) :: ustar(ngrid), tstar(ngrid) ! u* and teta* |
---|
47 | |
---|
48 | ! Local: |
---|
49 | ! ------ |
---|
50 | |
---|
51 | INTEGER ig |
---|
52 | |
---|
53 | REAL karman,nu |
---|
54 | DATA karman,nu/.41,0.001/ |
---|
55 | SAVE karman,nu |
---|
56 | |
---|
57 | ! Local(2): |
---|
58 | ! --------- |
---|
59 | |
---|
60 | REAL rib(ngrid) ! Bulk Richardson number |
---|
61 | REAL fm(ngrid) ! stability function for momentum |
---|
62 | REAL fh(ngrid) ! stability function for heat |
---|
63 | REAL z1z0,z1z0t ! ratios z1/z0 and z1/z0T |
---|
64 | |
---|
65 | ! phim = 1+betam*zeta or (1-bm*zeta)**am |
---|
66 | ! phih = alphah + betah*zeta or alphah(1.-bh*zeta)**ah |
---|
67 | REAL betam, betah, alphah, bm, bh, lambda |
---|
68 | ! ah and am are assumed to be -0.25 and -0.5 respectively |
---|
69 | |
---|
70 | REAL cdn(ngrid),chn(ngrid) ! neutral momentum and heat drag coefficient |
---|
71 | REAL pz0t ! initial thermal roughness length. (local) |
---|
72 | REAL ric ! critical richardson number |
---|
73 | REAL reynolds(ngrid) ! reynolds number for UBL |
---|
74 | REAL prandtl(ngrid) ! prandtl number for UBL |
---|
75 | REAL pz0tcomp(ngrid) ! computed z0t |
---|
76 | REAL ite |
---|
77 | REAL residual |
---|
78 | REAL pcdv(ngrid),pcdh(ngrid) |
---|
79 | ! For output : |
---|
80 | |
---|
81 | REAL zu2(ngrid) ! Large-scale wind at first layer |
---|
82 | REAL L_mo(ngrid) ! Monin-Obukhov length |
---|
83 | !----------------------------------------------------------------------- |
---|
84 | ! couche de surface: |
---|
85 | ! ------------------ |
---|
86 | |
---|
87 | tstar(:)=0. |
---|
88 | ustar(:)=0. |
---|
89 | reynolds(:)=0. |
---|
90 | |
---|
91 | ! New formulation (AC) : |
---|
92 | |
---|
93 | ! phim = 1+betam*zeta or (1-bm*zeta)**am |
---|
94 | ! phih = alphah + betah*zeta or alphah(1.-bh*zeta)**ah |
---|
95 | ! am=-0.25, ah=-0.5 |
---|
96 | |
---|
97 | pz0t = 0. ! for the sake of simplicity |
---|
98 | pz0tcomp(:) = 0.1*pz0(:) |
---|
99 | rib(:)=0. |
---|
100 | pcdv(:)=0. |
---|
101 | pcdh(:)=0. |
---|
102 | |
---|
103 | ! this formulation assumes alphah=1., implying betah=betam |
---|
104 | ! We use Dyer et al. parameters, as they cover a broad range of Richardson numbers : |
---|
105 | bm=16. !UBL |
---|
106 | bh=16. !UBL |
---|
107 | alphah=1. |
---|
108 | betam=5. !SBL |
---|
109 | betah=5. !SBL |
---|
110 | lambda=(sqrt(bh/bm))/alphah |
---|
111 | ric=betah/(betam**2) |
---|
112 | |
---|
113 | DO ig=1,ngrid |
---|
114 | |
---|
115 | ite=0. |
---|
116 | residual=abs(pz0tcomp(ig)-pz0t) |
---|
117 | |
---|
118 | do while((residual .gt. 0.01*pz0(ig)) .and. (ite .lt. 10.)) |
---|
119 | |
---|
120 | pz0t=pz0tcomp(ig) |
---|
121 | |
---|
122 | if ((pu(ig,1) .ne. 0.) .or. (pv(ig,1) .ne. 0.)) then |
---|
123 | |
---|
124 | ! Classical Richardson number formulation |
---|
125 | |
---|
126 | ! rib(ig) = (pg/ph(ig,1))*pz(ig,1)*(ph(ig,1)-pts(ig)) |
---|
127 | ! & /(pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1)) |
---|
128 | |
---|
129 | ! Richardson number formulation proposed by D.E. England et al. (1995) |
---|
130 | |
---|
131 | ! IF((pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1) .lt. 1.) |
---|
132 | ! & .and. (wmax(ig) .gt. 0.)) THEN |
---|
133 | zu2(ig)= |
---|
134 | ! & (MAX(pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1),wmax(ig)**2)) |
---|
135 | & ( pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1) + wmax(ig)**2) |
---|
136 | ! & pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1) |
---|
137 | ! ELSE |
---|
138 | ! zu2(ig)=pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1) |
---|
139 | ! ENDIF |
---|
140 | |
---|
141 | rib(ig) = (pg/ph(ig,1)) |
---|
142 | ! & *pz(ig,1)*pz0(ig)/sqrt(pz(ig,1)*pz0t) |
---|
143 | & *sqrt(pz(ig,1)*pz0(ig)) |
---|
144 | & *(((log(pz(ig,1)/pz0(ig)))**2)/(log(pz(ig,1)/pz0t))) |
---|
145 | & *(ph(ig,1)-pts(ig))/zu2(ig) |
---|
146 | |
---|
147 | ! & /(MAX(pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1),wmax(ig)**2)) |
---|
148 | ! & /( pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1) + wmax(ig)**2) |
---|
149 | |
---|
150 | else |
---|
151 | print*,'warning, infinite Richardson at surface' |
---|
152 | print*,pu(ig,1),pv(ig,1) |
---|
153 | rib(ig) = ric ! traiter ce cas ! |
---|
154 | endif |
---|
155 | |
---|
156 | z1z0=pz(ig,1)/pz0(ig) |
---|
157 | z1z0t=pz(ig,1)/pz0t |
---|
158 | |
---|
159 | cdn(ig)=karman/log(z1z0) |
---|
160 | cdn(ig)=cdn(ig)*cdn(ig) |
---|
161 | chn(ig)=cdn(ig)*log(z1z0)/log(z1z0t) |
---|
162 | |
---|
163 | ! Stable case : |
---|
164 | if (rib(ig) .gt. 0.) then |
---|
165 | ! From D.E. England et al. (95) |
---|
166 | prandtl(ig)=1. |
---|
167 | if(rib(ig) .lt. ric) then |
---|
168 | ! Assuming alphah=1. and bh=bm for stable conditions : |
---|
169 | fm(ig)=((ric-rib(ig))/ric)**2 |
---|
170 | fh(ig)=((ric-rib(ig))/ric)**2 |
---|
171 | else |
---|
172 | ! For Ri>Ric, we consider Ri->Infinity => no turbulent mixing at surface |
---|
173 | fm(ig)=0. |
---|
174 | fh(ig)=0. |
---|
175 | endif |
---|
176 | ! Unstable case : |
---|
177 | else |
---|
178 | ! From D.E. England et al. (95) |
---|
179 | fm(ig)=sqrt(1.-lambda*bm*rib(ig)) |
---|
180 | fh(ig)=(1./alphah)*((1.-lambda*bh*rib(ig))**0.5)* |
---|
181 | & (1.-lambda*bm*rib(ig))**0.25 |
---|
182 | prandtl(ig)=alphah*((1.-lambda*bm*rib(ig))**0.25)/ |
---|
183 | & ((1.-lambda*bh*rib(ig))**0.5) |
---|
184 | endif |
---|
185 | |
---|
186 | reynolds(ig)=karman*sqrt(fm(ig))*sqrt(pu(ig,1)**2 + pv(ig,1)**2) |
---|
187 | & *pz0(ig)/(log(z1z0)*nu) |
---|
188 | pz0tcomp(ig)=pz0(ig)*exp(-karman*7.3* |
---|
189 | & (reynolds(ig)**0.25)*(prandtl(ig)**0.5)) |
---|
190 | |
---|
191 | |
---|
192 | residual = abs(pz0t-pz0tcomp(ig)) |
---|
193 | ite = ite+1 |
---|
194 | ! if(ite .eq. 10) then |
---|
195 | ! print*, 'iteration max reached' |
---|
196 | ! endif |
---|
197 | ! print*, "iteration nnumber, residual",ite,residual |
---|
198 | |
---|
199 | enddo ! of while |
---|
200 | |
---|
201 | pz0t=0. |
---|
202 | |
---|
203 | ! Drag computation : |
---|
204 | |
---|
205 | pcdv(ig)=cdn(ig)*fm(ig) |
---|
206 | pcdh(ig)=chn(ig)*fh(ig) |
---|
207 | |
---|
208 | ENDDO |
---|
209 | |
---|
210 | ! Large-scale wind at first layer (without gustiness) and |
---|
211 | ! u* theta* computation |
---|
212 | DO ig=1,ngrid |
---|
213 | |
---|
214 | if (rib(ig) .gt. ric) then |
---|
215 | ustar(ig)=0. |
---|
216 | tstar(ig)=0. |
---|
217 | else |
---|
218 | |
---|
219 | ! ustar(ig)=karman*sqrt(fm(ig)*zu2(ig))/(log(pz(ig,1)/pz0(ig))) |
---|
220 | ! tstar(ig)=karman*fh(ig)*(ph(ig,1)-pts(ig)) |
---|
221 | ! & /(log(pz(ig,1)/pz0tcomp(ig))*sqrt(fm(ig))) |
---|
222 | |
---|
223 | !simpler definition of u* and teta*, equivalent to the formula above : |
---|
224 | |
---|
225 | ustar(ig)=sqrt(pcdv(ig))*sqrt(zu2(ig)) |
---|
226 | tstar(ig)=-pcdh(ig)*(pts(ig)-ph(ig,1))/sqrt(pcdv(ig)) |
---|
227 | |
---|
228 | if (tstar(ig) .lt. -50) then |
---|
229 | print*, fh(ig),rib(ig),(ph(ig,1)-pts(ig)) |
---|
230 | & ,log(pz(ig,1)/pz0tcomp(ig)),sqrt(fm(ig)) |
---|
231 | endif |
---|
232 | endif |
---|
233 | ENDDO |
---|
234 | |
---|
235 | ! Monin Obukhov length : |
---|
236 | |
---|
237 | DO ig=1,ngrid |
---|
238 | if (rib(ig) .gt. ric) then |
---|
239 | L_mo(ig)=0. |
---|
240 | else |
---|
241 | L_mo(ig)=pts(ig)*(ustar(ig)**2)/(pg*karman*tstar(ig)) !as defined here, L is positive for SBL, negative for UBL |
---|
242 | endif |
---|
243 | ENDDO |
---|
244 | |
---|
245 | DO ig=1,ngrid |
---|
246 | IF(z_out .ge. pz(ig,1)) THEN |
---|
247 | z_out=1. |
---|
248 | print*, 'Warning, z_out should be less than the first |
---|
249 | & vertical grid-point' |
---|
250 | print*, 'z1 =',pz(ig,1) |
---|
251 | print*, 'z_out=',z_out |
---|
252 | print*, 'z_out has been changed to 1m |
---|
253 | & and computation is resumed' |
---|
254 | ENDIF |
---|
255 | |
---|
256 | IF(z_out .lt. pz0(ig)) THEN |
---|
257 | z_out=1. |
---|
258 | print*, 'Warning, z_out should be more than the roughness |
---|
259 | & length' |
---|
260 | print*, 'z0 =',pz0(ig) |
---|
261 | print*, 'z_out=',z_out |
---|
262 | print*, 'z_out has been changed to z0 |
---|
263 | & and computation is resumed' |
---|
264 | ENDIF |
---|
265 | ENDDO |
---|
266 | |
---|
267 | print*, 'interpolation of u and teta at z_out=',z_out |
---|
268 | |
---|
269 | DO ig=1,ngrid |
---|
270 | IF (L_mo(ig) .gt. 0.) THEN |
---|
271 | u_out(ig)=(ustar(ig)/karman)*log(z_out/pz0(ig)) + |
---|
272 | & 5.*(ustar(ig)/(karman*L_mo(ig)))*(z_out-pz0(ig)) |
---|
273 | Teta_out(ig)=pts(ig)+(tstar(ig)/(prandtl(ig)*karman)) |
---|
274 | & *log(z_out/pz0tcomp(ig)) + |
---|
275 | & 5.*(tstar(ig)/(prandtl(ig)*karman*L_mo(ig))) |
---|
276 | & *(z_out-pz0tcomp(ig)) |
---|
277 | ELSEIF (L_mo(ig) .lt. 0.) THEN |
---|
278 | |
---|
279 | IF(L_mo(ig) .gt. -1000.) THEN |
---|
280 | |
---|
281 | u_out(ig)=(ustar(ig)/karman)*( |
---|
282 | & 2.*atan((1.-16.*z_out/L_mo(ig))**0.25) |
---|
283 | & -2.*atan((1.-16.*pz0(ig)/L_mo(ig))**0.25) |
---|
284 | & -2.*log(1.+(1.-16.*z_out/L_mo(ig))**0.25) |
---|
285 | & +2.*log(1.+(1.-16.*pz0(ig)/L_mo(ig))**0.25) |
---|
286 | & - log(1.+sqrt(1.-16.*z_out/L_mo(ig))) |
---|
287 | & + log(1.+sqrt(1.-16.*pz0(ig)/L_mo(ig))) |
---|
288 | & + log(z_out/pz0(ig)) |
---|
289 | & ) |
---|
290 | |
---|
291 | Teta_out(ig)=pts(ig)+(tstar(ig)/(prandtl(ig)*karman))*( |
---|
292 | & 2.*log(1.+sqrt(1.-16.*pz0tcomp(ig)/L_mo(ig))) |
---|
293 | & -2.*log(1.+sqrt(1.-16.*z_out/L_mo(ig))) |
---|
294 | & + log(z_out/pz0tcomp(ig)) |
---|
295 | & ) |
---|
296 | |
---|
297 | ELSE |
---|
298 | |
---|
299 | ! We have to treat the case where L is very large and negative, |
---|
300 | ! corresponding to a very nearly stable atmosphere (but not quite !) |
---|
301 | ! i.e. teta* <0 and almost zero. We choose the cutoff |
---|
302 | ! corresponding to L_mo < -1000 and use a 3rd order taylor expansion. The difference |
---|
303 | ! between the two expression for z/L = -1/1000 is -1.54324*10^-9 |
---|
304 | ! (we do that to avoid using r*4 precision, otherwise, we get -inf values) |
---|
305 | |
---|
306 | u_out(ig)=(ustar(ig)/karman)*( |
---|
307 | & (4./L_mo(ig))*(z_out-pz0(ig)) |
---|
308 | & + (20./(L_mo(ig))**2)*(z_out**2-pz0(ig)**2) |
---|
309 | & + (160./(L_mo(ig))**3)*(z_out**3-pz0(ig)**3) |
---|
310 | & + log(z_out/pz0(ig)) |
---|
311 | & ) |
---|
312 | |
---|
313 | Teta_out(ig)=pts(ig)+(tstar(ig)/(prandtl(ig)*karman))*( |
---|
314 | & (8./L_mo(ig))*(z_out-pz0tcomp(ig)) |
---|
315 | & + (48./(L_mo(ig))**2)*(z_out**2-pz0tcomp(ig)**2) |
---|
316 | & + (1280./(3.*(L_mo(ig))**3))*(z_out**3-pz0tcomp(ig)**3) |
---|
317 | & + log(z_out/pz0tcomp(ig)) |
---|
318 | & ) |
---|
319 | |
---|
320 | ENDIF |
---|
321 | ELSE |
---|
322 | u_out(ig)=0. |
---|
323 | Teta_out(ig)=pts(ig) |
---|
324 | ENDIF |
---|
325 | ENDDO |
---|
326 | |
---|
327 | ! Usefull diagnostics for the interpolation routine : |
---|
328 | |
---|
329 | call WRITEDIAGFI(ngrid,'L', |
---|
330 | & 'Monin Obukhov length','m', |
---|
331 | & 2,L_mo) |
---|
332 | call WRITEDIAGFI(ngrid,'z0T', |
---|
333 | & 'thermal roughness length','m', |
---|
334 | & 2,pz0tcomp) |
---|
335 | call WRITEDIAGFI(ngrid,'z0', |
---|
336 | & 'roughness length','m', |
---|
337 | & 2,pz0) |
---|
338 | |
---|
339 | |
---|
340 | RETURN |
---|
341 | END |
---|