[1974] | 1 | MODULE rocketduststorm_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | REAL, SAVE, ALLOCATABLE :: dustliftday(:) ! dust lifting rate (s-1) |
---|
| 6 | |
---|
| 7 | CONTAINS |
---|
| 8 | |
---|
| 9 | !======================================================================= |
---|
| 10 | ! ROCKET DUST STORM - vertical transport and detrainment |
---|
| 11 | !======================================================================= |
---|
[2079] | 12 | ! calculation of the vertical flux |
---|
[2201] | 13 | ! call of van_leer : Van Leer transport scheme of the dust tracers |
---|
[2079] | 14 | ! detrainement of stormdust in the background dust |
---|
[1974] | 15 | ! ----------------------------------------------------------------------- |
---|
[2079] | 16 | ! Authors: M. Vals; C. Wang; F. Forget; T. Bertrand |
---|
[1974] | 17 | ! Institution: Laboratoire de Meteorologie Dynamique (LMD) Paris, France |
---|
| 18 | ! ----------------------------------------------------------------------- |
---|
| 19 | |
---|
| 20 | SUBROUTINE rocketduststorm(ngrid,nlayer,nq,ptime,ptimestep, & |
---|
| 21 | pq,pdqfi,pt,pdtfi,pplev,pplay,pzlev, & |
---|
| 22 | pzlay,pdtsw,pdtlw, & |
---|
| 23 | ! input for radiative transfer |
---|
| 24 | clearatm,icount,zday,zls, & |
---|
| 25 | tsurf,igout,totstormfract, & |
---|
[2226] | 26 | tauscaling, & |
---|
[1974] | 27 | ! input sub-grid scale cloud |
---|
| 28 | clearsky,totcloudfrac, & |
---|
[2199] | 29 | ! input sub-grid scale topography |
---|
| 30 | nohmons,alpha_hmons, & |
---|
[2079] | 31 | ! output |
---|
[2246] | 32 | pdqrds,wrad,dsodust,dsords,dsotop, & |
---|
[2199] | 33 | tauref) |
---|
[1974] | 34 | |
---|
[2079] | 35 | USE tracer_mod, only: igcm_stormdust_mass,igcm_stormdust_number & |
---|
[1974] | 36 | ,igcm_dust_mass,igcm_dust_number & |
---|
| 37 | ,rho_dust |
---|
| 38 | USE comcstfi_h, only: r,g,cpp,rcp |
---|
[2079] | 39 | USE dimradmars_mod, only: albedo,naerkind |
---|
| 40 | USE comsaison_h, only: dist_sol,mu0,fract |
---|
| 41 | USE surfdat_h, only: emis,co2ice,zmea, zstd, zsig, hmons |
---|
[2226] | 42 | USE callradite_mod, only: callradite |
---|
[2079] | 43 | IMPLICIT NONE |
---|
[1974] | 44 | |
---|
[2160] | 45 | include "callkeys.h" |
---|
| 46 | |
---|
[1974] | 47 | !-------------------------------------------------------- |
---|
| 48 | ! Input Variables |
---|
| 49 | !-------------------------------------------------------- |
---|
| 50 | |
---|
| 51 | INTEGER, INTENT(IN) :: ngrid ! number of horizontal grid points |
---|
| 52 | INTEGER, INTENT(IN) :: nlayer ! number of vertical grid points |
---|
| 53 | INTEGER, INTENT(IN) :: nq ! number of tracer species |
---|
| 54 | REAL, INTENT(IN) :: ptime |
---|
| 55 | REAL, INTENT(IN) :: ptimestep |
---|
| 56 | |
---|
| 57 | REAL, INTENT(IN) :: pq(ngrid,nlayer,nq) ! advected field nq |
---|
| 58 | REAL, INTENT(IN) :: pdqfi(ngrid,nlayer,nq)! tendancy field pq |
---|
| 59 | REAL, INTENT(IN) :: pt(ngrid,nlayer) ! temperature at mid-layer (K) |
---|
| 60 | REAL, INTENT(IN) :: pdtfi(ngrid,nlayer) ! tendancy temperature at mid-layer (K) |
---|
| 61 | |
---|
| 62 | REAL, INTENT(IN) :: pplay(ngrid,nlayer) ! pressure at middle of the layers |
---|
| 63 | REAL, INTENT(IN) :: pplev(ngrid,nlayer+1) ! pressure at intermediate levels |
---|
| 64 | REAL, INTENT(IN) :: pzlay(ngrid,nlayer) ! altitude at the middle of the layers |
---|
| 65 | REAL, INTENT(IN) :: pzlev(ngrid,nlayer+1) ! altitude at layer boundaries |
---|
| 66 | |
---|
| 67 | REAL, INTENT(IN) :: pdtsw(ngrid,nlayer) ! (K/s) env |
---|
| 68 | REAL, INTENT(IN) :: pdtlw(ngrid,nlayer) ! (K/s) env |
---|
| 69 | |
---|
| 70 | ! input for second radiative transfer |
---|
[2079] | 71 | LOGICAL, INTENT(IN) :: clearatm |
---|
[1974] | 72 | INTEGER, INTENT(INOUT) :: icount |
---|
[2079] | 73 | REAL, INTENT(IN) :: zday |
---|
| 74 | REAL, INTENT(IN) :: zls |
---|
| 75 | REAL, INTENT(IN) :: tsurf(ngrid) |
---|
| 76 | INTEGER, INTENT(IN) :: igout |
---|
| 77 | REAL, INTENT(IN) :: totstormfract(ngrid) |
---|
[2226] | 78 | REAL, INTENT(INOUT) :: tauscaling(ngrid) |
---|
[2079] | 79 | |
---|
[1974] | 80 | ! sbgrid scale water ice clouds |
---|
| 81 | logical, intent(in) :: clearsky |
---|
[2199] | 82 | real, intent(in) :: totcloudfrac(ngrid) |
---|
| 83 | |
---|
| 84 | ! sbgrid scale topography |
---|
| 85 | LOGICAL, INTENT(IN) :: nohmons |
---|
| 86 | REAL, INTENT(IN) :: alpha_hmons(ngrid) |
---|
[1974] | 87 | |
---|
| 88 | !-------------------------------------------------------- |
---|
| 89 | ! Output Variables |
---|
| 90 | !-------------------------------------------------------- |
---|
| 91 | |
---|
| 92 | REAL, INTENT(OUT) :: pdqrds(ngrid,nlayer,nq) ! tendancy field for dust when detraining |
---|
[2079] | 93 | REAL, INTENT(OUT) :: wrad(ngrid,nlayer+1) ! vertical speed within the rocket dust storm |
---|
[2252] | 94 | REAL, INTENT(INOUT) :: dsodust(ngrid,nlayer) ! density scaled opacity of env. dust |
---|
| 95 | REAL, INTENT(INOUT) :: dsords(ngrid,nlayer) ! density scaled opacity of storm dust |
---|
| 96 | REAL, INTENT(INOUT) :: dsotop(ngrid,nlayer) ! density scaled opacity of topmons dust |
---|
[2199] | 97 | REAL, INTENT(OUT) :: tauref(ngrid) |
---|
[1974] | 98 | |
---|
| 99 | !-------------------------------------------------------- |
---|
| 100 | ! Local variables |
---|
| 101 | !-------------------------------------------------------- |
---|
[2201] | 102 | INTEGER l,ig,iq,ll |
---|
[2079] | 103 | ! local variables from callradite.F |
---|
[1974] | 104 | REAL zdtlw1(ngrid,nlayer) ! (K/s) storm |
---|
| 105 | REAL zdtsw1(ngrid,nlayer) ! (K/s) storm |
---|
| 106 | REAL zt(ngrid,nlayer) ! actual temperature at mid-layer (K) |
---|
[2091] | 107 | REAL zdtvert(ngrid,nlayer) ! dT/dz , lapse rate |
---|
| 108 | REAL ztlev(ngrid,nlayer) ! temperature at intermediate levels l+1/2 without last level |
---|
[1974] | 109 | |
---|
[2079] | 110 | REAL zdtlw1_lev(nlayer),zdtsw1_lev(nlayer) ! rad. heating rate at intermediate levels l+1/2 for stormdust |
---|
| 111 | REAL zdtlw_lev(nlayer),zdtsw_lev(nlayer) ! rad. heating rate at intermediate levels l+1/2 for background dust |
---|
[1974] | 112 | |
---|
[2079] | 113 | REAL zq_stormdust_mass(ngrid,nlayer) ! intermediate tracer stormdust mass |
---|
| 114 | REAL zq_stormdust_number(ngrid,nlayer) ! intermediate tracer stormdust number |
---|
| 115 | REAL zq_dust_mass(ngrid,nlayer) ! intermediate tracer dust mass |
---|
| 116 | REAL zq_dust_number(ngrid,nlayer) ! intermediate tracer dust number |
---|
[1974] | 117 | |
---|
[2079] | 118 | REAL mr_stormdust_mass(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (stormdust mass) |
---|
| 119 | REAL mr_stormdust_number(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (stormdust number) |
---|
| 120 | REAL mr_dust_mass(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (dust mass) |
---|
| 121 | REAL mr_dust_number(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (sdust number) |
---|
| 122 | |
---|
| 123 | REAL dqvl_stormdust_mass(ngrid,nlayer) ! tendancy of vertical transport (stormdust mass) |
---|
| 124 | REAL dqvl_stormdust_number(ngrid,nlayer) ! tendancy of vertical transport (stormdust number) |
---|
| 125 | REAL dqvl_dust_mass(ngrid,nlayer) ! tendancy of vertical transport (dust mass) |
---|
| 126 | REAL dqvl_dust_number(ngrid,nlayer) ! tendancy of vertical transport (dust number) |
---|
| 127 | REAL dqdet_stormdust_mass(ngrid,nlayer) ! tendancy of detrainement (stormdust mass) |
---|
| 128 | REAL dqdet_stormdust_number(ngrid,nlayer) ! tendancy of detrainement (stormdust number) |
---|
[1974] | 129 | |
---|
[2090] | 130 | REAL masse_col(nlayer) ! mass of atmosphere (kg/m2) |
---|
[1974] | 131 | REAL zq(ngrid,nlayer,nq) ! updated tracers |
---|
| 132 | |
---|
[2090] | 133 | REAL w(ngrid,nlayer) ! air mass flux (calculated with the vertical wind velocity profile) used as input in Van Leer (kgair/m2) |
---|
| 134 | REAL wqmass(ngrid,nlayer+1) ! tracer (dust_mass) mass flux in Van Leer (kg/m2) |
---|
| 135 | REAL wqnumber(ngrid,nlayer+1) ! tracer (dust_number) mass flux in Van Leer (kg/m2) |
---|
[1974] | 136 | |
---|
[2079] | 137 | LOGICAL storm(ngrid) ! true when there is a dust storm (if the opacity is high): trigger the rocket dust storm scheme |
---|
[2160] | 138 | REAL detrain(ngrid,nlayer) ! coefficient for detrainment : % of stormdust detrained |
---|
[2079] | 139 | INTEGER scheme(ngrid) ! triggered scheme |
---|
| 140 | |
---|
| 141 | REAL,PARAMETER:: coefmin =0.025 ! 0<coefmin<1 Minimum fraction of stormdust detrained |
---|
[2201] | 142 | REAL,PARAMETER:: wmin =0.25 ! stormdust detrainment if wrad < wmin |
---|
[2079] | 143 | REAL,PARAMETER:: wmax =10. ! maximum vertical velocity of the rocket dust storms (m/s) |
---|
[2201] | 144 | |
---|
| 145 | ! subtimestep |
---|
| 146 | INTEGER tsub |
---|
| 147 | INTEGER nsubtimestep !number of subtimestep when calling van_leer |
---|
| 148 | REAL subtimestep !ptimestep/nsubtimestep |
---|
| 149 | REAL dtmax !considered time needed for dust to cross one layer |
---|
| 150 | REAL,PARAMETER:: secu=3.!3. !coefficient on wspeed to avoid dust crossing many layers during subtimestep |
---|
| 151 | |
---|
[2079] | 152 | ! diagnostics |
---|
| 153 | REAL lapserate(ngrid,nlayer) |
---|
| 154 | REAL deltahr(ngrid,nlayer+1) |
---|
[1974] | 155 | |
---|
[2079] | 156 | LOGICAL,SAVE :: firstcall=.true. |
---|
| 157 | |
---|
| 158 | ! variables for the radiative transfer |
---|
[1974] | 159 | REAL fluxsurf_lw1(ngrid) |
---|
| 160 | REAL fluxsurf_sw1(ngrid,2) |
---|
| 161 | REAL fluxtop_lw1(ngrid) |
---|
| 162 | REAL fluxtop_sw1(ngrid,2) |
---|
| 163 | REAL tau(ngrid,naerkind) |
---|
| 164 | REAL aerosol(ngrid,nlayer,naerkind) |
---|
| 165 | REAL taucloudtes(ngrid) |
---|
| 166 | REAL rdust(ngrid,nlayer) |
---|
| 167 | REAL rstormdust(ngrid,nlayer) |
---|
[2199] | 168 | REAL rtopdust(ngrid,nlayer) |
---|
[1974] | 169 | REAL rice(ngrid,nlayer) |
---|
| 170 | REAL nuice(ngrid,nlayer) |
---|
| 171 | |
---|
| 172 | |
---|
| 173 | ! ********************************************************************** |
---|
| 174 | ! ********************************************************************** |
---|
[2079] | 175 | ! Rocket dust storm parametrization to reproduce the detached dust layers |
---|
| 176 | ! during the dust storm season: |
---|
[1974] | 177 | ! The radiative warming due to the presence of storm dust is |
---|
| 178 | ! balanced by the adiabatic cooling. The tracer "storm dust" |
---|
| 179 | ! is transported by the upward/downward flow. |
---|
| 180 | ! ********************************************************************** |
---|
| 181 | ! ********************************************************************** |
---|
| 182 | !! 1. Radiative transfer in storm dust |
---|
| 183 | !! 2. Compute vertical velocity for storm dust |
---|
[2079] | 184 | !! case 1 storm = false: nothing to do |
---|
| 185 | !! case 2 rocket dust storm (storm=true) |
---|
| 186 | !! 3. Vertical transport (Van Leer) |
---|
[1974] | 187 | !! 4. Detrainment |
---|
| 188 | ! ********************************************************************** |
---|
| 189 | ! ********************************************************************** |
---|
| 190 | |
---|
| 191 | |
---|
| 192 | ! ********************************************************************** |
---|
[2079] | 193 | ! Initializations |
---|
[1974] | 194 | ! ********************************************************************** |
---|
| 195 | storm(:)=.false. |
---|
| 196 | pdqrds(:,:,:) = 0. |
---|
[2079] | 197 | mr_dust_mass(:,:)=0. |
---|
| 198 | mr_dust_number(:,:)=0. |
---|
| 199 | mr_stormdust_mass(:,:)=0. |
---|
| 200 | mr_stormdust_number(:,:)=0. |
---|
| 201 | dqvl_dust_mass(:,:)=0. |
---|
| 202 | dqvl_dust_number(:,:)=0. |
---|
| 203 | dqvl_stormdust_mass(:,:)=0. |
---|
| 204 | dqvl_stormdust_number(:,:)=0. |
---|
| 205 | dqdet_stormdust_mass(:,:)=0. |
---|
| 206 | dqdet_stormdust_number(:,:)=0. |
---|
| 207 | wrad(:,:)=0. |
---|
[2090] | 208 | w(:,:)=0. |
---|
| 209 | wqmass(:,:)=0. |
---|
| 210 | wqnumber(:,:)=0. |
---|
[2091] | 211 | zdtvert(:,:)=0. |
---|
[1974] | 212 | lapserate(:,:)=0. |
---|
| 213 | deltahr(:,:)=0. |
---|
| 214 | scheme(:)=0 |
---|
[2160] | 215 | detrain(:,:)=1. |
---|
[2083] | 216 | |
---|
[1974] | 217 | !! no update for the stormdust tracer and temperature fields |
---|
| 218 | !! because previous callradite was for background dust |
---|
| 219 | zq(1:ngrid,1:nlayer,1:nq)=pq(1:ngrid,1:nlayer,1:nq) |
---|
| 220 | zt(1:ngrid,1:nlayer)=pt(1:ngrid,1:nlayer) |
---|
| 221 | |
---|
| 222 | |
---|
[2079] | 223 | zq_dust_mass(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 224 | zq_dust_number(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 225 | zq_stormdust_mass(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_stormdust_mass) |
---|
| 226 | zq_stormdust_number(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_stormdust_number) |
---|
| 227 | |
---|
| 228 | ! ********************************************************************* |
---|
| 229 | ! 0. Check if there is a storm |
---|
| 230 | ! ********************************************************************* |
---|
| 231 | DO ig=1,ngrid |
---|
[1974] | 232 | storm(ig)=.false. |
---|
[2079] | 233 | DO l=1,nlayer |
---|
| 234 | IF (zq(ig,l,igcm_stormdust_mass) & |
---|
| 235 | .gt. zq(ig,l,igcm_dust_mass)*(1.E-4)) THEN |
---|
[1974] | 236 | storm(ig)=.true. |
---|
[2079] | 237 | EXIT |
---|
| 238 | ENDIF |
---|
| 239 | ENDDO |
---|
| 240 | ENDDO |
---|
[1974] | 241 | |
---|
| 242 | ! ********************************************************************* |
---|
| 243 | ! 1. Call the second radiative transfer for stormdust, obtain the extra heating |
---|
| 244 | ! ********************************************************************* |
---|
[2199] | 245 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq,albedo, & |
---|
| 246 | emis,mu0,pplev,pplay,pt,tsurf,fract,dist_sol,igout, & |
---|
| 247 | zdtlw1,zdtsw1,fluxsurf_lw1,fluxsurf_sw1,fluxtop_lw1, & |
---|
| 248 | fluxtop_sw1,tauref,tau,aerosol,dsodust,tauscaling, & |
---|
| 249 | taucloudtes,rdust,rice,nuice,co2ice,rstormdust,rtopdust, & |
---|
[2246] | 250 | totstormfract,clearatm,dsords,dsotop,alpha_hmons,nohmons,& |
---|
[1974] | 251 | clearsky,totcloudfrac) |
---|
| 252 | |
---|
| 253 | ! ********************************************************************** |
---|
| 254 | ! 2. Compute vertical velocity for storm dust |
---|
[2079] | 255 | ! ********************************************************************** |
---|
[1974] | 256 | !! ********************************************************************** |
---|
[2079] | 257 | !! 2.1 Nothing to do when no storm |
---|
| 258 | !! no storm |
---|
| 259 | DO ig=1,ngrid |
---|
| 260 | IF (.NOT.(storm(ig))) then |
---|
| 261 | scheme(ig)=1 |
---|
| 262 | cycle |
---|
| 263 | ENDIF ! IF (storm(ig)) |
---|
| 264 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 265 | |
---|
[2079] | 266 | !! ********************************************************************** |
---|
| 267 | !! 2.2 Calculation of the extra heating : computing heating rates |
---|
| 268 | !! gradient at boundaries of each layer, start from surface |
---|
| 269 | DO ig=1,ngrid |
---|
[2091] | 270 | IF (storm(ig)) THEN |
---|
| 271 | |
---|
| 272 | scheme(ig)=2 |
---|
[1974] | 273 | |
---|
[2091] | 274 | !! computing heating rates gradient at boundraies of each layer |
---|
| 275 | !! start from surface |
---|
| 276 | zdtlw1_lev(1)=0. |
---|
| 277 | zdtsw1_lev(1)=0. |
---|
| 278 | zdtlw_lev(1)=0. |
---|
| 279 | zdtsw_lev(1)=0. |
---|
| 280 | ztlev(ig,1)=zt(ig,1) |
---|
[1974] | 281 | |
---|
[2091] | 282 | DO l=1,nlayer-1 |
---|
| 283 | !! Calculation for the dust storm fraction |
---|
| 284 | zdtlw1_lev(l+1)=(zdtlw1(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 285 | zdtlw1(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 286 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
| 287 | |
---|
| 288 | zdtsw1_lev(l+1)=(zdtsw1(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 289 | zdtsw1(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 290 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
| 291 | !! Calculation for the background dust fraction |
---|
| 292 | zdtlw_lev(l+1)=(pdtlw(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 293 | pdtlw(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 294 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
[2079] | 295 | |
---|
[2091] | 296 | zdtsw_lev(l+1)=(pdtsw(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 297 | pdtsw(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 298 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
[2079] | 299 | |
---|
[2091] | 300 | ztlev(ig,l+1)=(zt(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 301 | zt(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 302 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
[2201] | 303 | ENDDO ! DO l=1,nlayer-1 |
---|
[1974] | 304 | |
---|
[2201] | 305 | !! This is the env. lapse rate |
---|
| 306 | zdtvert(ig,1)=0. |
---|
| 307 | DO l=1,nlayer-1 |
---|
| 308 | zdtvert(ig,l+1)=(ztlev(ig,l+1)-ztlev(ig,l))/(pzlay(ig,l+1)-pzlay(ig,l)) |
---|
| 309 | lapserate(ig,l+1)=zdtvert(ig,l+1) |
---|
| 310 | ENDDO |
---|
| 311 | |
---|
[2091] | 312 | !! ********************************************************************** |
---|
| 313 | !! 2.3 Calculation of the vertical velocity : extra heating |
---|
| 314 | !! balanced by adiabatic cooling |
---|
| 315 | |
---|
[2079] | 316 | DO l=1,nlayer |
---|
| 317 | deltahr(ig,l)=(zdtlw1_lev(l)+zdtsw1_lev(l)) & |
---|
| 318 | -(zdtlw_lev(l)+zdtsw_lev(l)) |
---|
| 319 | wrad(ig,l)=-deltahr(ig,l)/(g/cpp+ & |
---|
[2091] | 320 | max(zdtvert(ig,l),-0.99*g/cpp)) |
---|
[2079] | 321 | !! Limit vertical wind in case of lapse rate close to adiabatic |
---|
| 322 | wrad(ig,l)=max(wrad(ig,l),-wmax) |
---|
| 323 | wrad(ig,l)=min(wrad(ig,l),wmax) |
---|
| 324 | ENDDO |
---|
[2091] | 325 | |
---|
[2079] | 326 | ENDIF ! IF (storm(ig)) |
---|
| 327 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 328 | |
---|
| 329 | ! ********************************************************************** |
---|
| 330 | ! 3. Vertical transport |
---|
| 331 | ! ********************************************************************** |
---|
[2079] | 332 | !! ********************************************************************** |
---|
| 333 | !! 3.1 Transport of background dust + storm dust (concentrated) |
---|
| 334 | DO ig=1,ngrid |
---|
| 335 | IF (storm(ig)) THEN |
---|
| 336 | DO l=1,nlayer |
---|
| 337 | mr_dust_mass(ig,l) = zq_dust_mass(ig,l) |
---|
| 338 | mr_dust_number(ig,l) = zq_dust_number(ig,l) |
---|
| 339 | mr_stormdust_mass(ig,l) = zq_dust_mass(ig,l)+ & |
---|
| 340 | zq_stormdust_mass(ig,l)/totstormfract(ig) |
---|
| 341 | mr_stormdust_number(ig,l) = zq_dust_number(ig,l)+ & |
---|
| 342 | zq_stormdust_number(ig,l)/totstormfract(ig) |
---|
| 343 | ENDDO ! DO l=1,nlayer |
---|
| 344 | ENDIF ! IF (storm(ig)) |
---|
| 345 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 346 | |
---|
[2079] | 347 | DO ig=1,ngrid |
---|
| 348 | IF (storm(ig)) THEN |
---|
[2201] | 349 | !! ********************************************************************** |
---|
| 350 | !! 3.2 Compute the subtimestep to conserve the mass in the Van Leer transport |
---|
| 351 | dtmax=ptimestep |
---|
| 352 | DO l=2,nlayer |
---|
| 353 | IF (wrad(ig,l).lt.0.) THEN |
---|
| 354 | dtmax=min(dtmax,(pzlev(ig,l)-pzlev(ig,l-1))/ & |
---|
| 355 | (secu*abs(wrad(ig,l)))) |
---|
| 356 | ELSE IF (wrad(ig,l).gt.0.) then |
---|
| 357 | dtmax=min(dtmax,(pzlev(ig,l+1)-pzlev(ig,l))/ & |
---|
| 358 | (secu*abs(wrad(ig,l)))) |
---|
| 359 | ENDIF |
---|
| 360 | ENDDO |
---|
| 361 | nsubtimestep= int(ptimestep/dtmax) |
---|
| 362 | subtimestep=ptimestep/float(nsubtimestep) |
---|
| 363 | !! Mass flux generated by wup in kg/m2 |
---|
| 364 | DO l=1,nlayer |
---|
| 365 | w(ig,l)=wrad(ig,l)*pplev(ig,l)/(r*ztlev(ig,l)) & |
---|
| 366 | *subtimestep |
---|
| 367 | ENDDO ! l=1,nlayer |
---|
| 368 | |
---|
| 369 | !! ********************************************************************** |
---|
| 370 | !! 3.3 Vertical transport by a Van Leer scheme |
---|
[2079] | 371 | !! Mass of atmosphere in the layer |
---|
| 372 | DO l=1,nlayer |
---|
[2090] | 373 | masse_col(l)=(pplev(ig,l)-pplev(ig,l+1))/g |
---|
[2079] | 374 | ENDDO |
---|
[2201] | 375 | !! Mass flux in kg/m2 if you are not using the subtimestep |
---|
| 376 | !DO l=1,nlayer |
---|
| 377 | ! w(ig,l)=wrad(ig,l)*(pplev(ig,l)/(r*ztlev(ig,l)))*ptimestep |
---|
| 378 | !ENDDO |
---|
| 379 | !! Loop over the subtimestep |
---|
| 380 | DO tsub=1,nsubtimestep |
---|
| 381 | !! Van Leer scheme |
---|
| 382 | wqmass(ig,:)=0. |
---|
| 383 | wqnumber(ig,:)=0. |
---|
| 384 | CALL van_leer(nlayer,mr_stormdust_mass(ig,:),2., & |
---|
| 385 | masse_col,w(ig,:),wqmass(ig,:)) |
---|
| 386 | CALL van_leer(nlayer,mr_stormdust_number(ig,:),2., & |
---|
| 387 | masse_col,w(ig,:),wqnumber(ig,:)) |
---|
| 388 | ENDDO !tsub=... |
---|
| 389 | |
---|
[2079] | 390 | ENDIF ! IF storm(ig) |
---|
| 391 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 392 | |
---|
[2079] | 393 | !! ********************************************************************** |
---|
[2201] | 394 | !! 3.4 Re-calculation of the mixing ratios after vertical transport |
---|
[2079] | 395 | DO ig=1,ngrid |
---|
| 396 | IF (storm(ig)) THEN |
---|
| 397 | DO l=1,nlayer |
---|
| 398 | |
---|
| 399 | !! General and "healthy" case |
---|
| 400 | IF (mr_stormdust_mass(ig,l).ge.mr_dust_mass(ig,l)) THEN |
---|
| 401 | zq_dust_mass(ig,l) = mr_dust_mass(ig,l) |
---|
| 402 | zq_dust_number(ig,l) = mr_dust_number(ig,l) |
---|
| 403 | zq_stormdust_mass(ig,l) = totstormfract(ig)*(mr_stormdust_mass(ig,l)-mr_dust_mass(ig,l)) |
---|
| 404 | zq_stormdust_number(ig,l) = totstormfract(ig)*(mr_stormdust_number(ig,l)-mr_dust_number(ig,l)) |
---|
| 405 | !! Particular case: there is less than initial dust mixing ratio after the vertical transport |
---|
| 406 | ELSE |
---|
| 407 | zq_dust_mass(ig,l) = (1.-totstormfract(ig))*mr_dust_mass(ig,l)+totstormfract(ig)*mr_stormdust_mass(ig,l) |
---|
| 408 | zq_dust_number(ig,l) = (1.-totstormfract(ig))*mr_dust_number(ig,l)+totstormfract(ig)*mr_stormdust_number(ig,l) |
---|
| 409 | zq_stormdust_mass(ig,l) = 0. |
---|
| 410 | zq_stormdust_number(ig,l) = 0. |
---|
| 411 | ENDIF |
---|
| 412 | |
---|
| 413 | ENDDO ! DO l=1,nlayer |
---|
| 414 | ENDIF ! IF storm(ig) |
---|
| 415 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 416 | |
---|
[2079] | 417 | !! ********************************************************************** |
---|
[2201] | 418 | !! 3.5 Calculation of the tendencies of the vertical transport |
---|
[2079] | 419 | DO ig=1,ngrid |
---|
| 420 | IF (storm(ig)) THEN |
---|
| 421 | DO l=1,nlayer |
---|
| 422 | dqvl_stormdust_mass(ig,l) = (zq_stormdust_mass(ig,l)- & |
---|
| 423 | zq(ig,l,igcm_stormdust_mass)) /ptimestep |
---|
| 424 | dqvl_stormdust_number(ig,l) = (zq_stormdust_number(ig,l)- & |
---|
| 425 | zq(ig,l,igcm_stormdust_number)) /ptimestep |
---|
| 426 | dqvl_dust_mass(ig,l) = (zq_dust_mass(ig,l)-zq(ig,l,igcm_dust_mass)) /ptimestep |
---|
| 427 | dqvl_dust_number(ig,l) = (zq_dust_number(ig,l)-zq(ig,l,igcm_dust_number)) /ptimestep |
---|
| 428 | ENDDO |
---|
| 429 | ENDIF ! IF storm(ig) |
---|
| 430 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 431 | |
---|
| 432 | ! ********************************************************************** |
---|
[2079] | 433 | ! 4. Detrainment: stormdust is converted to background dust |
---|
[1974] | 434 | ! ********************************************************************** |
---|
[2079] | 435 | !! ********************************************************************** |
---|
| 436 | !! 4.1 Compute the coefficient of detrainmen |
---|
| 437 | DO ig=1,ngrid |
---|
| 438 | DO l=1,nlayer |
---|
| 439 | IF ((max(abs(wrad(ig,l)),abs(wrad(ig,l+1))) .lt. & |
---|
| 440 | wmin) .or. (zq_dust_mass(ig,l) .gt. & |
---|
| 441 | 10000.*zq_stormdust_mass(ig,l))) THEN |
---|
[2160] | 442 | detrain(ig,l)=1. |
---|
[2079] | 443 | ELSE IF (max(abs(wrad(ig,l)),abs(wrad(ig,l+1))) & |
---|
| 444 | .le. wmax) THEN |
---|
[2160] | 445 | detrain(ig,l)=coeff_detrainment* & |
---|
| 446 | (((1-coefmin)/(wmin-wmax)**2)* & |
---|
| 447 | (max(abs(wrad(ig,l)),abs(wrad(ig,l+1)))-wmax)**2 & |
---|
| 448 | +coefmin) |
---|
[2079] | 449 | ELSE IF (max(abs(wrad(ig,l)),abs(wrad(ig,l+1))).gt. wmax ) THEN |
---|
[2160] | 450 | detrain(ig,l)=coefmin |
---|
[2079] | 451 | ELSE |
---|
[2160] | 452 | detrain(ig,l)=coefmin |
---|
[2079] | 453 | ENDIF |
---|
| 454 | ENDDO ! DO l=1,nlayer |
---|
| 455 | ENDDO ! DO ig=1,ngrid |
---|
| 456 | |
---|
| 457 | !! ********************************************************************** |
---|
| 458 | !! 4.2 Calculation of the tendencies of the detrainment |
---|
| 459 | DO ig=1,ngrid |
---|
| 460 | DO l=1,nlayer |
---|
[2160] | 461 | dqdet_stormdust_mass(ig,l)=-detrain(ig,l)*zq_stormdust_mass(ig,l) & |
---|
[1974] | 462 | /ptimestep |
---|
[2160] | 463 | dqdet_stormdust_number(ig,l)=-detrain(ig,l)*zq_stormdust_number(ig,l) & |
---|
[1974] | 464 | /ptimestep |
---|
[2079] | 465 | ENDDO ! DO l=1,nlayer |
---|
| 466 | ENDDO ! DO ig=1,ngrid |
---|
| 467 | |
---|
| 468 | ! ********************************************************************** |
---|
| 469 | ! 5. Final tendencies: vertical transport + detrainment |
---|
| 470 | ! ********************************************************************** |
---|
| 471 | DO ig=1,ngrid |
---|
| 472 | DO l=1,nlayer |
---|
| 473 | pdqrds(ig,l,igcm_stormdust_mass)=dqdet_stormdust_mass(ig,l) & |
---|
| 474 | +dqvl_stormdust_mass(ig,l) |
---|
| 475 | pdqrds(ig,l,igcm_stormdust_number)=dqdet_stormdust_number(ig,l) & |
---|
| 476 | +dqvl_stormdust_number(ig,l) |
---|
| 477 | pdqrds(ig,l,igcm_dust_mass)= -dqdet_stormdust_mass(ig,l) & |
---|
| 478 | +dqvl_dust_mass(ig,l) |
---|
| 479 | pdqrds(ig,l,igcm_dust_number)= -dqdet_stormdust_number(ig,l) & |
---|
| 480 | +dqvl_dust_number(ig,l) |
---|
| 481 | ENDDO ! DO l=1,nlayer |
---|
| 482 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 483 | |
---|
[2201] | 484 | ! ! ********************************************************************** |
---|
| 485 | ! ! 6. To prevent from negative values |
---|
| 486 | ! ! ********************************************************************** |
---|
| 487 | ! DO ig=1,ngrid |
---|
| 488 | ! DO l=1,nlayer |
---|
| 489 | ! IF ((pq(ig,l,igcm_stormdust_mass) & |
---|
| 490 | ! +pdqrds(ig,l,igcm_stormdust_mass)*ptimestep .le. 0.) .or. & |
---|
| 491 | ! (pq(ig,l,igcm_stormdust_number) & |
---|
| 492 | ! +pdqrds(ig,l,igcm_stormdust_number)*ptimestep .le. 0.)) THEN |
---|
| 493 | ! pdqrds(ig,l,igcm_stormdust_mass)=-pq(ig,l,igcm_stormdust_mass)/ptimestep |
---|
| 494 | ! pdqrds(ig,l,igcm_stormdust_number)=-pq(ig,l,igcm_stormdust_number)/ptimestep |
---|
| 495 | ! ENDIF |
---|
| 496 | ! ENDDO ! nlayer |
---|
| 497 | ! ENDDO ! DO ig=1,ngrid |
---|
| 498 | ! |
---|
| 499 | ! DO ig=1,ngrid |
---|
| 500 | ! DO l=1,nlayer |
---|
| 501 | ! IF ((pq(ig,l,igcm_dust_mass) & |
---|
| 502 | ! +pdqrds(ig,l,igcm_dust_mass)*ptimestep .le. 0.) .or. & |
---|
| 503 | ! (pq(ig,l,igcm_dust_number) & |
---|
| 504 | ! +pdqrds(ig,l,igcm_dust_number)*ptimestep .le. 0.)) THEN |
---|
| 505 | ! pdqrds(ig,l,igcm_dust_mass)=-pq(ig,l,igcm_dust_mass)/ptimestep |
---|
| 506 | ! pdqrds(ig,l,igcm_dust_number)=-pq(ig,l,igcm_dust_number)/ptimestep |
---|
| 507 | ! ENDIF |
---|
| 508 | ! ENDDO ! nlayer |
---|
| 509 | ! ENDDO ! DO ig=1,ngrid |
---|
[2079] | 510 | |
---|
| 511 | !======================================================================= |
---|
| 512 | ! WRITEDIAGFI |
---|
| 513 | |
---|
[1974] | 514 | call WRITEDIAGFI(ngrid,'lapserate','lapse rate in the storm', & |
---|
| 515 | & 'k/m',3,lapserate) |
---|
| 516 | call WRITEDIAGFI(ngrid,'deltahr','extra heating rates', & |
---|
| 517 | & 'K/s',3,deltahr) |
---|
| 518 | call writediagfi(ngrid,'scheme','which scheme',& |
---|
| 519 | ' ',2,real(scheme)) |
---|
[2079] | 520 | |
---|
[1974] | 521 | END SUBROUTINE rocketduststorm |
---|
| 522 | |
---|
[2201] | 523 | !======================================================================= |
---|
| 524 | ! ********************************************************************** |
---|
| 525 | ! Subroutine to determine the vertical transport with |
---|
| 526 | ! a Van Leer advection scheme (copied from the sedimentation scheme --> see vlz_fi.F) |
---|
| 527 | !*********************************************************************** |
---|
| 528 | SUBROUTINE van_leer(nlay,q,pente_max,masse,w,wq) |
---|
[2079] | 529 | |
---|
[1974] | 530 | IMPLICIT NONE |
---|
| 531 | |
---|
[2201] | 532 | !-------------------------------------------------------- |
---|
| 533 | ! Input/Output Variables |
---|
| 534 | !-------------------------------------------------------- |
---|
| 535 | INTEGER,INTENT(IN) :: nlay ! number of atmospheric layers |
---|
| 536 | REAL,INTENT(IN) :: masse(nlay) ! mass of the layer Dp/g |
---|
| 537 | REAL,INTENT(IN) :: pente_max != 2 conseillee |
---|
| 538 | REAL,INTENT(INOUT) :: q(nlay) ! mixing ratio (kg/kg) |
---|
| 539 | REAL,INTENT(INOUT) :: w(nlay) ! atmospheric mass "transferred" at each timestep (kg.m-2) |
---|
| 540 | REAL,INTENT(INOUT) :: wq(nlay+1) |
---|
| 541 | |
---|
| 542 | !-------------------------------------------------------- |
---|
| 543 | ! Local Variables |
---|
| 544 | !-------------------------------------------------------- |
---|
| 545 | |
---|
[1974] | 546 | INTEGER i,l,j,ii |
---|
[2079] | 547 | REAL dzq(nlay),dzqw(nlay),adzqw(nlay),dzqmax |
---|
| 548 | REAL newmasse |
---|
| 549 | REAL sigw, Mtot, MQtot |
---|
| 550 | INTEGER m |
---|
[1974] | 551 | |
---|
[2201] | 552 | ! ********************************************************************** |
---|
| 553 | ! Mixing ratio vertical gradient at the levels |
---|
| 554 | ! ********************************************************************** |
---|
[1974] | 555 | do l=2,nlay |
---|
| 556 | dzqw(l)=q(l-1)-q(l) |
---|
| 557 | adzqw(l)=abs(dzqw(l)) |
---|
| 558 | enddo |
---|
| 559 | |
---|
| 560 | do l=2,nlay-1 |
---|
| 561 | if(dzqw(l)*dzqw(l+1).gt.0.) then |
---|
| 562 | dzq(l)=0.5*(dzqw(l)+dzqw(l+1)) |
---|
| 563 | else |
---|
| 564 | dzq(l)=0. |
---|
| 565 | endif |
---|
| 566 | dzqmax=pente_max*min(adzqw(l),adzqw(l+1)) |
---|
| 567 | dzq(l)=sign(min(abs(dzq(l)),dzqmax),dzq(l)) |
---|
| 568 | enddo |
---|
| 569 | |
---|
| 570 | dzq(1)=0. |
---|
| 571 | dzq(nlay)=0. |
---|
[2079] | 572 | |
---|
[2201] | 573 | ! ********************************************************************** |
---|
| 574 | ! Vertical advection |
---|
| 575 | ! ********************************************************************** |
---|
[1974] | 576 | |
---|
[2201] | 577 | !! No flux at the model top: |
---|
[1974] | 578 | wq(nlay+1)=0. |
---|
| 579 | |
---|
[2201] | 580 | !! Surface flux up: |
---|
[2119] | 581 | if(w(1).lt.0.) wq(1)=0. ! warning : not always valid |
---|
[1974] | 582 | |
---|
[2201] | 583 | do l = 1,nlay-1 |
---|
[2119] | 584 | |
---|
[2201] | 585 | ! 1) Compute wq where w < 0 (up) (UPWARD TRANSPORT) |
---|
[2119] | 586 | ! =============================== |
---|
| 587 | |
---|
[1974] | 588 | if(w(l+1).le.0)then |
---|
| 589 | ! Regular scheme (transfered mass < 1 layer) |
---|
| 590 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 591 | if(-w(l+1).le.masse(l))then |
---|
| 592 | sigw=w(l+1)/masse(l) |
---|
| 593 | wq(l+1)=w(l+1)*(q(l)-0.5*(1.+sigw)*dzq(l)) |
---|
[2201] | 594 | !!------------------------------------------------------- |
---|
| 595 | ! The following part should not be needed in the |
---|
| 596 | ! case of an integration over subtimesteps |
---|
| 597 | !!------------------------------------------------------- |
---|
[1974] | 598 | ! Extended scheme (transfered mass > 1 layer) |
---|
| 599 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 600 | else |
---|
| 601 | m = l-1 |
---|
| 602 | Mtot = masse(m+1) |
---|
| 603 | MQtot = masse(m+1)*q(m+1) |
---|
| 604 | if (m.le.0)goto 77 |
---|
| 605 | do while(-w(l+1).gt.(Mtot+masse(m))) |
---|
| 606 | ! do while(-w(l+1).gt.Mtot) |
---|
| 607 | m=m-1 |
---|
| 608 | Mtot = Mtot + masse(m+1) |
---|
| 609 | MQtot = MQtot + masse(m+1)*q(m+1) |
---|
| 610 | if (m.le.0)goto 77 |
---|
| 611 | end do |
---|
| 612 | 77 continue |
---|
| 613 | |
---|
| 614 | if (m.gt.0) then |
---|
| 615 | sigw=(w(l+1)+Mtot)/masse(m) |
---|
[2079] | 616 | wq(l+1)= -(MQtot + (-w(l+1)-Mtot)* & |
---|
[1974] | 617 | (q(m)-0.5*(1.+sigw)*dzq(m)) ) |
---|
| 618 | else |
---|
| 619 | w(l+1) = -Mtot |
---|
| 620 | wq(l+1) = -MQtot |
---|
| 621 | end if |
---|
[2119] | 622 | endif ! (-w(l+1).le.masse(l)) |
---|
[1974] | 623 | |
---|
[2201] | 624 | ! 2) Compute wq where w > 0 (down) (DOWNWARD TRANSPORT) |
---|
[1974] | 625 | ! =============================== |
---|
| 626 | |
---|
[2119] | 627 | else if(w(l).gt.0.)then |
---|
[1974] | 628 | |
---|
| 629 | ! Regular scheme (transfered mass < 1 layer) |
---|
| 630 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 631 | if(w(l).le.masse(l))then |
---|
| 632 | sigw=w(l)/masse(l) |
---|
[2201] | 633 | wq(l)=w(l)*(q(l)+0.5*(1.-sigw)*dzq(l)) |
---|
| 634 | !!------------------------------------------------------- |
---|
| 635 | ! The following part should not be needed in the |
---|
| 636 | ! case of an integration over subtimesteps |
---|
| 637 | !!------------------------------------------------------- |
---|
[1974] | 638 | ! Extended scheme (transfered mass > 1 layer) |
---|
| 639 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 640 | else |
---|
| 641 | m=l |
---|
| 642 | Mtot = masse(m) |
---|
| 643 | MQtot = masse(m)*q(m) |
---|
| 644 | if(m.ge.nlay)goto 88 |
---|
| 645 | do while(w(l).gt.(Mtot+masse(m+1))) |
---|
| 646 | m=m+1 |
---|
| 647 | Mtot = Mtot + masse(m) |
---|
| 648 | MQtot = MQtot + masse(m)*q(m) |
---|
| 649 | if(m.ge.nlay)goto 88 |
---|
| 650 | end do |
---|
| 651 | 88 continue |
---|
| 652 | if (m.lt.nlay) then |
---|
| 653 | sigw=(w(l)-Mtot)/masse(m+1) |
---|
| 654 | wq(l)=(MQtot + (w(l)-Mtot)* & |
---|
| 655 | (q(m+1)+0.5*(1.-sigw)*dzq(m+1)) ) |
---|
| 656 | else |
---|
| 657 | w(l) = Mtot |
---|
| 658 | wq(l) = MQtot |
---|
| 659 | end if |
---|
[2119] | 660 | end if |
---|
[2100] | 661 | |
---|
[2119] | 662 | end if ! w<0 (up) |
---|
[2100] | 663 | |
---|
[2119] | 664 | enddo ! l = 1,nlay-1 |
---|
[1974] | 665 | |
---|
[2201] | 666 | do l = 1,nlay |
---|
[1974] | 667 | |
---|
[2119] | 668 | ! it cannot entrain more than available mass ! |
---|
| 669 | if ( (wq(l+1)-wq(l)) .lt. -(masse(l)*q(l)) ) then |
---|
| 670 | wq(l+1) = wq(l)-masse(l)*q(l) |
---|
| 671 | end if |
---|
| 672 | |
---|
[1974] | 673 | q(l)=q(l) + (wq(l+1)-wq(l))/masse(l) |
---|
| 674 | |
---|
| 675 | enddo |
---|
[2079] | 676 | |
---|
[2201] | 677 | END SUBROUTINE van_leer |
---|
[1974] | 678 | |
---|
[2079] | 679 | !======================================================================= |
---|
| 680 | ! Initialization of the module variables |
---|
[1974] | 681 | |
---|
| 682 | subroutine ini_rocketduststorm_mod(ngrid) |
---|
| 683 | |
---|
| 684 | implicit none |
---|
| 685 | |
---|
| 686 | integer, intent(in) :: ngrid |
---|
| 687 | |
---|
| 688 | allocate(dustliftday(ngrid)) |
---|
| 689 | |
---|
| 690 | end subroutine ini_rocketduststorm_mod |
---|
| 691 | |
---|
| 692 | subroutine end_rocketduststorm_mod |
---|
| 693 | |
---|
| 694 | implicit none |
---|
| 695 | |
---|
| 696 | if (allocated(dustliftday)) deallocate(dustliftday) |
---|
| 697 | |
---|
| 698 | end subroutine end_rocketduststorm_mod |
---|
| 699 | |
---|
| 700 | END MODULE rocketduststorm_mod |
---|