[38] | 1 | subroutine soil(ngrid,nsoil,firstcall, |
---|
| 2 | & therm_i, |
---|
| 3 | & timestep,tsurf,tsoil, |
---|
| 4 | & capcal,fluxgrd) |
---|
[1224] | 5 | |
---|
| 6 | use comsoil_h, only: layer, mlayer, volcapa, |
---|
| 7 | & mthermdiff, thermdiff, coefq, |
---|
[2887] | 8 | & coefd, alph, beta, mu,flux_geo |
---|
[1047] | 9 | use surfdat_h, only: watercaptag, inert_h2o_ice |
---|
[2900] | 10 | use comslope_mod, ONLY: nslope |
---|
[38] | 11 | implicit none |
---|
| 12 | |
---|
| 13 | !----------------------------------------------------------------------- |
---|
| 14 | ! Author: Ehouarn Millour |
---|
| 15 | ! |
---|
| 16 | ! Purpose: Compute soil temperature using an implict 1st order scheme |
---|
| 17 | ! |
---|
| 18 | ! Note: depths of layers and mid-layers, soil thermal inertia and |
---|
[1047] | 19 | ! heat capacity are commons in comsoil_h |
---|
[38] | 20 | !----------------------------------------------------------------------- |
---|
| 21 | |
---|
[1266] | 22 | #include "callkeys.h" |
---|
[38] | 23 | |
---|
| 24 | c----------------------------------------------------------------------- |
---|
| 25 | ! arguments |
---|
| 26 | ! --------- |
---|
| 27 | ! inputs: |
---|
| 28 | integer ngrid ! number of (horizontal) grid-points |
---|
| 29 | integer nsoil ! number of soil layers |
---|
| 30 | logical firstcall ! identifier for initialization call |
---|
[2900] | 31 | real therm_i(ngrid,nsoil,nslope) ! thermal inertia |
---|
[38] | 32 | real timestep ! time step |
---|
[2900] | 33 | real tsurf(ngrid,nslope) ! surface temperature |
---|
[38] | 34 | ! outputs: |
---|
[2900] | 35 | real tsoil(ngrid,nsoil,nslope) ! soil (mid-layer) temperature |
---|
| 36 | real capcal(ngrid,nslope) ! surface specific heat |
---|
| 37 | real fluxgrd(ngrid,nslope) ! surface diffusive heat flux |
---|
[38] | 38 | |
---|
| 39 | ! local variables: |
---|
[2900] | 40 | integer ig,ik,islope |
---|
[38] | 41 | |
---|
| 42 | ! 0. Initialisations and preprocessing step |
---|
[3230] | 43 | if(firstcall.or.surfaceice_tifeedback.or.poreice_tifeedback) then |
---|
[38] | 44 | ! note: firstcall is set to .true. or .false. by the caller |
---|
| 45 | ! and not changed by soil.F |
---|
| 46 | ! 0.1 Build mthermdiff(:), the mid-layer thermal diffusivities |
---|
| 47 | do ig=1,ngrid |
---|
[2900] | 48 | do islope = 1,nslope |
---|
[283] | 49 | if (watercaptag(ig)) then |
---|
| 50 | do ik=0,nsoil-1 |
---|
| 51 | ! If we have permanent ice, we use the water ice thermal inertia from ground to last layer. |
---|
[2900] | 52 | mthermdiff(ig,ik,islope)=inert_h2o_ice* |
---|
| 53 | & inert_h2o_ice/volcapa |
---|
[283] | 54 | enddo |
---|
| 55 | else |
---|
| 56 | do ik=0,nsoil-1 |
---|
[2900] | 57 | mthermdiff(ig,ik,islope)=therm_i(ig,ik+1,islope)* |
---|
| 58 | & therm_i(ig,ik+1,islope)/volcapa |
---|
[283] | 59 | enddo |
---|
| 60 | endif |
---|
[38] | 61 | enddo |
---|
[2900] | 62 | enddo |
---|
[38] | 63 | |
---|
[285] | 64 | #ifdef MESOSCALE |
---|
| 65 | do ig=1,ngrid |
---|
[2900] | 66 | do islope = 1,nslope |
---|
| 67 | if ( therm_i(ig,1,islope) .ge. inert_h2o_ice ) then |
---|
| 68 | print *, "limit max TI ", therm_i(ig,1,islope), inert_h2o_ice |
---|
[285] | 69 | do ik=0,nsoil-1 |
---|
[2900] | 70 | mthermdiff(ig,ik,islope)=inert_h2o_ice* |
---|
| 71 | & inert_h2o_ice/volcapa |
---|
[285] | 72 | enddo |
---|
| 73 | endif |
---|
[2900] | 74 | enddo |
---|
[285] | 75 | enddo |
---|
| 76 | #endif |
---|
| 77 | |
---|
[38] | 78 | ! 0.2 Build thermdiff(:), the "interlayer" thermal diffusivities |
---|
| 79 | do ig=1,ngrid |
---|
[2900] | 80 | do islope = 1,nslope |
---|
[38] | 81 | do ik=1,nsoil-1 |
---|
[2900] | 82 | thermdiff(ig,ik,islope)=((layer(ik)-mlayer(ik-1)) |
---|
| 83 | & *mthermdiff(ig,ik,islope) |
---|
| 84 | & +(mlayer(ik)-layer(ik)) |
---|
| 85 | & *mthermdiff(ig,ik-1,islope)) |
---|
[38] | 86 | & /(mlayer(ik)-mlayer(ik-1)) |
---|
| 87 | ! write(*,*),'soil: ik: ',ik,' thermdiff:',thermdiff(ig,ik) |
---|
| 88 | enddo |
---|
[2900] | 89 | enddo |
---|
[38] | 90 | enddo |
---|
| 91 | |
---|
| 92 | ! 0.3 Build coefficients mu, q_{k+1/2}, d_k, alpha_k and capcal |
---|
| 93 | ! mu |
---|
| 94 | mu=mlayer(0)/(mlayer(1)-mlayer(0)) |
---|
| 95 | |
---|
| 96 | ! q_{1/2} |
---|
| 97 | coefq(0)=volcapa*layer(1)/timestep |
---|
| 98 | ! q_{k+1/2} |
---|
| 99 | do ik=1,nsoil-1 |
---|
| 100 | coefq(ik)=volcapa*(layer(ik+1)-layer(ik)) |
---|
| 101 | & /timestep |
---|
| 102 | enddo |
---|
| 103 | |
---|
| 104 | do ig=1,ngrid |
---|
[2900] | 105 | do islope = 1,nslope |
---|
[38] | 106 | ! d_k |
---|
| 107 | do ik=1,nsoil-1 |
---|
[2900] | 108 | coefd(ig,ik,islope)=thermdiff(ig,ik,islope) |
---|
| 109 | & /(mlayer(ik)-mlayer(ik-1)) |
---|
[38] | 110 | enddo |
---|
| 111 | |
---|
| 112 | ! alph_{N-1} |
---|
[2900] | 113 | alph(ig,nsoil-1,islope)=coefd(ig,nsoil-1,islope)/ |
---|
| 114 | & (coefq(nsoil-1)+coefd(ig,nsoil-1,islope)) |
---|
[38] | 115 | ! alph_k |
---|
| 116 | do ik=nsoil-2,1,-1 |
---|
[2900] | 117 | alph(ig,ik,islope)=coefd(ig,ik,islope)/ |
---|
| 118 | & (coefq(ik)+coefd(ig,ik+1,islope)* |
---|
| 119 | & (1.-alph(ig,ik+1,islope))+coefd(ig,ik,islope)) |
---|
[38] | 120 | enddo |
---|
| 121 | |
---|
| 122 | ! capcal |
---|
| 123 | ! Cstar |
---|
[2900] | 124 | capcal(ig,islope)=volcapa*layer(1)+ |
---|
| 125 | & (thermdiff(ig,1,islope)/(mlayer(1)-mlayer(0)))* |
---|
| 126 | & (timestep*(1.-alph(ig,1,islope))) |
---|
[38] | 127 | ! Cs |
---|
[2900] | 128 | capcal(ig,islope)=capcal(ig,islope)/ |
---|
| 129 | & (1.+mu*(1.0-alph(ig,1,islope))* |
---|
| 130 | & thermdiff(ig,1,islope)/mthermdiff(ig,0,islope)) |
---|
[38] | 131 | ! write(*,*)'soil: ig=',ig,' capcal(ig)=',capcal(ig) |
---|
[2900] | 132 | enddo ! islope |
---|
[38] | 133 | enddo ! of do ig=1,ngrid |
---|
| 134 | |
---|
[833] | 135 | endif ! of if (firstcall.or.tifeedback) |
---|
[38] | 136 | |
---|
| 137 | ! 1. Compute soil temperatures |
---|
[833] | 138 | IF (.not.firstcall) THEN |
---|
[38] | 139 | ! First layer: |
---|
[2900] | 140 | do islope = 1,nslope |
---|
[38] | 141 | do ig=1,ngrid |
---|
[2900] | 142 | tsoil(ig,1,islope)=(tsurf(ig,islope)+mu*beta(ig,1,islope)* |
---|
| 143 | & thermdiff(ig,1,islope)/mthermdiff(ig,0,islope))/ |
---|
| 144 | & (1.+mu*(1.0-alph(ig,1,islope))* |
---|
| 145 | & thermdiff(ig,1,islope)/mthermdiff(ig,0,islope)) |
---|
[38] | 146 | enddo |
---|
| 147 | ! Other layers: |
---|
| 148 | do ik=1,nsoil-1 |
---|
| 149 | do ig=1,ngrid |
---|
[2900] | 150 | tsoil(ig,ik+1,islope)=alph(ig,ik,islope)* |
---|
| 151 | & tsoil(ig,ik,islope)+beta(ig,ik,islope) |
---|
[38] | 152 | enddo |
---|
| 153 | enddo |
---|
[2900] | 154 | enddo ! islope |
---|
[833] | 155 | ENDIF! of if (.not.firstcall) |
---|
[38] | 156 | |
---|
| 157 | ! 2. Compute beta coefficients (preprocessing for next time step) |
---|
| 158 | ! Bottom layer, beta_{N-1} |
---|
[2900] | 159 | do islope = 1,nslope |
---|
[38] | 160 | do ig=1,ngrid |
---|
[2900] | 161 | beta(ig,nsoil-1,islope)=coefq(nsoil-1)*tsoil(ig,nsoil,islope) |
---|
| 162 | & /(coefq(nsoil-1)+coefd(ig,nsoil-1,islope)) |
---|
[2919] | 163 | & +flux_geo(ig,islope)/ |
---|
| 164 | & (coefq(nsoil-1) + coefd(ig,nsoil-1,islope)) |
---|
[38] | 165 | enddo |
---|
[2887] | 166 | |
---|
[38] | 167 | ! Other layers |
---|
| 168 | do ik=nsoil-2,1,-1 |
---|
| 169 | do ig=1,ngrid |
---|
[2900] | 170 | beta(ig,ik,islope)=(coefq(ik)*tsoil(ig,ik+1,islope)+ |
---|
| 171 | & coefd(ig,ik+1,islope)*beta(ig,ik+1,islope))/ |
---|
| 172 | & (coefq(ik)+coefd(ig,ik+1,islope)* |
---|
| 173 | & (1.0-alph(ig,ik+1,islope)) |
---|
| 174 | & +coefd(ig,ik,islope)) |
---|
[38] | 175 | enddo |
---|
| 176 | enddo |
---|
| 177 | |
---|
| 178 | ! 3. Compute surface diffusive flux & calorific capacity |
---|
| 179 | do ig=1,ngrid |
---|
| 180 | ! Cstar |
---|
| 181 | ! capcal(ig)=volcapa(ig,1)*layer(ig,1)+ |
---|
| 182 | ! & (thermdiff(ig,1)/(mlayer(ig,1)-mlayer(ig,0)))* |
---|
| 183 | ! & (timestep*(1.-alph(ig,1))) |
---|
| 184 | ! Fstar |
---|
[2900] | 185 | fluxgrd(ig,islope)=(thermdiff(ig,1,islope)/ |
---|
| 186 | & (mlayer(1)-mlayer(0)))* |
---|
| 187 | & (beta(ig,1,islope)+(alph(ig,1,islope)-1.0) |
---|
| 188 | & *tsoil(ig,1,islope)) |
---|
[38] | 189 | |
---|
| 190 | ! mu=mlayer(ig,0)/(mlayer(ig,1)-mlayer(ig,0)) |
---|
| 191 | ! capcal(ig)=capcal(ig)/(1.+mu*(1.0-alph(ig,1))* |
---|
| 192 | ! & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
| 193 | ! Fs |
---|
[2900] | 194 | fluxgrd(ig,islope)=fluxgrd(ig,islope)+(capcal(ig,islope) |
---|
| 195 | & /timestep)* |
---|
| 196 | & (tsoil(ig,1,islope)* |
---|
| 197 | & (1.+mu*(1.0-alph(ig,1,islope))* |
---|
| 198 | & thermdiff(ig,1,islope)/mthermdiff(ig,0,islope)) |
---|
| 199 | & -tsurf(ig,islope)-mu*beta(ig,1,islope)* |
---|
| 200 | & thermdiff(ig,1,islope)/mthermdiff(ig,0,islope)) |
---|
[38] | 201 | enddo |
---|
[2900] | 202 | enddo ! islope |
---|
[38] | 203 | end |
---|
| 204 | |
---|