[1974] | 1 | MODULE rocketduststorm_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | REAL, SAVE, ALLOCATABLE :: dustliftday(:) ! dust lifting rate (s-1) |
---|
[2584] | 6 | |
---|
| 7 | !$OMP THREADPRIVATE(dustliftday) |
---|
[1974] | 8 | |
---|
| 9 | CONTAINS |
---|
| 10 | |
---|
| 11 | !======================================================================= |
---|
| 12 | ! ROCKET DUST STORM - vertical transport and detrainment |
---|
| 13 | !======================================================================= |
---|
[2079] | 14 | ! calculation of the vertical flux |
---|
[2201] | 15 | ! call of van_leer : Van Leer transport scheme of the dust tracers |
---|
[2079] | 16 | ! detrainement of stormdust in the background dust |
---|
[1974] | 17 | ! ----------------------------------------------------------------------- |
---|
[2079] | 18 | ! Authors: M. Vals; C. Wang; F. Forget; T. Bertrand |
---|
[1974] | 19 | ! Institution: Laboratoire de Meteorologie Dynamique (LMD) Paris, France |
---|
| 20 | ! ----------------------------------------------------------------------- |
---|
| 21 | |
---|
| 22 | SUBROUTINE rocketduststorm(ngrid,nlayer,nq,ptime,ptimestep, & |
---|
| 23 | pq,pdqfi,pt,pdtfi,pplev,pplay,pzlev, & |
---|
| 24 | pzlay,pdtsw,pdtlw, & |
---|
| 25 | ! input for radiative transfer |
---|
| 26 | clearatm,icount,zday,zls, & |
---|
| 27 | tsurf,igout,totstormfract, & |
---|
[2417] | 28 | tauscaling,dust_rad_adjust, & |
---|
[1974] | 29 | ! input sub-grid scale cloud |
---|
| 30 | clearsky,totcloudfrac, & |
---|
[2199] | 31 | ! input sub-grid scale topography |
---|
| 32 | nohmons,alpha_hmons, & |
---|
[2079] | 33 | ! output |
---|
[2246] | 34 | pdqrds,wrad,dsodust,dsords,dsotop, & |
---|
[2415] | 35 | tau_pref_scenario,tau_pref_gcm) |
---|
[1974] | 36 | |
---|
[2079] | 37 | USE tracer_mod, only: igcm_stormdust_mass,igcm_stormdust_number & |
---|
[1974] | 38 | ,igcm_dust_mass,igcm_dust_number & |
---|
| 39 | ,rho_dust |
---|
| 40 | USE comcstfi_h, only: r,g,cpp,rcp |
---|
[2079] | 41 | USE dimradmars_mod, only: albedo,naerkind |
---|
| 42 | USE comsaison_h, only: dist_sol,mu0,fract |
---|
| 43 | USE surfdat_h, only: emis,co2ice,zmea, zstd, zsig, hmons |
---|
[2226] | 44 | USE callradite_mod, only: callradite |
---|
[2079] | 45 | IMPLICIT NONE |
---|
[1974] | 46 | |
---|
[2160] | 47 | include "callkeys.h" |
---|
| 48 | |
---|
[1974] | 49 | !-------------------------------------------------------- |
---|
| 50 | ! Input Variables |
---|
| 51 | !-------------------------------------------------------- |
---|
| 52 | |
---|
| 53 | INTEGER, INTENT(IN) :: ngrid ! number of horizontal grid points |
---|
| 54 | INTEGER, INTENT(IN) :: nlayer ! number of vertical grid points |
---|
| 55 | INTEGER, INTENT(IN) :: nq ! number of tracer species |
---|
| 56 | REAL, INTENT(IN) :: ptime |
---|
| 57 | REAL, INTENT(IN) :: ptimestep |
---|
| 58 | |
---|
| 59 | REAL, INTENT(IN) :: pq(ngrid,nlayer,nq) ! advected field nq |
---|
| 60 | REAL, INTENT(IN) :: pdqfi(ngrid,nlayer,nq)! tendancy field pq |
---|
| 61 | REAL, INTENT(IN) :: pt(ngrid,nlayer) ! temperature at mid-layer (K) |
---|
| 62 | REAL, INTENT(IN) :: pdtfi(ngrid,nlayer) ! tendancy temperature at mid-layer (K) |
---|
| 63 | |
---|
| 64 | REAL, INTENT(IN) :: pplay(ngrid,nlayer) ! pressure at middle of the layers |
---|
| 65 | REAL, INTENT(IN) :: pplev(ngrid,nlayer+1) ! pressure at intermediate levels |
---|
| 66 | REAL, INTENT(IN) :: pzlay(ngrid,nlayer) ! altitude at the middle of the layers |
---|
| 67 | REAL, INTENT(IN) :: pzlev(ngrid,nlayer+1) ! altitude at layer boundaries |
---|
| 68 | |
---|
| 69 | REAL, INTENT(IN) :: pdtsw(ngrid,nlayer) ! (K/s) env |
---|
| 70 | REAL, INTENT(IN) :: pdtlw(ngrid,nlayer) ! (K/s) env |
---|
| 71 | |
---|
| 72 | ! input for second radiative transfer |
---|
[2079] | 73 | LOGICAL, INTENT(IN) :: clearatm |
---|
[1974] | 74 | INTEGER, INTENT(INOUT) :: icount |
---|
[2079] | 75 | REAL, INTENT(IN) :: zday |
---|
| 76 | REAL, INTENT(IN) :: zls |
---|
| 77 | REAL, INTENT(IN) :: tsurf(ngrid) |
---|
| 78 | INTEGER, INTENT(IN) :: igout |
---|
| 79 | REAL, INTENT(IN) :: totstormfract(ngrid) |
---|
[2226] | 80 | REAL, INTENT(INOUT) :: tauscaling(ngrid) |
---|
[2417] | 81 | REAL,INTENT(OUT) :: dust_rad_adjust(ngrid) |
---|
[2079] | 82 | |
---|
[1974] | 83 | ! sbgrid scale water ice clouds |
---|
| 84 | logical, intent(in) :: clearsky |
---|
[2199] | 85 | real, intent(in) :: totcloudfrac(ngrid) |
---|
| 86 | |
---|
| 87 | ! sbgrid scale topography |
---|
| 88 | LOGICAL, INTENT(IN) :: nohmons |
---|
| 89 | REAL, INTENT(IN) :: alpha_hmons(ngrid) |
---|
[1974] | 90 | |
---|
| 91 | !-------------------------------------------------------- |
---|
| 92 | ! Output Variables |
---|
| 93 | !-------------------------------------------------------- |
---|
| 94 | |
---|
| 95 | REAL, INTENT(OUT) :: pdqrds(ngrid,nlayer,nq) ! tendancy field for dust when detraining |
---|
[2079] | 96 | REAL, INTENT(OUT) :: wrad(ngrid,nlayer+1) ! vertical speed within the rocket dust storm |
---|
[2415] | 97 | REAL, INTENT(OUT) :: dsodust(ngrid,nlayer) ! density scaled opacity of env. dust |
---|
| 98 | REAL, INTENT(OUT) :: dsords(ngrid,nlayer) ! density scaled opacity of storm dust |
---|
| 99 | REAL, INTENT(OUT) :: dsotop(ngrid,nlayer) ! density scaled opacity of topmons dust |
---|
| 100 | REAL,INTENT(OUT) :: tau_pref_scenario(ngrid) ! prescribed dust column |
---|
| 101 | ! visible opacity at odpref |
---|
| 102 | REAL,INTENT(OUT) :: tau_pref_gcm(ngrid) ! dust column visible opacity at |
---|
| 103 | ! odpref in the GCM |
---|
[1974] | 104 | !-------------------------------------------------------- |
---|
| 105 | ! Local variables |
---|
| 106 | !-------------------------------------------------------- |
---|
[2201] | 107 | INTEGER l,ig,iq,ll |
---|
[2079] | 108 | ! local variables from callradite.F |
---|
[1974] | 109 | REAL zdtlw1(ngrid,nlayer) ! (K/s) storm |
---|
| 110 | REAL zdtsw1(ngrid,nlayer) ! (K/s) storm |
---|
| 111 | REAL zt(ngrid,nlayer) ! actual temperature at mid-layer (K) |
---|
[2091] | 112 | REAL zdtvert(ngrid,nlayer) ! dT/dz , lapse rate |
---|
| 113 | REAL ztlev(ngrid,nlayer) ! temperature at intermediate levels l+1/2 without last level |
---|
[1974] | 114 | |
---|
[2079] | 115 | REAL zdtlw1_lev(nlayer),zdtsw1_lev(nlayer) ! rad. heating rate at intermediate levels l+1/2 for stormdust |
---|
| 116 | REAL zdtlw_lev(nlayer),zdtsw_lev(nlayer) ! rad. heating rate at intermediate levels l+1/2 for background dust |
---|
[1974] | 117 | |
---|
[2079] | 118 | REAL zq_stormdust_mass(ngrid,nlayer) ! intermediate tracer stormdust mass |
---|
| 119 | REAL zq_stormdust_number(ngrid,nlayer) ! intermediate tracer stormdust number |
---|
| 120 | REAL zq_dust_mass(ngrid,nlayer) ! intermediate tracer dust mass |
---|
| 121 | REAL zq_dust_number(ngrid,nlayer) ! intermediate tracer dust number |
---|
[1974] | 122 | |
---|
[2079] | 123 | REAL mr_stormdust_mass(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (stormdust mass) |
---|
| 124 | REAL mr_stormdust_number(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (stormdust number) |
---|
| 125 | REAL mr_dust_mass(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (dust mass) |
---|
| 126 | REAL mr_dust_number(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (sdust number) |
---|
| 127 | |
---|
| 128 | REAL dqvl_stormdust_mass(ngrid,nlayer) ! tendancy of vertical transport (stormdust mass) |
---|
| 129 | REAL dqvl_stormdust_number(ngrid,nlayer) ! tendancy of vertical transport (stormdust number) |
---|
| 130 | REAL dqvl_dust_mass(ngrid,nlayer) ! tendancy of vertical transport (dust mass) |
---|
| 131 | REAL dqvl_dust_number(ngrid,nlayer) ! tendancy of vertical transport (dust number) |
---|
| 132 | REAL dqdet_stormdust_mass(ngrid,nlayer) ! tendancy of detrainement (stormdust mass) |
---|
| 133 | REAL dqdet_stormdust_number(ngrid,nlayer) ! tendancy of detrainement (stormdust number) |
---|
[1974] | 134 | |
---|
[2090] | 135 | REAL masse_col(nlayer) ! mass of atmosphere (kg/m2) |
---|
[1974] | 136 | REAL zq(ngrid,nlayer,nq) ! updated tracers |
---|
| 137 | |
---|
[2090] | 138 | REAL w(ngrid,nlayer) ! air mass flux (calculated with the vertical wind velocity profile) used as input in Van Leer (kgair/m2) |
---|
| 139 | REAL wqmass(ngrid,nlayer+1) ! tracer (dust_mass) mass flux in Van Leer (kg/m2) |
---|
| 140 | REAL wqnumber(ngrid,nlayer+1) ! tracer (dust_number) mass flux in Van Leer (kg/m2) |
---|
[1974] | 141 | |
---|
[2079] | 142 | LOGICAL storm(ngrid) ! true when there is a dust storm (if the opacity is high): trigger the rocket dust storm scheme |
---|
[2160] | 143 | REAL detrain(ngrid,nlayer) ! coefficient for detrainment : % of stormdust detrained |
---|
[2079] | 144 | INTEGER scheme(ngrid) ! triggered scheme |
---|
| 145 | |
---|
| 146 | REAL,PARAMETER:: coefmin =0.025 ! 0<coefmin<1 Minimum fraction of stormdust detrained |
---|
[2201] | 147 | REAL,PARAMETER:: wmin =0.25 ! stormdust detrainment if wrad < wmin |
---|
[2079] | 148 | REAL,PARAMETER:: wmax =10. ! maximum vertical velocity of the rocket dust storms (m/s) |
---|
[2201] | 149 | |
---|
| 150 | ! subtimestep |
---|
| 151 | INTEGER tsub |
---|
| 152 | INTEGER nsubtimestep !number of subtimestep when calling van_leer |
---|
| 153 | REAL subtimestep !ptimestep/nsubtimestep |
---|
| 154 | REAL dtmax !considered time needed for dust to cross one layer |
---|
| 155 | REAL,PARAMETER:: secu=3.!3. !coefficient on wspeed to avoid dust crossing many layers during subtimestep |
---|
| 156 | |
---|
[2079] | 157 | ! diagnostics |
---|
| 158 | REAL lapserate(ngrid,nlayer) |
---|
| 159 | REAL deltahr(ngrid,nlayer+1) |
---|
[1974] | 160 | |
---|
[2079] | 161 | LOGICAL,SAVE :: firstcall=.true. |
---|
| 162 | |
---|
| 163 | ! variables for the radiative transfer |
---|
[1974] | 164 | REAL fluxsurf_lw1(ngrid) |
---|
| 165 | REAL fluxsurf_sw1(ngrid,2) |
---|
| 166 | REAL fluxtop_lw1(ngrid) |
---|
| 167 | REAL fluxtop_sw1(ngrid,2) |
---|
| 168 | REAL tau(ngrid,naerkind) |
---|
| 169 | REAL aerosol(ngrid,nlayer,naerkind) |
---|
| 170 | REAL taucloudtes(ngrid) |
---|
| 171 | REAL rdust(ngrid,nlayer) |
---|
| 172 | REAL rstormdust(ngrid,nlayer) |
---|
[2199] | 173 | REAL rtopdust(ngrid,nlayer) |
---|
[1974] | 174 | REAL rice(ngrid,nlayer) |
---|
| 175 | REAL nuice(ngrid,nlayer) |
---|
[2459] | 176 | DOUBLE PRECISION riceco2(ngrid,nlayer) |
---|
[2448] | 177 | REAL nuiceco2(ngrid,nlayer) |
---|
[1974] | 178 | |
---|
| 179 | ! ********************************************************************** |
---|
| 180 | ! ********************************************************************** |
---|
[2079] | 181 | ! Rocket dust storm parametrization to reproduce the detached dust layers |
---|
| 182 | ! during the dust storm season: |
---|
[1974] | 183 | ! The radiative warming due to the presence of storm dust is |
---|
| 184 | ! balanced by the adiabatic cooling. The tracer "storm dust" |
---|
| 185 | ! is transported by the upward/downward flow. |
---|
| 186 | ! ********************************************************************** |
---|
| 187 | ! ********************************************************************** |
---|
| 188 | !! 1. Radiative transfer in storm dust |
---|
| 189 | !! 2. Compute vertical velocity for storm dust |
---|
[2079] | 190 | !! case 1 storm = false: nothing to do |
---|
| 191 | !! case 2 rocket dust storm (storm=true) |
---|
| 192 | !! 3. Vertical transport (Van Leer) |
---|
[1974] | 193 | !! 4. Detrainment |
---|
| 194 | ! ********************************************************************** |
---|
| 195 | ! ********************************************************************** |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | ! ********************************************************************** |
---|
[2079] | 199 | ! Initializations |
---|
[1974] | 200 | ! ********************************************************************** |
---|
| 201 | storm(:)=.false. |
---|
| 202 | pdqrds(:,:,:) = 0. |
---|
[2079] | 203 | mr_dust_mass(:,:)=0. |
---|
| 204 | mr_dust_number(:,:)=0. |
---|
| 205 | mr_stormdust_mass(:,:)=0. |
---|
| 206 | mr_stormdust_number(:,:)=0. |
---|
| 207 | dqvl_dust_mass(:,:)=0. |
---|
| 208 | dqvl_dust_number(:,:)=0. |
---|
| 209 | dqvl_stormdust_mass(:,:)=0. |
---|
| 210 | dqvl_stormdust_number(:,:)=0. |
---|
| 211 | dqdet_stormdust_mass(:,:)=0. |
---|
| 212 | dqdet_stormdust_number(:,:)=0. |
---|
| 213 | wrad(:,:)=0. |
---|
[2090] | 214 | w(:,:)=0. |
---|
| 215 | wqmass(:,:)=0. |
---|
| 216 | wqnumber(:,:)=0. |
---|
[2091] | 217 | zdtvert(:,:)=0. |
---|
[1974] | 218 | lapserate(:,:)=0. |
---|
| 219 | deltahr(:,:)=0. |
---|
| 220 | scheme(:)=0 |
---|
[2160] | 221 | detrain(:,:)=1. |
---|
[2083] | 222 | |
---|
[1974] | 223 | !! no update for the stormdust tracer and temperature fields |
---|
| 224 | !! because previous callradite was for background dust |
---|
| 225 | zq(1:ngrid,1:nlayer,1:nq)=pq(1:ngrid,1:nlayer,1:nq) |
---|
| 226 | zt(1:ngrid,1:nlayer)=pt(1:ngrid,1:nlayer) |
---|
| 227 | |
---|
| 228 | |
---|
[2079] | 229 | zq_dust_mass(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 230 | zq_dust_number(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 231 | zq_stormdust_mass(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_stormdust_mass) |
---|
| 232 | zq_stormdust_number(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_stormdust_number) |
---|
| 233 | |
---|
| 234 | ! ********************************************************************* |
---|
| 235 | ! 0. Check if there is a storm |
---|
| 236 | ! ********************************************************************* |
---|
| 237 | DO ig=1,ngrid |
---|
[1974] | 238 | storm(ig)=.false. |
---|
[2079] | 239 | DO l=1,nlayer |
---|
| 240 | IF (zq(ig,l,igcm_stormdust_mass) & |
---|
| 241 | .gt. zq(ig,l,igcm_dust_mass)*(1.E-4)) THEN |
---|
[1974] | 242 | storm(ig)=.true. |
---|
[2079] | 243 | EXIT |
---|
| 244 | ENDIF |
---|
| 245 | ENDDO |
---|
| 246 | ENDDO |
---|
[1974] | 247 | |
---|
| 248 | ! ********************************************************************* |
---|
| 249 | ! 1. Call the second radiative transfer for stormdust, obtain the extra heating |
---|
| 250 | ! ********************************************************************* |
---|
[2199] | 251 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq,albedo, & |
---|
| 252 | emis,mu0,pplev,pplay,pt,tsurf,fract,dist_sol,igout, & |
---|
| 253 | zdtlw1,zdtsw1,fluxsurf_lw1,fluxsurf_sw1,fluxtop_lw1, & |
---|
[2415] | 254 | fluxtop_sw1,tau_pref_scenario,tau_pref_gcm, & |
---|
[2417] | 255 | tau,aerosol,dsodust,tauscaling,dust_rad_adjust, & |
---|
[2448] | 256 | taucloudtes,rdust,rice,nuice,riceco2,nuiceco2,co2ice,rstormdust,rtopdust, & |
---|
[2246] | 257 | totstormfract,clearatm,dsords,dsotop,alpha_hmons,nohmons,& |
---|
[1974] | 258 | clearsky,totcloudfrac) |
---|
| 259 | |
---|
| 260 | ! ********************************************************************** |
---|
| 261 | ! 2. Compute vertical velocity for storm dust |
---|
[2079] | 262 | ! ********************************************************************** |
---|
[1974] | 263 | !! ********************************************************************** |
---|
[2079] | 264 | !! 2.1 Nothing to do when no storm |
---|
| 265 | !! no storm |
---|
| 266 | DO ig=1,ngrid |
---|
| 267 | IF (.NOT.(storm(ig))) then |
---|
| 268 | scheme(ig)=1 |
---|
| 269 | cycle |
---|
| 270 | ENDIF ! IF (storm(ig)) |
---|
| 271 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 272 | |
---|
[2079] | 273 | !! ********************************************************************** |
---|
| 274 | !! 2.2 Calculation of the extra heating : computing heating rates |
---|
| 275 | !! gradient at boundaries of each layer, start from surface |
---|
| 276 | DO ig=1,ngrid |
---|
[2091] | 277 | IF (storm(ig)) THEN |
---|
| 278 | |
---|
| 279 | scheme(ig)=2 |
---|
[1974] | 280 | |
---|
[2091] | 281 | !! computing heating rates gradient at boundraies of each layer |
---|
| 282 | !! start from surface |
---|
| 283 | zdtlw1_lev(1)=0. |
---|
| 284 | zdtsw1_lev(1)=0. |
---|
| 285 | zdtlw_lev(1)=0. |
---|
| 286 | zdtsw_lev(1)=0. |
---|
| 287 | ztlev(ig,1)=zt(ig,1) |
---|
[1974] | 288 | |
---|
[2091] | 289 | DO l=1,nlayer-1 |
---|
| 290 | !! Calculation for the dust storm fraction |
---|
| 291 | zdtlw1_lev(l+1)=(zdtlw1(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 292 | zdtlw1(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 293 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
| 294 | |
---|
| 295 | zdtsw1_lev(l+1)=(zdtsw1(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 296 | zdtsw1(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 297 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
| 298 | !! Calculation for the background dust fraction |
---|
| 299 | zdtlw_lev(l+1)=(pdtlw(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 300 | pdtlw(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 301 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
[2079] | 302 | |
---|
[2091] | 303 | zdtsw_lev(l+1)=(pdtsw(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 304 | pdtsw(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 305 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
[2079] | 306 | |
---|
[2091] | 307 | ztlev(ig,l+1)=(zt(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 308 | zt(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 309 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
[2201] | 310 | ENDDO ! DO l=1,nlayer-1 |
---|
[1974] | 311 | |
---|
[2201] | 312 | !! This is the env. lapse rate |
---|
| 313 | zdtvert(ig,1)=0. |
---|
| 314 | DO l=1,nlayer-1 |
---|
| 315 | zdtvert(ig,l+1)=(ztlev(ig,l+1)-ztlev(ig,l))/(pzlay(ig,l+1)-pzlay(ig,l)) |
---|
| 316 | lapserate(ig,l+1)=zdtvert(ig,l+1) |
---|
| 317 | ENDDO |
---|
| 318 | |
---|
[2091] | 319 | !! ********************************************************************** |
---|
| 320 | !! 2.3 Calculation of the vertical velocity : extra heating |
---|
| 321 | !! balanced by adiabatic cooling |
---|
| 322 | |
---|
[2079] | 323 | DO l=1,nlayer |
---|
| 324 | deltahr(ig,l)=(zdtlw1_lev(l)+zdtsw1_lev(l)) & |
---|
| 325 | -(zdtlw_lev(l)+zdtsw_lev(l)) |
---|
| 326 | wrad(ig,l)=-deltahr(ig,l)/(g/cpp+ & |
---|
[2091] | 327 | max(zdtvert(ig,l),-0.99*g/cpp)) |
---|
[2079] | 328 | !! Limit vertical wind in case of lapse rate close to adiabatic |
---|
| 329 | wrad(ig,l)=max(wrad(ig,l),-wmax) |
---|
| 330 | wrad(ig,l)=min(wrad(ig,l),wmax) |
---|
| 331 | ENDDO |
---|
[2091] | 332 | |
---|
[2079] | 333 | ENDIF ! IF (storm(ig)) |
---|
| 334 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 335 | |
---|
| 336 | ! ********************************************************************** |
---|
| 337 | ! 3. Vertical transport |
---|
| 338 | ! ********************************************************************** |
---|
[2079] | 339 | !! ********************************************************************** |
---|
| 340 | !! 3.1 Transport of background dust + storm dust (concentrated) |
---|
| 341 | DO ig=1,ngrid |
---|
| 342 | IF (storm(ig)) THEN |
---|
| 343 | DO l=1,nlayer |
---|
| 344 | mr_dust_mass(ig,l) = zq_dust_mass(ig,l) |
---|
| 345 | mr_dust_number(ig,l) = zq_dust_number(ig,l) |
---|
| 346 | mr_stormdust_mass(ig,l) = zq_dust_mass(ig,l)+ & |
---|
| 347 | zq_stormdust_mass(ig,l)/totstormfract(ig) |
---|
| 348 | mr_stormdust_number(ig,l) = zq_dust_number(ig,l)+ & |
---|
| 349 | zq_stormdust_number(ig,l)/totstormfract(ig) |
---|
| 350 | ENDDO ! DO l=1,nlayer |
---|
| 351 | ENDIF ! IF (storm(ig)) |
---|
| 352 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 353 | |
---|
[2079] | 354 | DO ig=1,ngrid |
---|
| 355 | IF (storm(ig)) THEN |
---|
[2201] | 356 | !! ********************************************************************** |
---|
| 357 | !! 3.2 Compute the subtimestep to conserve the mass in the Van Leer transport |
---|
| 358 | dtmax=ptimestep |
---|
| 359 | DO l=2,nlayer |
---|
| 360 | IF (wrad(ig,l).lt.0.) THEN |
---|
| 361 | dtmax=min(dtmax,(pzlev(ig,l)-pzlev(ig,l-1))/ & |
---|
| 362 | (secu*abs(wrad(ig,l)))) |
---|
| 363 | ELSE IF (wrad(ig,l).gt.0.) then |
---|
| 364 | dtmax=min(dtmax,(pzlev(ig,l+1)-pzlev(ig,l))/ & |
---|
| 365 | (secu*abs(wrad(ig,l)))) |
---|
| 366 | ENDIF |
---|
| 367 | ENDDO |
---|
| 368 | nsubtimestep= int(ptimestep/dtmax) |
---|
| 369 | subtimestep=ptimestep/float(nsubtimestep) |
---|
| 370 | !! Mass flux generated by wup in kg/m2 |
---|
| 371 | DO l=1,nlayer |
---|
| 372 | w(ig,l)=wrad(ig,l)*pplev(ig,l)/(r*ztlev(ig,l)) & |
---|
| 373 | *subtimestep |
---|
| 374 | ENDDO ! l=1,nlayer |
---|
| 375 | |
---|
| 376 | !! ********************************************************************** |
---|
| 377 | !! 3.3 Vertical transport by a Van Leer scheme |
---|
[2079] | 378 | !! Mass of atmosphere in the layer |
---|
| 379 | DO l=1,nlayer |
---|
[2090] | 380 | masse_col(l)=(pplev(ig,l)-pplev(ig,l+1))/g |
---|
[2079] | 381 | ENDDO |
---|
[2201] | 382 | !! Mass flux in kg/m2 if you are not using the subtimestep |
---|
| 383 | !DO l=1,nlayer |
---|
| 384 | ! w(ig,l)=wrad(ig,l)*(pplev(ig,l)/(r*ztlev(ig,l)))*ptimestep |
---|
| 385 | !ENDDO |
---|
| 386 | !! Loop over the subtimestep |
---|
| 387 | DO tsub=1,nsubtimestep |
---|
| 388 | !! Van Leer scheme |
---|
| 389 | wqmass(ig,:)=0. |
---|
| 390 | wqnumber(ig,:)=0. |
---|
| 391 | CALL van_leer(nlayer,mr_stormdust_mass(ig,:),2., & |
---|
| 392 | masse_col,w(ig,:),wqmass(ig,:)) |
---|
| 393 | CALL van_leer(nlayer,mr_stormdust_number(ig,:),2., & |
---|
| 394 | masse_col,w(ig,:),wqnumber(ig,:)) |
---|
| 395 | ENDDO !tsub=... |
---|
| 396 | |
---|
[2079] | 397 | ENDIF ! IF storm(ig) |
---|
| 398 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 399 | |
---|
[2079] | 400 | !! ********************************************************************** |
---|
[2201] | 401 | !! 3.4 Re-calculation of the mixing ratios after vertical transport |
---|
[2079] | 402 | DO ig=1,ngrid |
---|
| 403 | IF (storm(ig)) THEN |
---|
| 404 | DO l=1,nlayer |
---|
| 405 | |
---|
| 406 | !! General and "healthy" case |
---|
| 407 | IF (mr_stormdust_mass(ig,l).ge.mr_dust_mass(ig,l)) THEN |
---|
| 408 | zq_dust_mass(ig,l) = mr_dust_mass(ig,l) |
---|
| 409 | zq_dust_number(ig,l) = mr_dust_number(ig,l) |
---|
| 410 | zq_stormdust_mass(ig,l) = totstormfract(ig)*(mr_stormdust_mass(ig,l)-mr_dust_mass(ig,l)) |
---|
| 411 | zq_stormdust_number(ig,l) = totstormfract(ig)*(mr_stormdust_number(ig,l)-mr_dust_number(ig,l)) |
---|
| 412 | !! Particular case: there is less than initial dust mixing ratio after the vertical transport |
---|
| 413 | ELSE |
---|
| 414 | zq_dust_mass(ig,l) = (1.-totstormfract(ig))*mr_dust_mass(ig,l)+totstormfract(ig)*mr_stormdust_mass(ig,l) |
---|
| 415 | zq_dust_number(ig,l) = (1.-totstormfract(ig))*mr_dust_number(ig,l)+totstormfract(ig)*mr_stormdust_number(ig,l) |
---|
| 416 | zq_stormdust_mass(ig,l) = 0. |
---|
| 417 | zq_stormdust_number(ig,l) = 0. |
---|
| 418 | ENDIF |
---|
| 419 | |
---|
| 420 | ENDDO ! DO l=1,nlayer |
---|
| 421 | ENDIF ! IF storm(ig) |
---|
| 422 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 423 | |
---|
[2079] | 424 | !! ********************************************************************** |
---|
[2201] | 425 | !! 3.5 Calculation of the tendencies of the vertical transport |
---|
[2079] | 426 | DO ig=1,ngrid |
---|
| 427 | IF (storm(ig)) THEN |
---|
| 428 | DO l=1,nlayer |
---|
| 429 | dqvl_stormdust_mass(ig,l) = (zq_stormdust_mass(ig,l)- & |
---|
| 430 | zq(ig,l,igcm_stormdust_mass)) /ptimestep |
---|
| 431 | dqvl_stormdust_number(ig,l) = (zq_stormdust_number(ig,l)- & |
---|
| 432 | zq(ig,l,igcm_stormdust_number)) /ptimestep |
---|
| 433 | dqvl_dust_mass(ig,l) = (zq_dust_mass(ig,l)-zq(ig,l,igcm_dust_mass)) /ptimestep |
---|
| 434 | dqvl_dust_number(ig,l) = (zq_dust_number(ig,l)-zq(ig,l,igcm_dust_number)) /ptimestep |
---|
| 435 | ENDDO |
---|
| 436 | ENDIF ! IF storm(ig) |
---|
| 437 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 438 | |
---|
| 439 | ! ********************************************************************** |
---|
[2079] | 440 | ! 4. Detrainment: stormdust is converted to background dust |
---|
[1974] | 441 | ! ********************************************************************** |
---|
[2079] | 442 | !! ********************************************************************** |
---|
| 443 | !! 4.1 Compute the coefficient of detrainmen |
---|
| 444 | DO ig=1,ngrid |
---|
| 445 | DO l=1,nlayer |
---|
| 446 | IF ((max(abs(wrad(ig,l)),abs(wrad(ig,l+1))) .lt. & |
---|
| 447 | wmin) .or. (zq_dust_mass(ig,l) .gt. & |
---|
| 448 | 10000.*zq_stormdust_mass(ig,l))) THEN |
---|
[2160] | 449 | detrain(ig,l)=1. |
---|
[2079] | 450 | ELSE IF (max(abs(wrad(ig,l)),abs(wrad(ig,l+1))) & |
---|
| 451 | .le. wmax) THEN |
---|
[2160] | 452 | detrain(ig,l)=coeff_detrainment* & |
---|
| 453 | (((1-coefmin)/(wmin-wmax)**2)* & |
---|
| 454 | (max(abs(wrad(ig,l)),abs(wrad(ig,l+1)))-wmax)**2 & |
---|
| 455 | +coefmin) |
---|
[2079] | 456 | ELSE IF (max(abs(wrad(ig,l)),abs(wrad(ig,l+1))).gt. wmax ) THEN |
---|
[2160] | 457 | detrain(ig,l)=coefmin |
---|
[2079] | 458 | ELSE |
---|
[2160] | 459 | detrain(ig,l)=coefmin |
---|
[2079] | 460 | ENDIF |
---|
| 461 | ENDDO ! DO l=1,nlayer |
---|
| 462 | ENDDO ! DO ig=1,ngrid |
---|
| 463 | |
---|
| 464 | !! ********************************************************************** |
---|
| 465 | !! 4.2 Calculation of the tendencies of the detrainment |
---|
| 466 | DO ig=1,ngrid |
---|
| 467 | DO l=1,nlayer |
---|
[2160] | 468 | dqdet_stormdust_mass(ig,l)=-detrain(ig,l)*zq_stormdust_mass(ig,l) & |
---|
[1974] | 469 | /ptimestep |
---|
[2160] | 470 | dqdet_stormdust_number(ig,l)=-detrain(ig,l)*zq_stormdust_number(ig,l) & |
---|
[1974] | 471 | /ptimestep |
---|
[2079] | 472 | ENDDO ! DO l=1,nlayer |
---|
| 473 | ENDDO ! DO ig=1,ngrid |
---|
| 474 | |
---|
| 475 | ! ********************************************************************** |
---|
| 476 | ! 5. Final tendencies: vertical transport + detrainment |
---|
| 477 | ! ********************************************************************** |
---|
| 478 | DO ig=1,ngrid |
---|
| 479 | DO l=1,nlayer |
---|
| 480 | pdqrds(ig,l,igcm_stormdust_mass)=dqdet_stormdust_mass(ig,l) & |
---|
| 481 | +dqvl_stormdust_mass(ig,l) |
---|
| 482 | pdqrds(ig,l,igcm_stormdust_number)=dqdet_stormdust_number(ig,l) & |
---|
| 483 | +dqvl_stormdust_number(ig,l) |
---|
| 484 | pdqrds(ig,l,igcm_dust_mass)= -dqdet_stormdust_mass(ig,l) & |
---|
| 485 | +dqvl_dust_mass(ig,l) |
---|
| 486 | pdqrds(ig,l,igcm_dust_number)= -dqdet_stormdust_number(ig,l) & |
---|
| 487 | +dqvl_dust_number(ig,l) |
---|
| 488 | ENDDO ! DO l=1,nlayer |
---|
| 489 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 490 | |
---|
[2201] | 491 | ! ! ********************************************************************** |
---|
| 492 | ! ! 6. To prevent from negative values |
---|
| 493 | ! ! ********************************************************************** |
---|
| 494 | ! DO ig=1,ngrid |
---|
| 495 | ! DO l=1,nlayer |
---|
| 496 | ! IF ((pq(ig,l,igcm_stormdust_mass) & |
---|
| 497 | ! +pdqrds(ig,l,igcm_stormdust_mass)*ptimestep .le. 0.) .or. & |
---|
| 498 | ! (pq(ig,l,igcm_stormdust_number) & |
---|
| 499 | ! +pdqrds(ig,l,igcm_stormdust_number)*ptimestep .le. 0.)) THEN |
---|
| 500 | ! pdqrds(ig,l,igcm_stormdust_mass)=-pq(ig,l,igcm_stormdust_mass)/ptimestep |
---|
| 501 | ! pdqrds(ig,l,igcm_stormdust_number)=-pq(ig,l,igcm_stormdust_number)/ptimestep |
---|
| 502 | ! ENDIF |
---|
| 503 | ! ENDDO ! nlayer |
---|
| 504 | ! ENDDO ! DO ig=1,ngrid |
---|
| 505 | ! |
---|
| 506 | ! DO ig=1,ngrid |
---|
| 507 | ! DO l=1,nlayer |
---|
| 508 | ! IF ((pq(ig,l,igcm_dust_mass) & |
---|
| 509 | ! +pdqrds(ig,l,igcm_dust_mass)*ptimestep .le. 0.) .or. & |
---|
| 510 | ! (pq(ig,l,igcm_dust_number) & |
---|
| 511 | ! +pdqrds(ig,l,igcm_dust_number)*ptimestep .le. 0.)) THEN |
---|
| 512 | ! pdqrds(ig,l,igcm_dust_mass)=-pq(ig,l,igcm_dust_mass)/ptimestep |
---|
| 513 | ! pdqrds(ig,l,igcm_dust_number)=-pq(ig,l,igcm_dust_number)/ptimestep |
---|
| 514 | ! ENDIF |
---|
| 515 | ! ENDDO ! nlayer |
---|
| 516 | ! ENDDO ! DO ig=1,ngrid |
---|
[2079] | 517 | |
---|
| 518 | !======================================================================= |
---|
| 519 | ! WRITEDIAGFI |
---|
| 520 | |
---|
[1974] | 521 | call WRITEDIAGFI(ngrid,'lapserate','lapse rate in the storm', & |
---|
| 522 | & 'k/m',3,lapserate) |
---|
| 523 | call WRITEDIAGFI(ngrid,'deltahr','extra heating rates', & |
---|
| 524 | & 'K/s',3,deltahr) |
---|
| 525 | call writediagfi(ngrid,'scheme','which scheme',& |
---|
| 526 | ' ',2,real(scheme)) |
---|
[2079] | 527 | |
---|
[1974] | 528 | END SUBROUTINE rocketduststorm |
---|
| 529 | |
---|
[2201] | 530 | !======================================================================= |
---|
| 531 | ! ********************************************************************** |
---|
| 532 | ! Subroutine to determine the vertical transport with |
---|
| 533 | ! a Van Leer advection scheme (copied from the sedimentation scheme --> see vlz_fi.F) |
---|
| 534 | !*********************************************************************** |
---|
| 535 | SUBROUTINE van_leer(nlay,q,pente_max,masse,w,wq) |
---|
[2079] | 536 | |
---|
[1974] | 537 | IMPLICIT NONE |
---|
| 538 | |
---|
[2201] | 539 | !-------------------------------------------------------- |
---|
| 540 | ! Input/Output Variables |
---|
| 541 | !-------------------------------------------------------- |
---|
| 542 | INTEGER,INTENT(IN) :: nlay ! number of atmospheric layers |
---|
| 543 | REAL,INTENT(IN) :: masse(nlay) ! mass of the layer Dp/g |
---|
| 544 | REAL,INTENT(IN) :: pente_max != 2 conseillee |
---|
| 545 | REAL,INTENT(INOUT) :: q(nlay) ! mixing ratio (kg/kg) |
---|
| 546 | REAL,INTENT(INOUT) :: w(nlay) ! atmospheric mass "transferred" at each timestep (kg.m-2) |
---|
| 547 | REAL,INTENT(INOUT) :: wq(nlay+1) |
---|
| 548 | |
---|
| 549 | !-------------------------------------------------------- |
---|
| 550 | ! Local Variables |
---|
| 551 | !-------------------------------------------------------- |
---|
| 552 | |
---|
[1974] | 553 | INTEGER i,l,j,ii |
---|
[2079] | 554 | REAL dzq(nlay),dzqw(nlay),adzqw(nlay),dzqmax |
---|
| 555 | REAL newmasse |
---|
| 556 | REAL sigw, Mtot, MQtot |
---|
| 557 | INTEGER m |
---|
[1974] | 558 | |
---|
[2201] | 559 | ! ********************************************************************** |
---|
| 560 | ! Mixing ratio vertical gradient at the levels |
---|
| 561 | ! ********************************************************************** |
---|
[1974] | 562 | do l=2,nlay |
---|
| 563 | dzqw(l)=q(l-1)-q(l) |
---|
| 564 | adzqw(l)=abs(dzqw(l)) |
---|
| 565 | enddo |
---|
| 566 | |
---|
| 567 | do l=2,nlay-1 |
---|
| 568 | if(dzqw(l)*dzqw(l+1).gt.0.) then |
---|
| 569 | dzq(l)=0.5*(dzqw(l)+dzqw(l+1)) |
---|
| 570 | else |
---|
| 571 | dzq(l)=0. |
---|
| 572 | endif |
---|
| 573 | dzqmax=pente_max*min(adzqw(l),adzqw(l+1)) |
---|
| 574 | dzq(l)=sign(min(abs(dzq(l)),dzqmax),dzq(l)) |
---|
| 575 | enddo |
---|
| 576 | |
---|
| 577 | dzq(1)=0. |
---|
| 578 | dzq(nlay)=0. |
---|
[2079] | 579 | |
---|
[2201] | 580 | ! ********************************************************************** |
---|
| 581 | ! Vertical advection |
---|
| 582 | ! ********************************************************************** |
---|
[1974] | 583 | |
---|
[2201] | 584 | !! No flux at the model top: |
---|
[1974] | 585 | wq(nlay+1)=0. |
---|
| 586 | |
---|
[2201] | 587 | !! Surface flux up: |
---|
[2119] | 588 | if(w(1).lt.0.) wq(1)=0. ! warning : not always valid |
---|
[1974] | 589 | |
---|
[2201] | 590 | do l = 1,nlay-1 |
---|
[2119] | 591 | |
---|
[2201] | 592 | ! 1) Compute wq where w < 0 (up) (UPWARD TRANSPORT) |
---|
[2119] | 593 | ! =============================== |
---|
| 594 | |
---|
[1974] | 595 | if(w(l+1).le.0)then |
---|
| 596 | ! Regular scheme (transfered mass < 1 layer) |
---|
| 597 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 598 | if(-w(l+1).le.masse(l))then |
---|
| 599 | sigw=w(l+1)/masse(l) |
---|
| 600 | wq(l+1)=w(l+1)*(q(l)-0.5*(1.+sigw)*dzq(l)) |
---|
[2201] | 601 | !!------------------------------------------------------- |
---|
| 602 | ! The following part should not be needed in the |
---|
| 603 | ! case of an integration over subtimesteps |
---|
| 604 | !!------------------------------------------------------- |
---|
[1974] | 605 | ! Extended scheme (transfered mass > 1 layer) |
---|
| 606 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 607 | else |
---|
| 608 | m = l-1 |
---|
| 609 | Mtot = masse(m+1) |
---|
| 610 | MQtot = masse(m+1)*q(m+1) |
---|
| 611 | if (m.le.0)goto 77 |
---|
| 612 | do while(-w(l+1).gt.(Mtot+masse(m))) |
---|
| 613 | ! do while(-w(l+1).gt.Mtot) |
---|
| 614 | m=m-1 |
---|
| 615 | Mtot = Mtot + masse(m+1) |
---|
| 616 | MQtot = MQtot + masse(m+1)*q(m+1) |
---|
| 617 | if (m.le.0)goto 77 |
---|
| 618 | end do |
---|
| 619 | 77 continue |
---|
| 620 | |
---|
| 621 | if (m.gt.0) then |
---|
| 622 | sigw=(w(l+1)+Mtot)/masse(m) |
---|
[2079] | 623 | wq(l+1)= -(MQtot + (-w(l+1)-Mtot)* & |
---|
[1974] | 624 | (q(m)-0.5*(1.+sigw)*dzq(m)) ) |
---|
| 625 | else |
---|
| 626 | w(l+1) = -Mtot |
---|
| 627 | wq(l+1) = -MQtot |
---|
| 628 | end if |
---|
[2119] | 629 | endif ! (-w(l+1).le.masse(l)) |
---|
[1974] | 630 | |
---|
[2201] | 631 | ! 2) Compute wq where w > 0 (down) (DOWNWARD TRANSPORT) |
---|
[1974] | 632 | ! =============================== |
---|
| 633 | |
---|
[2119] | 634 | else if(w(l).gt.0.)then |
---|
[1974] | 635 | |
---|
| 636 | ! Regular scheme (transfered mass < 1 layer) |
---|
| 637 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 638 | if(w(l).le.masse(l))then |
---|
| 639 | sigw=w(l)/masse(l) |
---|
[2201] | 640 | wq(l)=w(l)*(q(l)+0.5*(1.-sigw)*dzq(l)) |
---|
| 641 | !!------------------------------------------------------- |
---|
| 642 | ! The following part should not be needed in the |
---|
| 643 | ! case of an integration over subtimesteps |
---|
| 644 | !!------------------------------------------------------- |
---|
[1974] | 645 | ! Extended scheme (transfered mass > 1 layer) |
---|
| 646 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 647 | else |
---|
| 648 | m=l |
---|
| 649 | Mtot = masse(m) |
---|
| 650 | MQtot = masse(m)*q(m) |
---|
| 651 | if(m.ge.nlay)goto 88 |
---|
| 652 | do while(w(l).gt.(Mtot+masse(m+1))) |
---|
| 653 | m=m+1 |
---|
| 654 | Mtot = Mtot + masse(m) |
---|
| 655 | MQtot = MQtot + masse(m)*q(m) |
---|
| 656 | if(m.ge.nlay)goto 88 |
---|
| 657 | end do |
---|
| 658 | 88 continue |
---|
| 659 | if (m.lt.nlay) then |
---|
| 660 | sigw=(w(l)-Mtot)/masse(m+1) |
---|
| 661 | wq(l)=(MQtot + (w(l)-Mtot)* & |
---|
| 662 | (q(m+1)+0.5*(1.-sigw)*dzq(m+1)) ) |
---|
| 663 | else |
---|
| 664 | w(l) = Mtot |
---|
| 665 | wq(l) = MQtot |
---|
| 666 | end if |
---|
[2119] | 667 | end if |
---|
[2100] | 668 | |
---|
[2119] | 669 | end if ! w<0 (up) |
---|
[2100] | 670 | |
---|
[2119] | 671 | enddo ! l = 1,nlay-1 |
---|
[1974] | 672 | |
---|
[2201] | 673 | do l = 1,nlay |
---|
[1974] | 674 | |
---|
[2119] | 675 | ! it cannot entrain more than available mass ! |
---|
| 676 | if ( (wq(l+1)-wq(l)) .lt. -(masse(l)*q(l)) ) then |
---|
| 677 | wq(l+1) = wq(l)-masse(l)*q(l) |
---|
| 678 | end if |
---|
| 679 | |
---|
[1974] | 680 | q(l)=q(l) + (wq(l+1)-wq(l))/masse(l) |
---|
| 681 | |
---|
| 682 | enddo |
---|
[2079] | 683 | |
---|
[2201] | 684 | END SUBROUTINE van_leer |
---|
[1974] | 685 | |
---|
[2079] | 686 | !======================================================================= |
---|
| 687 | ! Initialization of the module variables |
---|
[1974] | 688 | |
---|
| 689 | subroutine ini_rocketduststorm_mod(ngrid) |
---|
| 690 | |
---|
| 691 | implicit none |
---|
| 692 | |
---|
| 693 | integer, intent(in) :: ngrid |
---|
| 694 | |
---|
| 695 | allocate(dustliftday(ngrid)) |
---|
| 696 | |
---|
| 697 | end subroutine ini_rocketduststorm_mod |
---|
| 698 | |
---|
| 699 | subroutine end_rocketduststorm_mod |
---|
| 700 | |
---|
| 701 | implicit none |
---|
| 702 | |
---|
| 703 | if (allocated(dustliftday)) deallocate(dustliftday) |
---|
| 704 | |
---|
| 705 | end subroutine end_rocketduststorm_mod |
---|
| 706 | |
---|
| 707 | END MODULE rocketduststorm_mod |
---|