[1974] | 1 | MODULE rocketduststorm_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | REAL, SAVE, ALLOCATABLE :: dustliftday(:) ! dust lifting rate (s-1) |
---|
| 6 | |
---|
| 7 | CONTAINS |
---|
| 8 | |
---|
| 9 | !======================================================================= |
---|
| 10 | ! ROCKET DUST STORM - vertical transport and detrainment |
---|
| 11 | !======================================================================= |
---|
[2079] | 12 | ! calculation of the vertical flux |
---|
| 13 | ! call of vl_storm : Van Leer transport scheme of the dust tracers |
---|
| 14 | ! detrainement of stormdust in the background dust |
---|
[1974] | 15 | ! ----------------------------------------------------------------------- |
---|
[2079] | 16 | ! Authors: M. Vals; C. Wang; F. Forget; T. Bertrand |
---|
[1974] | 17 | ! Institution: Laboratoire de Meteorologie Dynamique (LMD) Paris, France |
---|
| 18 | ! ----------------------------------------------------------------------- |
---|
| 19 | |
---|
| 20 | SUBROUTINE rocketduststorm(ngrid,nlayer,nq,ptime,ptimestep, & |
---|
| 21 | pq,pdqfi,pt,pdtfi,pplev,pplay,pzlev, & |
---|
| 22 | pzlay,pdtsw,pdtlw, & |
---|
| 23 | ! input for radiative transfer |
---|
| 24 | clearatm,icount,zday,zls, & |
---|
| 25 | tsurf,igout,totstormfract, & |
---|
| 26 | ! input sub-grid scale cloud |
---|
| 27 | clearsky,totcloudfrac, & |
---|
[2199] | 28 | ! input sub-grid scale topography |
---|
| 29 | nohmons,alpha_hmons, & |
---|
[2079] | 30 | ! output |
---|
[2199] | 31 | pdqrds,wrad,dsodust,dsords, & |
---|
| 32 | tauref) |
---|
[1974] | 33 | |
---|
[2079] | 34 | USE tracer_mod, only: igcm_stormdust_mass,igcm_stormdust_number & |
---|
[1974] | 35 | ,igcm_dust_mass,igcm_dust_number & |
---|
| 36 | ,rho_dust |
---|
| 37 | USE comcstfi_h, only: r,g,cpp,rcp |
---|
[2079] | 38 | USE dimradmars_mod, only: albedo,naerkind |
---|
| 39 | USE comsaison_h, only: dist_sol,mu0,fract |
---|
| 40 | USE surfdat_h, only: emis,co2ice,zmea, zstd, zsig, hmons |
---|
| 41 | USE callradite_mod |
---|
| 42 | IMPLICIT NONE |
---|
[1974] | 43 | |
---|
[2160] | 44 | include "callkeys.h" |
---|
| 45 | |
---|
[1974] | 46 | !-------------------------------------------------------- |
---|
| 47 | ! Input Variables |
---|
| 48 | !-------------------------------------------------------- |
---|
| 49 | |
---|
| 50 | INTEGER, INTENT(IN) :: ngrid ! number of horizontal grid points |
---|
| 51 | INTEGER, INTENT(IN) :: nlayer ! number of vertical grid points |
---|
| 52 | INTEGER, INTENT(IN) :: nq ! number of tracer species |
---|
| 53 | REAL, INTENT(IN) :: ptime |
---|
| 54 | REAL, INTENT(IN) :: ptimestep |
---|
| 55 | |
---|
| 56 | REAL, INTENT(IN) :: pq(ngrid,nlayer,nq) ! advected field nq |
---|
| 57 | REAL, INTENT(IN) :: pdqfi(ngrid,nlayer,nq)! tendancy field pq |
---|
| 58 | REAL, INTENT(IN) :: pt(ngrid,nlayer) ! temperature at mid-layer (K) |
---|
| 59 | REAL, INTENT(IN) :: pdtfi(ngrid,nlayer) ! tendancy temperature at mid-layer (K) |
---|
| 60 | |
---|
| 61 | REAL, INTENT(IN) :: pplay(ngrid,nlayer) ! pressure at middle of the layers |
---|
| 62 | REAL, INTENT(IN) :: pplev(ngrid,nlayer+1) ! pressure at intermediate levels |
---|
| 63 | REAL, INTENT(IN) :: pzlay(ngrid,nlayer) ! altitude at the middle of the layers |
---|
| 64 | REAL, INTENT(IN) :: pzlev(ngrid,nlayer+1) ! altitude at layer boundaries |
---|
| 65 | |
---|
| 66 | REAL, INTENT(IN) :: pdtsw(ngrid,nlayer) ! (K/s) env |
---|
| 67 | REAL, INTENT(IN) :: pdtlw(ngrid,nlayer) ! (K/s) env |
---|
| 68 | |
---|
| 69 | ! input for second radiative transfer |
---|
[2079] | 70 | LOGICAL, INTENT(IN) :: clearatm |
---|
[1974] | 71 | INTEGER, INTENT(INOUT) :: icount |
---|
[2079] | 72 | REAL, INTENT(IN) :: zday |
---|
| 73 | REAL, INTENT(IN) :: zls |
---|
| 74 | REAL, INTENT(IN) :: tsurf(ngrid) |
---|
| 75 | INTEGER, INTENT(IN) :: igout |
---|
| 76 | REAL, INTENT(IN) :: totstormfract(ngrid) |
---|
| 77 | |
---|
[1974] | 78 | ! sbgrid scale water ice clouds |
---|
| 79 | logical, intent(in) :: clearsky |
---|
[2199] | 80 | real, intent(in) :: totcloudfrac(ngrid) |
---|
| 81 | |
---|
| 82 | ! sbgrid scale topography |
---|
| 83 | LOGICAL, INTENT(IN) :: nohmons |
---|
| 84 | REAL, INTENT(IN) :: alpha_hmons(ngrid) |
---|
[1974] | 85 | |
---|
| 86 | !-------------------------------------------------------- |
---|
| 87 | ! Output Variables |
---|
| 88 | !-------------------------------------------------------- |
---|
| 89 | |
---|
| 90 | REAL, INTENT(OUT) :: pdqrds(ngrid,nlayer,nq) ! tendancy field for dust when detraining |
---|
[2079] | 91 | REAL, INTENT(OUT) :: wrad(ngrid,nlayer+1) ! vertical speed within the rocket dust storm |
---|
[1974] | 92 | REAL, INTENT(OUT) :: dsodust(ngrid,nlayer) ! density scaled opacity of env. dust |
---|
| 93 | REAL, INTENT(OUT) :: dsords(ngrid,nlayer) ! density scaled opacity of storm dust |
---|
[2199] | 94 | REAL, INTENT(OUT) :: tauref(ngrid) |
---|
[1974] | 95 | |
---|
| 96 | !-------------------------------------------------------- |
---|
| 97 | ! Local variables |
---|
| 98 | !-------------------------------------------------------- |
---|
| 99 | INTEGER l,ig,tsub,iq,ll |
---|
[2079] | 100 | ! local variables from callradite.F |
---|
[1974] | 101 | REAL zdtlw1(ngrid,nlayer) ! (K/s) storm |
---|
| 102 | REAL zdtsw1(ngrid,nlayer) ! (K/s) storm |
---|
| 103 | REAL zt(ngrid,nlayer) ! actual temperature at mid-layer (K) |
---|
[2091] | 104 | REAL zdtvert(ngrid,nlayer) ! dT/dz , lapse rate |
---|
| 105 | REAL ztlev(ngrid,nlayer) ! temperature at intermediate levels l+1/2 without last level |
---|
[1974] | 106 | |
---|
[2079] | 107 | REAL zdtlw1_lev(nlayer),zdtsw1_lev(nlayer) ! rad. heating rate at intermediate levels l+1/2 for stormdust |
---|
| 108 | REAL zdtlw_lev(nlayer),zdtsw_lev(nlayer) ! rad. heating rate at intermediate levels l+1/2 for background dust |
---|
[1974] | 109 | |
---|
[2079] | 110 | REAL zq_stormdust_mass(ngrid,nlayer) ! intermediate tracer stormdust mass |
---|
| 111 | REAL zq_stormdust_number(ngrid,nlayer) ! intermediate tracer stormdust number |
---|
| 112 | REAL zq_dust_mass(ngrid,nlayer) ! intermediate tracer dust mass |
---|
| 113 | REAL zq_dust_number(ngrid,nlayer) ! intermediate tracer dust number |
---|
[1974] | 114 | |
---|
[2079] | 115 | REAL mr_stormdust_mass(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (stormdust mass) |
---|
| 116 | REAL mr_stormdust_number(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (stormdust number) |
---|
| 117 | REAL mr_dust_mass(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (dust mass) |
---|
| 118 | REAL mr_dust_number(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (sdust number) |
---|
[1974] | 119 | |
---|
[2079] | 120 | REAL zq_vl_col(nlayer) ! column intermediate tracer used by Van Leer (number) |
---|
| 121 | REAL zn_vl_col(nlayer) ! column intermediate tracer used by Van Leer (mass) |
---|
| 122 | |
---|
| 123 | REAL dqvl_stormdust_mass(ngrid,nlayer) ! tendancy of vertical transport (stormdust mass) |
---|
| 124 | REAL dqvl_stormdust_number(ngrid,nlayer) ! tendancy of vertical transport (stormdust number) |
---|
| 125 | REAL dqvl_dust_mass(ngrid,nlayer) ! tendancy of vertical transport (dust mass) |
---|
| 126 | REAL dqvl_dust_number(ngrid,nlayer) ! tendancy of vertical transport (dust number) |
---|
| 127 | REAL dqdet_stormdust_mass(ngrid,nlayer) ! tendancy of detrainement (stormdust mass) |
---|
| 128 | REAL dqdet_stormdust_number(ngrid,nlayer) ! tendancy of detrainement (stormdust number) |
---|
[1974] | 129 | |
---|
[2090] | 130 | REAL masse_col(nlayer) ! mass of atmosphere (kg/m2) |
---|
[1974] | 131 | REAL zq(ngrid,nlayer,nq) ! updated tracers |
---|
| 132 | |
---|
[2090] | 133 | REAL w(ngrid,nlayer) ! air mass flux (calculated with the vertical wind velocity profile) used as input in Van Leer (kgair/m2) |
---|
| 134 | REAL wqmass(ngrid,nlayer+1) ! tracer (dust_mass) mass flux in Van Leer (kg/m2) |
---|
| 135 | REAL wqnumber(ngrid,nlayer+1) ! tracer (dust_number) mass flux in Van Leer (kg/m2) |
---|
[1974] | 136 | |
---|
[2079] | 137 | LOGICAL storm(ngrid) ! true when there is a dust storm (if the opacity is high): trigger the rocket dust storm scheme |
---|
[2160] | 138 | REAL detrain(ngrid,nlayer) ! coefficient for detrainment : % of stormdust detrained |
---|
[2079] | 139 | INTEGER scheme(ngrid) ! triggered scheme |
---|
| 140 | |
---|
| 141 | REAL,PARAMETER:: coefmin =0.025 ! 0<coefmin<1 Minimum fraction of stormdust detrained |
---|
| 142 | REAL,PARAMETER:: wmin =0.1!0.25 ! stormdust detrainment if wrad < wmin |
---|
| 143 | REAL,PARAMETER:: wmax =10. ! maximum vertical velocity of the rocket dust storms (m/s) |
---|
[1974] | 144 | |
---|
[2079] | 145 | ! diagnostics |
---|
| 146 | REAL lapserate(ngrid,nlayer) |
---|
| 147 | REAL deltahr(ngrid,nlayer+1) |
---|
[1974] | 148 | |
---|
[2079] | 149 | LOGICAL,SAVE :: firstcall=.true. |
---|
| 150 | |
---|
| 151 | ! variables for the radiative transfer |
---|
[1974] | 152 | REAL fluxsurf_lw1(ngrid) |
---|
| 153 | REAL fluxsurf_sw1(ngrid,2) |
---|
| 154 | REAL fluxtop_lw1(ngrid) |
---|
| 155 | REAL fluxtop_sw1(ngrid,2) |
---|
| 156 | REAL tau(ngrid,naerkind) |
---|
| 157 | REAL aerosol(ngrid,nlayer,naerkind) |
---|
| 158 | REAL tauscaling(ngrid) |
---|
| 159 | REAL taucloudtes(ngrid) |
---|
| 160 | REAL rdust(ngrid,nlayer) |
---|
| 161 | REAL rstormdust(ngrid,nlayer) |
---|
[2199] | 162 | REAL rtopdust(ngrid,nlayer) |
---|
[1974] | 163 | REAL rice(ngrid,nlayer) |
---|
| 164 | REAL nuice(ngrid,nlayer) |
---|
| 165 | |
---|
| 166 | |
---|
| 167 | ! ********************************************************************** |
---|
| 168 | ! ********************************************************************** |
---|
[2079] | 169 | ! Rocket dust storm parametrization to reproduce the detached dust layers |
---|
| 170 | ! during the dust storm season: |
---|
[1974] | 171 | ! The radiative warming due to the presence of storm dust is |
---|
| 172 | ! balanced by the adiabatic cooling. The tracer "storm dust" |
---|
| 173 | ! is transported by the upward/downward flow. |
---|
| 174 | ! ********************************************************************** |
---|
| 175 | ! ********************************************************************** |
---|
| 176 | !! 1. Radiative transfer in storm dust |
---|
| 177 | !! 2. Compute vertical velocity for storm dust |
---|
[2079] | 178 | !! case 1 storm = false: nothing to do |
---|
| 179 | !! case 2 rocket dust storm (storm=true) |
---|
| 180 | !! 3. Vertical transport (Van Leer) |
---|
[1974] | 181 | !! 4. Detrainment |
---|
| 182 | ! ********************************************************************** |
---|
| 183 | ! ********************************************************************** |
---|
| 184 | |
---|
| 185 | |
---|
| 186 | ! ********************************************************************** |
---|
[2079] | 187 | ! Initializations |
---|
[1974] | 188 | ! ********************************************************************** |
---|
| 189 | storm(:)=.false. |
---|
| 190 | pdqrds(:,:,:) = 0. |
---|
[2079] | 191 | mr_dust_mass(:,:)=0. |
---|
| 192 | mr_dust_number(:,:)=0. |
---|
| 193 | mr_stormdust_mass(:,:)=0. |
---|
| 194 | mr_stormdust_number(:,:)=0. |
---|
| 195 | dqvl_dust_mass(:,:)=0. |
---|
| 196 | dqvl_dust_number(:,:)=0. |
---|
| 197 | dqvl_stormdust_mass(:,:)=0. |
---|
| 198 | dqvl_stormdust_number(:,:)=0. |
---|
| 199 | dqdet_stormdust_mass(:,:)=0. |
---|
| 200 | dqdet_stormdust_number(:,:)=0. |
---|
| 201 | wrad(:,:)=0. |
---|
[2090] | 202 | w(:,:)=0. |
---|
| 203 | wqmass(:,:)=0. |
---|
| 204 | wqnumber(:,:)=0. |
---|
[2091] | 205 | zdtvert(:,:)=0. |
---|
[1974] | 206 | lapserate(:,:)=0. |
---|
| 207 | deltahr(:,:)=0. |
---|
| 208 | scheme(:)=0 |
---|
[2160] | 209 | detrain(:,:)=1. |
---|
[2083] | 210 | |
---|
[1974] | 211 | !! no update for the stormdust tracer and temperature fields |
---|
| 212 | !! because previous callradite was for background dust |
---|
| 213 | zq(1:ngrid,1:nlayer,1:nq)=pq(1:ngrid,1:nlayer,1:nq) |
---|
| 214 | zt(1:ngrid,1:nlayer)=pt(1:ngrid,1:nlayer) |
---|
| 215 | |
---|
| 216 | |
---|
[2079] | 217 | zq_dust_mass(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 218 | zq_dust_number(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 219 | zq_stormdust_mass(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_stormdust_mass) |
---|
| 220 | zq_stormdust_number(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_stormdust_number) |
---|
| 221 | |
---|
| 222 | ! ********************************************************************* |
---|
| 223 | ! 0. Check if there is a storm |
---|
| 224 | ! ********************************************************************* |
---|
| 225 | DO ig=1,ngrid |
---|
[1974] | 226 | storm(ig)=.false. |
---|
[2079] | 227 | DO l=1,nlayer |
---|
| 228 | IF (zq(ig,l,igcm_stormdust_mass) & |
---|
| 229 | .gt. zq(ig,l,igcm_dust_mass)*(1.E-4)) THEN |
---|
[1974] | 230 | storm(ig)=.true. |
---|
[2079] | 231 | EXIT |
---|
| 232 | ENDIF |
---|
| 233 | ENDDO |
---|
| 234 | ENDDO |
---|
[1974] | 235 | |
---|
| 236 | ! ********************************************************************* |
---|
| 237 | ! 1. Call the second radiative transfer for stormdust, obtain the extra heating |
---|
| 238 | ! ********************************************************************* |
---|
[2199] | 239 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq,albedo, & |
---|
| 240 | emis,mu0,pplev,pplay,pt,tsurf,fract,dist_sol,igout, & |
---|
| 241 | zdtlw1,zdtsw1,fluxsurf_lw1,fluxsurf_sw1,fluxtop_lw1, & |
---|
| 242 | fluxtop_sw1,tauref,tau,aerosol,dsodust,tauscaling, & |
---|
| 243 | taucloudtes,rdust,rice,nuice,co2ice,rstormdust,rtopdust, & |
---|
| 244 | totstormfract,clearatm,dsords,alpha_hmons,nohmons, & |
---|
[1974] | 245 | clearsky,totcloudfrac) |
---|
| 246 | |
---|
| 247 | ! ********************************************************************** |
---|
| 248 | ! 2. Compute vertical velocity for storm dust |
---|
[2079] | 249 | ! ********************************************************************** |
---|
[1974] | 250 | !! ********************************************************************** |
---|
[2079] | 251 | !! 2.1 Nothing to do when no storm |
---|
| 252 | !! no storm |
---|
| 253 | DO ig=1,ngrid |
---|
| 254 | IF (.NOT.(storm(ig))) then |
---|
| 255 | scheme(ig)=1 |
---|
| 256 | cycle |
---|
| 257 | ENDIF ! IF (storm(ig)) |
---|
| 258 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 259 | |
---|
[2079] | 260 | !! ********************************************************************** |
---|
| 261 | !! 2.2 Calculation of the extra heating : computing heating rates |
---|
| 262 | !! gradient at boundaries of each layer, start from surface |
---|
| 263 | DO ig=1,ngrid |
---|
[2091] | 264 | IF (storm(ig)) THEN |
---|
| 265 | |
---|
| 266 | scheme(ig)=2 |
---|
| 267 | !! This is the env. lapse rate |
---|
| 268 | zdtvert(ig,1)=0. |
---|
| 269 | DO l=1,nlayer-1 |
---|
| 270 | zdtvert(ig,l+1)=(zt(ig,l+1)-zt(ig,l))/(pzlay(ig,l+1)-pzlay(ig,l)) |
---|
| 271 | lapserate(ig,l+1)=zdtvert(ig,l+1) |
---|
| 272 | ENDDO |
---|
[1974] | 273 | |
---|
[2091] | 274 | !! computing heating rates gradient at boundraies of each layer |
---|
| 275 | !! start from surface |
---|
| 276 | zdtlw1_lev(1)=0. |
---|
| 277 | zdtsw1_lev(1)=0. |
---|
| 278 | zdtlw_lev(1)=0. |
---|
| 279 | zdtsw_lev(1)=0. |
---|
| 280 | ztlev(ig,1)=zt(ig,1) |
---|
[1974] | 281 | |
---|
[2091] | 282 | DO l=1,nlayer-1 |
---|
| 283 | !! Calculation for the dust storm fraction |
---|
| 284 | zdtlw1_lev(l+1)=(zdtlw1(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 285 | zdtlw1(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 286 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
| 287 | |
---|
| 288 | zdtsw1_lev(l+1)=(zdtsw1(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 289 | zdtsw1(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 290 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
| 291 | !! Calculation for the background dust fraction |
---|
| 292 | zdtlw_lev(l+1)=(pdtlw(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 293 | pdtlw(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 294 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
[2079] | 295 | |
---|
[2091] | 296 | zdtsw_lev(l+1)=(pdtsw(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 297 | pdtsw(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 298 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
[2079] | 299 | |
---|
[2091] | 300 | ztlev(ig,l+1)=(zt(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 301 | zt(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 302 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
| 303 | ENDDO ! DO l=1,nlayer-1 |
---|
[1974] | 304 | |
---|
[2091] | 305 | !! ********************************************************************** |
---|
| 306 | !! 2.3 Calculation of the vertical velocity : extra heating |
---|
| 307 | !! balanced by adiabatic cooling |
---|
| 308 | |
---|
[2079] | 309 | DO l=1,nlayer |
---|
| 310 | deltahr(ig,l)=(zdtlw1_lev(l)+zdtsw1_lev(l)) & |
---|
| 311 | -(zdtlw_lev(l)+zdtsw_lev(l)) |
---|
| 312 | wrad(ig,l)=-deltahr(ig,l)/(g/cpp+ & |
---|
[2091] | 313 | max(zdtvert(ig,l),-0.99*g/cpp)) |
---|
[2079] | 314 | !! Limit vertical wind in case of lapse rate close to adiabatic |
---|
| 315 | wrad(ig,l)=max(wrad(ig,l),-wmax) |
---|
| 316 | wrad(ig,l)=min(wrad(ig,l),wmax) |
---|
| 317 | ENDDO |
---|
[2091] | 318 | |
---|
[2079] | 319 | ENDIF ! IF (storm(ig)) |
---|
| 320 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 321 | |
---|
| 322 | ! ********************************************************************** |
---|
| 323 | ! 3. Vertical transport |
---|
| 324 | ! ********************************************************************** |
---|
[2079] | 325 | !! ********************************************************************** |
---|
| 326 | !! 3.1 Transport of background dust + storm dust (concentrated) |
---|
| 327 | DO ig=1,ngrid |
---|
| 328 | IF (storm(ig)) THEN |
---|
| 329 | DO l=1,nlayer |
---|
| 330 | mr_dust_mass(ig,l) = zq_dust_mass(ig,l) |
---|
| 331 | mr_dust_number(ig,l) = zq_dust_number(ig,l) |
---|
| 332 | mr_stormdust_mass(ig,l) = zq_dust_mass(ig,l)+ & |
---|
| 333 | zq_stormdust_mass(ig,l)/totstormfract(ig) |
---|
| 334 | mr_stormdust_number(ig,l) = zq_dust_number(ig,l)+ & |
---|
| 335 | zq_stormdust_number(ig,l)/totstormfract(ig) |
---|
| 336 | ENDDO ! DO l=1,nlayer |
---|
| 337 | ENDIF ! IF (storm(ig)) |
---|
| 338 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 339 | |
---|
[2079] | 340 | !! ********************************************************************** |
---|
| 341 | !! 3.2 Vertical transport by a Van Leer scheme |
---|
| 342 | DO ig=1,ngrid |
---|
| 343 | IF (storm(ig)) THEN |
---|
| 344 | |
---|
| 345 | !! Mass of atmosphere in the layer |
---|
| 346 | DO l=1,nlayer |
---|
[2090] | 347 | masse_col(l)=(pplev(ig,l)-pplev(ig,l+1))/g |
---|
[2079] | 348 | ENDDO |
---|
| 349 | |
---|
| 350 | !! Mass flux in kg/m2 |
---|
| 351 | DO l=1,nlayer |
---|
[2091] | 352 | w(ig,l)=wrad(ig,l)*(pplev(ig,l)/(r*ztlev(ig,l)))*ptimestep |
---|
[2079] | 353 | ENDDO |
---|
| 354 | |
---|
| 355 | !! Vector column |
---|
| 356 | DO l=1,nlayer |
---|
| 357 | zq_vl_col(l)= mr_stormdust_mass(ig,l) |
---|
| 358 | zn_vl_col(l)= mr_stormdust_number(ig,l) |
---|
| 359 | ENDDO |
---|
| 360 | |
---|
| 361 | !! Van Leer scheme |
---|
| 362 | CALL vl_storm(nlayer,zq_vl_col,2., & |
---|
[2090] | 363 | masse_col,w(ig,:),wqmass(ig,:)) |
---|
[2079] | 364 | CALL vl_storm(nlayer,zn_vl_col,2., & |
---|
[2090] | 365 | masse_col,w(ig,:),wqnumber(ig,:)) |
---|
[2079] | 366 | !! Mass mixing ratio after transport |
---|
| 367 | mr_stormdust_mass(ig,:) = zq_vl_col(:) |
---|
| 368 | mr_stormdust_number(ig,:) = zn_vl_col(:) |
---|
| 369 | |
---|
| 370 | ENDIF ! IF storm(ig) |
---|
| 371 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 372 | |
---|
[2079] | 373 | !! ********************************************************************** |
---|
| 374 | !! 3.3 Re-calculation of the mixing ratios after vertical transport |
---|
| 375 | DO ig=1,ngrid |
---|
| 376 | IF (storm(ig)) THEN |
---|
| 377 | DO l=1,nlayer |
---|
| 378 | |
---|
| 379 | !! General and "healthy" case |
---|
| 380 | IF (mr_stormdust_mass(ig,l).ge.mr_dust_mass(ig,l)) THEN |
---|
| 381 | zq_dust_mass(ig,l) = mr_dust_mass(ig,l) |
---|
| 382 | zq_dust_number(ig,l) = mr_dust_number(ig,l) |
---|
| 383 | zq_stormdust_mass(ig,l) = totstormfract(ig)*(mr_stormdust_mass(ig,l)-mr_dust_mass(ig,l)) |
---|
| 384 | zq_stormdust_number(ig,l) = totstormfract(ig)*(mr_stormdust_number(ig,l)-mr_dust_number(ig,l)) |
---|
| 385 | !! Particular case: there is less than initial dust mixing ratio after the vertical transport |
---|
| 386 | ELSE |
---|
| 387 | zq_dust_mass(ig,l) = (1.-totstormfract(ig))*mr_dust_mass(ig,l)+totstormfract(ig)*mr_stormdust_mass(ig,l) |
---|
| 388 | zq_dust_number(ig,l) = (1.-totstormfract(ig))*mr_dust_number(ig,l)+totstormfract(ig)*mr_stormdust_number(ig,l) |
---|
| 389 | zq_stormdust_mass(ig,l) = 0. |
---|
| 390 | zq_stormdust_number(ig,l) = 0. |
---|
| 391 | ENDIF |
---|
| 392 | |
---|
| 393 | ENDDO ! DO l=1,nlayer |
---|
| 394 | ENDIF ! IF storm(ig) |
---|
| 395 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 396 | |
---|
[2079] | 397 | !! ********************************************************************** |
---|
| 398 | !! 3.4 Calculation of the tendencies of the vertical transport |
---|
| 399 | DO ig=1,ngrid |
---|
| 400 | IF (storm(ig)) THEN |
---|
| 401 | DO l=1,nlayer |
---|
| 402 | dqvl_stormdust_mass(ig,l) = (zq_stormdust_mass(ig,l)- & |
---|
| 403 | zq(ig,l,igcm_stormdust_mass)) /ptimestep |
---|
| 404 | dqvl_stormdust_number(ig,l) = (zq_stormdust_number(ig,l)- & |
---|
| 405 | zq(ig,l,igcm_stormdust_number)) /ptimestep |
---|
| 406 | dqvl_dust_mass(ig,l) = (zq_dust_mass(ig,l)-zq(ig,l,igcm_dust_mass)) /ptimestep |
---|
| 407 | dqvl_dust_number(ig,l) = (zq_dust_number(ig,l)-zq(ig,l,igcm_dust_number)) /ptimestep |
---|
| 408 | ENDDO |
---|
| 409 | ENDIF ! IF storm(ig) |
---|
| 410 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 411 | |
---|
| 412 | ! ********************************************************************** |
---|
[2079] | 413 | ! 4. Detrainment: stormdust is converted to background dust |
---|
[1974] | 414 | ! ********************************************************************** |
---|
[2079] | 415 | !! ********************************************************************** |
---|
| 416 | !! 4.1 Compute the coefficient of detrainmen |
---|
| 417 | DO ig=1,ngrid |
---|
| 418 | DO l=1,nlayer |
---|
| 419 | IF ((max(abs(wrad(ig,l)),abs(wrad(ig,l+1))) .lt. & |
---|
| 420 | wmin) .or. (zq_dust_mass(ig,l) .gt. & |
---|
| 421 | 10000.*zq_stormdust_mass(ig,l))) THEN |
---|
[2160] | 422 | detrain(ig,l)=1. |
---|
[2079] | 423 | ELSE IF (max(abs(wrad(ig,l)),abs(wrad(ig,l+1))) & |
---|
| 424 | .le. wmax) THEN |
---|
[2160] | 425 | detrain(ig,l)=coeff_detrainment* & |
---|
| 426 | (((1-coefmin)/(wmin-wmax)**2)* & |
---|
| 427 | (max(abs(wrad(ig,l)),abs(wrad(ig,l+1)))-wmax)**2 & |
---|
| 428 | +coefmin) |
---|
[2079] | 429 | ELSE IF (max(abs(wrad(ig,l)),abs(wrad(ig,l+1))).gt. wmax ) THEN |
---|
[2160] | 430 | detrain(ig,l)=coefmin |
---|
[2079] | 431 | ELSE |
---|
[2160] | 432 | detrain(ig,l)=coefmin |
---|
[2079] | 433 | ENDIF |
---|
| 434 | ENDDO ! DO l=1,nlayer |
---|
| 435 | ENDDO ! DO ig=1,ngrid |
---|
| 436 | |
---|
| 437 | !! ********************************************************************** |
---|
| 438 | !! 4.2 Calculation of the tendencies of the detrainment |
---|
| 439 | DO ig=1,ngrid |
---|
| 440 | DO l=1,nlayer |
---|
[2160] | 441 | dqdet_stormdust_mass(ig,l)=-detrain(ig,l)*zq_stormdust_mass(ig,l) & |
---|
[1974] | 442 | /ptimestep |
---|
[2160] | 443 | dqdet_stormdust_number(ig,l)=-detrain(ig,l)*zq_stormdust_number(ig,l) & |
---|
[1974] | 444 | /ptimestep |
---|
[2079] | 445 | ENDDO ! DO l=1,nlayer |
---|
| 446 | ENDDO ! DO ig=1,ngrid |
---|
| 447 | |
---|
| 448 | ! ********************************************************************** |
---|
| 449 | ! 5. Final tendencies: vertical transport + detrainment |
---|
| 450 | ! ********************************************************************** |
---|
| 451 | DO ig=1,ngrid |
---|
| 452 | DO l=1,nlayer |
---|
| 453 | pdqrds(ig,l,igcm_stormdust_mass)=dqdet_stormdust_mass(ig,l) & |
---|
| 454 | +dqvl_stormdust_mass(ig,l) |
---|
| 455 | pdqrds(ig,l,igcm_stormdust_number)=dqdet_stormdust_number(ig,l) & |
---|
| 456 | +dqvl_stormdust_number(ig,l) |
---|
| 457 | pdqrds(ig,l,igcm_dust_mass)= -dqdet_stormdust_mass(ig,l) & |
---|
| 458 | +dqvl_dust_mass(ig,l) |
---|
| 459 | pdqrds(ig,l,igcm_dust_number)= -dqdet_stormdust_number(ig,l) & |
---|
| 460 | +dqvl_dust_number(ig,l) |
---|
| 461 | ENDDO ! DO l=1,nlayer |
---|
| 462 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 463 | |
---|
[2079] | 464 | ! ********************************************************************** |
---|
| 465 | ! 6. To prevent from negative values |
---|
| 466 | ! ********************************************************************** |
---|
| 467 | DO ig=1,ngrid |
---|
| 468 | DO l=1,nlayer |
---|
| 469 | IF ((pq(ig,l,igcm_stormdust_mass) & |
---|
| 470 | +pdqrds(ig,l,igcm_stormdust_mass)*ptimestep .le. 0.) .or. & |
---|
| 471 | (pq(ig,l,igcm_stormdust_number) & |
---|
| 472 | +pdqrds(ig,l,igcm_stormdust_number)*ptimestep .le. 0.)) THEN |
---|
| 473 | pdqrds(ig,l,igcm_stormdust_mass)=-pq(ig,l,igcm_stormdust_mass)/ptimestep |
---|
| 474 | pdqrds(ig,l,igcm_stormdust_number)=-pq(ig,l,igcm_stormdust_number)/ptimestep |
---|
| 475 | ENDIF |
---|
| 476 | ENDDO ! nlayer |
---|
| 477 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 478 | |
---|
[2079] | 479 | DO ig=1,ngrid |
---|
| 480 | DO l=1,nlayer |
---|
| 481 | IF ((pq(ig,l,igcm_dust_mass) & |
---|
| 482 | +pdqrds(ig,l,igcm_dust_mass)*ptimestep .le. 0.) .or. & |
---|
| 483 | (pq(ig,l,igcm_dust_number) & |
---|
| 484 | +pdqrds(ig,l,igcm_dust_number)*ptimestep .le. 0.)) THEN |
---|
| 485 | pdqrds(ig,l,igcm_dust_mass)=-pq(ig,l,igcm_dust_mass)/ptimestep |
---|
| 486 | pdqrds(ig,l,igcm_dust_number)=-pq(ig,l,igcm_dust_number)/ptimestep |
---|
| 487 | ENDIF |
---|
| 488 | ENDDO ! nlayer |
---|
| 489 | ENDDO ! DO ig=1,ngrid |
---|
| 490 | |
---|
| 491 | !======================================================================= |
---|
| 492 | ! WRITEDIAGFI |
---|
| 493 | |
---|
[1974] | 494 | call WRITEDIAGFI(ngrid,'lapserate','lapse rate in the storm', & |
---|
| 495 | & 'k/m',3,lapserate) |
---|
| 496 | call WRITEDIAGFI(ngrid,'deltahr','extra heating rates', & |
---|
| 497 | & 'K/s',3,deltahr) |
---|
| 498 | call writediagfi(ngrid,'scheme','which scheme',& |
---|
| 499 | ' ',2,real(scheme)) |
---|
[2079] | 500 | |
---|
[1974] | 501 | END SUBROUTINE rocketduststorm |
---|
| 502 | |
---|
[2079] | 503 | !======================================================================= |
---|
| 504 | ! VAN LEER |
---|
| 505 | |
---|
[1974] | 506 | SUBROUTINE vl_storm(nlay,q,pente_max,masse,w,wq) |
---|
| 507 | ! |
---|
| 508 | ! Auteurs: P.Le Van, F.Hourdin, F.Forget |
---|
| 509 | ! |
---|
| 510 | ! ******************************************************************** |
---|
| 511 | ! Shema d'advection " pseudo amont " dans la verticale |
---|
| 512 | ! pour appel dans la physique (sedimentation) |
---|
| 513 | ! ******************************************************************** |
---|
| 514 | ! q rapport de melange (kg/kg)... |
---|
| 515 | ! masse : masse de la couche Dp/g |
---|
| 516 | ! w : masse d'atm ``transferee'' a chaque pas de temps (kg.m-2) |
---|
| 517 | ! pente_max = 2 conseillee |
---|
| 518 | ! |
---|
| 519 | ! |
---|
| 520 | ! -------------------------------------------------------------------- |
---|
| 521 | IMPLICIT NONE |
---|
| 522 | ! |
---|
| 523 | |
---|
| 524 | ! Arguments: |
---|
| 525 | ! ---------- |
---|
[2079] | 526 | INTEGER,INTENT(IN) :: nlay ! number of atmospheric layers |
---|
| 527 | REAL masse(nlay),pente_max |
---|
[1974] | 528 | REAL q(nlay) |
---|
| 529 | REAL w(nlay) |
---|
| 530 | REAL wq(nlay+1) |
---|
| 531 | ! |
---|
| 532 | ! Local |
---|
| 533 | ! --------- |
---|
| 534 | ! |
---|
| 535 | INTEGER i,l,j,ii |
---|
| 536 | ! |
---|
| 537 | |
---|
[2079] | 538 | REAL dzq(nlay),dzqw(nlay),adzqw(nlay),dzqmax |
---|
| 539 | REAL newmasse |
---|
| 540 | REAL sigw, Mtot, MQtot |
---|
| 541 | INTEGER m |
---|
[1974] | 542 | |
---|
| 543 | REAL SSUM,CVMGP,CVMGT |
---|
[2079] | 544 | INTEGER ismax,ismin |
---|
[1974] | 545 | |
---|
| 546 | |
---|
| 547 | ! On oriente tout dans le sens de la pression c'est a dire dans le |
---|
| 548 | ! sens de W |
---|
| 549 | |
---|
| 550 | do l=2,nlay |
---|
| 551 | dzqw(l)=q(l-1)-q(l) |
---|
| 552 | adzqw(l)=abs(dzqw(l)) |
---|
| 553 | enddo |
---|
| 554 | |
---|
| 555 | do l=2,nlay-1 |
---|
| 556 | #ifdef CRAY |
---|
| 557 | dzq(l)=0.5* |
---|
| 558 | , cvmgp(dzqw(l)+dzqw(l+1),0.,dzqw(l)*dzqw(l+1)) |
---|
| 559 | #else |
---|
| 560 | if(dzqw(l)*dzqw(l+1).gt.0.) then |
---|
| 561 | dzq(l)=0.5*(dzqw(l)+dzqw(l+1)) |
---|
| 562 | else |
---|
| 563 | dzq(l)=0. |
---|
| 564 | endif |
---|
| 565 | #endif |
---|
| 566 | dzqmax=pente_max*min(adzqw(l),adzqw(l+1)) |
---|
| 567 | dzq(l)=sign(min(abs(dzq(l)),dzqmax),dzq(l)) |
---|
| 568 | enddo |
---|
| 569 | |
---|
| 570 | dzq(1)=0. |
---|
| 571 | dzq(nlay)=0. |
---|
[2079] | 572 | |
---|
[1974] | 573 | ! --------------------------------------------------------------- |
---|
| 574 | ! .... calcul des termes d'advection verticale ....... |
---|
| 575 | ! --------------------------------------------------------------- |
---|
| 576 | |
---|
| 577 | ! calcul de - d( q * w )/ d(sigma) qu'on ajoute a dq pour calculer dq |
---|
| 578 | ! |
---|
| 579 | ! No flux at the model top: |
---|
| 580 | wq(nlay+1)=0. |
---|
| 581 | |
---|
| 582 | ! Surface flux up: |
---|
[2119] | 583 | if(w(1).lt.0.) wq(1)=0. ! warning : not always valid |
---|
[1974] | 584 | |
---|
| 585 | do l = 1,nlay-1 ! loop different than when w>0 |
---|
[2119] | 586 | |
---|
| 587 | ! 1) Compute wq where w < 0 (up) |
---|
| 588 | ! =============================== |
---|
| 589 | |
---|
[1974] | 590 | if(w(l+1).le.0)then |
---|
| 591 | |
---|
| 592 | ! Regular scheme (transfered mass < 1 layer) |
---|
| 593 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 594 | if(-w(l+1).le.masse(l))then |
---|
| 595 | sigw=w(l+1)/masse(l) |
---|
| 596 | wq(l+1)=w(l+1)*(q(l)-0.5*(1.+sigw)*dzq(l)) |
---|
| 597 | ! Extended scheme (transfered mass > 1 layer) |
---|
| 598 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 599 | else |
---|
| 600 | m = l-1 |
---|
| 601 | Mtot = masse(m+1) |
---|
| 602 | MQtot = masse(m+1)*q(m+1) |
---|
| 603 | if (m.le.0)goto 77 |
---|
| 604 | do while(-w(l+1).gt.(Mtot+masse(m))) |
---|
| 605 | ! do while(-w(l+1).gt.Mtot) |
---|
| 606 | m=m-1 |
---|
| 607 | Mtot = Mtot + masse(m+1) |
---|
| 608 | MQtot = MQtot + masse(m+1)*q(m+1) |
---|
| 609 | if (m.le.0)goto 77 |
---|
| 610 | end do |
---|
| 611 | 77 continue |
---|
| 612 | |
---|
| 613 | if (m.gt.0) then |
---|
| 614 | sigw=(w(l+1)+Mtot)/masse(m) |
---|
[2079] | 615 | wq(l+1)= -(MQtot + (-w(l+1)-Mtot)* & |
---|
[1974] | 616 | (q(m)-0.5*(1.+sigw)*dzq(m)) ) |
---|
| 617 | else |
---|
| 618 | w(l+1) = -Mtot |
---|
| 619 | wq(l+1) = -MQtot |
---|
| 620 | end if |
---|
[2119] | 621 | endif ! (-w(l+1).le.masse(l)) |
---|
[1974] | 622 | |
---|
[2119] | 623 | ! 2) Compute wq where w > 0 (down) |
---|
[1974] | 624 | ! =============================== |
---|
| 625 | |
---|
[2119] | 626 | else if(w(l).gt.0.)then |
---|
[1974] | 627 | |
---|
| 628 | ! Regular scheme (transfered mass < 1 layer) |
---|
| 629 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 630 | if(w(l).le.masse(l))then |
---|
| 631 | sigw=w(l)/masse(l) |
---|
| 632 | wq(l)=w(l)*(q(l)+0.5*(1.-sigw)*dzq(l)) |
---|
| 633 | |
---|
| 634 | |
---|
| 635 | ! Extended scheme (transfered mass > 1 layer) |
---|
| 636 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 637 | else |
---|
| 638 | m=l |
---|
| 639 | Mtot = masse(m) |
---|
| 640 | MQtot = masse(m)*q(m) |
---|
| 641 | if(m.ge.nlay)goto 88 |
---|
| 642 | do while(w(l).gt.(Mtot+masse(m+1))) |
---|
| 643 | m=m+1 |
---|
| 644 | Mtot = Mtot + masse(m) |
---|
| 645 | MQtot = MQtot + masse(m)*q(m) |
---|
| 646 | if(m.ge.nlay)goto 88 |
---|
| 647 | end do |
---|
| 648 | 88 continue |
---|
| 649 | if (m.lt.nlay) then |
---|
| 650 | sigw=(w(l)-Mtot)/masse(m+1) |
---|
| 651 | wq(l)=(MQtot + (w(l)-Mtot)* & |
---|
| 652 | (q(m+1)+0.5*(1.-sigw)*dzq(m+1)) ) |
---|
| 653 | else |
---|
| 654 | w(l) = Mtot |
---|
| 655 | wq(l) = MQtot |
---|
| 656 | end if |
---|
[2119] | 657 | end if |
---|
[2100] | 658 | |
---|
[2119] | 659 | end if ! w<0 (up) |
---|
[2100] | 660 | |
---|
[2119] | 661 | enddo ! l = 1,nlay-1 |
---|
[1974] | 662 | |
---|
| 663 | do l = 1,nlay ! loop different than when w<0 |
---|
| 664 | |
---|
[2119] | 665 | ! it cannot entrain more than available mass ! |
---|
| 666 | if ( (wq(l+1)-wq(l)) .lt. -(masse(l)*q(l)) ) then |
---|
| 667 | wq(l+1) = wq(l)-masse(l)*q(l) |
---|
| 668 | end if |
---|
| 669 | |
---|
[1974] | 670 | q(l)=q(l) + (wq(l+1)-wq(l))/masse(l) |
---|
| 671 | |
---|
| 672 | enddo |
---|
[2079] | 673 | |
---|
| 674 | END SUBROUTINE vl_storm |
---|
[1974] | 675 | |
---|
[2079] | 676 | !======================================================================= |
---|
| 677 | ! Initialization of the module variables |
---|
[1974] | 678 | |
---|
| 679 | subroutine ini_rocketduststorm_mod(ngrid) |
---|
| 680 | |
---|
| 681 | implicit none |
---|
| 682 | |
---|
| 683 | integer, intent(in) :: ngrid |
---|
| 684 | |
---|
| 685 | allocate(dustliftday(ngrid)) |
---|
| 686 | |
---|
| 687 | end subroutine ini_rocketduststorm_mod |
---|
| 688 | |
---|
| 689 | subroutine end_rocketduststorm_mod |
---|
| 690 | |
---|
| 691 | implicit none |
---|
| 692 | |
---|
| 693 | if (allocated(dustliftday)) deallocate(dustliftday) |
---|
| 694 | |
---|
| 695 | end subroutine end_rocketduststorm_mod |
---|
| 696 | |
---|
| 697 | END MODULE rocketduststorm_mod |
---|