[38] | 1 | subroutine soil(ngrid,nsoil,firstcall, |
---|
| 2 | & therm_i, |
---|
| 3 | & timestep,tsurf,tsoil, |
---|
| 4 | & capcal,fluxgrd) |
---|
[1224] | 5 | |
---|
| 6 | use comsoil_h, only: layer, mlayer, volcapa, |
---|
| 7 | & mthermdiff, thermdiff, coefq, |
---|
| 8 | & coefd, alph, beta, mu |
---|
[1047] | 9 | use surfdat_h, only: watercaptag, inert_h2o_ice |
---|
[1224] | 10 | |
---|
[38] | 11 | implicit none |
---|
| 12 | |
---|
| 13 | !----------------------------------------------------------------------- |
---|
| 14 | ! Author: Ehouarn Millour |
---|
| 15 | ! |
---|
| 16 | ! Purpose: Compute soil temperature using an implict 1st order scheme |
---|
| 17 | ! |
---|
| 18 | ! Note: depths of layers and mid-layers, soil thermal inertia and |
---|
[1047] | 19 | ! heat capacity are commons in comsoil_h |
---|
[38] | 20 | !----------------------------------------------------------------------- |
---|
| 21 | |
---|
[1266] | 22 | #include "callkeys.h" |
---|
[38] | 23 | |
---|
| 24 | c----------------------------------------------------------------------- |
---|
| 25 | ! arguments |
---|
| 26 | ! --------- |
---|
| 27 | ! inputs: |
---|
| 28 | integer ngrid ! number of (horizontal) grid-points |
---|
| 29 | integer nsoil ! number of soil layers |
---|
| 30 | logical firstcall ! identifier for initialization call |
---|
| 31 | real therm_i(ngrid,nsoil) ! thermal inertia |
---|
| 32 | real timestep ! time step |
---|
| 33 | real tsurf(ngrid) ! surface temperature |
---|
| 34 | ! outputs: |
---|
| 35 | real tsoil(ngrid,nsoil) ! soil (mid-layer) temperature |
---|
| 36 | real capcal(ngrid) ! surface specific heat |
---|
| 37 | real fluxgrd(ngrid) ! surface diffusive heat flux |
---|
| 38 | |
---|
| 39 | ! local variables: |
---|
| 40 | integer ig,ik |
---|
| 41 | |
---|
| 42 | ! 0. Initialisations and preprocessing step |
---|
[833] | 43 | if (firstcall.or.tifeedback) then |
---|
[38] | 44 | ! note: firstcall is set to .true. or .false. by the caller |
---|
| 45 | ! and not changed by soil.F |
---|
| 46 | ! 0.1 Build mthermdiff(:), the mid-layer thermal diffusivities |
---|
| 47 | do ig=1,ngrid |
---|
[283] | 48 | if (watercaptag(ig)) then |
---|
| 49 | do ik=0,nsoil-1 |
---|
| 50 | ! If we have permanent ice, we use the water ice thermal inertia from ground to last layer. |
---|
| 51 | mthermdiff(ig,ik)=inert_h2o_ice*inert_h2o_ice/volcapa |
---|
| 52 | enddo |
---|
| 53 | else |
---|
| 54 | do ik=0,nsoil-1 |
---|
| 55 | mthermdiff(ig,ik)=therm_i(ig,ik+1)*therm_i(ig,ik+1)/volcapa |
---|
| 56 | enddo |
---|
| 57 | endif |
---|
[38] | 58 | enddo |
---|
| 59 | |
---|
[285] | 60 | #ifdef MESOSCALE |
---|
| 61 | do ig=1,ngrid |
---|
| 62 | if ( therm_i(ig,1) .ge. inert_h2o_ice ) then |
---|
| 63 | print *, "limit max TI ", therm_i(ig,1), inert_h2o_ice |
---|
| 64 | do ik=0,nsoil-1 |
---|
| 65 | mthermdiff(ig,ik)=inert_h2o_ice*inert_h2o_ice/volcapa |
---|
| 66 | enddo |
---|
| 67 | endif |
---|
| 68 | enddo |
---|
| 69 | #endif |
---|
| 70 | |
---|
[38] | 71 | ! 0.2 Build thermdiff(:), the "interlayer" thermal diffusivities |
---|
| 72 | do ig=1,ngrid |
---|
| 73 | do ik=1,nsoil-1 |
---|
| 74 | thermdiff(ig,ik)=((layer(ik)-mlayer(ik-1))*mthermdiff(ig,ik) |
---|
| 75 | & +(mlayer(ik)-layer(ik))*mthermdiff(ig,ik-1)) |
---|
| 76 | & /(mlayer(ik)-mlayer(ik-1)) |
---|
| 77 | ! write(*,*),'soil: ik: ',ik,' thermdiff:',thermdiff(ig,ik) |
---|
| 78 | enddo |
---|
| 79 | enddo |
---|
| 80 | |
---|
| 81 | ! 0.3 Build coefficients mu, q_{k+1/2}, d_k, alpha_k and capcal |
---|
| 82 | ! mu |
---|
| 83 | mu=mlayer(0)/(mlayer(1)-mlayer(0)) |
---|
| 84 | |
---|
| 85 | ! q_{1/2} |
---|
| 86 | coefq(0)=volcapa*layer(1)/timestep |
---|
| 87 | ! q_{k+1/2} |
---|
| 88 | do ik=1,nsoil-1 |
---|
| 89 | coefq(ik)=volcapa*(layer(ik+1)-layer(ik)) |
---|
| 90 | & /timestep |
---|
| 91 | enddo |
---|
| 92 | |
---|
| 93 | do ig=1,ngrid |
---|
| 94 | ! d_k |
---|
| 95 | do ik=1,nsoil-1 |
---|
| 96 | coefd(ig,ik)=thermdiff(ig,ik)/(mlayer(ik)-mlayer(ik-1)) |
---|
| 97 | enddo |
---|
| 98 | |
---|
| 99 | ! alph_{N-1} |
---|
| 100 | alph(ig,nsoil-1)=coefd(ig,nsoil-1)/ |
---|
| 101 | & (coefq(nsoil-1)+coefd(ig,nsoil-1)) |
---|
| 102 | ! alph_k |
---|
| 103 | do ik=nsoil-2,1,-1 |
---|
| 104 | alph(ig,ik)=coefd(ig,ik)/(coefq(ik)+coefd(ig,ik+1)* |
---|
| 105 | & (1.-alph(ig,ik+1))+coefd(ig,ik)) |
---|
| 106 | enddo |
---|
| 107 | |
---|
| 108 | ! capcal |
---|
| 109 | ! Cstar |
---|
| 110 | capcal(ig)=volcapa*layer(1)+ |
---|
| 111 | & (thermdiff(ig,1)/(mlayer(1)-mlayer(0)))* |
---|
| 112 | & (timestep*(1.-alph(ig,1))) |
---|
| 113 | ! Cs |
---|
| 114 | capcal(ig)=capcal(ig)/(1.+mu*(1.0-alph(ig,1))* |
---|
| 115 | & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
| 116 | ! write(*,*)'soil: ig=',ig,' capcal(ig)=',capcal(ig) |
---|
| 117 | enddo ! of do ig=1,ngrid |
---|
| 118 | |
---|
[833] | 119 | endif ! of if (firstcall.or.tifeedback) |
---|
[38] | 120 | |
---|
| 121 | ! 1. Compute soil temperatures |
---|
[833] | 122 | IF (.not.firstcall) THEN |
---|
[38] | 123 | ! First layer: |
---|
| 124 | do ig=1,ngrid |
---|
| 125 | tsoil(ig,1)=(tsurf(ig)+mu*beta(ig,1)* |
---|
| 126 | & thermdiff(ig,1)/mthermdiff(ig,0))/ |
---|
| 127 | & (1.+mu*(1.0-alph(ig,1))* |
---|
| 128 | & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
| 129 | enddo |
---|
| 130 | ! Other layers: |
---|
| 131 | do ik=1,nsoil-1 |
---|
| 132 | do ig=1,ngrid |
---|
| 133 | tsoil(ig,ik+1)=alph(ig,ik)*tsoil(ig,ik)+beta(ig,ik) |
---|
| 134 | enddo |
---|
| 135 | enddo |
---|
| 136 | |
---|
[833] | 137 | ENDIF! of if (.not.firstcall) |
---|
[38] | 138 | |
---|
| 139 | ! 2. Compute beta coefficients (preprocessing for next time step) |
---|
| 140 | ! Bottom layer, beta_{N-1} |
---|
| 141 | do ig=1,ngrid |
---|
| 142 | beta(ig,nsoil-1)=coefq(nsoil-1)*tsoil(ig,nsoil) |
---|
| 143 | & /(coefq(nsoil-1)+coefd(ig,nsoil-1)) |
---|
| 144 | enddo |
---|
| 145 | ! Other layers |
---|
| 146 | do ik=nsoil-2,1,-1 |
---|
| 147 | do ig=1,ngrid |
---|
| 148 | beta(ig,ik)=(coefq(ik)*tsoil(ig,ik+1)+ |
---|
| 149 | & coefd(ig,ik+1)*beta(ig,ik+1))/ |
---|
| 150 | & (coefq(ik)+coefd(ig,ik+1)*(1.0-alph(ig,ik+1)) |
---|
| 151 | & +coefd(ig,ik)) |
---|
| 152 | enddo |
---|
| 153 | enddo |
---|
| 154 | |
---|
| 155 | ! 3. Compute surface diffusive flux & calorific capacity |
---|
| 156 | do ig=1,ngrid |
---|
| 157 | ! Cstar |
---|
| 158 | ! capcal(ig)=volcapa(ig,1)*layer(ig,1)+ |
---|
| 159 | ! & (thermdiff(ig,1)/(mlayer(ig,1)-mlayer(ig,0)))* |
---|
| 160 | ! & (timestep*(1.-alph(ig,1))) |
---|
| 161 | ! Fstar |
---|
| 162 | fluxgrd(ig)=(thermdiff(ig,1)/(mlayer(1)-mlayer(0)))* |
---|
| 163 | & (beta(ig,1)+(alph(ig,1)-1.0)*tsoil(ig,1)) |
---|
| 164 | |
---|
| 165 | ! mu=mlayer(ig,0)/(mlayer(ig,1)-mlayer(ig,0)) |
---|
| 166 | ! capcal(ig)=capcal(ig)/(1.+mu*(1.0-alph(ig,1))* |
---|
| 167 | ! & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
| 168 | ! Fs |
---|
| 169 | fluxgrd(ig)=fluxgrd(ig)+(capcal(ig)/timestep)* |
---|
| 170 | & (tsoil(ig,1)*(1.+mu*(1.0-alph(ig,1))* |
---|
| 171 | & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
| 172 | & -tsurf(ig)-mu*beta(ig,1)* |
---|
| 173 | & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
| 174 | enddo |
---|
| 175 | |
---|
| 176 | end |
---|
| 177 | |
---|