[1974] | 1 | MODULE rocketduststorm_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | REAL, SAVE, ALLOCATABLE :: dustliftday(:) ! dust lifting rate (s-1) |
---|
| 6 | |
---|
| 7 | CONTAINS |
---|
| 8 | |
---|
| 9 | !======================================================================= |
---|
| 10 | ! ROCKET DUST STORM - vertical transport and detrainment |
---|
| 11 | !======================================================================= |
---|
[2079] | 12 | ! calculation of the vertical flux |
---|
| 13 | ! call of vl_storm : Van Leer transport scheme of the dust tracers |
---|
| 14 | ! detrainement of stormdust in the background dust |
---|
[1974] | 15 | ! ----------------------------------------------------------------------- |
---|
[2079] | 16 | ! Authors: M. Vals; C. Wang; F. Forget; T. Bertrand |
---|
[1974] | 17 | ! Institution: Laboratoire de Meteorologie Dynamique (LMD) Paris, France |
---|
| 18 | ! ----------------------------------------------------------------------- |
---|
| 19 | |
---|
| 20 | SUBROUTINE rocketduststorm(ngrid,nlayer,nq,ptime,ptimestep, & |
---|
| 21 | pq,pdqfi,pt,pdtfi,pplev,pplay,pzlev, & |
---|
| 22 | pzlay,pdtsw,pdtlw, & |
---|
| 23 | ! input for radiative transfer |
---|
| 24 | clearatm,icount,zday,zls, & |
---|
| 25 | tsurf,igout,totstormfract, & |
---|
| 26 | ! input sub-grid scale cloud |
---|
| 27 | clearsky,totcloudfrac, & |
---|
[2079] | 28 | ! output |
---|
| 29 | pdqrds,wrad,dsodust,dsords) |
---|
[1974] | 30 | |
---|
[2079] | 31 | USE tracer_mod, only: igcm_stormdust_mass,igcm_stormdust_number & |
---|
[1974] | 32 | ,igcm_dust_mass,igcm_dust_number & |
---|
| 33 | ,rho_dust |
---|
| 34 | USE comcstfi_h, only: r,g,cpp,rcp |
---|
[2079] | 35 | USE dimradmars_mod, only: albedo,naerkind |
---|
| 36 | USE comsaison_h, only: dist_sol,mu0,fract |
---|
| 37 | USE surfdat_h, only: emis,co2ice,zmea, zstd, zsig, hmons |
---|
| 38 | USE callradite_mod |
---|
| 39 | IMPLICIT NONE |
---|
[1974] | 40 | |
---|
[2160] | 41 | include "callkeys.h" |
---|
| 42 | |
---|
[1974] | 43 | !-------------------------------------------------------- |
---|
| 44 | ! Input Variables |
---|
| 45 | !-------------------------------------------------------- |
---|
| 46 | |
---|
| 47 | INTEGER, INTENT(IN) :: ngrid ! number of horizontal grid points |
---|
| 48 | INTEGER, INTENT(IN) :: nlayer ! number of vertical grid points |
---|
| 49 | INTEGER, INTENT(IN) :: nq ! number of tracer species |
---|
| 50 | REAL, INTENT(IN) :: ptime |
---|
| 51 | REAL, INTENT(IN) :: ptimestep |
---|
| 52 | |
---|
| 53 | REAL, INTENT(IN) :: pq(ngrid,nlayer,nq) ! advected field nq |
---|
| 54 | REAL, INTENT(IN) :: pdqfi(ngrid,nlayer,nq)! tendancy field pq |
---|
| 55 | REAL, INTENT(IN) :: pt(ngrid,nlayer) ! temperature at mid-layer (K) |
---|
| 56 | REAL, INTENT(IN) :: pdtfi(ngrid,nlayer) ! tendancy temperature at mid-layer (K) |
---|
| 57 | |
---|
| 58 | REAL, INTENT(IN) :: pplay(ngrid,nlayer) ! pressure at middle of the layers |
---|
| 59 | REAL, INTENT(IN) :: pplev(ngrid,nlayer+1) ! pressure at intermediate levels |
---|
| 60 | REAL, INTENT(IN) :: pzlay(ngrid,nlayer) ! altitude at the middle of the layers |
---|
| 61 | REAL, INTENT(IN) :: pzlev(ngrid,nlayer+1) ! altitude at layer boundaries |
---|
| 62 | |
---|
| 63 | REAL, INTENT(IN) :: pdtsw(ngrid,nlayer) ! (K/s) env |
---|
| 64 | REAL, INTENT(IN) :: pdtlw(ngrid,nlayer) ! (K/s) env |
---|
| 65 | |
---|
| 66 | ! input for second radiative transfer |
---|
[2079] | 67 | LOGICAL, INTENT(IN) :: clearatm |
---|
[1974] | 68 | INTEGER, INTENT(INOUT) :: icount |
---|
[2079] | 69 | REAL, INTENT(IN) :: zday |
---|
| 70 | REAL, INTENT(IN) :: zls |
---|
| 71 | REAL, INTENT(IN) :: tsurf(ngrid) |
---|
| 72 | INTEGER, INTENT(IN) :: igout |
---|
| 73 | REAL, INTENT(IN) :: totstormfract(ngrid) |
---|
| 74 | |
---|
[1974] | 75 | ! sbgrid scale water ice clouds |
---|
| 76 | logical, intent(in) :: clearsky |
---|
| 77 | real, intent(in) :: totcloudfrac(ngrid) |
---|
| 78 | |
---|
| 79 | !-------------------------------------------------------- |
---|
| 80 | ! Output Variables |
---|
| 81 | !-------------------------------------------------------- |
---|
| 82 | |
---|
| 83 | REAL, INTENT(OUT) :: pdqrds(ngrid,nlayer,nq) ! tendancy field for dust when detraining |
---|
[2079] | 84 | REAL, INTENT(OUT) :: wrad(ngrid,nlayer+1) ! vertical speed within the rocket dust storm |
---|
[1974] | 85 | REAL, INTENT(OUT) :: dsodust(ngrid,nlayer) ! density scaled opacity of env. dust |
---|
| 86 | REAL, INTENT(OUT) :: dsords(ngrid,nlayer) ! density scaled opacity of storm dust |
---|
| 87 | |
---|
| 88 | !-------------------------------------------------------- |
---|
| 89 | ! Local variables |
---|
| 90 | !-------------------------------------------------------- |
---|
| 91 | INTEGER l,ig,tsub,iq,ll |
---|
[2079] | 92 | ! local variables from callradite.F |
---|
[1974] | 93 | REAL zdtlw1(ngrid,nlayer) ! (K/s) storm |
---|
| 94 | REAL zdtsw1(ngrid,nlayer) ! (K/s) storm |
---|
| 95 | REAL zt(ngrid,nlayer) ! actual temperature at mid-layer (K) |
---|
[2091] | 96 | REAL zdtvert(ngrid,nlayer) ! dT/dz , lapse rate |
---|
| 97 | REAL ztlev(ngrid,nlayer) ! temperature at intermediate levels l+1/2 without last level |
---|
[1974] | 98 | |
---|
[2079] | 99 | REAL zdtlw1_lev(nlayer),zdtsw1_lev(nlayer) ! rad. heating rate at intermediate levels l+1/2 for stormdust |
---|
| 100 | REAL zdtlw_lev(nlayer),zdtsw_lev(nlayer) ! rad. heating rate at intermediate levels l+1/2 for background dust |
---|
[1974] | 101 | |
---|
[2079] | 102 | REAL zq_stormdust_mass(ngrid,nlayer) ! intermediate tracer stormdust mass |
---|
| 103 | REAL zq_stormdust_number(ngrid,nlayer) ! intermediate tracer stormdust number |
---|
| 104 | REAL zq_dust_mass(ngrid,nlayer) ! intermediate tracer dust mass |
---|
| 105 | REAL zq_dust_number(ngrid,nlayer) ! intermediate tracer dust number |
---|
[1974] | 106 | |
---|
[2079] | 107 | REAL mr_stormdust_mass(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (stormdust mass) |
---|
| 108 | REAL mr_stormdust_number(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (stormdust number) |
---|
| 109 | REAL mr_dust_mass(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (dust mass) |
---|
| 110 | REAL mr_dust_number(ngrid,nlayer) ! intermediate mixing ratio to calculate van leer transport with the "real" concentration (sdust number) |
---|
[1974] | 111 | |
---|
[2079] | 112 | REAL zq_vl_col(nlayer) ! column intermediate tracer used by Van Leer (number) |
---|
| 113 | REAL zn_vl_col(nlayer) ! column intermediate tracer used by Van Leer (mass) |
---|
| 114 | |
---|
| 115 | REAL dqvl_stormdust_mass(ngrid,nlayer) ! tendancy of vertical transport (stormdust mass) |
---|
| 116 | REAL dqvl_stormdust_number(ngrid,nlayer) ! tendancy of vertical transport (stormdust number) |
---|
| 117 | REAL dqvl_dust_mass(ngrid,nlayer) ! tendancy of vertical transport (dust mass) |
---|
| 118 | REAL dqvl_dust_number(ngrid,nlayer) ! tendancy of vertical transport (dust number) |
---|
| 119 | REAL dqdet_stormdust_mass(ngrid,nlayer) ! tendancy of detrainement (stormdust mass) |
---|
| 120 | REAL dqdet_stormdust_number(ngrid,nlayer) ! tendancy of detrainement (stormdust number) |
---|
[1974] | 121 | |
---|
[2090] | 122 | REAL masse_col(nlayer) ! mass of atmosphere (kg/m2) |
---|
[1974] | 123 | REAL zq(ngrid,nlayer,nq) ! updated tracers |
---|
| 124 | |
---|
[2090] | 125 | REAL w(ngrid,nlayer) ! air mass flux (calculated with the vertical wind velocity profile) used as input in Van Leer (kgair/m2) |
---|
| 126 | REAL wqmass(ngrid,nlayer+1) ! tracer (dust_mass) mass flux in Van Leer (kg/m2) |
---|
| 127 | REAL wqnumber(ngrid,nlayer+1) ! tracer (dust_number) mass flux in Van Leer (kg/m2) |
---|
[1974] | 128 | |
---|
[2079] | 129 | LOGICAL storm(ngrid) ! true when there is a dust storm (if the opacity is high): trigger the rocket dust storm scheme |
---|
[2160] | 130 | REAL detrain(ngrid,nlayer) ! coefficient for detrainment : % of stormdust detrained |
---|
[2079] | 131 | INTEGER scheme(ngrid) ! triggered scheme |
---|
| 132 | |
---|
| 133 | REAL,PARAMETER:: coefmin =0.025 ! 0<coefmin<1 Minimum fraction of stormdust detrained |
---|
| 134 | REAL,PARAMETER:: wmin =0.1!0.25 ! stormdust detrainment if wrad < wmin |
---|
| 135 | REAL,PARAMETER:: wmax =10. ! maximum vertical velocity of the rocket dust storms (m/s) |
---|
[1974] | 136 | |
---|
[2079] | 137 | ! diagnostics |
---|
| 138 | REAL lapserate(ngrid,nlayer) |
---|
| 139 | REAL deltahr(ngrid,nlayer+1) |
---|
[1974] | 140 | |
---|
[2079] | 141 | LOGICAL,SAVE :: firstcall=.true. |
---|
| 142 | |
---|
| 143 | ! variables for the radiative transfer |
---|
[1974] | 144 | REAL fluxsurf_lw1(ngrid) |
---|
| 145 | REAL fluxsurf_sw1(ngrid,2) |
---|
| 146 | REAL fluxtop_lw1(ngrid) |
---|
| 147 | REAL fluxtop_sw1(ngrid,2) |
---|
| 148 | REAL tauref(ngrid) |
---|
| 149 | REAL tau(ngrid,naerkind) |
---|
| 150 | REAL aerosol(ngrid,nlayer,naerkind) |
---|
| 151 | REAL tauscaling(ngrid) |
---|
| 152 | REAL taucloudtes(ngrid) |
---|
| 153 | REAL rdust(ngrid,nlayer) |
---|
| 154 | REAL rstormdust(ngrid,nlayer) |
---|
| 155 | REAL rice(ngrid,nlayer) |
---|
| 156 | REAL nuice(ngrid,nlayer) |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | ! ********************************************************************** |
---|
| 160 | ! ********************************************************************** |
---|
[2079] | 161 | ! Rocket dust storm parametrization to reproduce the detached dust layers |
---|
| 162 | ! during the dust storm season: |
---|
[1974] | 163 | ! The radiative warming due to the presence of storm dust is |
---|
| 164 | ! balanced by the adiabatic cooling. The tracer "storm dust" |
---|
| 165 | ! is transported by the upward/downward flow. |
---|
| 166 | ! ********************************************************************** |
---|
| 167 | ! ********************************************************************** |
---|
| 168 | !! 1. Radiative transfer in storm dust |
---|
| 169 | !! 2. Compute vertical velocity for storm dust |
---|
[2079] | 170 | !! case 1 storm = false: nothing to do |
---|
| 171 | !! case 2 rocket dust storm (storm=true) |
---|
| 172 | !! 3. Vertical transport (Van Leer) |
---|
[1974] | 173 | !! 4. Detrainment |
---|
| 174 | ! ********************************************************************** |
---|
| 175 | ! ********************************************************************** |
---|
| 176 | |
---|
| 177 | |
---|
| 178 | ! ********************************************************************** |
---|
[2079] | 179 | ! Initializations |
---|
[1974] | 180 | ! ********************************************************************** |
---|
| 181 | storm(:)=.false. |
---|
| 182 | pdqrds(:,:,:) = 0. |
---|
[2079] | 183 | mr_dust_mass(:,:)=0. |
---|
| 184 | mr_dust_number(:,:)=0. |
---|
| 185 | mr_stormdust_mass(:,:)=0. |
---|
| 186 | mr_stormdust_number(:,:)=0. |
---|
| 187 | dqvl_dust_mass(:,:)=0. |
---|
| 188 | dqvl_dust_number(:,:)=0. |
---|
| 189 | dqvl_stormdust_mass(:,:)=0. |
---|
| 190 | dqvl_stormdust_number(:,:)=0. |
---|
| 191 | dqdet_stormdust_mass(:,:)=0. |
---|
| 192 | dqdet_stormdust_number(:,:)=0. |
---|
| 193 | wrad(:,:)=0. |
---|
[2090] | 194 | w(:,:)=0. |
---|
| 195 | wqmass(:,:)=0. |
---|
| 196 | wqnumber(:,:)=0. |
---|
[2091] | 197 | zdtvert(:,:)=0. |
---|
[1974] | 198 | lapserate(:,:)=0. |
---|
| 199 | deltahr(:,:)=0. |
---|
| 200 | scheme(:)=0 |
---|
[2160] | 201 | detrain(:,:)=1. |
---|
[2083] | 202 | |
---|
[1974] | 203 | !! no update for the stormdust tracer and temperature fields |
---|
| 204 | !! because previous callradite was for background dust |
---|
| 205 | zq(1:ngrid,1:nlayer,1:nq)=pq(1:ngrid,1:nlayer,1:nq) |
---|
| 206 | zt(1:ngrid,1:nlayer)=pt(1:ngrid,1:nlayer) |
---|
| 207 | |
---|
| 208 | |
---|
[2079] | 209 | zq_dust_mass(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 210 | zq_dust_number(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 211 | zq_stormdust_mass(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_stormdust_mass) |
---|
| 212 | zq_stormdust_number(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,igcm_stormdust_number) |
---|
| 213 | |
---|
| 214 | ! ********************************************************************* |
---|
| 215 | ! 0. Check if there is a storm |
---|
| 216 | ! ********************************************************************* |
---|
| 217 | DO ig=1,ngrid |
---|
[1974] | 218 | storm(ig)=.false. |
---|
[2079] | 219 | DO l=1,nlayer |
---|
| 220 | IF (zq(ig,l,igcm_stormdust_mass) & |
---|
| 221 | .gt. zq(ig,l,igcm_dust_mass)*(1.E-4)) THEN |
---|
[1974] | 222 | storm(ig)=.true. |
---|
[2079] | 223 | EXIT |
---|
| 224 | ENDIF |
---|
| 225 | ENDDO |
---|
| 226 | ENDDO |
---|
[1974] | 227 | |
---|
| 228 | ! ********************************************************************* |
---|
| 229 | ! 1. Call the second radiative transfer for stormdust, obtain the extra heating |
---|
| 230 | ! ********************************************************************* |
---|
| 231 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq,albedo, & |
---|
| 232 | emis,mu0,pplev,pplay,pt,tsurf,fract,dist_sol,igout, & |
---|
| 233 | zdtlw1,zdtsw1,fluxsurf_lw1,fluxsurf_sw1,fluxtop_lw1, & |
---|
| 234 | fluxtop_sw1,tauref,tau,aerosol,dsodust,tauscaling, & |
---|
| 235 | taucloudtes,rdust,rice,nuice,co2ice,rstormdust, & |
---|
| 236 | totstormfract,clearatm,dsords, & |
---|
| 237 | clearsky,totcloudfrac) |
---|
| 238 | |
---|
| 239 | ! ********************************************************************** |
---|
| 240 | ! 2. Compute vertical velocity for storm dust |
---|
[2079] | 241 | ! ********************************************************************** |
---|
[1974] | 242 | !! ********************************************************************** |
---|
[2079] | 243 | !! 2.1 Nothing to do when no storm |
---|
| 244 | !! no storm |
---|
| 245 | DO ig=1,ngrid |
---|
| 246 | IF (.NOT.(storm(ig))) then |
---|
| 247 | scheme(ig)=1 |
---|
| 248 | cycle |
---|
| 249 | ENDIF ! IF (storm(ig)) |
---|
| 250 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 251 | |
---|
[2079] | 252 | !! ********************************************************************** |
---|
| 253 | !! 2.2 Calculation of the extra heating : computing heating rates |
---|
| 254 | !! gradient at boundaries of each layer, start from surface |
---|
| 255 | DO ig=1,ngrid |
---|
[2091] | 256 | IF (storm(ig)) THEN |
---|
| 257 | |
---|
| 258 | scheme(ig)=2 |
---|
| 259 | !! This is the env. lapse rate |
---|
| 260 | zdtvert(ig,1)=0. |
---|
| 261 | DO l=1,nlayer-1 |
---|
| 262 | zdtvert(ig,l+1)=(zt(ig,l+1)-zt(ig,l))/(pzlay(ig,l+1)-pzlay(ig,l)) |
---|
| 263 | lapserate(ig,l+1)=zdtvert(ig,l+1) |
---|
| 264 | ENDDO |
---|
[1974] | 265 | |
---|
[2091] | 266 | !! computing heating rates gradient at boundraies of each layer |
---|
| 267 | !! start from surface |
---|
| 268 | zdtlw1_lev(1)=0. |
---|
| 269 | zdtsw1_lev(1)=0. |
---|
| 270 | zdtlw_lev(1)=0. |
---|
| 271 | zdtsw_lev(1)=0. |
---|
| 272 | ztlev(ig,1)=zt(ig,1) |
---|
[1974] | 273 | |
---|
[2091] | 274 | DO l=1,nlayer-1 |
---|
| 275 | !! Calculation for the dust storm fraction |
---|
| 276 | zdtlw1_lev(l+1)=(zdtlw1(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 277 | zdtlw1(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 278 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
| 279 | |
---|
| 280 | zdtsw1_lev(l+1)=(zdtsw1(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 281 | zdtsw1(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 282 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
| 283 | !! Calculation for the background dust fraction |
---|
| 284 | zdtlw_lev(l+1)=(pdtlw(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 285 | pdtlw(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 286 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
[2079] | 287 | |
---|
[2091] | 288 | zdtsw_lev(l+1)=(pdtsw(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 289 | pdtsw(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 290 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
[2079] | 291 | |
---|
[2091] | 292 | ztlev(ig,l+1)=(zt(ig,l)*(pzlay(ig,l+1)-pzlev(ig,l+1))+ & |
---|
| 293 | zt(ig,l+1)*(pzlev(ig,l+1)-pzlay(ig,l))) / & |
---|
| 294 | (pzlay(ig,l+1)-pzlay(ig,l)) |
---|
| 295 | ENDDO ! DO l=1,nlayer-1 |
---|
[1974] | 296 | |
---|
[2091] | 297 | !! ********************************************************************** |
---|
| 298 | !! 2.3 Calculation of the vertical velocity : extra heating |
---|
| 299 | !! balanced by adiabatic cooling |
---|
| 300 | |
---|
[2079] | 301 | DO l=1,nlayer |
---|
| 302 | deltahr(ig,l)=(zdtlw1_lev(l)+zdtsw1_lev(l)) & |
---|
| 303 | -(zdtlw_lev(l)+zdtsw_lev(l)) |
---|
| 304 | wrad(ig,l)=-deltahr(ig,l)/(g/cpp+ & |
---|
[2091] | 305 | max(zdtvert(ig,l),-0.99*g/cpp)) |
---|
[2079] | 306 | !! Limit vertical wind in case of lapse rate close to adiabatic |
---|
| 307 | wrad(ig,l)=max(wrad(ig,l),-wmax) |
---|
| 308 | wrad(ig,l)=min(wrad(ig,l),wmax) |
---|
| 309 | ENDDO |
---|
[2091] | 310 | |
---|
[2079] | 311 | ENDIF ! IF (storm(ig)) |
---|
| 312 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 313 | |
---|
| 314 | ! ********************************************************************** |
---|
| 315 | ! 3. Vertical transport |
---|
| 316 | ! ********************************************************************** |
---|
[2079] | 317 | !! ********************************************************************** |
---|
| 318 | !! 3.1 Transport of background dust + storm dust (concentrated) |
---|
| 319 | DO ig=1,ngrid |
---|
| 320 | IF (storm(ig)) THEN |
---|
| 321 | DO l=1,nlayer |
---|
| 322 | mr_dust_mass(ig,l) = zq_dust_mass(ig,l) |
---|
| 323 | mr_dust_number(ig,l) = zq_dust_number(ig,l) |
---|
| 324 | mr_stormdust_mass(ig,l) = zq_dust_mass(ig,l)+ & |
---|
| 325 | zq_stormdust_mass(ig,l)/totstormfract(ig) |
---|
| 326 | mr_stormdust_number(ig,l) = zq_dust_number(ig,l)+ & |
---|
| 327 | zq_stormdust_number(ig,l)/totstormfract(ig) |
---|
| 328 | ENDDO ! DO l=1,nlayer |
---|
| 329 | ENDIF ! IF (storm(ig)) |
---|
| 330 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 331 | |
---|
[2079] | 332 | !! ********************************************************************** |
---|
| 333 | !! 3.2 Vertical transport by a Van Leer scheme |
---|
| 334 | DO ig=1,ngrid |
---|
| 335 | IF (storm(ig)) THEN |
---|
| 336 | |
---|
| 337 | !! Mass of atmosphere in the layer |
---|
| 338 | DO l=1,nlayer |
---|
[2090] | 339 | masse_col(l)=(pplev(ig,l)-pplev(ig,l+1))/g |
---|
[2079] | 340 | ENDDO |
---|
| 341 | |
---|
| 342 | !! Mass flux in kg/m2 |
---|
| 343 | DO l=1,nlayer |
---|
[2091] | 344 | w(ig,l)=wrad(ig,l)*(pplev(ig,l)/(r*ztlev(ig,l)))*ptimestep |
---|
[2079] | 345 | ENDDO |
---|
| 346 | |
---|
| 347 | !! Vector column |
---|
| 348 | DO l=1,nlayer |
---|
| 349 | zq_vl_col(l)= mr_stormdust_mass(ig,l) |
---|
| 350 | zn_vl_col(l)= mr_stormdust_number(ig,l) |
---|
| 351 | ENDDO |
---|
| 352 | |
---|
| 353 | !! Van Leer scheme |
---|
| 354 | CALL vl_storm(nlayer,zq_vl_col,2., & |
---|
[2090] | 355 | masse_col,w(ig,:),wqmass(ig,:)) |
---|
[2079] | 356 | CALL vl_storm(nlayer,zn_vl_col,2., & |
---|
[2090] | 357 | masse_col,w(ig,:),wqnumber(ig,:)) |
---|
[2079] | 358 | !! Mass mixing ratio after transport |
---|
| 359 | mr_stormdust_mass(ig,:) = zq_vl_col(:) |
---|
| 360 | mr_stormdust_number(ig,:) = zn_vl_col(:) |
---|
| 361 | |
---|
| 362 | ENDIF ! IF storm(ig) |
---|
| 363 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 364 | |
---|
[2079] | 365 | !! ********************************************************************** |
---|
| 366 | !! 3.3 Re-calculation of the mixing ratios after vertical transport |
---|
| 367 | DO ig=1,ngrid |
---|
| 368 | IF (storm(ig)) THEN |
---|
| 369 | DO l=1,nlayer |
---|
| 370 | |
---|
| 371 | !! General and "healthy" case |
---|
| 372 | IF (mr_stormdust_mass(ig,l).ge.mr_dust_mass(ig,l)) THEN |
---|
| 373 | zq_dust_mass(ig,l) = mr_dust_mass(ig,l) |
---|
| 374 | zq_dust_number(ig,l) = mr_dust_number(ig,l) |
---|
| 375 | zq_stormdust_mass(ig,l) = totstormfract(ig)*(mr_stormdust_mass(ig,l)-mr_dust_mass(ig,l)) |
---|
| 376 | zq_stormdust_number(ig,l) = totstormfract(ig)*(mr_stormdust_number(ig,l)-mr_dust_number(ig,l)) |
---|
| 377 | !! Particular case: there is less than initial dust mixing ratio after the vertical transport |
---|
| 378 | ELSE |
---|
| 379 | zq_dust_mass(ig,l) = (1.-totstormfract(ig))*mr_dust_mass(ig,l)+totstormfract(ig)*mr_stormdust_mass(ig,l) |
---|
| 380 | zq_dust_number(ig,l) = (1.-totstormfract(ig))*mr_dust_number(ig,l)+totstormfract(ig)*mr_stormdust_number(ig,l) |
---|
| 381 | zq_stormdust_mass(ig,l) = 0. |
---|
| 382 | zq_stormdust_number(ig,l) = 0. |
---|
| 383 | ENDIF |
---|
| 384 | |
---|
| 385 | ENDDO ! DO l=1,nlayer |
---|
| 386 | ENDIF ! IF storm(ig) |
---|
| 387 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 388 | |
---|
[2079] | 389 | !! ********************************************************************** |
---|
| 390 | !! 3.4 Calculation of the tendencies of the vertical transport |
---|
| 391 | DO ig=1,ngrid |
---|
| 392 | IF (storm(ig)) THEN |
---|
| 393 | DO l=1,nlayer |
---|
| 394 | dqvl_stormdust_mass(ig,l) = (zq_stormdust_mass(ig,l)- & |
---|
| 395 | zq(ig,l,igcm_stormdust_mass)) /ptimestep |
---|
| 396 | dqvl_stormdust_number(ig,l) = (zq_stormdust_number(ig,l)- & |
---|
| 397 | zq(ig,l,igcm_stormdust_number)) /ptimestep |
---|
| 398 | dqvl_dust_mass(ig,l) = (zq_dust_mass(ig,l)-zq(ig,l,igcm_dust_mass)) /ptimestep |
---|
| 399 | dqvl_dust_number(ig,l) = (zq_dust_number(ig,l)-zq(ig,l,igcm_dust_number)) /ptimestep |
---|
| 400 | ENDDO |
---|
| 401 | ENDIF ! IF storm(ig) |
---|
| 402 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 403 | |
---|
| 404 | ! ********************************************************************** |
---|
[2079] | 405 | ! 4. Detrainment: stormdust is converted to background dust |
---|
[1974] | 406 | ! ********************************************************************** |
---|
[2079] | 407 | !! ********************************************************************** |
---|
| 408 | !! 4.1 Compute the coefficient of detrainmen |
---|
| 409 | DO ig=1,ngrid |
---|
| 410 | DO l=1,nlayer |
---|
| 411 | IF ((max(abs(wrad(ig,l)),abs(wrad(ig,l+1))) .lt. & |
---|
| 412 | wmin) .or. (zq_dust_mass(ig,l) .gt. & |
---|
| 413 | 10000.*zq_stormdust_mass(ig,l))) THEN |
---|
[2160] | 414 | detrain(ig,l)=1. |
---|
[2079] | 415 | ELSE IF (max(abs(wrad(ig,l)),abs(wrad(ig,l+1))) & |
---|
| 416 | .le. wmax) THEN |
---|
[2160] | 417 | detrain(ig,l)=coeff_detrainment* & |
---|
| 418 | (((1-coefmin)/(wmin-wmax)**2)* & |
---|
| 419 | (max(abs(wrad(ig,l)),abs(wrad(ig,l+1)))-wmax)**2 & |
---|
| 420 | +coefmin) |
---|
[2079] | 421 | ELSE IF (max(abs(wrad(ig,l)),abs(wrad(ig,l+1))).gt. wmax ) THEN |
---|
[2160] | 422 | detrain(ig,l)=coefmin |
---|
[2079] | 423 | ELSE |
---|
[2160] | 424 | detrain(ig,l)=coefmin |
---|
[2079] | 425 | ENDIF |
---|
| 426 | ENDDO ! DO l=1,nlayer |
---|
| 427 | ENDDO ! DO ig=1,ngrid |
---|
| 428 | |
---|
| 429 | !! ********************************************************************** |
---|
| 430 | !! 4.2 Calculation of the tendencies of the detrainment |
---|
| 431 | DO ig=1,ngrid |
---|
| 432 | DO l=1,nlayer |
---|
[2160] | 433 | dqdet_stormdust_mass(ig,l)=-detrain(ig,l)*zq_stormdust_mass(ig,l) & |
---|
[1974] | 434 | /ptimestep |
---|
[2160] | 435 | dqdet_stormdust_number(ig,l)=-detrain(ig,l)*zq_stormdust_number(ig,l) & |
---|
[1974] | 436 | /ptimestep |
---|
[2079] | 437 | ENDDO ! DO l=1,nlayer |
---|
| 438 | ENDDO ! DO ig=1,ngrid |
---|
| 439 | |
---|
| 440 | ! ********************************************************************** |
---|
| 441 | ! 5. Final tendencies: vertical transport + detrainment |
---|
| 442 | ! ********************************************************************** |
---|
| 443 | DO ig=1,ngrid |
---|
| 444 | DO l=1,nlayer |
---|
| 445 | pdqrds(ig,l,igcm_stormdust_mass)=dqdet_stormdust_mass(ig,l) & |
---|
| 446 | +dqvl_stormdust_mass(ig,l) |
---|
| 447 | pdqrds(ig,l,igcm_stormdust_number)=dqdet_stormdust_number(ig,l) & |
---|
| 448 | +dqvl_stormdust_number(ig,l) |
---|
| 449 | pdqrds(ig,l,igcm_dust_mass)= -dqdet_stormdust_mass(ig,l) & |
---|
| 450 | +dqvl_dust_mass(ig,l) |
---|
| 451 | pdqrds(ig,l,igcm_dust_number)= -dqdet_stormdust_number(ig,l) & |
---|
| 452 | +dqvl_dust_number(ig,l) |
---|
| 453 | ENDDO ! DO l=1,nlayer |
---|
| 454 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 455 | |
---|
[2079] | 456 | ! ********************************************************************** |
---|
| 457 | ! 6. To prevent from negative values |
---|
| 458 | ! ********************************************************************** |
---|
| 459 | DO ig=1,ngrid |
---|
| 460 | DO l=1,nlayer |
---|
| 461 | IF ((pq(ig,l,igcm_stormdust_mass) & |
---|
| 462 | +pdqrds(ig,l,igcm_stormdust_mass)*ptimestep .le. 0.) .or. & |
---|
| 463 | (pq(ig,l,igcm_stormdust_number) & |
---|
| 464 | +pdqrds(ig,l,igcm_stormdust_number)*ptimestep .le. 0.)) THEN |
---|
| 465 | pdqrds(ig,l,igcm_stormdust_mass)=-pq(ig,l,igcm_stormdust_mass)/ptimestep |
---|
| 466 | pdqrds(ig,l,igcm_stormdust_number)=-pq(ig,l,igcm_stormdust_number)/ptimestep |
---|
| 467 | ENDIF |
---|
| 468 | ENDDO ! nlayer |
---|
| 469 | ENDDO ! DO ig=1,ngrid |
---|
[1974] | 470 | |
---|
[2079] | 471 | DO ig=1,ngrid |
---|
| 472 | DO l=1,nlayer |
---|
| 473 | IF ((pq(ig,l,igcm_dust_mass) & |
---|
| 474 | +pdqrds(ig,l,igcm_dust_mass)*ptimestep .le. 0.) .or. & |
---|
| 475 | (pq(ig,l,igcm_dust_number) & |
---|
| 476 | +pdqrds(ig,l,igcm_dust_number)*ptimestep .le. 0.)) THEN |
---|
| 477 | pdqrds(ig,l,igcm_dust_mass)=-pq(ig,l,igcm_dust_mass)/ptimestep |
---|
| 478 | pdqrds(ig,l,igcm_dust_number)=-pq(ig,l,igcm_dust_number)/ptimestep |
---|
| 479 | ENDIF |
---|
| 480 | ENDDO ! nlayer |
---|
| 481 | ENDDO ! DO ig=1,ngrid |
---|
| 482 | |
---|
| 483 | !======================================================================= |
---|
| 484 | ! WRITEDIAGFI |
---|
| 485 | |
---|
[1974] | 486 | call WRITEDIAGFI(ngrid,'lapserate','lapse rate in the storm', & |
---|
| 487 | & 'k/m',3,lapserate) |
---|
| 488 | call WRITEDIAGFI(ngrid,'deltahr','extra heating rates', & |
---|
| 489 | & 'K/s',3,deltahr) |
---|
| 490 | call writediagfi(ngrid,'scheme','which scheme',& |
---|
| 491 | ' ',2,real(scheme)) |
---|
[2079] | 492 | |
---|
[1974] | 493 | END SUBROUTINE rocketduststorm |
---|
| 494 | |
---|
[2079] | 495 | !======================================================================= |
---|
| 496 | ! VAN LEER |
---|
| 497 | |
---|
[1974] | 498 | SUBROUTINE vl_storm(nlay,q,pente_max,masse,w,wq) |
---|
| 499 | ! |
---|
| 500 | ! Auteurs: P.Le Van, F.Hourdin, F.Forget |
---|
| 501 | ! |
---|
| 502 | ! ******************************************************************** |
---|
| 503 | ! Shema d'advection " pseudo amont " dans la verticale |
---|
| 504 | ! pour appel dans la physique (sedimentation) |
---|
| 505 | ! ******************************************************************** |
---|
| 506 | ! q rapport de melange (kg/kg)... |
---|
| 507 | ! masse : masse de la couche Dp/g |
---|
| 508 | ! w : masse d'atm ``transferee'' a chaque pas de temps (kg.m-2) |
---|
| 509 | ! pente_max = 2 conseillee |
---|
| 510 | ! |
---|
| 511 | ! |
---|
| 512 | ! -------------------------------------------------------------------- |
---|
| 513 | IMPLICIT NONE |
---|
| 514 | ! |
---|
| 515 | |
---|
| 516 | ! Arguments: |
---|
| 517 | ! ---------- |
---|
[2079] | 518 | INTEGER,INTENT(IN) :: nlay ! number of atmospheric layers |
---|
| 519 | REAL masse(nlay),pente_max |
---|
[1974] | 520 | REAL q(nlay) |
---|
| 521 | REAL w(nlay) |
---|
| 522 | REAL wq(nlay+1) |
---|
| 523 | ! |
---|
| 524 | ! Local |
---|
| 525 | ! --------- |
---|
| 526 | ! |
---|
| 527 | INTEGER i,l,j,ii |
---|
| 528 | ! |
---|
| 529 | |
---|
[2079] | 530 | REAL dzq(nlay),dzqw(nlay),adzqw(nlay),dzqmax |
---|
| 531 | REAL newmasse |
---|
| 532 | REAL sigw, Mtot, MQtot |
---|
| 533 | INTEGER m |
---|
[1974] | 534 | |
---|
| 535 | REAL SSUM,CVMGP,CVMGT |
---|
[2079] | 536 | INTEGER ismax,ismin |
---|
[1974] | 537 | |
---|
| 538 | |
---|
| 539 | ! On oriente tout dans le sens de la pression c'est a dire dans le |
---|
| 540 | ! sens de W |
---|
| 541 | |
---|
| 542 | do l=2,nlay |
---|
| 543 | dzqw(l)=q(l-1)-q(l) |
---|
| 544 | adzqw(l)=abs(dzqw(l)) |
---|
| 545 | enddo |
---|
| 546 | |
---|
| 547 | do l=2,nlay-1 |
---|
| 548 | #ifdef CRAY |
---|
| 549 | dzq(l)=0.5* |
---|
| 550 | , cvmgp(dzqw(l)+dzqw(l+1),0.,dzqw(l)*dzqw(l+1)) |
---|
| 551 | #else |
---|
| 552 | if(dzqw(l)*dzqw(l+1).gt.0.) then |
---|
| 553 | dzq(l)=0.5*(dzqw(l)+dzqw(l+1)) |
---|
| 554 | else |
---|
| 555 | dzq(l)=0. |
---|
| 556 | endif |
---|
| 557 | #endif |
---|
| 558 | dzqmax=pente_max*min(adzqw(l),adzqw(l+1)) |
---|
| 559 | dzq(l)=sign(min(abs(dzq(l)),dzqmax),dzq(l)) |
---|
| 560 | enddo |
---|
| 561 | |
---|
| 562 | dzq(1)=0. |
---|
| 563 | dzq(nlay)=0. |
---|
[2079] | 564 | |
---|
[1974] | 565 | ! --------------------------------------------------------------- |
---|
| 566 | ! .... calcul des termes d'advection verticale ....... |
---|
| 567 | ! --------------------------------------------------------------- |
---|
| 568 | |
---|
| 569 | ! calcul de - d( q * w )/ d(sigma) qu'on ajoute a dq pour calculer dq |
---|
| 570 | ! |
---|
| 571 | ! No flux at the model top: |
---|
| 572 | wq(nlay+1)=0. |
---|
| 573 | |
---|
| 574 | ! Surface flux up: |
---|
[2119] | 575 | if(w(1).lt.0.) wq(1)=0. ! warning : not always valid |
---|
[1974] | 576 | |
---|
| 577 | do l = 1,nlay-1 ! loop different than when w>0 |
---|
[2119] | 578 | |
---|
| 579 | ! 1) Compute wq where w < 0 (up) |
---|
| 580 | ! =============================== |
---|
| 581 | |
---|
[1974] | 582 | if(w(l+1).le.0)then |
---|
| 583 | |
---|
| 584 | ! Regular scheme (transfered mass < 1 layer) |
---|
| 585 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 586 | if(-w(l+1).le.masse(l))then |
---|
| 587 | sigw=w(l+1)/masse(l) |
---|
| 588 | wq(l+1)=w(l+1)*(q(l)-0.5*(1.+sigw)*dzq(l)) |
---|
| 589 | ! Extended scheme (transfered mass > 1 layer) |
---|
| 590 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 591 | else |
---|
| 592 | m = l-1 |
---|
| 593 | Mtot = masse(m+1) |
---|
| 594 | MQtot = masse(m+1)*q(m+1) |
---|
| 595 | if (m.le.0)goto 77 |
---|
| 596 | do while(-w(l+1).gt.(Mtot+masse(m))) |
---|
| 597 | ! do while(-w(l+1).gt.Mtot) |
---|
| 598 | m=m-1 |
---|
| 599 | Mtot = Mtot + masse(m+1) |
---|
| 600 | MQtot = MQtot + masse(m+1)*q(m+1) |
---|
| 601 | if (m.le.0)goto 77 |
---|
| 602 | end do |
---|
| 603 | 77 continue |
---|
| 604 | |
---|
| 605 | if (m.gt.0) then |
---|
| 606 | sigw=(w(l+1)+Mtot)/masse(m) |
---|
[2079] | 607 | wq(l+1)= -(MQtot + (-w(l+1)-Mtot)* & |
---|
[1974] | 608 | (q(m)-0.5*(1.+sigw)*dzq(m)) ) |
---|
| 609 | else |
---|
| 610 | w(l+1) = -Mtot |
---|
| 611 | wq(l+1) = -MQtot |
---|
| 612 | end if |
---|
[2119] | 613 | endif ! (-w(l+1).le.masse(l)) |
---|
[1974] | 614 | |
---|
[2119] | 615 | ! 2) Compute wq where w > 0 (down) |
---|
[1974] | 616 | ! =============================== |
---|
| 617 | |
---|
[2119] | 618 | else if(w(l).gt.0.)then |
---|
[1974] | 619 | |
---|
| 620 | ! Regular scheme (transfered mass < 1 layer) |
---|
| 621 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 622 | if(w(l).le.masse(l))then |
---|
| 623 | sigw=w(l)/masse(l) |
---|
| 624 | wq(l)=w(l)*(q(l)+0.5*(1.-sigw)*dzq(l)) |
---|
| 625 | |
---|
| 626 | |
---|
| 627 | ! Extended scheme (transfered mass > 1 layer) |
---|
| 628 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 629 | else |
---|
| 630 | m=l |
---|
| 631 | Mtot = masse(m) |
---|
| 632 | MQtot = masse(m)*q(m) |
---|
| 633 | if(m.ge.nlay)goto 88 |
---|
| 634 | do while(w(l).gt.(Mtot+masse(m+1))) |
---|
| 635 | m=m+1 |
---|
| 636 | Mtot = Mtot + masse(m) |
---|
| 637 | MQtot = MQtot + masse(m)*q(m) |
---|
| 638 | if(m.ge.nlay)goto 88 |
---|
| 639 | end do |
---|
| 640 | 88 continue |
---|
| 641 | if (m.lt.nlay) then |
---|
| 642 | sigw=(w(l)-Mtot)/masse(m+1) |
---|
| 643 | wq(l)=(MQtot + (w(l)-Mtot)* & |
---|
| 644 | (q(m+1)+0.5*(1.-sigw)*dzq(m+1)) ) |
---|
| 645 | else |
---|
| 646 | w(l) = Mtot |
---|
| 647 | wq(l) = MQtot |
---|
| 648 | end if |
---|
[2119] | 649 | end if |
---|
[2100] | 650 | |
---|
[2119] | 651 | end if ! w<0 (up) |
---|
[2100] | 652 | |
---|
[2119] | 653 | enddo ! l = 1,nlay-1 |
---|
[1974] | 654 | |
---|
| 655 | do l = 1,nlay ! loop different than when w<0 |
---|
| 656 | |
---|
[2119] | 657 | ! it cannot entrain more than available mass ! |
---|
| 658 | if ( (wq(l+1)-wq(l)) .lt. -(masse(l)*q(l)) ) then |
---|
| 659 | wq(l+1) = wq(l)-masse(l)*q(l) |
---|
| 660 | end if |
---|
| 661 | |
---|
[1974] | 662 | q(l)=q(l) + (wq(l+1)-wq(l))/masse(l) |
---|
| 663 | |
---|
| 664 | enddo |
---|
[2079] | 665 | |
---|
| 666 | END SUBROUTINE vl_storm |
---|
[1974] | 667 | |
---|
[2079] | 668 | !======================================================================= |
---|
| 669 | ! Initialization of the module variables |
---|
[1974] | 670 | |
---|
| 671 | subroutine ini_rocketduststorm_mod(ngrid) |
---|
| 672 | |
---|
| 673 | implicit none |
---|
| 674 | |
---|
| 675 | integer, intent(in) :: ngrid |
---|
| 676 | |
---|
| 677 | allocate(dustliftday(ngrid)) |
---|
| 678 | |
---|
| 679 | end subroutine ini_rocketduststorm_mod |
---|
| 680 | |
---|
| 681 | subroutine end_rocketduststorm_mod |
---|
| 682 | |
---|
| 683 | implicit none |
---|
| 684 | |
---|
| 685 | if (allocated(dustliftday)) deallocate(dustliftday) |
---|
| 686 | |
---|
| 687 | end subroutine end_rocketduststorm_mod |
---|
| 688 | |
---|
| 689 | END MODULE rocketduststorm_mod |
---|