1 | MODULE slope_mod |
---|
2 | |
---|
3 | implicit none |
---|
4 | |
---|
5 | real, save, dimension(:), allocatable :: theta_sl ! slope angle versus horizontal (deg) |
---|
6 | real, save, dimension(:), allocatable :: psi_sl ! slope orientation (deg) |
---|
7 | |
---|
8 | !$OMP THREADPRIVATE(theta_sl,psi_sl) |
---|
9 | |
---|
10 | !======================================================================= |
---|
11 | contains |
---|
12 | !======================================================================= |
---|
13 | |
---|
14 | SUBROUTINE getslopes(ngrid,geopot) |
---|
15 | |
---|
16 | use geometry_mod, only: longitude, latitude ! in radians |
---|
17 | use comcstfi_h, only: g, rad, pi |
---|
18 | use mod_phys_lmdz_para, only: is_parallel |
---|
19 | use mod_grid_phy_lmdz, only: nbp_lon, nbp_lat |
---|
20 | |
---|
21 | implicit none |
---|
22 | |
---|
23 | ! This routine computes slope inclination and orientation for the GCM (callslope=.true. in callphys.def) |
---|
24 | ! It works fine with a non-regular grid for zoomed simulations. |
---|
25 | ! slope inclination angle (deg) 0 == horizontal, 90 == vertical |
---|
26 | ! slope orientation angle (deg) 0 == Northward, 90 == Eastward, 180 == Southward, 270 == Westward |
---|
27 | ! TN 04/1013 |
---|
28 | |
---|
29 | ! Input arguments |
---|
30 | integer, intent(in) :: ngrid ! nnumber of atmospheric columns |
---|
31 | real, dimension(ngrid), intent(in) :: geopot ! geopotential on phy grid |
---|
32 | |
---|
33 | ! Local variables |
---|
34 | real, dimension(nbp_lon,nbp_lat) :: topogrid ! topography on lat/lon grid with poles and only one -180/180 point |
---|
35 | real, dimension(nbp_lon,nbp_lat) :: latigrid, longgrid ! meshgrid of latitude and longitude values (radians) |
---|
36 | real, dimension(nbp_lon,nbp_lat) :: gradx ! x: latitude-wise topography gradient, increasing northward |
---|
37 | real, dimension(nbp_lon,nbp_lat) :: grady ! y: longitude-wise topography gradient, increasing westward |
---|
38 | real :: theta_val ! slope inclination |
---|
39 | real :: psi_val ! slope orientation |
---|
40 | integer :: i, j, ig0 |
---|
41 | integer :: id2, idm1 ! a trick to compile testphys1d with debug option |
---|
42 | |
---|
43 | if (is_parallel) then |
---|
44 | ! This routine only works in serial mode so stop now. |
---|
45 | write(*,*) "getslopes Error: this routine is not designed to run in parallel" |
---|
46 | call abort_physic("getslopes",'cannot be run in parallel',1) |
---|
47 | endif |
---|
48 | |
---|
49 | id2 = 2 |
---|
50 | idm1 = nbp_lon-1 |
---|
51 | |
---|
52 | ! rearrange topography on a 2d array |
---|
53 | do j = 2,nbp_lat-1 |
---|
54 | ig0 = 1 + (j - 2)*nbp_lon |
---|
55 | do i = 1,nbp_lon |
---|
56 | topogrid(i,j) = geopot(ig0 + i)/g |
---|
57 | latigrid(i,j) = latitude(ig0 + i) |
---|
58 | longgrid(i,j) = longitude(ig0 + i) |
---|
59 | enddo |
---|
60 | enddo |
---|
61 | |
---|
62 | ! poles: |
---|
63 | topogrid(:,1) = geopot(1)/g |
---|
64 | latigrid(:,1) = latitude(1) |
---|
65 | longgrid(:,1) = longitude(1) |
---|
66 | topogrid(:,nbp_lat) = geopot(ngrid)/g |
---|
67 | latigrid(:,nbp_lat) = latitude(ngrid) |
---|
68 | longgrid(:,nbp_lat) = longitude(ngrid) |
---|
69 | |
---|
70 | ! compute topography gradient |
---|
71 | ! topogrid and rad are both in meters |
---|
72 | do j = 2,nbp_lat - 1 |
---|
73 | do i=1,nbp_lon |
---|
74 | gradx(i,j) = (topogrid(i,j + 1) - topogrid(i,j - 1))/(latigrid(i,j + 1)-latigrid(i,j - 1)) |
---|
75 | gradx(i,j) = gradx(i,j)/rad |
---|
76 | enddo |
---|
77 | grady(1,j) = (topogrid(id2,j) - topogrid(nbp_lon,j))/(2*pi + longgrid(id2,j) - longgrid(nbp_lon,j)) |
---|
78 | grady(1,j) = grady(1,j) / rad |
---|
79 | grady(nbp_lon,j) = (topogrid(1,j) - topogrid(idm1,j))/(2*pi + longgrid(1,j) - longgrid(idm1,j)) |
---|
80 | grady(nbp_lon,j) = grady(nbp_lon,j)/rad |
---|
81 | do i = 2,nbp_lon - 1 |
---|
82 | grady(i,j) = (topogrid(i + 1,j) - topogrid(i-1,j))/(longgrid(i + 1,j) - longgrid(i - 1,j)) |
---|
83 | grady(i,j) = grady(i,j)/rad |
---|
84 | enddo |
---|
85 | enddo |
---|
86 | |
---|
87 | ! poles: |
---|
88 | gradx(:,1) = 0. |
---|
89 | grady(:,1) = 0. |
---|
90 | gradx(:,nbp_lat) = 0. |
---|
91 | grady(:,nbp_lat) = 0. |
---|
92 | |
---|
93 | ! compute slope inclination and orientation: |
---|
94 | theta_sl = 0. |
---|
95 | psi_sl = 0. |
---|
96 | do j = 2,nbp_lat - 1 |
---|
97 | do i = 1,nbp_lon |
---|
98 | ig0 = 1 + (j - 2)*nbp_lon |
---|
99 | |
---|
100 | theta_val = atan(sqrt((gradx(i,j))**2 + (grady(i,j))**2)) |
---|
101 | |
---|
102 | psi_val = 0. |
---|
103 | if (gradx(i,j) /= 0.) psi_val = -pi/2. - atan(grady(i,j)/gradx(i,j)) |
---|
104 | if (gradx(i,j) >= 0.) psi_val = psi_val - pi |
---|
105 | psi_val = 3*pi/2. - psi_val |
---|
106 | psi_val = psi_val*180./pi |
---|
107 | psi_val = modulo(psi_val,360.) |
---|
108 | |
---|
109 | theta_sl(ig0 + i) = theta_val |
---|
110 | psi_sl(ig0 + i) = psi_val |
---|
111 | enddo |
---|
112 | enddo |
---|
113 | |
---|
114 | end subroutine getslopes |
---|
115 | |
---|
116 | !======================================================================= |
---|
117 | |
---|
118 | SUBROUTINE param_slope(csza,declin,rho,latitude,taudust,albedo,theta_s,psi_s,fdir_0,ftot_0,ftot) |
---|
119 | !*********************************************************************** |
---|
120 | ! |
---|
121 | ! SUBROUTINE: |
---|
122 | ! param_slope |
---|
123 | ! |
---|
124 | ! |
---|
125 | ! PURPOSE: |
---|
126 | ! computes total solar irradiance on a given Martian slope |
---|
127 | ! |
---|
128 | ! |
---|
129 | ! INPUTS: |
---|
130 | ! csza cosine solar zenith angle |
---|
131 | ! declin sun declination (rad) |
---|
132 | ! rho sun right ascension (rad) |
---|
133 | ! latitude latitude (deg) |
---|
134 | ! taudust dust optical depth at reference wavelength 0.67 mic. |
---|
135 | ! albedo spectrally integrated surface Lambertian reflection albedo |
---|
136 | ! theta_s slope inclination angle (deg) |
---|
137 | ! 0 is horizontal, 90 is vertical |
---|
138 | ! phi_s slope azimuth (deg) |
---|
139 | ! 0 >> Northward |
---|
140 | ! 90 >> Eastward |
---|
141 | ! 180 >> Southward |
---|
142 | ! 270 >> Westward |
---|
143 | ! ftot_0 spectrally integrated total irradiance on an horizontal surface (W/m2) |
---|
144 | ! fdir_0 spectrally integrated direct irradiance on an horizontal surface (W/m2) |
---|
145 | ! |
---|
146 | ! |
---|
147 | ! OUTPUTS: |
---|
148 | ! ftot spectrally integrated total irradiance on the slope (W/m2) |
---|
149 | ! |
---|
150 | ! REFERENCE: |
---|
151 | ! "Fast and accurate estimation of irradiance on Martian slopes" |
---|
152 | ! A. Spiga & F. Forget |
---|
153 | ! ..... |
---|
154 | ! |
---|
155 | ! AUTHOR: |
---|
156 | ! A. Spiga (spiga@lmd.jussieu.fr) |
---|
157 | ! March 2008 |
---|
158 | ! |
---|
159 | !*********************************************************************** |
---|
160 | |
---|
161 | use comcstfi_h, only: pi |
---|
162 | |
---|
163 | implicit none |
---|
164 | |
---|
165 | ! Input arguments |
---|
166 | real, intent(in) :: csza, declin, rho, latitude, taudust, theta_s, psi_s, albedo, ftot_0 , fdir_0 |
---|
167 | |
---|
168 | ! Output arguments |
---|
169 | real, intent(out) :: ftot |
---|
170 | |
---|
171 | ! Local variables |
---|
172 | real :: deg2rad, a, mu_s, sigma_s, fdir, fscat, fscat_0, fref, ratio |
---|
173 | real, dimension(4,2) :: mat_M, mat_N, mat_T |
---|
174 | real, dimension(2) :: g_vector |
---|
175 | real, dimension(4) :: s_vector |
---|
176 | !*********************************************************************** |
---|
177 | ! Prerequisite |
---|
178 | deg2rad = pi/180. |
---|
179 | if ((theta_s > 90.) .or. (theta_s < 0.)) then |
---|
180 | write(*,*) 'please set theta_s between 0 and 90', theta_s |
---|
181 | call abort_physic("param_slopes","invalid theta_s",1) |
---|
182 | endif |
---|
183 | |
---|
184 | ! Solar Zenith angle (radian) |
---|
185 | if (csza < 0.01) then |
---|
186 | !print *, 'sun below horizon' |
---|
187 | !fdir_0=0. |
---|
188 | fdir = 0. |
---|
189 | fscat_0 = 0. |
---|
190 | fscat = 0. |
---|
191 | fref = 0. |
---|
192 | else |
---|
193 | ! Low incidence fix |
---|
194 | ! if (csza < 0.15) csza = 0.15 |
---|
195 | |
---|
196 | ! 'Slope vs Sun' azimuth (radian) |
---|
197 | if (cos(declin)*sin(rho) == 0. .and. & |
---|
198 | sin(deg2rad*latitude)*cos(declin)*cos(rho) - cos(deg2rad*latitude)*sin(declin) == 0.) then |
---|
199 | a = deg2rad*psi_s ! some compilator need specfying value for atan2(0,0) |
---|
200 | else |
---|
201 | a = deg2rad*psi_s + atan2(cos(declin)*sin(rho),sin(deg2rad*latitude)*cos(declin)*cos(rho)-cos(deg2rad*latitude)*sin(declin)) |
---|
202 | endif |
---|
203 | |
---|
204 | ! Cosine of slope-sun phase angle |
---|
205 | mu_s = csza*cos(deg2rad*theta_s) - cos(a)*sin(deg2rad*theta_s)*sqrt(1-csza**2) |
---|
206 | if (mu_s <= 0.) mu_s = 0. |
---|
207 | |
---|
208 | ! Sky-view factor |
---|
209 | sigma_s=0.5*(1. + cos(deg2rad*theta_s)) |
---|
210 | |
---|
211 | ! Direct flux on the slope |
---|
212 | fdir = fdir_0*mu_s/csza |
---|
213 | |
---|
214 | ! Reflected flux on the slope |
---|
215 | fref = albedo*(1 - sigma_s)*ftot_0 |
---|
216 | |
---|
217 | ! Scattered flux on a flat surface |
---|
218 | fscat_0 = ftot_0 - fdir_0 |
---|
219 | |
---|
220 | ! Scattering vector (slope vs sky) |
---|
221 | s_vector = (/ 1., exp(-taudust), sin(deg2rad*theta_s), sin(deg2rad*theta_s)*exp(-taudust) /) |
---|
222 | |
---|
223 | ! Geometry vector (slope vs sun) |
---|
224 | g_vector = (/ mu_s/csza, 1. /) |
---|
225 | |
---|
226 | ! Coupling matrix |
---|
227 | if (csza >= 0.5) then |
---|
228 | mat_M(:,1) = (/ -0.264, 1.309, 0.208, -0.828 /) |
---|
229 | mat_M(:,2) = (/ 1.291*sigma_s, -1.371*sigma_s, -0.581, 1.641 /) |
---|
230 | mat_N(:,1) = (/ 0.911, -0.777, -0.223, 0.623 /) |
---|
231 | mat_N(:,2) = (/ -0.933*sigma_s, 0.822*sigma_s, 0.514, -1.195 /) |
---|
232 | else |
---|
233 | mat_M(:,1) = (/ -0.373, 0.792, -0.095, 0.398 /) |
---|
234 | mat_M(:,2) = (/ 1.389*sigma_s, -0.794*sigma_s, -0.325, 0.183 /) |
---|
235 | mat_N(:,1) = (/ 1.079, 0.275, 0.419, -1.855 /) |
---|
236 | mat_N(:,2) = (/ -1.076*sigma_s, -0.357*sigma_s, -0.075, 1.844 /) |
---|
237 | endif |
---|
238 | mat_T = mat_M + csza*mat_N |
---|
239 | |
---|
240 | ! Scattered flux slope ratio |
---|
241 | if (deg2rad*theta_s <= 0.0872664626) then |
---|
242 | ! low angles |
---|
243 | s_vector = (/ 1., exp(-taudust) , sin(0.0872664626), sin(0.0872664626)*exp(-taudust) /) |
---|
244 | ratio = dot_product(matmul(s_vector, mat_T),g_vector) |
---|
245 | ratio = 1. + (ratio - 1.)*deg2rad*theta_s/0.0872664626 |
---|
246 | else |
---|
247 | ! general case |
---|
248 | ratio = dot_product(matmul(s_vector,mat_T),g_vector) |
---|
249 | ! NB: ratio = dot_product(s_vector,matmul(mat_T,g_vector)) is equivalent |
---|
250 | endif |
---|
251 | |
---|
252 | ! Scattered flux on the slope |
---|
253 | fscat = ratio*fscat_0 |
---|
254 | endif ! if (csza < 0.01) |
---|
255 | |
---|
256 | ! Total flux on the slope |
---|
257 | ftot = fdir + fref + fscat |
---|
258 | |
---|
259 | ! Display results |
---|
260 | ! print *, 'sca component 0 ', ftot_0-fdir_0 |
---|
261 | ! print *, 'dir component 0 ', fdir_0 |
---|
262 | ! print *, 'scattered component ', fscat |
---|
263 | ! print *, 'direct component ', fdir |
---|
264 | ! print *, 'reflected component ', fref |
---|
265 | |
---|
266 | END SUBROUTINE param_slope |
---|
267 | |
---|
268 | !======================================================================= |
---|
269 | |
---|
270 | SUBROUTINE ini_slope_mod(ngrid) |
---|
271 | |
---|
272 | implicit none |
---|
273 | |
---|
274 | integer, intent(in) :: ngrid ! number of atmospheric columns |
---|
275 | |
---|
276 | allocate(theta_sl(ngrid)) |
---|
277 | allocate(psi_sl(ngrid)) |
---|
278 | |
---|
279 | END SUBROUTINE ini_slope_mod |
---|
280 | |
---|
281 | !======================================================================= |
---|
282 | |
---|
283 | SUBROUTINE end_slope_mod |
---|
284 | |
---|
285 | implicit none |
---|
286 | |
---|
287 | if (allocated(theta_sl)) deallocate(theta_sl) |
---|
288 | if (allocated(psi_sl)) deallocate(psi_sl) |
---|
289 | |
---|
290 | END SUBROUTINE end_slope_mod |
---|
291 | |
---|
292 | END MODULE slope_mod |
---|