[267] | 1 | SUBROUTINE surflayer_interpol(ngrid,nlay,pz0, |
---|
[319] | 2 | & pg,pz,pu,pv,wmax,pts,ph,z_out,Teta_out,u_out,ustar,tstar,L_mo) |
---|
[267] | 3 | IMPLICIT NONE |
---|
| 4 | !======================================================================= |
---|
| 5 | ! |
---|
| 6 | ! Subject: interpolation of temperature and velocity norm in the surface layer |
---|
[268] | 7 | ! by recomputation of surface layer quantities (Richardson, Prandtl, Reynolds, u*, teta*) |
---|
[267] | 8 | ! ------- |
---|
| 9 | ! |
---|
| 10 | ! Author: Arnaud Colaitis 05/08/11 |
---|
| 11 | ! ------- |
---|
| 12 | ! |
---|
| 13 | ! Arguments: |
---|
| 14 | ! ---------- |
---|
| 15 | ! |
---|
| 16 | ! inputs: |
---|
| 17 | ! ------ |
---|
| 18 | ! ngrid size of the horizontal grid |
---|
| 19 | ! pg gravity (m s -2) |
---|
| 20 | ! pz(ngrid,nlay) height of layers |
---|
| 21 | ! pu(ngrid,nlay) u component of the wind |
---|
| 22 | ! pv(ngrid,nlay) v component of the wind |
---|
| 23 | ! pts(ngrid) surface temperature |
---|
| 24 | ! ph(ngrid) potential temperature T*(p/ps)^kappa |
---|
| 25 | ! |
---|
| 26 | ! |
---|
| 27 | !======================================================================= |
---|
| 28 | ! |
---|
| 29 | !----------------------------------------------------------------------- |
---|
| 30 | ! Declarations: |
---|
| 31 | ! ------------- |
---|
| 32 | |
---|
| 33 | #include "comcstfi.h" |
---|
| 34 | |
---|
| 35 | ! Arguments: |
---|
| 36 | ! ---------- |
---|
| 37 | |
---|
| 38 | INTEGER, INTENT(IN) :: ngrid,nlay |
---|
| 39 | REAL, INTENT(IN) :: pz0(ngrid) |
---|
| 40 | REAL, INTENT(IN) :: pg,pz(ngrid,nlay) |
---|
| 41 | REAL, INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) |
---|
| 42 | REAL, INTENT(IN) :: wmax(ngrid) |
---|
| 43 | REAL, INTENT(IN) :: pts(ngrid),ph(ngrid,nlay) |
---|
[272] | 44 | REAL, INTENT(IN) :: z_out ! output height (in m above surface) |
---|
[268] | 45 | REAL, INTENT(OUT) :: Teta_out(ngrid),u_out(ngrid)! interpolated fields at z_out : potential temperature and norm(uv) |
---|
[267] | 46 | REAL, INTENT(OUT) :: ustar(ngrid), tstar(ngrid) ! u* and teta* |
---|
[319] | 47 | REAL, INTENT(OUT) :: L_mo(ngrid) ! Monin-Obukhov length |
---|
[267] | 48 | |
---|
| 49 | ! Local: |
---|
| 50 | ! ------ |
---|
| 51 | |
---|
| 52 | INTEGER ig |
---|
| 53 | |
---|
| 54 | REAL karman,nu |
---|
| 55 | DATA karman,nu/.41,0.001/ |
---|
| 56 | SAVE karman,nu |
---|
| 57 | |
---|
| 58 | ! Local(2): |
---|
| 59 | ! --------- |
---|
[272] | 60 | REAL zout |
---|
[267] | 61 | |
---|
| 62 | REAL rib(ngrid) ! Bulk Richardson number |
---|
| 63 | REAL fm(ngrid) ! stability function for momentum |
---|
| 64 | REAL fh(ngrid) ! stability function for heat |
---|
| 65 | REAL z1z0,z1z0t ! ratios z1/z0 and z1/z0T |
---|
| 66 | |
---|
| 67 | ! phim = 1+betam*zeta or (1-bm*zeta)**am |
---|
| 68 | ! phih = alphah + betah*zeta or alphah(1.-bh*zeta)**ah |
---|
| 69 | REAL betam, betah, alphah, bm, bh, lambda |
---|
| 70 | ! ah and am are assumed to be -0.25 and -0.5 respectively |
---|
| 71 | |
---|
| 72 | REAL cdn(ngrid),chn(ngrid) ! neutral momentum and heat drag coefficient |
---|
| 73 | REAL pz0t ! initial thermal roughness length. (local) |
---|
| 74 | REAL ric ! critical richardson number |
---|
| 75 | REAL reynolds(ngrid) ! reynolds number for UBL |
---|
| 76 | REAL prandtl(ngrid) ! prandtl number for UBL |
---|
| 77 | REAL pz0tcomp(ngrid) ! computed z0t |
---|
| 78 | REAL ite |
---|
| 79 | REAL residual |
---|
| 80 | REAL pcdv(ngrid),pcdh(ngrid) |
---|
| 81 | ! For output : |
---|
| 82 | |
---|
[268] | 83 | REAL zu2(ngrid) ! Large-scale wind at first layer |
---|
[267] | 84 | !----------------------------------------------------------------------- |
---|
| 85 | ! couche de surface: |
---|
| 86 | ! ------------------ |
---|
[272] | 87 | zout=z_out |
---|
[267] | 88 | tstar(:)=0. |
---|
| 89 | ustar(:)=0. |
---|
| 90 | reynolds(:)=0. |
---|
| 91 | |
---|
| 92 | ! New formulation (AC) : |
---|
| 93 | |
---|
| 94 | ! phim = 1+betam*zeta or (1-bm*zeta)**am |
---|
| 95 | ! phih = alphah + betah*zeta or alphah(1.-bh*zeta)**ah |
---|
| 96 | ! am=-0.25, ah=-0.5 |
---|
| 97 | |
---|
| 98 | pz0t = 0. ! for the sake of simplicity |
---|
| 99 | pz0tcomp(:) = 0.1*pz0(:) |
---|
| 100 | rib(:)=0. |
---|
| 101 | pcdv(:)=0. |
---|
| 102 | pcdh(:)=0. |
---|
| 103 | |
---|
| 104 | ! this formulation assumes alphah=1., implying betah=betam |
---|
| 105 | ! We use Dyer et al. parameters, as they cover a broad range of Richardson numbers : |
---|
| 106 | bm=16. !UBL |
---|
| 107 | bh=16. !UBL |
---|
| 108 | alphah=1. |
---|
| 109 | betam=5. !SBL |
---|
| 110 | betah=5. !SBL |
---|
| 111 | lambda=(sqrt(bh/bm))/alphah |
---|
| 112 | ric=betah/(betam**2) |
---|
| 113 | |
---|
| 114 | DO ig=1,ngrid |
---|
| 115 | |
---|
| 116 | ite=0. |
---|
| 117 | residual=abs(pz0tcomp(ig)-pz0t) |
---|
| 118 | |
---|
| 119 | do while((residual .gt. 0.01*pz0(ig)) .and. (ite .lt. 10.)) |
---|
| 120 | |
---|
| 121 | pz0t=pz0tcomp(ig) |
---|
| 122 | |
---|
| 123 | if ((pu(ig,1) .ne. 0.) .or. (pv(ig,1) .ne. 0.)) then |
---|
| 124 | |
---|
| 125 | ! Classical Richardson number formulation |
---|
| 126 | |
---|
| 127 | ! rib(ig) = (pg/ph(ig,1))*pz(ig,1)*(ph(ig,1)-pts(ig)) |
---|
| 128 | ! & /(pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1)) |
---|
| 129 | |
---|
| 130 | ! Richardson number formulation proposed by D.E. England et al. (1995) |
---|
| 131 | |
---|
[268] | 132 | ! IF((pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1) .lt. 1.) |
---|
| 133 | ! & .and. (wmax(ig) .gt. 0.)) THEN |
---|
| 134 | zu2(ig)= |
---|
| 135 | ! & (MAX(pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1),wmax(ig)**2)) |
---|
[292] | 136 | & ( pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1)) |
---|
[268] | 137 | ! & pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1) |
---|
| 138 | ! ELSE |
---|
| 139 | ! zu2(ig)=pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1) |
---|
| 140 | ! ENDIF |
---|
| 141 | |
---|
[267] | 142 | rib(ig) = (pg/ph(ig,1)) |
---|
[268] | 143 | ! & *pz(ig,1)*pz0(ig)/sqrt(pz(ig,1)*pz0t) |
---|
| 144 | & *sqrt(pz(ig,1)*pz0(ig)) |
---|
[267] | 145 | & *(((log(pz(ig,1)/pz0(ig)))**2)/(log(pz(ig,1)/pz0t))) |
---|
[292] | 146 | & *(ph(ig,1)-pts(ig))/(zu2(ig) + (0.5*wmax(ig))**2) |
---|
[267] | 147 | |
---|
[268] | 148 | ! & /(MAX(pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1),wmax(ig)**2)) |
---|
| 149 | ! & /( pu(ig,1)*pu(ig,1) + pv(ig,1)*pv(ig,1) + wmax(ig)**2) |
---|
| 150 | |
---|
[267] | 151 | else |
---|
| 152 | print*,'warning, infinite Richardson at surface' |
---|
| 153 | print*,pu(ig,1),pv(ig,1) |
---|
| 154 | rib(ig) = ric ! traiter ce cas ! |
---|
| 155 | endif |
---|
| 156 | |
---|
| 157 | z1z0=pz(ig,1)/pz0(ig) |
---|
| 158 | z1z0t=pz(ig,1)/pz0t |
---|
| 159 | |
---|
| 160 | cdn(ig)=karman/log(z1z0) |
---|
| 161 | cdn(ig)=cdn(ig)*cdn(ig) |
---|
| 162 | chn(ig)=cdn(ig)*log(z1z0)/log(z1z0t) |
---|
| 163 | |
---|
| 164 | ! Stable case : |
---|
| 165 | if (rib(ig) .gt. 0.) then |
---|
| 166 | ! From D.E. England et al. (95) |
---|
| 167 | prandtl(ig)=1. |
---|
| 168 | if(rib(ig) .lt. ric) then |
---|
| 169 | ! Assuming alphah=1. and bh=bm for stable conditions : |
---|
| 170 | fm(ig)=((ric-rib(ig))/ric)**2 |
---|
| 171 | fh(ig)=((ric-rib(ig))/ric)**2 |
---|
| 172 | else |
---|
| 173 | ! For Ri>Ric, we consider Ri->Infinity => no turbulent mixing at surface |
---|
| 174 | fm(ig)=0. |
---|
| 175 | fh(ig)=0. |
---|
| 176 | endif |
---|
| 177 | ! Unstable case : |
---|
| 178 | else |
---|
| 179 | ! From D.E. England et al. (95) |
---|
| 180 | fm(ig)=sqrt(1.-lambda*bm*rib(ig)) |
---|
| 181 | fh(ig)=(1./alphah)*((1.-lambda*bh*rib(ig))**0.5)* |
---|
| 182 | & (1.-lambda*bm*rib(ig))**0.25 |
---|
| 183 | prandtl(ig)=alphah*((1.-lambda*bm*rib(ig))**0.25)/ |
---|
| 184 | & ((1.-lambda*bh*rib(ig))**0.5) |
---|
| 185 | endif |
---|
| 186 | |
---|
[272] | 187 | reynolds(ig)=karman*sqrt(fm(ig)) |
---|
[292] | 188 | & *sqrt(zu2(ig)+(0.5*wmax(ig))**2) |
---|
[272] | 189 | ! & *sqrt(pu(ig,1)**2 + pv(ig,1)**2) |
---|
[267] | 190 | & *pz0(ig)/(log(z1z0)*nu) |
---|
| 191 | pz0tcomp(ig)=pz0(ig)*exp(-karman*7.3* |
---|
| 192 | & (reynolds(ig)**0.25)*(prandtl(ig)**0.5)) |
---|
| 193 | |
---|
| 194 | |
---|
| 195 | residual = abs(pz0t-pz0tcomp(ig)) |
---|
| 196 | ite = ite+1 |
---|
| 197 | ! if(ite .eq. 10) then |
---|
| 198 | ! print*, 'iteration max reached' |
---|
| 199 | ! endif |
---|
| 200 | ! print*, "iteration nnumber, residual",ite,residual |
---|
| 201 | |
---|
| 202 | enddo ! of while |
---|
| 203 | |
---|
| 204 | pz0t=0. |
---|
| 205 | |
---|
| 206 | ! Drag computation : |
---|
| 207 | |
---|
| 208 | pcdv(ig)=cdn(ig)*fm(ig) |
---|
| 209 | pcdh(ig)=chn(ig)*fh(ig) |
---|
| 210 | |
---|
| 211 | ENDDO |
---|
| 212 | |
---|
[268] | 213 | ! Large-scale wind at first layer (without gustiness) and |
---|
[267] | 214 | ! u* theta* computation |
---|
| 215 | DO ig=1,ngrid |
---|
| 216 | |
---|
| 217 | if (rib(ig) .gt. ric) then |
---|
| 218 | ustar(ig)=0. |
---|
| 219 | tstar(ig)=0. |
---|
| 220 | else |
---|
[268] | 221 | |
---|
| 222 | ! ustar(ig)=karman*sqrt(fm(ig)*zu2(ig))/(log(pz(ig,1)/pz0(ig))) |
---|
| 223 | ! tstar(ig)=karman*fh(ig)*(ph(ig,1)-pts(ig)) |
---|
| 224 | ! & /(log(pz(ig,1)/pz0tcomp(ig))*sqrt(fm(ig))) |
---|
| 225 | |
---|
| 226 | !simpler definition of u* and teta*, equivalent to the formula above : |
---|
| 227 | |
---|
[292] | 228 | ustar(ig)=sqrt(pcdv(ig))*sqrt(zu2(ig)) |
---|
| 229 | tstar(ig)=-pcdh(ig)*(pts(ig)-ph(ig,1)) |
---|
| 230 | & /sqrt(pcdv(ig)) |
---|
[268] | 231 | |
---|
| 232 | if (tstar(ig) .lt. -50) then |
---|
| 233 | print*, fh(ig),rib(ig),(ph(ig,1)-pts(ig)) |
---|
| 234 | & ,log(pz(ig,1)/pz0tcomp(ig)),sqrt(fm(ig)) |
---|
| 235 | endif |
---|
[267] | 236 | endif |
---|
| 237 | ENDDO |
---|
| 238 | |
---|
| 239 | ! Monin Obukhov length : |
---|
| 240 | |
---|
| 241 | DO ig=1,ngrid |
---|
| 242 | if (rib(ig) .gt. ric) then |
---|
| 243 | L_mo(ig)=0. |
---|
| 244 | else |
---|
| 245 | L_mo(ig)=pts(ig)*(ustar(ig)**2)/(pg*karman*tstar(ig)) !as defined here, L is positive for SBL, negative for UBL |
---|
| 246 | endif |
---|
| 247 | ENDDO |
---|
| 248 | |
---|
[268] | 249 | DO ig=1,ngrid |
---|
[272] | 250 | IF(zout .ge. pz(ig,1)) THEN |
---|
| 251 | zout=1. |
---|
[267] | 252 | print*, 'Warning, z_out should be less than the first |
---|
[272] | 253 | & vertical grid-point' |
---|
[267] | 254 | print*, 'z1 =',pz(ig,1) |
---|
| 255 | print*, 'z_out=',z_out |
---|
| 256 | print*, 'z_out has been changed to 1m |
---|
[272] | 257 | & and computation is resumed' |
---|
[267] | 258 | ENDIF |
---|
| 259 | |
---|
[272] | 260 | IF(zout .lt. pz0tcomp(ig)) THEN |
---|
| 261 | zout=pz0tcomp(ig) |
---|
| 262 | print*, 'Warning, z_out should be more than the thermal |
---|
| 263 | & roughness length' |
---|
| 264 | print*, 'z0 =',pz0tcomp(ig) |
---|
[267] | 265 | print*, 'z_out=',z_out |
---|
[272] | 266 | print*, 'z_out has been changed to z0t |
---|
| 267 | & and computation is resumed' |
---|
[267] | 268 | ENDIF |
---|
[268] | 269 | ENDDO |
---|
[267] | 270 | |
---|
[272] | 271 | print*, 'interpolation of u and teta at z_out=',zout |
---|
[267] | 272 | |
---|
| 273 | DO ig=1,ngrid |
---|
| 274 | IF (L_mo(ig) .gt. 0.) THEN |
---|
[272] | 275 | u_out(ig)=(ustar(ig)/karman)*log(zout/pz0(ig)) + |
---|
| 276 | & 5.*(ustar(ig)/(karman*L_mo(ig)))*(zout-pz0(ig)) |
---|
[267] | 277 | Teta_out(ig)=pts(ig)+(tstar(ig)/(prandtl(ig)*karman)) |
---|
[272] | 278 | & *log(zout/pz0tcomp(ig)) + |
---|
[267] | 279 | & 5.*(tstar(ig)/(prandtl(ig)*karman*L_mo(ig))) |
---|
[272] | 280 | & *(zout-pz0tcomp(ig)) |
---|
[267] | 281 | ELSEIF (L_mo(ig) .lt. 0.) THEN |
---|
[268] | 282 | |
---|
| 283 | IF(L_mo(ig) .gt. -1000.) THEN |
---|
| 284 | |
---|
| 285 | u_out(ig)=(ustar(ig)/karman)*( |
---|
[272] | 286 | & 2.*atan((1.-16.*zout/L_mo(ig))**0.25) |
---|
[268] | 287 | & -2.*atan((1.-16.*pz0(ig)/L_mo(ig))**0.25) |
---|
[272] | 288 | & -2.*log(1.+(1.-16.*zout/L_mo(ig))**0.25) |
---|
[268] | 289 | & +2.*log(1.+(1.-16.*pz0(ig)/L_mo(ig))**0.25) |
---|
[272] | 290 | & - log(1.+sqrt(1.-16.*zout/L_mo(ig))) |
---|
[268] | 291 | & + log(1.+sqrt(1.-16.*pz0(ig)/L_mo(ig))) |
---|
[272] | 292 | & + log(zout/pz0(ig)) |
---|
[267] | 293 | & ) |
---|
[268] | 294 | |
---|
| 295 | Teta_out(ig)=pts(ig)+(tstar(ig)/(prandtl(ig)*karman))*( |
---|
| 296 | & 2.*log(1.+sqrt(1.-16.*pz0tcomp(ig)/L_mo(ig))) |
---|
[272] | 297 | & -2.*log(1.+sqrt(1.-16.*zout/L_mo(ig))) |
---|
| 298 | & + log(zout/pz0tcomp(ig)) |
---|
[267] | 299 | & ) |
---|
[268] | 300 | |
---|
| 301 | ELSE |
---|
| 302 | |
---|
| 303 | ! We have to treat the case where L is very large and negative, |
---|
| 304 | ! corresponding to a very nearly stable atmosphere (but not quite !) |
---|
| 305 | ! i.e. teta* <0 and almost zero. We choose the cutoff |
---|
| 306 | ! corresponding to L_mo < -1000 and use a 3rd order taylor expansion. The difference |
---|
| 307 | ! between the two expression for z/L = -1/1000 is -1.54324*10^-9 |
---|
| 308 | ! (we do that to avoid using r*4 precision, otherwise, we get -inf values) |
---|
| 309 | |
---|
| 310 | u_out(ig)=(ustar(ig)/karman)*( |
---|
[272] | 311 | & (4./L_mo(ig))*(zout-pz0(ig)) |
---|
| 312 | & + (20./(L_mo(ig))**2)*(zout**2-pz0(ig)**2) |
---|
| 313 | & + (160./(L_mo(ig))**3)*(zout**3-pz0(ig)**3) |
---|
| 314 | & + log(zout/pz0(ig)) |
---|
[268] | 315 | & ) |
---|
| 316 | |
---|
| 317 | Teta_out(ig)=pts(ig)+(tstar(ig)/(prandtl(ig)*karman))*( |
---|
[272] | 318 | & (8./L_mo(ig))*(zout-pz0tcomp(ig)) |
---|
| 319 | & + (48./(L_mo(ig))**2)*(zout**2-pz0tcomp(ig)**2) |
---|
| 320 | & + (1280./(3.*(L_mo(ig))**3))*(zout**3-pz0tcomp(ig)**3) |
---|
| 321 | & + log(zout/pz0tcomp(ig)) |
---|
[268] | 322 | & ) |
---|
| 323 | |
---|
| 324 | ENDIF |
---|
[267] | 325 | ELSE |
---|
| 326 | u_out(ig)=0. |
---|
[268] | 327 | Teta_out(ig)=pts(ig) |
---|
[267] | 328 | ENDIF |
---|
| 329 | ENDDO |
---|
| 330 | |
---|
[268] | 331 | ! Usefull diagnostics for the interpolation routine : |
---|
| 332 | |
---|
[272] | 333 | ! call WRITEDIAGFI(ngrid,'z0T', |
---|
| 334 | ! & 'thermal roughness length','m', |
---|
| 335 | ! & 2,pz0tcomp) |
---|
| 336 | ! call WRITEDIAGFI(ngrid,'z0', |
---|
| 337 | ! & 'roughness length','m', |
---|
| 338 | ! & 2,pz0) |
---|
[267] | 339 | |
---|
| 340 | |
---|
| 341 | RETURN |
---|
| 342 | END |
---|