| 1 | MODULE rocketduststorm_mod |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | REAL, SAVE, ALLOCATABLE :: dustliftday(:) ! dust lifting rate (s-1) |
|---|
| 6 | |
|---|
| 7 | !$OMP THREADPRIVATE(dustliftday) |
|---|
| 8 | |
|---|
| 9 | CONTAINS |
|---|
| 10 | |
|---|
| 11 | !======================================================================= |
|---|
| 12 | ! ROCKET DUST STORM - vertical transport and detrainment |
|---|
| 13 | !======================================================================= |
|---|
| 14 | ! calculation of the vertical flux |
|---|
| 15 | ! call of van_leer : Van Leer transport scheme of the dust tracers |
|---|
| 16 | ! detrainement of stormdust in the background dust |
|---|
| 17 | ! ----------------------------------------------------------------------- |
|---|
| 18 | ! Authors: M. Vals; C. Wang; F. Forget; T. Bertrand |
|---|
| 19 | ! Institution: Laboratoire de Meteorologie Dynamique (LMD) Paris, France |
|---|
| 20 | ! ----------------------------------------------------------------------- |
|---|
| 21 | |
|---|
| 22 | SUBROUTINE rocketduststorm(ngrid,nlayer,nq,ptime,ptimestep, & |
|---|
| 23 | pq,pdqfi,pt,pdtfi,pplev,pplay,pzlev, & |
|---|
| 24 | pzlay,pdtsw,pdtlw, & |
|---|
| 25 | ! input for radiative transfer |
|---|
| 26 | clearatm,icount,zday,zls, & |
|---|
| 27 | tsurf,co2ice,igout,totstormfract, & |
|---|
| 28 | tauscaling,dust_rad_adjust, & |
|---|
| 29 | IRtoVIScoef,albedo,emis, & |
|---|
| 30 | ! input sub-grid scale cloud |
|---|
| 31 | clearsky,totcloudfrac, & |
|---|
| 32 | ! input sub-grid scale topography |
|---|
| 33 | nohmons, & |
|---|
| 34 | ! output |
|---|
| 35 | pdqrds,wrad,dsodust,dsords,dsotop, & |
|---|
| 36 | tau_pref_scenario,tau_pref_gcm) |
|---|
| 37 | |
|---|
| 38 | USE tracer_mod, only: igcm_stormdust_mass,igcm_stormdust_number & |
|---|
| 39 | ,igcm_dust_mass,igcm_dust_number & |
|---|
| 40 | ,rho_dust |
|---|
| 41 | USE comcstfi_h, only: r,g,cpp,rcp |
|---|
| 42 | USE dimradmars_mod, only: naerkind |
|---|
| 43 | USE comsaison_h, only: dist_sol,mu0,fract |
|---|
| 44 | USE surfdat_h, only: zmea, zstd, zsig, hmons |
|---|
| 45 | USE callradite_mod, only: callradite |
|---|
| 46 | use write_output_mod, only: write_output |
|---|
| 47 | IMPLICIT NONE |
|---|
| 48 | |
|---|
| 49 | include "callkeys.h" |
|---|
| 50 | |
|---|
| 51 | !-------------------------------------------------------- |
|---|
| 52 | ! Input Variables |
|---|
| 53 | !-------------------------------------------------------- |
|---|
| 54 | |
|---|
| 55 | INTEGER, INTENT(IN) :: ngrid ! number of horizontal grid points |
|---|
| 56 | INTEGER, INTENT(IN) :: nlayer ! number of vertical grid points |
|---|
| 57 | INTEGER, INTENT(IN) :: nq ! number of tracer species |
|---|
| 58 | REAL, INTENT(IN) :: ptime |
|---|
| 59 | REAL, INTENT(IN) :: ptimestep |
|---|
| 60 | |
|---|
| 61 | REAL, INTENT(IN) :: pq(ngrid,nlayer,nq) ! advected field nq |
|---|
| 62 | REAL, INTENT(IN) :: pdqfi(ngrid,nlayer,nq)! tendancy field pq |
|---|
| 63 | REAL, INTENT(IN) :: pt(ngrid,nlayer) ! temperature at mid-layer (K) |
|---|
| 64 | REAL, INTENT(IN) :: pdtfi(ngrid,nlayer) ! tendancy temperature at mid-layer (K) |
|---|
| 65 | |
|---|
| 66 | REAL, INTENT(IN) :: pplay(ngrid,nlayer) ! pressure at middle of the layers |
|---|
| 67 | REAL, INTENT(IN) :: pplev(ngrid,nlayer+1) ! pressure at intermediate levels |
|---|
| 68 | REAL, INTENT(IN) :: pzlay(ngrid,nlayer) ! altitude at the middle of the layers |
|---|
| 69 | REAL, INTENT(IN) :: pzlev(ngrid,nlayer+1) ! altitude at layer boundaries |
|---|
| 70 | |
|---|
| 71 | REAL, INTENT(IN) :: pdtsw(ngrid,nlayer) ! (K/s) env |
|---|
| 72 | REAL, INTENT(IN) :: pdtlw(ngrid,nlayer) ! (K/s) env |
|---|
| 73 | |
|---|
| 74 | ! input for second radiative transfer |
|---|
| 75 | LOGICAL, INTENT(IN) :: clearatm |
|---|
| 76 | INTEGER, INTENT(INOUT) :: icount |
|---|
| 77 | REAL, INTENT(IN) :: zday |
|---|
| 78 | REAL, INTENT(IN) :: zls |
|---|
| 79 | REAL, INTENT(IN) :: tsurf(ngrid) |
|---|
| 80 | REAL, INTENT(IN) :: albedo(ngrid,2) |
|---|
| 81 | REAL, INTENT(IN) :: emis(ngrid) |
|---|
| 82 | REAL,INTENT(IN) :: co2ice(ngrid) ! co2 ice surface layer (kg.m-2) |
|---|
| 83 | INTEGER, INTENT(IN) :: igout |
|---|
| 84 | REAL, INTENT(IN) :: totstormfract(ngrid) |
|---|
| 85 | REAL, INTENT(INOUT) :: tauscaling(ngrid) |
|---|
| 86 | REAL,INTENT(INOUT) :: dust_rad_adjust(ngrid) |
|---|
| 87 | REAL,INTENT(INOUT) :: IRtoVIScoef(ngrid) ! NB: not modified by this call to callradite, |
|---|
| 88 | ! the OUT is just here because callradite needs it |
|---|
| 89 | |
|---|
| 90 | ! subgrid scale water ice clouds |
|---|
| 91 | logical, intent(in) :: clearsky |
|---|
| 92 | real, intent(in) :: totcloudfrac(ngrid) |
|---|
| 93 | |
|---|
| 94 | ! subgrid scale topography |
|---|
| 95 | LOGICAL, INTENT(IN) :: nohmons |
|---|
| 96 | |
|---|
| 97 | !-------------------------------------------------------- |
|---|
| 98 | ! Output Variables |
|---|
| 99 | !-------------------------------------------------------- |
|---|
| 100 | |
|---|
| 101 | REAL, INTENT(OUT) :: pdqrds(ngrid,nlayer,nq) ! tendancy field for dust when detraining |
|---|
| 102 | REAL, INTENT(OUT) :: wrad(ngrid,nlayer+1) ! vertical speed within the rocket dust storm |
|---|
| 103 | REAL, INTENT(OUT) :: dsodust(ngrid,nlayer) ! density scaled opacity of env. dust |
|---|
| 104 | REAL, INTENT(OUT) :: dsords(ngrid,nlayer) ! density scaled opacity of storm dust |
|---|
| 105 | REAL, INTENT(OUT) :: dsotop(ngrid,nlayer) ! density scaled opacity of topmons dust |
|---|
| 106 | REAL,INTENT(OUT) :: tau_pref_scenario(ngrid) ! prescribed dust column |
|---|
| 107 | ! visible opacity at odpref |
|---|
| 108 | REAL,INTENT(OUT) :: tau_pref_gcm(ngrid) ! dust column visible opacity at |
|---|
| 109 | ! odpref in the GCM |
|---|
| 110 | !-------------------------------------------------------- |
|---|
| 111 | ! Local variables |
|---|
| 112 | !-------------------------------------------------------- |
|---|
| 113 | INTEGER l,ig,iq,ll |
|---|
| 114 | ! local variables from callradite.F |
|---|
| 115 | REAL zdtlw1(ngrid,nlayer) ! (K/s) storm |
|---|
| 116 | REAL zdtsw1(ngrid,nlayer) ! (K/s) storm |
|---|
| 117 | REAL zt(ngrid,nlayer) ! actual temperature at mid-layer (K) |
|---|
| 118 | REAL zdtvert(ngrid,nlayer) ! dT/dz , lapse rate |
|---|
| 119 | REAL ztlev(ngrid,nlayer) ! temperature at intermediate levels l+1/2 without last level |
|---|
| 120 | |
|---|
| 121 | REAL zdtlw1_lev(nlayer),zdtsw1_lev(nlayer) ! rad. heating rate at intermediate levels l+1/2 for stormdust |
|---|
| 122 | REAL zdtlw_lev(nlayer),zdtsw_lev(nlayer) ! rad. heating rate at intermediate levels l+1/2 for background dust |
|---|
| 123 | |
|---|
| 124 | REAL zq_stormdust_mass(ngrid,nlayer) ! intermediate tracer stormdust mass |
|---|
| 125 | REAL zq_stormdust_number(ngrid,nlayer) ! intermediate tracer stormdust number |
|---|
| 126 | REAL zq_dust_mass(ngrid,nlayer) ! intermediate tracer dust mass |
|---|
| 127 | REAL zq_dust_number(ngrid,nlayer) ! intermediate tracer dust number |
|---|
| 128 | |
|---|
| 129 | REAL mr_stormdust_mass(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (stormdust mass) |
|---|
| 130 | REAL mr_stormdust_number(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (stormdust number) |
|---|
| 131 | REAL mr_dust_mass(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (dust mass) |
|---|
| 132 | REAL mr_dust_number(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (sdust number) |
|---|
| 133 | |
|---|
| 134 | REAL dqvl_stormdust_mass(ngrid,nlayer) ! tendancy of vertical transport (stormdust mass) |
|---|
| 135 | REAL dqvl_stormdust_number(ngrid,nlayer) ! tendancy of vertical transport (stormdust number) |
|---|
| 136 | REAL dqvl_dust_mass(ngrid,nlayer) ! tendancy of vertical transport (dust mass) |
|---|
| 137 | REAL dqvl_dust_number(ngrid,nlayer) ! tendancy of vertical transport (dust number) |
|---|
| 138 | REAL dqdet_stormdust_mass(ngrid,nlayer) ! tendancy of detrainement (stormdust mass) |
|---|
| 139 | REAL dqdet_stormdust_number(ngrid,nlayer) ! tendancy of detrainement (stormdust number) |
|---|
| 140 | |
|---|
| 141 | REAL masse_col(nlayer) ! mass of atmosphere (kg/m2) |
|---|
| 142 | REAL zq(ngrid,nlayer,nq) ! updated tracers |
|---|
| 143 | |
|---|
| 144 | REAL w(ngrid,nlayer) ! air mass flux (calculated with the vertical wind velocity profile) used as input in Van Leer (kgair/m2) |
|---|
| 145 | REAL wqmass(ngrid,nlayer+1) ! tracer (dust_mass) mass flux in Van Leer (kg/m2) |
|---|
| 146 | REAL wqnumber(ngrid,nlayer+1) ! tracer (dust_number) mass flux in Van Leer (kg/m2) |
|---|
| 147 | |
|---|
| 148 | LOGICAL storm(ngrid) ! true when there is a dust storm (if the opacity is high): trigger the rocket dust storm scheme |
|---|
| 149 | REAL detrain(ngrid,nlayer) ! coefficient for detrainment : % of stormdust detrained |
|---|
| 150 | INTEGER scheme(ngrid) ! triggered scheme |
|---|
| 151 | |
|---|
| 152 | REAL,PARAMETER:: coefmin =0.025 ! 0<coefmin<1 Minimum fraction of stormdust detrained |
|---|
| 153 | REAL,PARAMETER:: wmin =0.25 ! stormdust detrainment if wrad < wmin |
|---|
| 154 | REAL,PARAMETER:: wmax =10. ! maximum vertical velocity of the rocket dust storms (m/s) |
|---|
| 155 | |
|---|
| 156 | ! subtimestep |
|---|
| 157 | INTEGER tsub |
|---|
| 158 | INTEGER nsubtimestep !number of subtimestep when calling van_leer |
|---|
| 159 | REAL subtimestep !ptimestep/nsubtimestep |
|---|
| 160 | REAL dtmax !considered time needed for dust to cross one layer |
|---|
| 161 | REAL,PARAMETER:: secu=3.!3. !coefficient on wspeed to avoid dust crossing many layers during subtimestep |
|---|
| 162 | |
|---|
| 163 | ! diagnostics |
|---|
| 164 | REAL lapserate(ngrid,nlayer) |
|---|
| 165 | REAL deltahr(ngrid,nlayer+1) |
|---|
| 166 | |
|---|
| 167 | LOGICAL,SAVE :: firstcall=.true. |
|---|
| 168 | |
|---|
| 169 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 170 | |
|---|
| 171 | ! variables for the radiative transfer |
|---|
| 172 | REAL fluxsurf_lw1(ngrid) |
|---|
| 173 | REAL fluxsurf_dn_sw1(ngrid,2),fluxsurf_up_sw1(ngrid,2) |
|---|
| 174 | REAL fluxtop_lw1(ngrid) |
|---|
| 175 | REAL fluxtop_dn_sw1(ngrid,2),fluxtop_up_sw1(ngrid,2) |
|---|
| 176 | REAL tau(ngrid,naerkind) |
|---|
| 177 | REAL aerosol(ngrid,nlayer,naerkind) |
|---|
| 178 | REAL taucloudtes(ngrid) |
|---|
| 179 | REAL rdust(ngrid,nlayer) |
|---|
| 180 | REAL rstormdust(ngrid,nlayer) |
|---|
| 181 | REAL rtopdust(ngrid,nlayer) |
|---|
| 182 | REAL rice(ngrid,nlayer) |
|---|
| 183 | REAL nuice(ngrid,nlayer) |
|---|
| 184 | DOUBLE PRECISION riceco2(ngrid,nlayer) |
|---|
| 185 | REAL nuiceco2(ngrid,nlayer) |
|---|
| 186 | |
|---|
| 187 | ! ********************************************************************** |
|---|
| 188 | ! ********************************************************************** |
|---|
| 189 | ! Rocket dust storm parametrization to reproduce the detached dust layers |
|---|
| 190 | ! during the dust storm season: |
|---|
| 191 | ! The radiative warming due to the presence of storm dust is |
|---|
| 192 | ! balanced by the adiabatic cooling. The tracer "storm dust" |
|---|
| 193 | ! is transported by the upward/downward flow. |
|---|
| 194 | ! ********************************************************************** |
|---|
| 195 | ! ********************************************************************** |
|---|
| 196 | !! 1. Radiative transfer in storm dust |
|---|
| 197 | !! 2. Compute vertical velocity for storm dust |
|---|
| 198 | !! case 1 storm = false: nothing to do |
|---|
| 199 | !! case 2 rocket dust storm (storm=true) |
|---|
| 200 | !! 3. Vertical transport (Van Leer) |
|---|
| 201 | !! 4. Detrainment |
|---|
| 202 | ! ********************************************************************** |
|---|
| 203 | ! ********************************************************************** |
|---|
| 204 | |
|---|
| 205 | |
|---|
| 206 | ! ********************************************************************** |
|---|
| 207 | ! Initializations |
|---|
| 208 | ! ********************************************************************** |
|---|
| 209 | storm(:)=.false. |
|---|
| 210 | pdqrds(:,:,:) = 0. |
|---|
| 211 | mr_dust_mass(:,:)=0. |
|---|
| 212 | mr_dust_number(:,:)=0. |
|---|
| 213 | mr_stormdust_mass(:,:)=0. |
|---|
| 214 | mr_stormdust_number(:,:)=0. |
|---|
| 215 | dqvl_dust_mass(:,:)=0. |
|---|
| 216 | dqvl_dust_number(:,:)=0. |
|---|
| 217 | dqvl_stormdust_mass(:,:)=0. |
|---|
| 218 | dqvl_stormdust_number(:,:)=0. |
|---|
| 219 | dqdet_stormdust_mass(:,:)=0. |
|---|
| 220 | dqdet_stormdust_number(:,:)=0. |
|---|
| 221 | wrad(:,:)=0. |
|---|
| 222 | w(:,:)=0. |
|---|
| 223 | wqmass(:,:)=0. |
|---|
| 224 | wqnumber(:,:)=0. |
|---|
| 225 | zdtvert(:,:)=0. |
|---|
| 226 | lapserate(:,:)=0. |
|---|
| 227 | deltahr(:,:)=0. |
|---|
| 228 | scheme(:)=0 |
|---|
| 229 | detrain(:,:)=1. |
|---|
| 230 | |
|---|
| 231 | !! no update for the stormdust tracer and temperature fields |
|---|
| 232 | !! because previous callradite was for background dust |
|---|
| 233 | zq(1:ngrid,1:nlayer,1:nq)=pq(1:ngrid,1:nlayer,1:nq) |
|---|
| 234 | zt(1:ngrid,1:nlayer)=pt(1:ngrid,1:nlayer) |
|---|
| 235 | |
|---|
| 236 | |
|---|
| 237 | zq_dust_mass(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_dust_mass) |
|---|
| 238 | zq_dust_number(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_dust_number) |
|---|
| 239 | zq_stormdust_mass(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_stormdust_mass) |
|---|
| 240 | zq_stormdust_number(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_stormdust_number) |
|---|
| 241 | |
|---|
| 242 | ! ********************************************************************* |
|---|
| 243 | ! 0. Check if there is a storm |
|---|
| 244 | ! ********************************************************************* |
|---|
| 245 | DO ig=1,ngrid |
|---|
| 246 | storm(ig)=.false. |
|---|
| 247 | DO l=1,nlayer |
|---|
| 248 | IF (zq(ig,l,igcm_stormdust_mass) & |
|---|
| 249 | .gt. zq(ig,l,igcm_dust_mass)*(1.E-4)) THEN |
|---|
| 250 | storm(ig)=.true. |
|---|
| 251 | EXIT |
|---|
| 252 | ENDIF |
|---|
| 253 | ENDDO |
|---|
| 254 | ENDDO |
|---|
| 255 | |
|---|
| 256 | ! ********************************************************************* |
|---|
| 257 | ! 1. Call the second radiative transfer for stormdust, obtain the extra heating |
|---|
| 258 | ! ********************************************************************* |
|---|
| 259 | |
|---|
| 260 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq,albedo, & |
|---|
| 261 | emis,mu0,pplev,pplay,pt,tsurf,fract,dist_sol,igout, & |
|---|
| 262 | zdtlw1,zdtsw1,fluxsurf_lw1,fluxsurf_dn_sw1,fluxsurf_up_sw1, & |
|---|
| 263 | fluxtop_lw1,fluxtop_dn_sw1,fluxtop_up_sw1, & |
|---|
| 264 | tau_pref_scenario,tau_pref_gcm, & |
|---|
| 265 | tau,aerosol,dsodust,tauscaling,dust_rad_adjust,IRtoVIScoef, & |
|---|
| 266 | taucloudtes,rdust,rice,nuice,riceco2,nuiceco2,co2ice,rstormdust,rtopdust, & |
|---|
| 267 | totstormfract,clearatm,dsords,dsotop,nohmons,& |
|---|
| 268 | clearsky,totcloudfrac) |
|---|
| 269 | |
|---|
| 270 | ! ********************************************************************** |
|---|
| 271 | ! 2. Compute vertical velocity for storm dust |
|---|
| 272 | ! ********************************************************************** |
|---|
| 273 | !! ********************************************************************** |
|---|
| 274 | !! 2.1 Nothing to do when no storm |
|---|
| 275 | !! no storm |
|---|
| 276 | DO ig=1,ngrid |
|---|
| 277 | IF (.NOT.(storm(ig))) then |
|---|
| 278 | scheme(ig)=1 |
|---|
| 279 | cycle |
|---|
| 280 | ENDIF ! IF (storm(ig)) |
|---|
| 281 | ENDDO ! DO ig=1,ngrid |
|---|
| 282 | |
|---|
| 283 | !! ********************************************************************** |
|---|
| 284 | !! 2.2 Calculation of the extra heating : computing heating rates |
|---|
| 285 | !! gradient at boundaries of each layer, start from surface |
|---|
| 286 | DO ig=1,ngrid |
|---|
| 287 | IF (storm(ig)) THEN |
|---|
| 288 | |
|---|
| 289 | scheme(ig)=2 |
|---|
| 290 | |
|---|
| 291 | !! computing heating rates gradient at boundraies of each layer |
|---|
| 292 | !! start from surface |
|---|
| 293 | zdtlw1_lev(1)=0. |
|---|
| 294 | zdtsw1_lev(1)=0. |
|---|
| 295 | zdtlw_lev(1)=0. |
|---|
| 296 | zdtsw_lev(1)=0. |
|---|
| 297 | ztlev(ig,1)=zt(ig,1) |
|---|
| 298 | |
|---|
| 299 | DO l=1,nlayer-1 |
|---|
| 300 | !! Calculation for the dust storm fraction |
|---|
| 301 | zdtlw1_lev(l+1)=(zdtlw1(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
|---|
| 302 | zdtlw1(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
|---|
| 303 | (pzlay(ig,l+1)-pzlay(ig,l)) |
|---|
| 304 | |
|---|
| 305 | zdtsw1_lev(l+1)=(zdtsw1(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
|---|
| 306 | zdtsw1(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
|---|
| 307 | (pzlay(ig,l+1)-pzlay(ig,l)) |
|---|
| 308 | !! Calculation for the background dust fraction |
|---|
| 309 | zdtlw_lev(l+1)=(pdtlw(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
|---|
| 310 | pdtlw(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
|---|
| 311 | (pzlay(ig,l+1)-pzlay(ig,l)) |
|---|
| 312 | |
|---|
| 313 | zdtsw_lev(l+1)=(pdtsw(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
|---|
| 314 | pdtsw(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
|---|
| 315 | (pzlay(ig,l+1)-pzlay(ig,l)) |
|---|
| 316 | |
|---|
| 317 | ztlev(ig,l+1)=(zt(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
|---|
| 318 | zt(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
|---|
| 319 | (pzlay(ig,l+1)-pzlay(ig,l)) |
|---|
| 320 | ENDDO ! DO l=1,nlayer-1 |
|---|
| 321 | |
|---|
| 322 | !! This is the env. lapse rate |
|---|
| 323 | zdtvert(ig,1)=0. |
|---|
| 324 | DO l=1,nlayer-1 |
|---|
| 325 | zdtvert(ig,l+1)=(ztlev(ig,l+1)-ztlev(ig,l))/(pzlay(ig,l+1)-pzlay(ig,l)) |
|---|
| 326 | lapserate(ig,l+1)=zdtvert(ig,l+1) |
|---|
| 327 | ENDDO |
|---|
| 328 | |
|---|
| 329 | !! ********************************************************************** |
|---|
| 330 | !! 2.3 Calculation of the vertical velocity : extra heating |
|---|
| 331 | !! balanced by adiabatic cooling |
|---|
| 332 | |
|---|
| 333 | DO l=1,nlayer |
|---|
| 334 | deltahr(ig,l)=(zdtlw1_lev(l)+zdtsw1_lev(l)) & |
|---|
| 335 | -(zdtlw_lev(l)+zdtsw_lev(l)) |
|---|
| 336 | wrad(ig,l)=-deltahr(ig,l)/(g/cpp+ & |
|---|
| 337 | max(zdtvert(ig,l),-0.99*g/cpp)) |
|---|
| 338 | !! Limit vertical wind in case of lapse rate close to adiabatic |
|---|
| 339 | wrad(ig,l)=max(wrad(ig,l),-wmax) |
|---|
| 340 | wrad(ig,l)=min(wrad(ig,l),wmax) |
|---|
| 341 | ENDDO |
|---|
| 342 | |
|---|
| 343 | ENDIF ! IF (storm(ig)) |
|---|
| 344 | ENDDO ! DO ig=1,ngrid |
|---|
| 345 | |
|---|
| 346 | ! ********************************************************************** |
|---|
| 347 | ! 3. Vertical transport |
|---|
| 348 | ! ********************************************************************** |
|---|
| 349 | !! ********************************************************************** |
|---|
| 350 | !! 3.1 Transport of background dust + storm dust (concentrated) |
|---|
| 351 | DO ig=1,ngrid |
|---|
| 352 | IF (storm(ig)) THEN |
|---|
| 353 | DO l=1,nlayer |
|---|
| 354 | mr_dust_mass(ig,l) = zq_dust_mass(ig,l) |
|---|
| 355 | mr_dust_number(ig,l) = zq_dust_number(ig,l) |
|---|
| 356 | mr_stormdust_mass(ig,l) = zq_dust_mass(ig,l)+ & |
|---|
| 357 | zq_stormdust_mass(ig,l)/totstormfract(ig) |
|---|
| 358 | mr_stormdust_number(ig,l) = zq_dust_number(ig,l)+ & |
|---|
| 359 | zq_stormdust_number(ig,l)/totstormfract(ig) |
|---|
| 360 | ENDDO ! DO l=1,nlayer |
|---|
| 361 | ENDIF ! IF (storm(ig)) |
|---|
| 362 | ENDDO ! DO ig=1,ngrid |
|---|
| 363 | |
|---|
| 364 | DO ig=1,ngrid |
|---|
| 365 | IF (storm(ig)) THEN |
|---|
| 366 | !! ********************************************************************** |
|---|
| 367 | !! 3.2 Compute the subtimestep to conserve the mass in the Van Leer transport |
|---|
| 368 | dtmax=ptimestep |
|---|
| 369 | DO l=2,nlayer |
|---|
| 370 | IF (wrad(ig,l).lt.0.) THEN |
|---|
| 371 | dtmax=min(dtmax,(pzlev(ig,l)-pzlev(ig,l-1))/ & |
|---|
| 372 | (secu*abs(wrad(ig,l)))) |
|---|
| 373 | ELSE IF (wrad(ig,l).gt.0.) then |
|---|
| 374 | dtmax=min(dtmax,(pzlev(ig,l+1)-pzlev(ig,l))/ & |
|---|
| 375 | (secu*abs(wrad(ig,l)))) |
|---|
| 376 | ENDIF |
|---|
| 377 | ENDDO |
|---|
| 378 | nsubtimestep= int(ptimestep/dtmax) |
|---|
| 379 | subtimestep=ptimestep/float(nsubtimestep) |
|---|
| 380 | !! Mass flux generated by wup in kg/m2 |
|---|
| 381 | DO l=1,nlayer |
|---|
| 382 | w(ig,l)=wrad(ig,l)*pplev(ig,l)/(r*ztlev(ig,l)) & |
|---|
| 383 | *subtimestep |
|---|
| 384 | ENDDO ! l=1,nlayer |
|---|
| 385 | |
|---|
| 386 | !! ********************************************************************** |
|---|
| 387 | !! 3.3 Vertical transport by a Van Leer scheme |
|---|
| 388 | !! Mass of atmosphere in the layer |
|---|
| 389 | DO l=1,nlayer |
|---|
| 390 | masse_col(l)=(pplev(ig,l)-pplev(ig,l+1))/g |
|---|
| 391 | ENDDO |
|---|
| 392 | !! Mass flux in kg/m2 if you are not using the subtimestep |
|---|
| 393 | !DO l=1,nlayer |
|---|
| 394 | ! w(ig,l)=wrad(ig,l)*(pplev(ig,l)/(r*ztlev(ig,l)))*ptimestep |
|---|
| 395 | !ENDDO |
|---|
| 396 | !! Loop over the subtimestep |
|---|
| 397 | DO tsub=1,nsubtimestep |
|---|
| 398 | !! Van Leer scheme |
|---|
| 399 | wqmass(ig,:)=0. |
|---|
| 400 | wqnumber(ig,:)=0. |
|---|
| 401 | CALL van_leer(nlayer,mr_stormdust_mass(ig,:),2., & |
|---|
| 402 | masse_col,w(ig,:),wqmass(ig,:)) |
|---|
| 403 | CALL van_leer(nlayer,mr_stormdust_number(ig,:),2., & |
|---|
| 404 | masse_col,w(ig,:),wqnumber(ig,:)) |
|---|
| 405 | ENDDO !tsub=... |
|---|
| 406 | |
|---|
| 407 | ENDIF ! IF storm(ig) |
|---|
| 408 | ENDDO ! DO ig=1,ngrid |
|---|
| 409 | |
|---|
| 410 | !! ********************************************************************** |
|---|
| 411 | !! 3.4 Re-calculation of the mixing ratios after vertical transport |
|---|
| 412 | DO ig=1,ngrid |
|---|
| 413 | IF (storm(ig)) THEN |
|---|
| 414 | DO l=1,nlayer |
|---|
| 415 | |
|---|
| 416 | !! General and "healthy" case |
|---|
| 417 | IF (mr_stormdust_mass(ig,l).ge.mr_dust_mass(ig,l)) THEN |
|---|
| 418 | zq_dust_mass(ig,l) = mr_dust_mass(ig,l) |
|---|
| 419 | zq_dust_number(ig,l) = mr_dust_number(ig,l) |
|---|
| 420 | zq_stormdust_mass(ig,l) = totstormfract(ig)*(mr_stormdust_mass(ig,l)-mr_dust_mass(ig,l)) |
|---|
| 421 | zq_stormdust_number(ig,l) = totstormfract(ig)*(mr_stormdust_number(ig,l)-mr_dust_number(ig,l)) |
|---|
| 422 | !! Particular case: there is less than initial dust mixing ratio after the vertical transport |
|---|
| 423 | ELSE |
|---|
| 424 | zq_dust_mass(ig,l) = (1.-totstormfract(ig))*mr_dust_mass(ig,l)+totstormfract(ig)*mr_stormdust_mass(ig,l) |
|---|
| 425 | zq_dust_number(ig,l) = (1.-totstormfract(ig))*mr_dust_number(ig,l)+totstormfract(ig)*mr_stormdust_number(ig,l) |
|---|
| 426 | zq_stormdust_mass(ig,l) = 0. |
|---|
| 427 | zq_stormdust_number(ig,l) = 0. |
|---|
| 428 | ENDIF |
|---|
| 429 | |
|---|
| 430 | ENDDO ! DO l=1,nlayer |
|---|
| 431 | ENDIF ! IF storm(ig) |
|---|
| 432 | ENDDO ! DO ig=1,ngrid |
|---|
| 433 | |
|---|
| 434 | !! ********************************************************************** |
|---|
| 435 | !! 3.5 Calculation of the tendencies of the vertical transport |
|---|
| 436 | DO ig=1,ngrid |
|---|
| 437 | IF (storm(ig)) THEN |
|---|
| 438 | DO l=1,nlayer |
|---|
| 439 | dqvl_stormdust_mass(ig,l) = (zq_stormdust_mass(ig,l)- & |
|---|
| 440 | zq(ig,l,igcm_stormdust_mass)) /ptimestep |
|---|
| 441 | dqvl_stormdust_number(ig,l) = (zq_stormdust_number(ig,l)- & |
|---|
| 442 | zq(ig,l,igcm_stormdust_number)) /ptimestep |
|---|
| 443 | dqvl_dust_mass(ig,l) = (zq_dust_mass(ig,l)-zq(ig,l,igcm_dust_mass)) /ptimestep |
|---|
| 444 | dqvl_dust_number(ig,l) = (zq_dust_number(ig,l)-zq(ig,l,igcm_dust_number)) /ptimestep |
|---|
| 445 | ENDDO |
|---|
| 446 | ENDIF ! IF storm(ig) |
|---|
| 447 | ENDDO ! DO ig=1,ngrid |
|---|
| 448 | |
|---|
| 449 | ! ********************************************************************** |
|---|
| 450 | ! 4. Detrainment: stormdust is converted to background dust |
|---|
| 451 | ! ********************************************************************** |
|---|
| 452 | !! ********************************************************************** |
|---|
| 453 | !! 4.1 Compute the coefficient of detrainmen |
|---|
| 454 | DO ig=1,ngrid |
|---|
| 455 | DO l=1,nlayer |
|---|
| 456 | IF ((max(abs(wrad(ig,l)),abs(wrad(ig,l+1))) .lt. & |
|---|
| 457 | wmin) .or. (zq_dust_mass(ig,l) .gt. & |
|---|
| 458 | 10000.*zq_stormdust_mass(ig,l))) THEN |
|---|
| 459 | detrain(ig,l)=1. |
|---|
| 460 | ELSE IF (max(abs(wrad(ig,l)),abs(wrad(ig,l+1))) & |
|---|
| 461 | .le. wmax) THEN |
|---|
| 462 | detrain(ig,l)=coeff_detrainment* & |
|---|
| 463 | (((1-coefmin)/(wmin-wmax)**2)* & |
|---|
| 464 | (max(abs(wrad(ig,l)),abs(wrad(ig,l+1)))-wmax)**2 & |
|---|
| 465 | +coefmin) |
|---|
| 466 | ELSE IF (max(abs(wrad(ig,l)),abs(wrad(ig,l+1))).gt. wmax ) THEN |
|---|
| 467 | detrain(ig,l)=coefmin |
|---|
| 468 | ELSE |
|---|
| 469 | detrain(ig,l)=coefmin |
|---|
| 470 | ENDIF |
|---|
| 471 | ENDDO ! DO l=1,nlayer |
|---|
| 472 | ENDDO ! DO ig=1,ngrid |
|---|
| 473 | |
|---|
| 474 | !! ********************************************************************** |
|---|
| 475 | !! 4.2 Calculation of the tendencies of the detrainment |
|---|
| 476 | DO ig=1,ngrid |
|---|
| 477 | DO l=1,nlayer |
|---|
| 478 | dqdet_stormdust_mass(ig,l)=-detrain(ig,l)*zq_stormdust_mass(ig,l) & |
|---|
| 479 | /ptimestep |
|---|
| 480 | dqdet_stormdust_number(ig,l)=-detrain(ig,l)*zq_stormdust_number(ig,l) & |
|---|
| 481 | /ptimestep |
|---|
| 482 | ENDDO ! DO l=1,nlayer |
|---|
| 483 | ENDDO ! DO ig=1,ngrid |
|---|
| 484 | |
|---|
| 485 | ! ********************************************************************** |
|---|
| 486 | ! 5. Final tendencies: vertical transport + detrainment |
|---|
| 487 | ! ********************************************************************** |
|---|
| 488 | DO ig=1,ngrid |
|---|
| 489 | DO l=1,nlayer |
|---|
| 490 | pdqrds(ig,l,igcm_stormdust_mass)=dqdet_stormdust_mass(ig,l) & |
|---|
| 491 | +dqvl_stormdust_mass(ig,l) |
|---|
| 492 | pdqrds(ig,l,igcm_stormdust_number)=dqdet_stormdust_number(ig,l) & |
|---|
| 493 | +dqvl_stormdust_number(ig,l) |
|---|
| 494 | pdqrds(ig,l,igcm_dust_mass)= -dqdet_stormdust_mass(ig,l) & |
|---|
| 495 | +dqvl_dust_mass(ig,l) |
|---|
| 496 | pdqrds(ig,l,igcm_dust_number)= -dqdet_stormdust_number(ig,l) & |
|---|
| 497 | +dqvl_dust_number(ig,l) |
|---|
| 498 | ENDDO ! DO l=1,nlayer |
|---|
| 499 | ENDDO ! DO ig=1,ngrid |
|---|
| 500 | |
|---|
| 501 | ! ! ********************************************************************** |
|---|
| 502 | ! ! 6. To prevent from negative values |
|---|
| 503 | ! ! ********************************************************************** |
|---|
| 504 | ! DO ig=1,ngrid |
|---|
| 505 | ! DO l=1,nlayer |
|---|
| 506 | ! IF ((pq(ig,l,igcm_stormdust_mass) & |
|---|
| 507 | ! +pdqrds(ig,l,igcm_stormdust_mass)*ptimestep .le. 0.) .or. & |
|---|
| 508 | ! (pq(ig,l,igcm_stormdust_number) & |
|---|
| 509 | ! +pdqrds(ig,l,igcm_stormdust_number)*ptimestep .le. 0.)) THEN |
|---|
| 510 | ! pdqrds(ig,l,igcm_stormdust_mass)=-pq(ig,l,igcm_stormdust_mass)/ptimestep |
|---|
| 511 | ! pdqrds(ig,l,igcm_stormdust_number)=-pq(ig,l,igcm_stormdust_number)/ptimestep |
|---|
| 512 | ! ENDIF |
|---|
| 513 | ! ENDDO ! nlayer |
|---|
| 514 | ! ENDDO ! DO ig=1,ngrid |
|---|
| 515 | ! |
|---|
| 516 | ! DO ig=1,ngrid |
|---|
| 517 | ! DO l=1,nlayer |
|---|
| 518 | ! IF ((pq(ig,l,igcm_dust_mass) & |
|---|
| 519 | ! +pdqrds(ig,l,igcm_dust_mass)*ptimestep .le. 0.) .or. & |
|---|
| 520 | ! (pq(ig,l,igcm_dust_number) & |
|---|
| 521 | ! +pdqrds(ig,l,igcm_dust_number)*ptimestep .le. 0.)) THEN |
|---|
| 522 | ! pdqrds(ig,l,igcm_dust_mass)=-pq(ig,l,igcm_dust_mass)/ptimestep |
|---|
| 523 | ! pdqrds(ig,l,igcm_dust_number)=-pq(ig,l,igcm_dust_number)/ptimestep |
|---|
| 524 | ! ENDIF |
|---|
| 525 | ! ENDDO ! nlayer |
|---|
| 526 | ! ENDDO ! DO ig=1,ngrid |
|---|
| 527 | |
|---|
| 528 | !======================================================================= |
|---|
| 529 | ! WRITEDIAGFI |
|---|
| 530 | |
|---|
| 531 | call write_output('rds_lapserate', & |
|---|
| 532 | 'lapse rate in the rocket dust storm', & |
|---|
| 533 | 'K/m',lapserate(:,:)) |
|---|
| 534 | call write_output('rds_deltahr', & |
|---|
| 535 | 'extra heating rate in the rocket dust storm', & |
|---|
| 536 | 'K/s',deltahr(:,:)) |
|---|
| 537 | ! call write_output('scheme','which scheme',& |
|---|
| 538 | ! ' ',real(scheme(:))) |
|---|
| 539 | |
|---|
| 540 | END SUBROUTINE rocketduststorm |
|---|
| 541 | |
|---|
| 542 | !======================================================================= |
|---|
| 543 | ! ********************************************************************** |
|---|
| 544 | ! Subroutine to determine the vertical transport with |
|---|
| 545 | ! a Van Leer advection scheme (copied from the sedimentation scheme --> see vlz_fi.F) |
|---|
| 546 | !*********************************************************************** |
|---|
| 547 | SUBROUTINE van_leer(nlay,q,pente_max,masse,w,wq) |
|---|
| 548 | |
|---|
| 549 | IMPLICIT NONE |
|---|
| 550 | |
|---|
| 551 | !-------------------------------------------------------- |
|---|
| 552 | ! Input/Output Variables |
|---|
| 553 | !-------------------------------------------------------- |
|---|
| 554 | INTEGER,INTENT(IN) :: nlay ! number of atmospheric layers |
|---|
| 555 | REAL,INTENT(IN) :: masse(nlay) ! mass of the layer Dp/g |
|---|
| 556 | REAL,INTENT(IN) :: pente_max != 2 conseillee |
|---|
| 557 | REAL,INTENT(INOUT) :: q(nlay) ! mixing ratio (kg/kg) |
|---|
| 558 | REAL,INTENT(INOUT) :: w(nlay) ! atmospheric mass "transferred" at each timestep (kg.m-2) |
|---|
| 559 | REAL,INTENT(INOUT) :: wq(nlay+1) |
|---|
| 560 | |
|---|
| 561 | !-------------------------------------------------------- |
|---|
| 562 | ! Local Variables |
|---|
| 563 | !-------------------------------------------------------- |
|---|
| 564 | |
|---|
| 565 | INTEGER i,l,j,ii |
|---|
| 566 | REAL dzq(nlay),dzqw(nlay),adzqw(nlay),dzqmax |
|---|
| 567 | REAL newmasse |
|---|
| 568 | REAL sigw, Mtot, MQtot |
|---|
| 569 | INTEGER m |
|---|
| 570 | |
|---|
| 571 | ! ********************************************************************** |
|---|
| 572 | ! Mixing ratio vertical gradient at the levels |
|---|
| 573 | ! ********************************************************************** |
|---|
| 574 | do l=2,nlay |
|---|
| 575 | dzqw(l)=q(l-1)-q(l) |
|---|
| 576 | adzqw(l)=abs(dzqw(l)) |
|---|
| 577 | enddo |
|---|
| 578 | |
|---|
| 579 | do l=2,nlay-1 |
|---|
| 580 | if(dzqw(l)*dzqw(l+1).gt.0.) then |
|---|
| 581 | dzq(l)=0.5*(dzqw(l)+dzqw(l+1)) |
|---|
| 582 | else |
|---|
| 583 | dzq(l)=0. |
|---|
| 584 | endif |
|---|
| 585 | dzqmax=pente_max*min(adzqw(l),adzqw(l+1)) |
|---|
| 586 | dzq(l)=sign(min(abs(dzq(l)),dzqmax),dzq(l)) |
|---|
| 587 | enddo |
|---|
| 588 | |
|---|
| 589 | dzq(1)=0. |
|---|
| 590 | dzq(nlay)=0. |
|---|
| 591 | |
|---|
| 592 | ! ********************************************************************** |
|---|
| 593 | ! Vertical advection |
|---|
| 594 | ! ********************************************************************** |
|---|
| 595 | |
|---|
| 596 | !! No flux at the model top: |
|---|
| 597 | wq(nlay+1)=0. |
|---|
| 598 | |
|---|
| 599 | !! Surface flux up: |
|---|
| 600 | if(w(1).lt.0.) wq(1)=0. ! warning : not always valid |
|---|
| 601 | |
|---|
| 602 | do l = 1,nlay-1 |
|---|
| 603 | |
|---|
| 604 | ! 1) Compute wq where w < 0 (up) (UPWARD TRANSPORT) |
|---|
| 605 | ! =============================== |
|---|
| 606 | |
|---|
| 607 | if(w(l+1).le.0)then |
|---|
| 608 | ! Regular scheme (transfered mass < 1 layer) |
|---|
| 609 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 610 | if(-w(l+1).le.masse(l))then |
|---|
| 611 | sigw=w(l+1)/masse(l) |
|---|
| 612 | wq(l+1)=w(l+1)*(q(l)-0.5*(1.+sigw)*dzq(l)) |
|---|
| 613 | !!------------------------------------------------------- |
|---|
| 614 | ! The following part should not be needed in the |
|---|
| 615 | ! case of an integration over subtimesteps |
|---|
| 616 | !!------------------------------------------------------- |
|---|
| 617 | ! Extended scheme (transfered mass > 1 layer) |
|---|
| 618 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 619 | else |
|---|
| 620 | m = l-1 |
|---|
| 621 | Mtot = masse(m+1) |
|---|
| 622 | MQtot = masse(m+1)*q(m+1) |
|---|
| 623 | if (m.le.0)goto 77 |
|---|
| 624 | do while(-w(l+1).gt.(Mtot+masse(m))) |
|---|
| 625 | ! do while(-w(l+1).gt.Mtot) |
|---|
| 626 | m=m-1 |
|---|
| 627 | Mtot = Mtot + masse(m+1) |
|---|
| 628 | MQtot = MQtot + masse(m+1)*q(m+1) |
|---|
| 629 | if (m.le.0)goto 77 |
|---|
| 630 | end do |
|---|
| 631 | 77 continue |
|---|
| 632 | |
|---|
| 633 | if (m.gt.0) then |
|---|
| 634 | sigw=(w(l+1)+Mtot)/masse(m) |
|---|
| 635 | wq(l+1)= -(MQtot + (-w(l+1)-Mtot)* & |
|---|
| 636 | (q(m)-0.5*(1.+sigw)*dzq(m)) ) |
|---|
| 637 | else |
|---|
| 638 | w(l+1) = -Mtot |
|---|
| 639 | wq(l+1) = -MQtot |
|---|
| 640 | end if |
|---|
| 641 | endif ! (-w(l+1).le.masse(l)) |
|---|
| 642 | |
|---|
| 643 | ! 2) Compute wq where w > 0 (down) (DOWNWARD TRANSPORT) |
|---|
| 644 | ! =============================== |
|---|
| 645 | |
|---|
| 646 | else if(w(l).gt.0.)then |
|---|
| 647 | |
|---|
| 648 | ! Regular scheme (transfered mass < 1 layer) |
|---|
| 649 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 650 | if(w(l).le.masse(l))then |
|---|
| 651 | sigw=w(l)/masse(l) |
|---|
| 652 | wq(l)=w(l)*(q(l)+0.5*(1.-sigw)*dzq(l)) |
|---|
| 653 | !!------------------------------------------------------- |
|---|
| 654 | ! The following part should not be needed in the |
|---|
| 655 | ! case of an integration over subtimesteps |
|---|
| 656 | !!------------------------------------------------------- |
|---|
| 657 | ! Extended scheme (transfered mass > 1 layer) |
|---|
| 658 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 659 | else |
|---|
| 660 | m=l |
|---|
| 661 | Mtot = masse(m) |
|---|
| 662 | MQtot = masse(m)*q(m) |
|---|
| 663 | if(m.ge.nlay)goto 88 |
|---|
| 664 | do while(w(l).gt.(Mtot+masse(m+1))) |
|---|
| 665 | m=m+1 |
|---|
| 666 | Mtot = Mtot + masse(m) |
|---|
| 667 | MQtot = MQtot + masse(m)*q(m) |
|---|
| 668 | if(m.ge.nlay)goto 88 |
|---|
| 669 | end do |
|---|
| 670 | 88 continue |
|---|
| 671 | if (m.lt.nlay) then |
|---|
| 672 | sigw=(w(l)-Mtot)/masse(m+1) |
|---|
| 673 | wq(l)=(MQtot + (w(l)-Mtot)* & |
|---|
| 674 | (q(m+1)+0.5*(1.-sigw)*dzq(m+1)) ) |
|---|
| 675 | else |
|---|
| 676 | w(l) = Mtot |
|---|
| 677 | wq(l) = MQtot |
|---|
| 678 | end if |
|---|
| 679 | end if |
|---|
| 680 | |
|---|
| 681 | end if ! w<0 (up) |
|---|
| 682 | |
|---|
| 683 | enddo ! l = 1,nlay-1 |
|---|
| 684 | |
|---|
| 685 | do l = 1,nlay |
|---|
| 686 | |
|---|
| 687 | ! it cannot entrain more than available mass ! |
|---|
| 688 | if ( (wq(l+1)-wq(l)) .lt. -(masse(l)*q(l)) ) then |
|---|
| 689 | wq(l+1) = wq(l)-masse(l)*q(l) |
|---|
| 690 | end if |
|---|
| 691 | |
|---|
| 692 | q(l)=q(l) + (wq(l+1)-wq(l))/masse(l) |
|---|
| 693 | |
|---|
| 694 | enddo |
|---|
| 695 | |
|---|
| 696 | END SUBROUTINE van_leer |
|---|
| 697 | |
|---|
| 698 | !======================================================================= |
|---|
| 699 | ! Initialization of the module variables |
|---|
| 700 | |
|---|
| 701 | subroutine ini_rocketduststorm_mod(ngrid) |
|---|
| 702 | |
|---|
| 703 | implicit none |
|---|
| 704 | |
|---|
| 705 | integer, intent(in) :: ngrid |
|---|
| 706 | |
|---|
| 707 | allocate(dustliftday(ngrid)) |
|---|
| 708 | |
|---|
| 709 | end subroutine ini_rocketduststorm_mod |
|---|
| 710 | |
|---|
| 711 | subroutine end_rocketduststorm_mod |
|---|
| 712 | |
|---|
| 713 | implicit none |
|---|
| 714 | |
|---|
| 715 | if (allocated(dustliftday)) deallocate(dustliftday) |
|---|
| 716 | |
|---|
| 717 | end subroutine end_rocketduststorm_mod |
|---|
| 718 | |
|---|
| 719 | END MODULE rocketduststorm_mod |
|---|