| 1 | MODULE physiq_mod |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | SUBROUTINE physiq( |
|---|
| 8 | $ ngrid,nlayer,nq |
|---|
| 9 | $ ,firstcall,lastcall |
|---|
| 10 | $ ,pday,ptime,ptimestep |
|---|
| 11 | $ ,pplev,pplay,pphi |
|---|
| 12 | $ ,pu,pv,pt,pq |
|---|
| 13 | $ ,flxw |
|---|
| 14 | $ ,pdu,pdv,pdt,pdq,pdpsrf) |
|---|
| 15 | |
|---|
| 16 | use watercloud_mod, only: watercloud, zdqcloud, zdqscloud |
|---|
| 17 | use calchim_mod, only: calchim, ichemistry, zdqchim, zdqschim |
|---|
| 18 | use watersat_mod, only: watersat |
|---|
| 19 | use co2condens_mod, only: co2condens, CO2cond_ps |
|---|
| 20 | use co2cloud_mod, only: co2cloud |
|---|
| 21 | use callradite_mod, only: callradite |
|---|
| 22 | use callsedim_mod, only: callsedim |
|---|
| 23 | use rocketduststorm_mod, only: rocketduststorm, dustliftday |
|---|
| 24 | use calcstormfract_mod, only: calcstormfract |
|---|
| 25 | use topmons_mod, only: topmons,topmons_setup |
|---|
| 26 | use nltecool_mod, only: nltecool |
|---|
| 27 | use nlte_tcool_mod, only: nlte_tcool |
|---|
| 28 | use blendrad_mod, only: blendrad |
|---|
| 29 | use nlthermeq_mod, only: nlthermeq |
|---|
| 30 | use thermosphere_mod, only: thermosphere |
|---|
| 31 | use param_read_e107_mod, only: param_read_e107 |
|---|
| 32 | use tracer_mod, only: noms, mmol, igcm_co2, igcm_n2, igcm_co2_ice, |
|---|
| 33 | & igcm_co, igcm_o, igcm_h2o_vap, igcm_h2o_ice, |
|---|
| 34 | & igcm_hdo_vap, igcm_hdo_ice, |
|---|
| 35 | & igcm_ccn_mass, igcm_ccn_number, |
|---|
| 36 | & igcm_ccnco2_mass, igcm_ccnco2_number, |
|---|
| 37 | & igcm_ccnco2_h2o_mass_ice, |
|---|
| 38 | & igcm_ccnco2_h2o_mass_ccn, |
|---|
| 39 | & igcm_ccnco2_h2o_number, |
|---|
| 40 | & igcm_ccnco2_meteor_mass, |
|---|
| 41 | & igcm_ccnco2_meteor_number, |
|---|
| 42 | & igcm_dust_mass, igcm_dust_number, igcm_h2o2, |
|---|
| 43 | & nuice_ref, rho_ice, rho_dust, ref_r0, |
|---|
| 44 | & igcm_he, igcm_stormdust_mass, |
|---|
| 45 | & igcm_stormdust_number, igcm_topdust_mass, |
|---|
| 46 | & igcm_topdust_number, |
|---|
| 47 | & qperemin |
|---|
| 48 | use comsoil_h, only: inertiedat, inertiesoil,! dat: soil thermal inertia for present climate, inertiesoil is the TI read in the start |
|---|
| 49 | & tsoil, nsoilmx,!number of subsurface layers |
|---|
| 50 | & mlayer,layer, ! soil mid layer depths |
|---|
| 51 | & nqsoil,qsoil ! adsorption |
|---|
| 52 | use geometry_mod, only: longitude, latitude, cell_area, |
|---|
| 53 | & cell_area_for_lonlat_outputs,longitude_deg |
|---|
| 54 | use comgeomfi_h, only: sinlon, coslon, sinlat, coslat |
|---|
| 55 | use surfdat_h, only: phisfi, albedodat, z0, albedo_h2o_cap, |
|---|
| 56 | & albedo_h2o_frost, frost_albedo_threshold, |
|---|
| 57 | & frost_metam_threshold, tsurf, emis, capcal, |
|---|
| 58 | & fluxgrd, qsurf, watercap, watercaptag, |
|---|
| 59 | & perennial_co2ice |
|---|
| 60 | use comsaison_h, only: dist_sol, declin, zls, |
|---|
| 61 | & mu0, fract, local_time |
|---|
| 62 | use solarlong_mod, only: solarlong |
|---|
| 63 | use solang_mod, only: solang |
|---|
| 64 | use mucorr_mod, only: mucorr |
|---|
| 65 | use nirdata_mod, only: NIR_leedat |
|---|
| 66 | use nirco2abs_mod, only: nirco2abs |
|---|
| 67 | use surfacearea_mod, only: surfacearea |
|---|
| 68 | use slope_mod, only: theta_sl, psi_sl, getslopes, param_slope |
|---|
| 69 | use conc_mod, only: init_r_cp_mu, update_r_cp_mu_ak, rnew, |
|---|
| 70 | & cpnew, mmean |
|---|
| 71 | use time_phylmdz_mod, only: steps_per_sol |
|---|
| 72 | use time_phylmdz_mod, only: iphysiq, ecritstart, daysec |
|---|
| 73 | use dimradmars_mod, only: aerosol, totcloudfrac, |
|---|
| 74 | & dtrad, fluxrad_sky, fluxrad, albedo, |
|---|
| 75 | & naerkind, iaer_dust_doubleq, |
|---|
| 76 | & iaer_stormdust_doubleq, iaer_h2o_ice, |
|---|
| 77 | & flux_1AU |
|---|
| 78 | use dust_param_mod, only: doubleq, lifting, callddevil, |
|---|
| 79 | & tauscaling, odpref, dustbin, |
|---|
| 80 | & dustscaling_mode, dust_rad_adjust, |
|---|
| 81 | & freedust, reff_driven_IRtoVIS_scenario |
|---|
| 82 | use dustdevil_mod, only: dustdevil |
|---|
| 83 | use turb_mod, only: q2, wstar, ustar, sensibFlux, |
|---|
| 84 | & zmax_th, hfmax_th, turb_resolved |
|---|
| 85 | use planete_h, only: aphelie, periheli, year_day, peri_day, |
|---|
| 86 | & obliquit |
|---|
| 87 | use planete_h, only: iniorbit |
|---|
| 88 | USE comcstfi_h, only: r, cpp, mugaz, g, rcp, pi, rad |
|---|
| 89 | USE calldrag_noro_mod, ONLY: calldrag_noro |
|---|
| 90 | USE vdifc_mod, ONLY: vdifc |
|---|
| 91 | use param_v4_h, only: nreact,n_avog, |
|---|
| 92 | & fill_data_thermos, allocate_param_thermos |
|---|
| 93 | use iono_h, only: allocate_param_iono |
|---|
| 94 | use compute_dtau_mod, only: compute_dtau |
|---|
| 95 | use nonoro_gwd_ran_mod, only: nonoro_gwd_ran |
|---|
| 96 | use nonoro_gwd_mix_mod, only: nonoro_gwd_mix, calljliu_gwimix |
|---|
| 97 | use check_fields_mod, only: check_physics_fields |
|---|
| 98 | use surfini_mod, only: surfini |
|---|
| 99 | #ifdef MESOSCALE |
|---|
| 100 | use comsoil_h, only: mlayer,layer |
|---|
| 101 | use surfdat_h, only: z0_default |
|---|
| 102 | use comm_wrf |
|---|
| 103 | #else |
|---|
| 104 | USE planetwide_mod, ONLY: planetwide_maxval, planetwide_minval, |
|---|
| 105 | & planetwide_sumval |
|---|
| 106 | use phyredem, only: physdem0, physdem1 |
|---|
| 107 | use phyetat0_mod, only: phyetat0, tab_cntrl_mod |
|---|
| 108 | use wstats_mod, only: callstats, wstats, mkstats |
|---|
| 109 | use eofdump_mod, only: eofdump |
|---|
| 110 | USE vertical_layers_mod, ONLY: ap,bp,aps,bps,presnivs,pseudoalt |
|---|
| 111 | USE mod_phys_lmdz_omp_data, ONLY: is_omp_master |
|---|
| 112 | USE time_phylmdz_mod, ONLY: day_end |
|---|
| 113 | #endif |
|---|
| 114 | |
|---|
| 115 | #ifdef CPP_XIOS |
|---|
| 116 | use xios_output_mod, only: initialize_xios_output, |
|---|
| 117 | & update_xios_timestep, |
|---|
| 118 | & send_xios_field |
|---|
| 119 | use wxios, only: wxios_context_init, xios_context_finalize |
|---|
| 120 | #endif |
|---|
| 121 | USE mod_grid_phy_lmdz, ONLY: grid_type, unstructured, |
|---|
| 122 | & regular_lonlat |
|---|
| 123 | use ioipsl_getin_p_mod, only: getin_p |
|---|
| 124 | use comslope_mod, ONLY: nslope,def_slope,def_slope_mean, |
|---|
| 125 | & subslope_dist,iflat,sky_slope, |
|---|
| 126 | & major_slope,compute_meshgridavg, |
|---|
| 127 | & ini_comslope_h |
|---|
| 128 | use write_output_mod, only: write_output |
|---|
| 129 | use soil_mod, only: soil |
|---|
| 130 | use pbl_parameters_mod, only: pbl_parameters |
|---|
| 131 | use calltherm_interface_mod, only: calltherm_interface |
|---|
| 132 | use lmdz_atke_turbulence_ini, only : atke_ini |
|---|
| 133 | use waterice_tifeedback_mod, only : waterice_tifeedback |
|---|
| 134 | use callkeys_mod, only: calladj, calltherm, callatke, calldifv |
|---|
| 135 | use callkeys_mod, only: callrichsl, tke_heat_flux |
|---|
| 136 | use callkeys_mod, only: calllott, calllott_nonoro, calleofdump |
|---|
| 137 | use callkeys_mod, only: callrad, callnlte, callnirco2, nircorr |
|---|
| 138 | use callkeys_mod, only: diurnal, season, iradia, nltemodel |
|---|
| 139 | use callkeys_mod, only: water, activice, microphys, CLFvarying |
|---|
| 140 | use callkeys_mod, only: hdo, co2clouds, co2useh2o, meteo_flux |
|---|
| 141 | use callkeys_mod, only: callsoil, callslope, callcond |
|---|
| 142 | use callkeys_mod, only: tituscap, surfaceice_tifeedback |
|---|
| 143 | use callkeys_mod, only: refill_watercap, poreice_tifeedback |
|---|
| 144 | use callkeys_mod, only: cst_cap_albedo |
|---|
| 145 | use callkeys_mod, only: rdstorm, dustinjection |
|---|
| 146 | use callkeys_mod, only: topflows, dustiropacity |
|---|
| 147 | use callkeys_mod, only: sedimentation, scavenging |
|---|
| 148 | use callkeys_mod, only: photochem, callthermos |
|---|
| 149 | use callkeys_mod, only: startphy_file |
|---|
| 150 | |
|---|
| 151 | IMPLICIT NONE |
|---|
| 152 | c======================================================================= |
|---|
| 153 | c |
|---|
| 154 | c subject: |
|---|
| 155 | c -------- |
|---|
| 156 | c |
|---|
| 157 | c Organisation of the physical parametrisations of the LMD |
|---|
| 158 | c martian atmospheric general circulation model. |
|---|
| 159 | c |
|---|
| 160 | c The GCM can be run without or with tracer transport |
|---|
| 161 | c depending on the value of Logical "tracer" in file "callphys.def" |
|---|
| 162 | c Tracers may be water vapor, ice OR chemical species OR dust particles |
|---|
| 163 | c |
|---|
| 164 | c SEE comments in initracer.F about numbering of tracer species... |
|---|
| 165 | c |
|---|
| 166 | c It includes: |
|---|
| 167 | c |
|---|
| 168 | c 1. Initialization: |
|---|
| 169 | c 1.1 First call initializations |
|---|
| 170 | c 1.2 Initialization for every call to physiq |
|---|
| 171 | c 1.2.5 Compute mean mass and cp, R and thermal conduction coeff. |
|---|
| 172 | c 2. Compute radiative transfer tendencies |
|---|
| 173 | c (longwave and shortwave) for CO2 and aerosols. |
|---|
| 174 | c 3. Gravity wave and subgrid scale topography drag : |
|---|
| 175 | c 4. Vertical diffusion (turbulent mixing): |
|---|
| 176 | c 5. Convective adjustment |
|---|
| 177 | c 6. Condensation and sublimation of carbon dioxide. |
|---|
| 178 | c 7. TRACERS : |
|---|
| 179 | c 7a. water, water ice, co2 ice (clouds) |
|---|
| 180 | c 7b. call for photochemistry when tracers are chemical species |
|---|
| 181 | c 7c. other scheme for tracer (dust) transport (lifting, sedimentation) |
|---|
| 182 | c 7d. updates (CO2 pressure variations, surface budget) |
|---|
| 183 | c 8. Contribution to tendencies due to thermosphere |
|---|
| 184 | c 9. Surface and sub-surface temperature calculations |
|---|
| 185 | c 10. Write outputs : |
|---|
| 186 | c - "startfi", "histfi" (if it's time) |
|---|
| 187 | c - Saving statistics (if "callstats = .true.") |
|---|
| 188 | c - Dumping eof (if "calleofdump = .true.") |
|---|
| 189 | c - Output any needed variables in "diagfi" |
|---|
| 190 | c 11. Diagnostic: mass conservation of tracers |
|---|
| 191 | c |
|---|
| 192 | c author: |
|---|
| 193 | c ------- |
|---|
| 194 | c Frederic Hourdin 15/10/93 |
|---|
| 195 | c Francois Forget 1994 |
|---|
| 196 | c Christophe Hourdin 02/1997 |
|---|
| 197 | c Subroutine completly rewritten by F.Forget (01/2000) |
|---|
| 198 | c Introduction of the photochemical module: S. Lebonnois (11/2002) |
|---|
| 199 | c Introduction of the thermosphere module: M. Angelats i Coll (2002) |
|---|
| 200 | c Water ice clouds: Franck Montmessin (update 06/2003) |
|---|
| 201 | c Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
|---|
| 202 | c Nb: See callradite.F for more information. |
|---|
| 203 | c Mesoscale lines: Aymeric Spiga (2007 - 2011) -- check MESOSCALE flags |
|---|
| 204 | c jul 2011 malv+fgg: Modified calls to NIR heating routine and 15 um cooling parameterization |
|---|
| 205 | c |
|---|
| 206 | c 10/16 J. Audouard: modifications for CO2 clouds scheme |
|---|
| 207 | |
|---|
| 208 | c arguments: |
|---|
| 209 | c ---------- |
|---|
| 210 | c |
|---|
| 211 | c input: |
|---|
| 212 | c ------ |
|---|
| 213 | c ecri period (in dynamical timestep) to write output |
|---|
| 214 | c ngrid Size of the horizontal grid. |
|---|
| 215 | c All internal loops are performed on that grid. |
|---|
| 216 | c nlayer Number of vertical layers. |
|---|
| 217 | c nq Number of advected fields |
|---|
| 218 | c firstcall True at the first call |
|---|
| 219 | c lastcall True at the last call |
|---|
| 220 | c pday Number of days counted from the North. Spring |
|---|
| 221 | c equinoxe. |
|---|
| 222 | c ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT |
|---|
| 223 | c ptimestep timestep (s) |
|---|
| 224 | c pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa) |
|---|
| 225 | c pplev(ngrid,nlayer+1) intermediate pressure levels (pa) |
|---|
| 226 | c pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2s-2) |
|---|
| 227 | c pu(ngrid,nlayer) u component of the wind (ms-1) |
|---|
| 228 | c pv(ngrid,nlayer) v component of the wind (ms-1) |
|---|
| 229 | c pt(ngrid,nlayer) Temperature (K) |
|---|
| 230 | c pq(ngrid,nlayer,nq) Advected fields |
|---|
| 231 | c pudyn(ngrid,nlayer) | |
|---|
| 232 | c pvdyn(ngrid,nlayer) | Dynamical temporal derivative for the |
|---|
| 233 | c ptdyn(ngrid,nlayer) | corresponding variables |
|---|
| 234 | c pqdyn(ngrid,nlayer,nq) | |
|---|
| 235 | c flxw(ngrid,nlayer) vertical mass flux (kg/s) at layer lower boundary |
|---|
| 236 | c |
|---|
| 237 | c output: |
|---|
| 238 | c ------- |
|---|
| 239 | c |
|---|
| 240 | c pdu(ngrid,nlayer) | |
|---|
| 241 | c pdv(ngrid,nlayer) | Temporal derivative of the corresponding |
|---|
| 242 | c pdt(ngrid,nlayer) | variables due to physical processes. |
|---|
| 243 | c pdq(ngrid,nlayer,nq) | |
|---|
| 244 | c pdpsrf(ngrid) | |
|---|
| 245 | |
|---|
| 246 | c |
|---|
| 247 | c======================================================================= |
|---|
| 248 | c |
|---|
| 249 | c 0. Declarations : |
|---|
| 250 | c ------------------ |
|---|
| 251 | |
|---|
| 252 | include "netcdf.inc" |
|---|
| 253 | |
|---|
| 254 | c Arguments : |
|---|
| 255 | c ----------- |
|---|
| 256 | |
|---|
| 257 | c inputs: |
|---|
| 258 | c ------- |
|---|
| 259 | INTEGER,INTENT(in) :: ngrid ! number of atmospheric columns |
|---|
| 260 | INTEGER,INTENT(in) :: nlayer ! number of atmospheric layers |
|---|
| 261 | INTEGER,INTENT(in) :: nq ! number of tracers |
|---|
| 262 | LOGICAL,INTENT(in) :: firstcall ! signals first call to physics |
|---|
| 263 | LOGICAL,INTENT(in) :: lastcall ! signals last call to physics |
|---|
| 264 | REAL,INTENT(in) :: pday ! number of elapsed sols since reference Ls=0 |
|---|
| 265 | REAL,INTENT(in) :: ptime ! "universal time", given as fraction of sol (e.g.: 0.5 for noon) |
|---|
| 266 | REAL,INTENT(in) :: ptimestep ! physics timestep (s) |
|---|
| 267 | REAL,INTENT(in) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
|---|
| 268 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! mid-layer pressure (Pa) |
|---|
| 269 | REAL,INTENT(IN) :: pphi(ngrid,nlayer) ! geopotential at mid-layer (m2s-2) |
|---|
| 270 | REAL,INTENT(in) :: pu(ngrid,nlayer) ! zonal wind component (m/s) |
|---|
| 271 | REAL,INTENT(in) :: pv(ngrid,nlayer) ! meridional wind component (m/s) |
|---|
| 272 | REAL,INTENT(in) :: pt(ngrid,nlayer) ! temperature (K) |
|---|
| 273 | REAL,INTENT(in) :: pq(ngrid,nlayer,nq) ! tracers (.../kg_of_air) |
|---|
| 274 | REAL,INTENT(in) :: flxw(ngrid,nlayer) ! vertical mass flux (ks/s) at lower boundary of layer |
|---|
| 275 | |
|---|
| 276 | c outputs: |
|---|
| 277 | c -------- |
|---|
| 278 | c physical tendencies |
|---|
| 279 | REAL,INTENT(out) :: pdu(ngrid,nlayer) ! zonal wind tendency (m/s/s) |
|---|
| 280 | REAL,INTENT(out) :: pdv(ngrid,nlayer) ! meridional wind tendency (m/s/s) |
|---|
| 281 | REAL,INTENT(out) :: pdt(ngrid,nlayer) ! temperature tendency (K/s) |
|---|
| 282 | REAL,INTENT(out) :: pdq(ngrid,nlayer,nq) ! tracer tendencies (../kg/s) |
|---|
| 283 | REAL,INTENT(out) :: pdpsrf(ngrid) ! surface pressure tendency (Pa/s) |
|---|
| 284 | |
|---|
| 285 | c Local saved variables: |
|---|
| 286 | c ---------------------- |
|---|
| 287 | INTEGER,SAVE :: day_ini ! Initial date of the run (sol since Ls=0) |
|---|
| 288 | INTEGER,SAVE :: icount ! Counter of calls to physiq during the run. |
|---|
| 289 | REAL,SAVE :: time_phys |
|---|
| 290 | |
|---|
| 291 | !$OMP THREADPRIVATE(day_ini,icount,time_phys) |
|---|
| 292 | |
|---|
| 293 | #ifdef DUSTSTORM |
|---|
| 294 | REAL pq_tmp(ngrid, nlayer, 2) ! To compute tendencies due the dust bomb |
|---|
| 295 | #endif |
|---|
| 296 | |
|---|
| 297 | c Variables used by the water ice microphysical scheme: |
|---|
| 298 | REAL rice(ngrid,nlayer) ! Water ice geometric mean radius (m) |
|---|
| 299 | REAL nuice(ngrid,nlayer) ! Estimated effective variance |
|---|
| 300 | ! of the size distribution |
|---|
| 301 | real rsedcloud(ngrid,nlayer) ! Cloud sedimentation radius |
|---|
| 302 | real rhocloud(ngrid,nlayer) ! Cloud density (kg.m-3) |
|---|
| 303 | real rsedcloudco2(ngrid,nlayer) ! CO2 Cloud sedimentation radius |
|---|
| 304 | real rhocloudco2(ngrid,nlayer) ! CO2 Cloud density (kg.m-3) |
|---|
| 305 | real nuiceco2(ngrid,nlayer) ! Estimated effective variance of the |
|---|
| 306 | ! size distribution |
|---|
| 307 | REAL inertiesoil_tifeedback(ngrid,nsoilmx,nslope) ! Time varying subsurface |
|---|
| 308 | ! thermal inertia (J.s-1/2.m-2.K-1) |
|---|
| 309 | ! (used only when tifeedback surface or pore =.true.) |
|---|
| 310 | c Variables used by the CO2 clouds microphysical scheme: |
|---|
| 311 | DOUBLE PRECISION riceco2(ngrid,nlayer) ! co2 ice geometric mean radius (m) |
|---|
| 312 | real zdqssed_co2(ngrid) ! CO2 flux at the surface (kg.m-2.s-1) |
|---|
| 313 | real zdqssed_ccn(ngrid,nq) ! CCN flux at the surface (kg.m-2.s-1) |
|---|
| 314 | real, dimension(ngrid,nlayer) :: zcondicea_co2microp |
|---|
| 315 | c Variables used by the photochemistry |
|---|
| 316 | REAL surfdust(ngrid,nlayer) ! dust surface area (m2/m3, if photochemistry) |
|---|
| 317 | REAL surfice(ngrid,nlayer) ! ice surface area (m2/m3, if photochemistry) |
|---|
| 318 | c Variables used by the slope model |
|---|
| 319 | REAL sl_lct, sl_lat |
|---|
| 320 | REAL sl_tau, sl_alb, sl_the, sl_psi |
|---|
| 321 | REAL sl_fl0, sl_flu |
|---|
| 322 | REAL sl_ra, sl_di0 |
|---|
| 323 | REAL sky |
|---|
| 324 | REAL fluxsurf_dir_dn_sw(ngrid) ! Incident direct solar flux on Mars at surface (W.m-2) |
|---|
| 325 | |
|---|
| 326 | REAL,PARAMETER :: stephan = 5.67e-08 ! Stephan Boltzman constant |
|---|
| 327 | |
|---|
| 328 | c Local variables : |
|---|
| 329 | c ----------------- |
|---|
| 330 | REAL CBRT |
|---|
| 331 | EXTERNAL CBRT |
|---|
| 332 | |
|---|
| 333 | ! CHARACTER*80 fichier |
|---|
| 334 | INTEGER l,ig,ierr,igout,iq,isoil |
|---|
| 335 | |
|---|
| 336 | REAL fluxsurf_lw(ngrid,nslope) !incident LW (IR) surface flux (W.m-2) |
|---|
| 337 | REAL fluxsurf_dn_sw(ngrid,2,nslope) ! Incident SW (solar) surface flux (W.m-2) |
|---|
| 338 | REAL fluxsurf_up_sw(ngrid,2) ! Reflected SW (solar) surface flux (W.m-2) |
|---|
| 339 | REAL fluxtop_lw(ngrid) !Outgoing LW (IR) flux to space (W.m-2) |
|---|
| 340 | REAL fluxtop_dn_sw(ngrid,2) ! Incoming SW (solar) flux from space (W.m-2) |
|---|
| 341 | REAL fluxtop_up_sw(ngrid,2) ! Outgoing SW (solar) flux to space (W.m-2) |
|---|
| 342 | REAL tau_pref_scenario(ngrid) ! prescribed dust column visible opacity |
|---|
| 343 | ! at odpref |
|---|
| 344 | REAL IRtoVIScoef(ngrid) ! conversion coefficient to apply on |
|---|
| 345 | ! scenario absorption IR (9.3um) CDOD |
|---|
| 346 | ! = tau_pref_gcm_VIS / tau_pref_gcm_IR |
|---|
| 347 | REAL tau_pref_gcm(ngrid) ! dust column visible opacity at odpref in the GCM |
|---|
| 348 | c rocket dust storm |
|---|
| 349 | REAL totstormfract(ngrid) ! fraction of the mesh where the dust storm is contained |
|---|
| 350 | logical clearatm ! clearatm used to calculate twice the radiative |
|---|
| 351 | ! transfer when rdstorm is active : |
|---|
| 352 | ! - in a mesh with stormdust and background dust (false) |
|---|
| 353 | ! - in a mesh with background dust only (true) |
|---|
| 354 | c entrainment by mountain top dust flows |
|---|
| 355 | logical nohmons ! nohmons used to calculate twice the radiative |
|---|
| 356 | ! transfer when topflows is active : |
|---|
| 357 | ! - in a mesh with topdust and background dust (false) |
|---|
| 358 | ! - in a mesh with background dust only (true) |
|---|
| 359 | |
|---|
| 360 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
|---|
| 361 | ! AS: TBD: this one should be in a module ! |
|---|
| 362 | REAL zday ! date (time since Ls=0, in martian days) |
|---|
| 363 | REAL zzlay(ngrid,nlayer) ! altitude at the middle of the layers |
|---|
| 364 | REAL zzlev(ngrid,nlayer+1) ! altitude at layer boundaries |
|---|
| 365 | REAL gz(ngrid,nlayer) ! variation of g with altitude from aeroid surface |
|---|
| 366 | ! REAL latvl1,lonvl1 ! Viking Lander 1 point (for diagnostic) |
|---|
| 367 | |
|---|
| 368 | c Tendancies due to various processes: |
|---|
| 369 | REAL dqsurf(ngrid,nq,nslope) ! tendency for tracers on surface (Kg/m2/s) |
|---|
| 370 | REAL zdtlw(ngrid,nlayer) ! (K/s) |
|---|
| 371 | REAL zdtsw(ngrid,nlayer) ! (K/s) |
|---|
| 372 | REAL pdqrds(ngrid,nlayer,nq) ! tendency for dust after rocketduststorm |
|---|
| 373 | |
|---|
| 374 | REAL zdtnirco2(ngrid,nlayer) ! (K/s) |
|---|
| 375 | REAL zdtnlte(ngrid,nlayer) ! (K/s) |
|---|
| 376 | REAL zdtsurf(ngrid,nslope) ! (K/s) |
|---|
| 377 | REAL zdtcloud(ngrid,nlayer),zdtcloudco2(ngrid,nlayer) |
|---|
| 378 | REAL zdvdif(ngrid,nlayer),zdudif(ngrid,nlayer) ! (m.s-2) |
|---|
| 379 | REAL zdhdif(ngrid,nlayer), zdtsdif(ngrid,nslope) ! (K/s) |
|---|
| 380 | REAL zdvadj(ngrid,nlayer),zduadj(ngrid,nlayer) ! (m.s-2) |
|---|
| 381 | REAL zdhadj(ngrid,nlayer) ! (K/s) |
|---|
| 382 | REAL zdtgw(ngrid,nlayer) ! (K/s) |
|---|
| 383 | REAL zdugw(ngrid,nlayer),zdvgw(ngrid,nlayer) ! (m.s-2) |
|---|
| 384 | REAL zdtc(ngrid,nlayer),zdtsurfc(ngrid,nslope) |
|---|
| 385 | REAL zdvc(ngrid,nlayer),zduc(ngrid,nlayer) |
|---|
| 386 | |
|---|
| 387 | REAL zdqdif(ngrid,nlayer,nq), zdqsdif(ngrid,nq,nslope) |
|---|
| 388 | REAL zdqsed(ngrid,nlayer,nq), zdqssed(ngrid,nq) |
|---|
| 389 | REAL zdqdev(ngrid,nlayer,nq), zdqsdev(ngrid,nq) |
|---|
| 390 | REAL zdqadj(ngrid,nlayer,nq) |
|---|
| 391 | REAL zdqc(ngrid,nlayer,nq) |
|---|
| 392 | REAL zdqcloudco2(ngrid,nlayer,nq) |
|---|
| 393 | REAL zdqsc(ngrid,nq,nslope) |
|---|
| 394 | |
|---|
| 395 | REAL zdteuv(ngrid,nlayer) ! (K/s) |
|---|
| 396 | REAL zdtconduc(ngrid,nlayer) ! (K/s) |
|---|
| 397 | REAL zdumolvis(ngrid,nlayer) |
|---|
| 398 | REAL zdvmolvis(ngrid,nlayer) |
|---|
| 399 | real zdqmoldiff(ngrid,nlayer,nq) |
|---|
| 400 | real*8 PhiEscH,PhiEscH2,PhiEscD |
|---|
| 401 | |
|---|
| 402 | REAL dwatercap(ngrid,nslope), dwatercap_dif(ngrid,nslope) ! (kg/m-2) |
|---|
| 403 | |
|---|
| 404 | c Local variable for local intermediate calcul: |
|---|
| 405 | REAL zflubid(ngrid,nslope) |
|---|
| 406 | REAL zplanck(ngrid),zpopsk(ngrid,nlayer) |
|---|
| 407 | REAL zdum1(ngrid,nlayer) |
|---|
| 408 | REAL zdum2(ngrid,nlayer) |
|---|
| 409 | REAL ztim1,ztim2,ztim3, z1,z2 |
|---|
| 410 | REAL ztime_fin |
|---|
| 411 | REAL zdh(ngrid,nlayer) |
|---|
| 412 | REAL zh(ngrid,nlayer) ! potential temperature (K) |
|---|
| 413 | REAL pw(ngrid,nlayer) ! vertical velocity (m/s) (>0 when downwards) |
|---|
| 414 | INTEGER length |
|---|
| 415 | PARAMETER (length=100) |
|---|
| 416 | REAL tlaymean ! temporary value of mean layer temperature for zzlay |
|---|
| 417 | |
|---|
| 418 | c Variables for the total dust for diagnostics |
|---|
| 419 | REAL qdusttotal(ngrid,nlayer) !it equals to dust + stormdust |
|---|
| 420 | |
|---|
| 421 | c local variables only used for diagnostic (output in file "diagfi" or "stats") |
|---|
| 422 | c ----------------------------------------------------------------------------- |
|---|
| 423 | REAL ps(ngrid), zt(ngrid,nlayer) |
|---|
| 424 | REAL zu(ngrid,nlayer),zv(ngrid,nlayer) |
|---|
| 425 | REAL zq(ngrid,nlayer,nq) |
|---|
| 426 | |
|---|
| 427 | REAL fluxtop_dn_sw_tot(ngrid), fluxtop_up_sw_tot(ngrid) |
|---|
| 428 | REAL fluxsurf_dn_sw_tot(ngrid,nslope), fluxsurf_up_sw_tot(ngrid) |
|---|
| 429 | character*2 str2 |
|---|
| 430 | ! character*5 str5 |
|---|
| 431 | real zdtdif(ngrid,nlayer), zdtadj(ngrid,nlayer) |
|---|
| 432 | real rdust(ngrid,nlayer) ! dust geometric mean radius (m) |
|---|
| 433 | real rstormdust(ngrid,nlayer) ! stormdust geometric mean radius (m) |
|---|
| 434 | real rtopdust(ngrid,nlayer) ! topdust geometric mean radius (m) |
|---|
| 435 | integer igmin, lmin |
|---|
| 436 | |
|---|
| 437 | ! pplev and pplay are dynamical inputs and must not be modified in the physics. |
|---|
| 438 | ! instead, use zplay and zplev : |
|---|
| 439 | REAL zplev(ngrid,nlayer+1),zplay(ngrid,nlayer) |
|---|
| 440 | ! REAL zstress(ngrid),cd |
|---|
| 441 | real rho(ngrid,nlayer) ! density |
|---|
| 442 | real vmr(ngrid,nlayer) ! volume mixing ratio |
|---|
| 443 | real rhopart(ngrid,nlayer) ! number density of a given species |
|---|
| 444 | real colden(ngrid,nq) ! vertical column of tracers |
|---|
| 445 | real mass(nq) ! global mass of tracers (g) |
|---|
| 446 | REAL mtot(ngrid) ! Total mass of water vapor (kg/m2) |
|---|
| 447 | REAL mstormdtot(ngrid) ! Total mass of stormdust tracer (kg/m2) |
|---|
| 448 | REAL mdusttot(ngrid) ! Total mass of dust tracer (kg/m2) |
|---|
| 449 | REAL icetot(ngrid) ! Total mass of water ice (kg/m2) |
|---|
| 450 | REAL mtotco2(ngrid) ! Total mass of co2, including ice at the surface (kg/m2) |
|---|
| 451 | REAL vaptotco2(ngrid) ! Total mass of co2 vapor (kg/m2) |
|---|
| 452 | REAL icetotco2(ngrid) ! Total mass of co2 ice (kg/m2) |
|---|
| 453 | REAL Nccntot(ngrid) ! Total number of ccn (nbr/m2) |
|---|
| 454 | REAL Mccntot(ngrid) ! Total mass of ccn (kg/m2) |
|---|
| 455 | REAL rave(ngrid) ! Mean water ice effective radius (m) |
|---|
| 456 | REAL opTES(ngrid,nlayer) ! abs optical depth at 825 cm-1 |
|---|
| 457 | REAL tauTES(ngrid) ! column optical depth at 825 cm-1 |
|---|
| 458 | REAL Qabsice ! Water ice absorption coefficient |
|---|
| 459 | REAL taucloudtes(ngrid) ! Cloud opacity at infrared |
|---|
| 460 | ! reference wavelength using |
|---|
| 461 | ! Qabs instead of Qext |
|---|
| 462 | ! (direct comparison with TES) |
|---|
| 463 | REAL mtotD(ngrid) ! Total mass of HDO vapor (kg/m2) |
|---|
| 464 | REAL icetotD(ngrid) ! Total mass of HDO ice (kg/m2) |
|---|
| 465 | REAL DoH_vap(ngrid,nlayer) !D/H ratio |
|---|
| 466 | REAL DoH_ice(ngrid,nlayer) !D/H ratio |
|---|
| 467 | REAL DoH_surf(ngrid) !D/H ratio surface |
|---|
| 468 | |
|---|
| 469 | REAL dqdustsurf(ngrid) ! surface q dust flux (kg/m2/s) |
|---|
| 470 | REAL dndustsurf(ngrid) ! surface n dust flux (number/m2/s) |
|---|
| 471 | REAL ndust(ngrid,nlayer) ! true n dust (kg/kg) |
|---|
| 472 | REAL qdust(ngrid,nlayer) ! true q dust (kg/kg) |
|---|
| 473 | REAL nccn(ngrid,nlayer) ! true n ccn (kg/kg) |
|---|
| 474 | REAL qccn(ngrid,nlayer) ! true q ccn (kg/kg) |
|---|
| 475 | c definition tendancies of stormdust tracers |
|---|
| 476 | REAL rdsdqdustsurf(ngrid) ! surface q stormdust flux (kg/m2/s) |
|---|
| 477 | REAL rdsdndustsurf(ngrid) ! surface n stormdust flux (number/m2/s) |
|---|
| 478 | REAL rdsndust(ngrid,nlayer) ! true n stormdust (kg/kg) |
|---|
| 479 | REAL rdsqdust(ngrid,nlayer) ! true q stormdust (kg/kg) |
|---|
| 480 | REAL wspeed(ngrid,nlayer+1) ! vertical velocity stormdust tracer |
|---|
| 481 | REAL wtop(ngrid,nlayer+1) ! vertical velocity topdust tracer |
|---|
| 482 | REAL dsodust(ngrid,nlayer) ! density scaled opacity for background dust |
|---|
| 483 | REAL dsords(ngrid,nlayer) ! density scaled opacity for stormdust |
|---|
| 484 | REAL dsotop(ngrid,nlayer) ! density scaled opacity for topdust |
|---|
| 485 | |
|---|
| 486 | c Test 1d/3d scavenging |
|---|
| 487 | REAL satu(ngrid,nlayer) ! satu ratio for output |
|---|
| 488 | REAL zqsat(ngrid,nlayer) ! saturation |
|---|
| 489 | |
|---|
| 490 | ! Added for new NLTE scheme |
|---|
| 491 | real co2vmr_gcm(ngrid,nlayer) |
|---|
| 492 | real n2vmr_gcm(ngrid,nlayer) |
|---|
| 493 | real ovmr_gcm(ngrid,nlayer) |
|---|
| 494 | real covmr_gcm(ngrid,nlayer) |
|---|
| 495 | integer ierr_nlte |
|---|
| 496 | real*8 varerr |
|---|
| 497 | |
|---|
| 498 | c Non-oro GW tendencies |
|---|
| 499 | REAL d_u_hin(ngrid,nlayer), d_v_hin(ngrid,nlayer) |
|---|
| 500 | REAL d_t_hin(ngrid,nlayer) |
|---|
| 501 | REAL d_u_mix(ngrid,nlayer), d_v_mix(ngrid,nlayer) |
|---|
| 502 | REAL d_t_mix(ngrid,nlayer), zdq_mix(ngrid,nlayer,nq) |
|---|
| 503 | |
|---|
| 504 | c Diagnostics 2D of gw_nonoro |
|---|
| 505 | REAL zustrhi(ngrid), zvstrhi(ngrid) |
|---|
| 506 | c Variables for PBL |
|---|
| 507 | REAL zz1(ngrid) |
|---|
| 508 | REAL lmax_th_out(ngrid) |
|---|
| 509 | REAL pdu_th(ngrid,nlayer),pdv_th(ngrid,nlayer) |
|---|
| 510 | REAL pdt_th(ngrid,nlayer),pdq_th(ngrid,nlayer,nq) |
|---|
| 511 | INTEGER lmax_th(ngrid),n_out,n |
|---|
| 512 | CHARACTER(50) zstring |
|---|
| 513 | REAL dtke_th(ngrid,nlayer+1) |
|---|
| 514 | REAL, ALLOCATABLE, DIMENSION(:,:) :: T_out |
|---|
| 515 | REAL, ALLOCATABLE, DIMENSION(:,:) :: u_out ! Interpolated teta and u at z_out |
|---|
| 516 | REAL u_out1(ngrid) |
|---|
| 517 | REAL T_out1(ngrid) |
|---|
| 518 | REAL, ALLOCATABLE, DIMENSION(:) :: z_out ! height of interpolation between z0 and z1 [meters] |
|---|
| 519 | REAL tstar(ngrid) ! friction velocity and friction potential temp |
|---|
| 520 | REAL vhf(ngrid), vvv(ngrid) |
|---|
| 521 | real qdustrds0(ngrid,nlayer),qdustrds1(ngrid,nlayer) |
|---|
| 522 | real qstormrds0(ngrid,nlayer),qstormrds1(ngrid,nlayer) |
|---|
| 523 | real qdusttotal0(ngrid),qdusttotal1(ngrid) |
|---|
| 524 | |
|---|
| 525 | c sub-grid scale water ice clouds (A. Pottier 2013) |
|---|
| 526 | logical clearsky |
|---|
| 527 | ! flux for the part without clouds |
|---|
| 528 | real zdtswclf(ngrid,nlayer) |
|---|
| 529 | real zdtlwclf(ngrid,nlayer) |
|---|
| 530 | real fluxsurf_lwclf(ngrid) |
|---|
| 531 | real fluxsurf_dn_swclf(ngrid,2),fluxsurf_up_swclf(ngrid,2) |
|---|
| 532 | real fluxtop_lwclf(ngrid) |
|---|
| 533 | real fluxtop_dn_swclf(ngrid,2),fluxtop_up_swclf(ngrid,2) |
|---|
| 534 | real taucloudtesclf(ngrid) |
|---|
| 535 | real tf_clf, ntf_clf ! tf: fraction of clouds, ntf: fraction without clouds |
|---|
| 536 | real rave2(ngrid), totrave2(ngrid) ! Mean water ice mean radius (m) |
|---|
| 537 | C test de conservation de la masse de CO2 |
|---|
| 538 | REAL co2totA |
|---|
| 539 | REAL co2totB |
|---|
| 540 | REAL co2conservation |
|---|
| 541 | |
|---|
| 542 | c entrainment by mountain top dust flows above sub-grid scale topography |
|---|
| 543 | REAL pdqtop(ngrid,nlayer,nq) ! tendency for dust after topmons |
|---|
| 544 | |
|---|
| 545 | c when no startfi file is asked for init |
|---|
| 546 | real alpha,lay1 ! coefficients for building layers |
|---|
| 547 | integer iloop |
|---|
| 548 | |
|---|
| 549 | ! flags to trigger extra sanity checks |
|---|
| 550 | logical,save :: check_physics_inputs=.false. |
|---|
| 551 | logical,save :: check_physics_outputs=.false. |
|---|
| 552 | |
|---|
| 553 | !$OMP THREADPRIVATE(check_physics_inputs,check_physics_outputs) |
|---|
| 554 | |
|---|
| 555 | c Sub-grid scale slopes |
|---|
| 556 | real :: tsurf_meshavg(ngrid) ! Surface temperature grid box averaged [K] |
|---|
| 557 | real :: albedo_meshavg(ngrid,2) ! albedo temperature grid box averaged [1] |
|---|
| 558 | real :: emis_meshavg(ngrid,2) ! emis temperature grid box averaged [1] |
|---|
| 559 | real :: qsurf_meshavg(ngrid,nq) ! surface tracer mesh averaged [kg/m^2] |
|---|
| 560 | real :: qsurf_tmp(ngrid,nq) ! temporary qsurf for chimie |
|---|
| 561 | integer :: islope |
|---|
| 562 | real :: zdqsdif_meshavg_tmp(ngrid,nq) ! temporary for dust lifting |
|---|
| 563 | |
|---|
| 564 | logical :: write_restart |
|---|
| 565 | |
|---|
| 566 | ! Variable for ice table |
|---|
| 567 | REAL :: rhowater_surf(ngrid,nslope) ! Water density at the surface [kg/m^3] |
|---|
| 568 | REAL :: rhowater_surf_sat(ngrid,nslope) ! Water density at the surface at saturation [kg/m^3] |
|---|
| 569 | REAL :: rhowater_soil(ngrid,nsoilmx,nslope) ! Water density in soil layers [kg/m^3] |
|---|
| 570 | REAL,PARAMETER :: alpha_clap_h2o = 28.9074 ! Coeff for Clapeyron law [/] |
|---|
| 571 | REAL,PARAMETER :: beta_clap_h2o = -6143.7 ! Coeff for Clapeyron law [K] |
|---|
| 572 | REAL :: pvap_surf(ngrid) ! Water vapor partial pressure in first layer [Pa] |
|---|
| 573 | REAL,PARAMETER :: m_co2 = 44.01E-3 ! CO2 molecular mass [kg/mol] |
|---|
| 574 | REAL,PARAMETER :: m_noco2 = 33.37E-3 ! Non condensible mol mass [kg/mol] |
|---|
| 575 | REAL :: ztmp1,ztmp2 ! intermediate variables to compute the mean molar mass of the layer |
|---|
| 576 | REAL :: pore_icefraction(ngrid,nsoilmx,nslope) ! ice filling fraction in the pores |
|---|
| 577 | ! Variable for the computation of the TKE with parameterization from ATKE working group |
|---|
| 578 | REAL :: viscom ! kinematic molecular viscosity for momentum |
|---|
| 579 | REAL :: viscoh ! kinematic molecular viscosity for heat |
|---|
| 580 | |
|---|
| 581 | c======================================================================= |
|---|
| 582 | pdq(:,:,:) = 0. |
|---|
| 583 | |
|---|
| 584 | c 1. Initialisation: |
|---|
| 585 | c ----------------- |
|---|
| 586 | c 1.1 Initialisation only at first call |
|---|
| 587 | c --------------------------------------- |
|---|
| 588 | IF (firstcall) THEN |
|---|
| 589 | |
|---|
| 590 | call getin_p("check_physics_inputs",check_physics_inputs) |
|---|
| 591 | call getin_p("check_physics_outputs",check_physics_outputs) |
|---|
| 592 | |
|---|
| 593 | c variables set to 0 |
|---|
| 594 | c ~~~~~~~~~~~~~~~~~~ |
|---|
| 595 | aerosol(:,:,:)=0 |
|---|
| 596 | dtrad(:,:)=0 |
|---|
| 597 | |
|---|
| 598 | #ifndef MESOSCALE |
|---|
| 599 | fluxrad(:,:)=0 |
|---|
| 600 | wstar(:)=0. |
|---|
| 601 | #endif |
|---|
| 602 | |
|---|
| 603 | #ifdef CPP_XIOS |
|---|
| 604 | ! Initialize XIOS context |
|---|
| 605 | write(*,*) "physiq: call wxios_context_init" |
|---|
| 606 | CALL wxios_context_init |
|---|
| 607 | #endif |
|---|
| 608 | |
|---|
| 609 | c read startfi |
|---|
| 610 | c ~~~~~~~~~~~~ |
|---|
| 611 | #ifndef MESOSCALE |
|---|
| 612 | |
|---|
| 613 | ! GCM. Read netcdf initial physical parameters. |
|---|
| 614 | CALL phyetat0 ("startfi.nc",0,0, |
|---|
| 615 | & nsoilmx,ngrid,nlayer,nq,nqsoil, |
|---|
| 616 | & day_ini,time_phys, |
|---|
| 617 | & tsurf,tsoil,albedo,emis, |
|---|
| 618 | & q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar, |
|---|
| 619 | & watercap,perennial_co2ice, |
|---|
| 620 | & def_slope,def_slope_mean,subslope_dist) |
|---|
| 621 | |
|---|
| 622 | ! Sky view: |
|---|
| 623 | DO islope=1,nslope |
|---|
| 624 | sky_slope(islope) = (1.+cos(pi*def_slope_mean(islope)/180.))/2. |
|---|
| 625 | END DO |
|---|
| 626 | ! Determine the 'flatest' slopes |
|---|
| 627 | iflat = 1 |
|---|
| 628 | DO islope=2,nslope |
|---|
| 629 | IF(abs(def_slope_mean(islope)).lt. |
|---|
| 630 | & abs(def_slope_mean(iflat)))THEN |
|---|
| 631 | iflat = islope |
|---|
| 632 | ENDIF |
|---|
| 633 | ENDDO |
|---|
| 634 | write(*,*)'Flat slope for islope = ',iflat |
|---|
| 635 | write(*,*)'corresponding criterium = ',def_slope_mean(iflat) |
|---|
| 636 | |
|---|
| 637 | #else |
|---|
| 638 | ! MESOSCALE. Supposedly everything is already set in modules. |
|---|
| 639 | ! So we just check. And we fill day_ini |
|---|
| 640 | write(*,*)"check: --- in physiq.F" |
|---|
| 641 | write(*,*)"check: rad,cpp,g,r,rcp,daysec" |
|---|
| 642 | write(*,*)rad,cpp,g,r,rcp,daysec |
|---|
| 643 | write(*,*)'check: tsurf ',tsurf(1,:),tsurf(ngrid,:) |
|---|
| 644 | write(*,*)'check: tsoil ',tsoil(1,1,:),tsoil(ngrid,nsoilmx,:) |
|---|
| 645 | write(*,*)'check: inert ',inertiedat(1,1),inertiedat(ngrid,nsoilmx) |
|---|
| 646 | write(*,*)'check: midlayer,layer ', mlayer(:),layer(:) |
|---|
| 647 | write(*,*)'check: tracernames ', noms |
|---|
| 648 | write(*,*)'check: emis ',emis(1,:),emis(ngrid,:) |
|---|
| 649 | write(*,*)'check: q2 ',q2(1,1),q2(ngrid,nlayer+1) |
|---|
| 650 | write(*,*)'check: qsurf ',qsurf(1,1,:),qsurf(ngrid,nq,:) |
|---|
| 651 | write(*,*)'check: co2ice ',qsurf(1,igcm_co2,:),qsurf(ngrid,igcm_co2,:) |
|---|
| 652 | !!! |
|---|
| 653 | day_ini = pday |
|---|
| 654 | !!! a couple initializations (dummy for mesoscale) done in phyetat0 |
|---|
| 655 | !!! --- maybe this should be done in update_inputs_physiq_mod |
|---|
| 656 | |
|---|
| 657 | tauscaling(:)=1.0 !! probably important |
|---|
| 658 | totcloudfrac(:)=1.0 |
|---|
| 659 | DO islope = 1,nslope |
|---|
| 660 | albedo(:,1,islope)=albedodat(:) |
|---|
| 661 | albedo(:,2,islope)=albedo(:,1,islope) |
|---|
| 662 | inertiesoil(:,:,islope) = inertiedat(:,:) |
|---|
| 663 | watercap(:,:)=0.0 |
|---|
| 664 | ENDDO |
|---|
| 665 | #endif |
|---|
| 666 | #ifndef MESOSCALE |
|---|
| 667 | if (.not.startphy_file) then |
|---|
| 668 | ! starting without startfi.nc and with callsoil |
|---|
| 669 | ! is not yet possible as soildepth default is not defined |
|---|
| 670 | if (callsoil) then |
|---|
| 671 | ! default mlayer distribution, following a power law: |
|---|
| 672 | ! mlayer(k)=lay1*alpha**(k-1/2) |
|---|
| 673 | lay1=2.e-4 |
|---|
| 674 | alpha=2 |
|---|
| 675 | do iloop=0,nsoilmx-1 |
|---|
| 676 | mlayer(iloop)=lay1*(alpha**(iloop-0.5)) |
|---|
| 677 | enddo |
|---|
| 678 | lay1=sqrt(mlayer(0)*mlayer(1)) |
|---|
| 679 | alpha=mlayer(1)/mlayer(0) |
|---|
| 680 | do iloop=1,nsoilmx |
|---|
| 681 | layer(iloop)=lay1*(alpha**(iloop-1)) |
|---|
| 682 | enddo |
|---|
| 683 | endif |
|---|
| 684 | ! additionnal "academic" initialization of physics |
|---|
| 685 | do islope = 1,nslope |
|---|
| 686 | tsurf(:,islope)=pt(:,1) |
|---|
| 687 | enddo |
|---|
| 688 | write(*,*) "Physiq: initializing tsoil(:) to pt(:,1) !!" |
|---|
| 689 | do isoil=1,nsoilmx |
|---|
| 690 | tsoil(1:ngrid,isoil,:)=tsurf(1:ngrid,:) |
|---|
| 691 | enddo |
|---|
| 692 | write(*,*) "Physiq: initializing inertiedat !!" |
|---|
| 693 | inertiedat(:,:)=400. |
|---|
| 694 | inertiesoil(:,:,:)=400. |
|---|
| 695 | write(*,*) "Physiq: initializing day_ini to pdat !" |
|---|
| 696 | day_ini=pday |
|---|
| 697 | endif |
|---|
| 698 | #endif |
|---|
| 699 | if (pday.ne.day_ini) then |
|---|
| 700 | write(*,*) "PHYSIQ: ERROR: bad synchronization between ", |
|---|
| 701 | & "physics and dynamics" |
|---|
| 702 | write(*,*) "dynamics day [pday]: ",pday |
|---|
| 703 | write(*,*) "physics day [day_ini]: ",day_ini |
|---|
| 704 | call abort_physic("physiq","dynamics day /= physics day",1) |
|---|
| 705 | endif |
|---|
| 706 | |
|---|
| 707 | write (*,*) 'In physiq day_ini =', day_ini |
|---|
| 708 | |
|---|
| 709 | c initialize tracers |
|---|
| 710 | c ~~~~~~~~~~~~~~~~~~ |
|---|
| 711 | CALL initracer(ngrid,nq,qsurf) |
|---|
| 712 | |
|---|
| 713 | c Initialize albedo and orbital calculation |
|---|
| 714 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 715 | CALL surfini(ngrid,nslope,qsurf) |
|---|
| 716 | CALL iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
|---|
| 717 | c initialize soil |
|---|
| 718 | c ~~~~~~~~~~~~~~~ |
|---|
| 719 | IF (callsoil) THEN |
|---|
| 720 | c Thermal inertia feedback: |
|---|
| 721 | IF (surfaceice_tifeedback.or.poreice_tifeedback) THEN |
|---|
| 722 | DO islope = 1,nslope |
|---|
| 723 | CALL waterice_tifeedback(ngrid,nsoilmx,nslope, |
|---|
| 724 | s qsurf(:,igcm_h2o_ice,:),pore_icefraction, |
|---|
| 725 | s inertiesoil_tifeedback) |
|---|
| 726 | ENDDO |
|---|
| 727 | CALL soil(ngrid,nsoilmx,firstcall, |
|---|
| 728 | s inertiesoil_tifeedback, |
|---|
| 729 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
|---|
| 730 | ELSE |
|---|
| 731 | CALL soil(ngrid,nsoilmx,firstcall,inertiesoil, |
|---|
| 732 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
|---|
| 733 | ENDIF ! of IF (tifeedback) |
|---|
| 734 | ELSE |
|---|
| 735 | write(*,*) |
|---|
| 736 | & 'PHYSIQ WARNING! Thermal conduction in the soil turned off' |
|---|
| 737 | DO ig=1,ngrid |
|---|
| 738 | capcal(ig,:)=1.e5 |
|---|
| 739 | fluxgrd(ig,:)=0. |
|---|
| 740 | ENDDO |
|---|
| 741 | ENDIF |
|---|
| 742 | icount=1 |
|---|
| 743 | |
|---|
| 744 | #ifndef MESOSCALE |
|---|
| 745 | c Initialize thermospheric parameters |
|---|
| 746 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 747 | |
|---|
| 748 | if (callthermos) then |
|---|
| 749 | call fill_data_thermos |
|---|
| 750 | call allocate_param_thermos(nlayer) |
|---|
| 751 | call allocate_param_iono(nlayer,nreact) |
|---|
| 752 | call param_read_e107 |
|---|
| 753 | endif |
|---|
| 754 | #endif |
|---|
| 755 | |
|---|
| 756 | c Initialize rnew cpnew and mmean as constant |
|---|
| 757 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 758 | call init_r_cp_mu(ngrid,nlayer) |
|---|
| 759 | |
|---|
| 760 | if(callnlte.and.nltemodel.eq.2) call nlte_setup |
|---|
| 761 | if(callnirco2.and.nircorr.eq.1) call NIR_leedat |
|---|
| 762 | |
|---|
| 763 | |
|---|
| 764 | IF (water.AND.(ngrid.NE.1)) THEN |
|---|
| 765 | write(*,*)"physiq: water_param Surface water frost albedo:", |
|---|
| 766 | . albedo_h2o_frost |
|---|
| 767 | write(*,*)"physiq: water_param Surface watercap albedo:", |
|---|
| 768 | . albedo_h2o_cap |
|---|
| 769 | ENDIF |
|---|
| 770 | |
|---|
| 771 | #ifndef MESOSCALE |
|---|
| 772 | ! no need to compute slopes when in 1D; it is an input |
|---|
| 773 | if (ngrid /= 1 .and. callslope) call getslopes(ngrid,phisfi) |
|---|
| 774 | if (ecritstart.GT.0) then |
|---|
| 775 | call physdem0("restartfi.nc",longitude,latitude, |
|---|
| 776 | & nsoilmx,ngrid,nlayer,nq, |
|---|
| 777 | & ptimestep,pday,0.,cell_area, |
|---|
| 778 | & albedodat,inertiedat,def_slope, |
|---|
| 779 | & subslope_dist) |
|---|
| 780 | else |
|---|
| 781 | call physdem0("restartfi.nc",longitude,latitude, |
|---|
| 782 | & nsoilmx,ngrid,nlayer,nq, |
|---|
| 783 | & ptimestep,float(day_end),0.,cell_area, |
|---|
| 784 | & albedodat,inertiedat,def_slope, |
|---|
| 785 | & subslope_dist) |
|---|
| 786 | endif |
|---|
| 787 | |
|---|
| 788 | c Initialize mountain mesh fraction for the entrainment by top flows param. |
|---|
| 789 | c ~~~~~~~~~~~~~~~ |
|---|
| 790 | if (topflows) call topmons_setup(ngrid) |
|---|
| 791 | |
|---|
| 792 | c Parameterization of the ATKE routine |
|---|
| 793 | c ~~~~~~~~~~~~~~~ |
|---|
| 794 | if (callatke) then |
|---|
| 795 | viscom = 0.001 |
|---|
| 796 | viscoh = 0.001 |
|---|
| 797 | CALL atke_ini(g, r, pi, cpp, 0., viscom, viscoh) |
|---|
| 798 | endif |
|---|
| 799 | |
|---|
| 800 | #endif |
|---|
| 801 | |
|---|
| 802 | #ifdef CPP_XIOS |
|---|
| 803 | ! XIOS outputs |
|---|
| 804 | write(*,*) "physiq firstcall: call initialize_xios_output" |
|---|
| 805 | call initialize_xios_output(pday,ptime,ptimestep,daysec, |
|---|
| 806 | & presnivs,pseudoalt,mlayer) |
|---|
| 807 | #endif |
|---|
| 808 | ENDIF ! (end of "if firstcall") |
|---|
| 809 | |
|---|
| 810 | if (check_physics_inputs) then |
|---|
| 811 | ! Check the validity of input fields coming from the dynamics |
|---|
| 812 | call check_physics_fields("begin physiq:",pt,pu,pv,pplev,pq) |
|---|
| 813 | endif |
|---|
| 814 | |
|---|
| 815 | c --------------------------------------------------- |
|---|
| 816 | c 1.2 Initializations done at every physical timestep: |
|---|
| 817 | c --------------------------------------------------- |
|---|
| 818 | c |
|---|
| 819 | #ifdef CPP_XIOS |
|---|
| 820 | ! update XIOS time/calendar |
|---|
| 821 | call update_xios_timestep |
|---|
| 822 | #endif |
|---|
| 823 | |
|---|
| 824 | c Initialize various variables |
|---|
| 825 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 826 | pdv(:,:)=0 |
|---|
| 827 | pdu(:,:)=0 |
|---|
| 828 | pdt(:,:)=0 |
|---|
| 829 | pdq(:,:,:)=0 |
|---|
| 830 | pdpsrf(:)=0 |
|---|
| 831 | zflubid(:,:)=0 |
|---|
| 832 | zdtsurf(:,:)=0 |
|---|
| 833 | dqsurf(:,:,:)=0 |
|---|
| 834 | dsodust(:,:)=0. |
|---|
| 835 | dsords(:,:)=0. |
|---|
| 836 | dsotop(:,:)=0. |
|---|
| 837 | dwatercap(:,:)=0 |
|---|
| 838 | |
|---|
| 839 | call compute_meshgridavg(ngrid,nq,albedo,emis,tsurf,qsurf, |
|---|
| 840 | & albedo_meshavg,emis_meshavg,tsurf_meshavg,qsurf_meshavg) |
|---|
| 841 | |
|---|
| 842 | ! Dust scenario conversion coefficient from IRabs to VISext |
|---|
| 843 | IRtoVIScoef(1:ngrid)=2.6 ! initialized with former value from Montabone et al 2015 |
|---|
| 844 | ! recomputed in aeropacity if reff_driven_IRtoVIS_scenario=.true. |
|---|
| 845 | |
|---|
| 846 | #ifdef DUSTSTORM |
|---|
| 847 | pq_tmp(:,:,:)=0 |
|---|
| 848 | #endif |
|---|
| 849 | igout=ngrid/2+1 |
|---|
| 850 | |
|---|
| 851 | |
|---|
| 852 | zday=pday+ptime ! compute time, in sols (and fraction thereof) |
|---|
| 853 | ! Compute local time at each grid point |
|---|
| 854 | DO ig=1,ngrid |
|---|
| 855 | local_time(ig)=modulo(1.+(zday-INT(zday)) |
|---|
| 856 | & +(longitude_deg(ig)/15)/24,1.) |
|---|
| 857 | ENDDO |
|---|
| 858 | c Compute Solar Longitude (Ls) : |
|---|
| 859 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 860 | if (season) then |
|---|
| 861 | call solarlong(zday,zls) |
|---|
| 862 | else |
|---|
| 863 | call solarlong(float(day_ini),zls) |
|---|
| 864 | end if |
|---|
| 865 | |
|---|
| 866 | c Initialize pressure levels |
|---|
| 867 | c ~~~~~~~~~~~~~~~~~~ |
|---|
| 868 | zplev(:,:) = pplev(:,:) |
|---|
| 869 | zplay(:,:) = pplay(:,:) |
|---|
| 870 | ps(:) = pplev(:,1) |
|---|
| 871 | |
|---|
| 872 | #ifndef MESOSCALE |
|---|
| 873 | c----------------------------------------------------------------------- |
|---|
| 874 | c 1.2.1 Compute mean mass, cp, and R |
|---|
| 875 | c update_r_cp_mu_ak outputs rnew(ngrid,nlayer), cpnew(ngrid,nlayer) |
|---|
| 876 | c , mmean(ngrid,nlayer) and Akknew(ngrid,nlayer) |
|---|
| 877 | c -------------------------------- |
|---|
| 878 | |
|---|
| 879 | if(photochem.or.callthermos) then |
|---|
| 880 | call update_r_cp_mu_ak(ngrid,nlayer,nq, |
|---|
| 881 | & zplay,pt,pdt,pq,pdq,ptimestep) |
|---|
| 882 | endif |
|---|
| 883 | #endif |
|---|
| 884 | |
|---|
| 885 | c Compute geopotential at interlayers |
|---|
| 886 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 887 | c ponderation des altitudes au niveau des couches en dp/p |
|---|
| 888 | cc ------------------------------------------ |
|---|
| 889 | !Calculation zzlev & zzlay for first layer |
|---|
| 890 | DO ig=1,ngrid |
|---|
| 891 | zzlay(ig,1)=-(log(pplay(ig,1)/ps(ig)))*rnew(ig,1)*pt(ig,1)/g |
|---|
| 892 | zzlev(ig,1)=0 |
|---|
| 893 | zzlev(ig,nlayer+1)=1.e7 ! dummy top of last layer above 10000 km... |
|---|
| 894 | gz(ig,1)=g |
|---|
| 895 | |
|---|
| 896 | DO l=2,nlayer |
|---|
| 897 | ! compute "mean" temperature of the layer |
|---|
| 898 | if(pt(ig,l) .eq. pt(ig,l-1)) then |
|---|
| 899 | tlaymean=pt(ig,l) |
|---|
| 900 | else |
|---|
| 901 | tlaymean=(pt(ig,l)- pt(ig,l-1))/log(pt(ig,l)/pt(ig,l-1)) |
|---|
| 902 | endif |
|---|
| 903 | |
|---|
| 904 | ! compute gravitational acceleration (at altitude zaeroid(nlayer-1)) |
|---|
| 905 | gz(ig,l)=g*(rad**2)/(rad+zzlay(ig,l-1)+(phisfi(ig)/g))**2 |
|---|
| 906 | |
|---|
| 907 | zzlay(ig,l)=zzlay(ig,l-1)- |
|---|
| 908 | & (log(pplay(ig,l)/pplay(ig,l-1))*rnew(ig,l)*tlaymean/gz(ig,l)) |
|---|
| 909 | |
|---|
| 910 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
|---|
| 911 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
|---|
| 912 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
|---|
| 913 | ENDDO |
|---|
| 914 | ENDDO |
|---|
| 915 | |
|---|
| 916 | ! Potential temperature calculation not the same in physiq and dynamic |
|---|
| 917 | |
|---|
| 918 | c Compute potential temperature |
|---|
| 919 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 920 | DO l=1,nlayer |
|---|
| 921 | DO ig=1,ngrid |
|---|
| 922 | zpopsk(ig,l)=(zplay(ig,l)/zplev(ig,1))**rcp |
|---|
| 923 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
|---|
| 924 | ENDDO |
|---|
| 925 | ENDDO |
|---|
| 926 | |
|---|
| 927 | |
|---|
| 928 | ! Compute vertical velocity (m/s) from vertical mass flux |
|---|
| 929 | ! w = F / (rho*area) and rho = P/(r*T) |
|---|
| 930 | ! but first linearly interpolate mass flux to mid-layers |
|---|
| 931 | do l=1,nlayer-1 |
|---|
| 932 | pw(1:ngrid,l)=0.5*(flxw(1:ngrid,l)+flxw(1:ngrid,l+1)) |
|---|
| 933 | enddo |
|---|
| 934 | pw(1:ngrid,nlayer)=0.5*flxw(1:ngrid,nlayer) ! since flxw(nlayer+1)=0 |
|---|
| 935 | do l=1,nlayer |
|---|
| 936 | pw(1:ngrid,l)=(pw(1:ngrid,l)*r*pt(1:ngrid,l)) / |
|---|
| 937 | & (pplay(1:ngrid,l)*cell_area(1:ngrid)) |
|---|
| 938 | ! NB: here we use r and not rnew since this diagnostic comes |
|---|
| 939 | ! from the dynamics |
|---|
| 940 | enddo |
|---|
| 941 | |
|---|
| 942 | ! test for co2 conservation with co2 microphysics |
|---|
| 943 | if (igcm_co2_ice.ne.0) then |
|---|
| 944 | ! calculates the amount of co2 at the beginning of physics |
|---|
| 945 | co2totA = 0. |
|---|
| 946 | do ig=1,ngrid |
|---|
| 947 | do l=1,nlayer |
|---|
| 948 | co2totA = co2totA + (zplev(ig,l)-zplev(ig,l+1))/g* |
|---|
| 949 | & (pq(ig,l,igcm_co2)+pq(ig,l,igcm_co2_ice) |
|---|
| 950 | & +(pdq(ig,l,igcm_co2)+pdq(ig,l,igcm_co2_ice))*ptimestep) |
|---|
| 951 | end do |
|---|
| 952 | do islope = 1,nslope |
|---|
| 953 | co2totA = co2totA + qsurf(ig,igcm_co2,islope)* |
|---|
| 954 | & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
|---|
| 955 | enddo |
|---|
| 956 | end do |
|---|
| 957 | else |
|---|
| 958 | co2totA = 0. |
|---|
| 959 | do ig=1,ngrid |
|---|
| 960 | do l=1,nlayer |
|---|
| 961 | co2totA = co2totA + (zplev(ig,l)-zplev(ig,l+1))/g* |
|---|
| 962 | & (pq(ig,l,igcm_co2) |
|---|
| 963 | & +pdq(ig,l,igcm_co2)*ptimestep) |
|---|
| 964 | end do |
|---|
| 965 | do islope = 1,nslope |
|---|
| 966 | co2totA = co2totA + qsurf(ig,igcm_co2,islope)* |
|---|
| 967 | & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
|---|
| 968 | enddo |
|---|
| 969 | end do |
|---|
| 970 | endif ! of if (igcm_co2_ice.ne.0) |
|---|
| 971 | c----------------------------------------------------------------------- |
|---|
| 972 | c 2. Compute radiative tendencies : |
|---|
| 973 | c------------------------------------ |
|---|
| 974 | |
|---|
| 975 | IF (callrad) THEN |
|---|
| 976 | |
|---|
| 977 | c Local Solar zenith angle |
|---|
| 978 | c ~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 979 | |
|---|
| 980 | CALL orbite(zls,dist_sol,declin) |
|---|
| 981 | |
|---|
| 982 | IF (diurnal) THEN |
|---|
| 983 | ztim1=SIN(declin) |
|---|
| 984 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
|---|
| 985 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
|---|
| 986 | |
|---|
| 987 | CALL solang(ngrid,sinlon,coslon,sinlat,coslat, |
|---|
| 988 | & ztim1,ztim2,ztim3, mu0,fract) |
|---|
| 989 | |
|---|
| 990 | ELSE |
|---|
| 991 | CALL mucorr(ngrid,declin,latitude,mu0,fract,10000.,rad) |
|---|
| 992 | ENDIF ! of IF (diurnal) |
|---|
| 993 | |
|---|
| 994 | IF( MOD(icount-1,iradia).EQ.0) THEN |
|---|
| 995 | |
|---|
| 996 | c NLTE cooling from CO2 emission |
|---|
| 997 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 998 | IF(callnlte) then |
|---|
| 999 | if(nltemodel.eq.0.or.nltemodel.eq.1) then |
|---|
| 1000 | CALL nltecool(ngrid,nlayer,nq,zplay,pt,pq,zdtnlte) |
|---|
| 1001 | else if(nltemodel.eq.2) then |
|---|
| 1002 | co2vmr_gcm(1:ngrid,1:nlayer)= |
|---|
| 1003 | & pq(1:ngrid,1:nlayer,igcm_co2)* |
|---|
| 1004 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co2) |
|---|
| 1005 | n2vmr_gcm(1:ngrid,1:nlayer)= |
|---|
| 1006 | & pq(1:ngrid,1:nlayer,igcm_n2)* |
|---|
| 1007 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_n2) |
|---|
| 1008 | covmr_gcm(1:ngrid,1:nlayer)= |
|---|
| 1009 | & pq(1:ngrid,1:nlayer,igcm_co)* |
|---|
| 1010 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co) |
|---|
| 1011 | ovmr_gcm(1:ngrid,1:nlayer)= |
|---|
| 1012 | & pq(1:ngrid,1:nlayer,igcm_o)* |
|---|
| 1013 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_o) |
|---|
| 1014 | |
|---|
| 1015 | CALL nlte_tcool(ngrid,nlayer,zplay*9.869e-6, |
|---|
| 1016 | $ pt,zzlay,co2vmr_gcm, n2vmr_gcm, covmr_gcm, |
|---|
| 1017 | $ ovmr_gcm, zdtnlte,ierr_nlte,varerr ) |
|---|
| 1018 | if(ierr_nlte.gt.0) then |
|---|
| 1019 | write(*,*) |
|---|
| 1020 | $ 'WARNING: nlte_tcool output with error message', |
|---|
| 1021 | $ 'ierr_nlte=',ierr_nlte,'varerr=',varerr |
|---|
| 1022 | write(*,*)'I will continue anyway' |
|---|
| 1023 | endif |
|---|
| 1024 | |
|---|
| 1025 | zdtnlte(1:ngrid,1:nlayer)= |
|---|
| 1026 | & zdtnlte(1:ngrid,1:nlayer)/86400. |
|---|
| 1027 | endif |
|---|
| 1028 | ELSE |
|---|
| 1029 | zdtnlte(:,:)=0. |
|---|
| 1030 | ENDIF !end callnlte |
|---|
| 1031 | |
|---|
| 1032 | ! Find number of layers for LTE radiation calculations |
|---|
| 1033 | ! (done only once per sol) |
|---|
| 1034 | IF(MOD((icount-1),steps_per_sol).EQ.0) |
|---|
| 1035 | & CALL nlthermeq(ngrid,nlayer,zplev,zplay) |
|---|
| 1036 | |
|---|
| 1037 | c rocketstorm : compute dust storm mesh fraction |
|---|
| 1038 | IF (rdstorm) THEN |
|---|
| 1039 | CALL calcstormfract(ngrid,nlayer,nq,pq, |
|---|
| 1040 | & totstormfract) |
|---|
| 1041 | ENDIF |
|---|
| 1042 | |
|---|
| 1043 | c Note: Dustopacity.F has been transferred to callradite.F |
|---|
| 1044 | |
|---|
| 1045 | #ifdef DUSTSTORM |
|---|
| 1046 | !! specific case: save the quantity of dust before adding perturbation |
|---|
| 1047 | |
|---|
| 1048 | if (firstcall) then |
|---|
| 1049 | pq_tmp(1:ngrid,1:nlayer,1)=pq(1:ngrid,1:nlayer,igcm_dust_mass) |
|---|
| 1050 | pq_tmp(1:ngrid,1:nlayer,2)=pq(1:ngrid,1:nlayer,igcm_dust_number) |
|---|
| 1051 | endif |
|---|
| 1052 | #endif |
|---|
| 1053 | |
|---|
| 1054 | c Call main radiative transfer scheme |
|---|
| 1055 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1056 | c Transfer through CO2 (except NIR CO2 absorption) |
|---|
| 1057 | c and aerosols (dust and water ice) |
|---|
| 1058 | ! callradite for background dust (out of the rdstorm fraction) |
|---|
| 1059 | clearatm=.true. |
|---|
| 1060 | !! callradite for background dust (out of the topflows fraction) |
|---|
| 1061 | nohmons=.true. |
|---|
| 1062 | |
|---|
| 1063 | c Radiative transfer |
|---|
| 1064 | c ------------------ |
|---|
| 1065 | ! callradite for the part with clouds |
|---|
| 1066 | clearsky=.false. ! part with clouds for both cases CLFvarying true/false |
|---|
| 1067 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq, |
|---|
| 1068 | & albedo_meshavg,emis_meshavg, |
|---|
| 1069 | & mu0,zplev,zplay,pt,tsurf_meshavg,fract,dist_sol,igout, |
|---|
| 1070 | & zdtlw,zdtsw,fluxsurf_lw(:,iflat),fluxsurf_dn_sw(:,:,iflat), |
|---|
| 1071 | & fluxsurf_up_sw, |
|---|
| 1072 | & fluxtop_lw,fluxtop_dn_sw,fluxtop_up_sw, |
|---|
| 1073 | & tau_pref_scenario,tau_pref_gcm, |
|---|
| 1074 | & tau,aerosol,dsodust,tauscaling,dust_rad_adjust,IRtoVIScoef, |
|---|
| 1075 | & taucloudtes,rdust,rice,nuice,riceco2,nuiceco2, |
|---|
| 1076 | & qsurf_meshavg(:,igcm_co2),rstormdust,rtopdust,totstormfract, |
|---|
| 1077 | & clearatm,dsords,dsotop,nohmons,clearsky,totcloudfrac) |
|---|
| 1078 | |
|---|
| 1079 | DO islope=1,nslope |
|---|
| 1080 | fluxsurf_lw(:,islope) =fluxsurf_lw(:,iflat) |
|---|
| 1081 | fluxsurf_dn_sw(:,:,islope) =fluxsurf_dn_sw(:,:,iflat) |
|---|
| 1082 | ENDDO |
|---|
| 1083 | |
|---|
| 1084 | ! case of sub-grid water ice clouds: callradite for the clear case |
|---|
| 1085 | IF (CLFvarying) THEN |
|---|
| 1086 | ! ---> PROBLEMS WITH ALLOCATED ARRAYS |
|---|
| 1087 | ! (temporary solution in callcorrk: do not deallocate |
|---|
| 1088 | ! if |
|---|
| 1089 | ! CLFvarying ...) ?? AP ?? |
|---|
| 1090 | clearsky=.true. |
|---|
| 1091 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq, |
|---|
| 1092 | & albedo_meshavg,emis_meshavg,mu0,zplev,zplay,pt, |
|---|
| 1093 | & tsurf_meshavg,fract, |
|---|
| 1094 | & dist_sol,igout,zdtlwclf,zdtswclf, |
|---|
| 1095 | & fluxsurf_lwclf,fluxsurf_dn_swclf,fluxsurf_up_swclf, |
|---|
| 1096 | & fluxtop_lwclf,fluxtop_dn_swclf,fluxtop_up_swclf, |
|---|
| 1097 | & tau_pref_scenario,tau_pref_gcm,tau,aerosol, |
|---|
| 1098 | & dsodust,tauscaling,dust_rad_adjust,IRtoVIScoef, |
|---|
| 1099 | & taucloudtesclf,rdust, |
|---|
| 1100 | & rice,nuice,riceco2, nuiceco2, |
|---|
| 1101 | & qsurf_meshavg(:,igcm_co2), |
|---|
| 1102 | & rstormdust,rtopdust,totstormfract, |
|---|
| 1103 | & clearatm,dsords,dsotop, |
|---|
| 1104 | & nohmons,clearsky,totcloudfrac) |
|---|
| 1105 | clearsky = .false. ! just in case. |
|---|
| 1106 | ! Sum the fluxes and heating rates from cloudy/clear |
|---|
| 1107 | ! cases |
|---|
| 1108 | DO ig=1,ngrid |
|---|
| 1109 | tf_clf=totcloudfrac(ig) |
|---|
| 1110 | ntf_clf=1.-tf_clf |
|---|
| 1111 | DO islope=1,nslope |
|---|
| 1112 | fluxsurf_lw(ig,islope) = ntf_clf*fluxsurf_lwclf(ig) |
|---|
| 1113 | & + tf_clf*fluxsurf_lw(ig,islope) |
|---|
| 1114 | fluxsurf_dn_sw(ig,1:2,islope) = |
|---|
| 1115 | & ntf_clf*fluxsurf_dn_swclf(ig,1:2) |
|---|
| 1116 | & + tf_clf*fluxsurf_dn_sw(ig,1:2,islope) |
|---|
| 1117 | ENDDO |
|---|
| 1118 | fluxsurf_up_sw(ig,1:2) = |
|---|
| 1119 | & ntf_clf*fluxsurf_up_swclf(ig,1:2) |
|---|
| 1120 | & + tf_clf*fluxsurf_up_sw(ig,1:2) |
|---|
| 1121 | fluxtop_lw(ig) = ntf_clf*fluxtop_lwclf(ig) |
|---|
| 1122 | & + tf_clf*fluxtop_lw(ig) |
|---|
| 1123 | fluxtop_dn_sw(ig,1:2)=ntf_clf*fluxtop_dn_swclf(ig,1:2) |
|---|
| 1124 | & + tf_clf*fluxtop_dn_sw(ig,1:2) |
|---|
| 1125 | fluxtop_up_sw(ig,1:2)=ntf_clf*fluxtop_up_swclf(ig,1:2) |
|---|
| 1126 | & + tf_clf*fluxtop_up_sw(ig,1:2) |
|---|
| 1127 | taucloudtes(ig) = ntf_clf*taucloudtesclf(ig) |
|---|
| 1128 | & + tf_clf*taucloudtes(ig) |
|---|
| 1129 | zdtlw(ig,1:nlayer) = ntf_clf*zdtlwclf(ig,1:nlayer) |
|---|
| 1130 | & + tf_clf*zdtlw(ig,1:nlayer) |
|---|
| 1131 | zdtsw(ig,1:nlayer) = ntf_clf*zdtswclf(ig,1:nlayer) |
|---|
| 1132 | & + tf_clf*zdtsw(ig,1:nlayer) |
|---|
| 1133 | ENDDO |
|---|
| 1134 | |
|---|
| 1135 | ENDIF ! (CLFvarying) |
|---|
| 1136 | |
|---|
| 1137 | !============================================================================ |
|---|
| 1138 | |
|---|
| 1139 | #ifdef DUSTSTORM |
|---|
| 1140 | !! specific case: compute the added quantity of dust for perturbation |
|---|
| 1141 | if (firstcall) then |
|---|
| 1142 | pdq(1:ngrid,1:nlayer,igcm_dust_mass)= |
|---|
| 1143 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) |
|---|
| 1144 | & - pq_tmp(1:ngrid,1:nlayer,1) |
|---|
| 1145 | & + pq(1:ngrid,1:nlayer,igcm_dust_mass) |
|---|
| 1146 | pdq(1:ngrid,1:nlayer,igcm_dust_number)= |
|---|
| 1147 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) |
|---|
| 1148 | & - pq_tmp(1:ngrid,1:nlayer,2) |
|---|
| 1149 | & + pq(1:ngrid,1:nlayer,igcm_dust_number) |
|---|
| 1150 | endif |
|---|
| 1151 | #endif |
|---|
| 1152 | |
|---|
| 1153 | c Outputs for basic check (middle of domain) |
|---|
| 1154 | c ------------------------------------------ |
|---|
| 1155 | write(*,'("Ls =",f11.6," check lat =",f10.6, |
|---|
| 1156 | & " lon =",f11.6)') |
|---|
| 1157 | & zls*180./pi,latitude(igout)*180/pi, |
|---|
| 1158 | & longitude(igout)*180/pi |
|---|
| 1159 | |
|---|
| 1160 | write(*,'(" tau_pref_gcm(",f4.0," Pa) =",f9.6, |
|---|
| 1161 | & " tau(",f4.0," Pa) =",f9.6)') |
|---|
| 1162 | & odpref,tau_pref_gcm(igout), |
|---|
| 1163 | & odpref,tau(igout,1)*odpref/zplev(igout,1) |
|---|
| 1164 | |
|---|
| 1165 | |
|---|
| 1166 | c --------------------------------------------------------- |
|---|
| 1167 | c Call slope parameterization for direct and scattered flux |
|---|
| 1168 | c --------------------------------------------------------- |
|---|
| 1169 | IF(callslope) THEN |
|---|
| 1170 | ! assume that in this case, nslope = 1 |
|---|
| 1171 | if(nslope.ne.1) then |
|---|
| 1172 | call abort_physic( |
|---|
| 1173 | & "physiq","callslope=true but nslope.ne.1",1) |
|---|
| 1174 | endif |
|---|
| 1175 | write(*,*) 'Slope scheme is on and computing...' |
|---|
| 1176 | DO ig=1,ngrid |
|---|
| 1177 | sl_the = theta_sl(ig) |
|---|
| 1178 | IF (sl_the .ne. 0.) THEN |
|---|
| 1179 | ztim1=fluxsurf_dn_sw(ig,1,iflat) |
|---|
| 1180 | & +fluxsurf_dn_sw(ig,2,iflat) |
|---|
| 1181 | DO l=1,2 |
|---|
| 1182 | sl_lct = ptime*24. + 180.*longitude(ig)/pi/15. |
|---|
| 1183 | sl_ra = pi*(1.0-sl_lct/12.) |
|---|
| 1184 | sl_lat = 180.*latitude(ig)/pi |
|---|
| 1185 | sl_tau = tau(ig,1) !il faudrait iaerdust(iaer) |
|---|
| 1186 | sl_alb = albedo(ig,l,iflat) |
|---|
| 1187 | sl_psi = psi_sl(ig) |
|---|
| 1188 | sl_fl0 = fluxsurf_dn_sw(ig,l,iflat) |
|---|
| 1189 | sl_di0 = 0. |
|---|
| 1190 | if ((mu0(ig) .gt. 0.).and.(ztim1.gt.0.)) then |
|---|
| 1191 | sl_di0 = mu0(ig)*(exp(-sl_tau/mu0(ig))) |
|---|
| 1192 | sl_di0 = sl_di0*flux_1AU/dist_sol/dist_sol |
|---|
| 1193 | sl_di0 = sl_di0/ztim1 |
|---|
| 1194 | sl_di0 = fluxsurf_dn_sw(ig,l,iflat)*sl_di0 |
|---|
| 1195 | endif |
|---|
| 1196 | ! you never know (roundup concern...) |
|---|
| 1197 | if (sl_fl0 .lt. sl_di0) sl_di0=sl_fl0 |
|---|
| 1198 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1199 | CALL param_slope( mu0(ig), declin, sl_ra, sl_lat, |
|---|
| 1200 | & sl_tau, sl_alb, sl_the, sl_psi, |
|---|
| 1201 | & sl_di0, sl_fl0, sl_flu ) |
|---|
| 1202 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1203 | fluxsurf_dn_sw(ig,l,1) = sl_flu |
|---|
| 1204 | ENDDO |
|---|
| 1205 | !!! compute correction on IR flux as well |
|---|
| 1206 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
|---|
| 1207 | fluxsurf_lw(ig,:)= fluxsurf_lw(ig,:)*sky |
|---|
| 1208 | ENDIF |
|---|
| 1209 | ENDDO |
|---|
| 1210 | ELSE ! not calling subslope, nslope might be > 1 |
|---|
| 1211 | DO islope = 1,nslope |
|---|
| 1212 | sl_the=abs(def_slope_mean(islope)) |
|---|
| 1213 | IF (sl_the .gt. 1e-6) THEN |
|---|
| 1214 | IF(def_slope_mean(islope).ge.0.) THEN |
|---|
| 1215 | psi_sl(:) = 0. !Northward slope |
|---|
| 1216 | ELSE |
|---|
| 1217 | psi_sl(:) = 180. !Southward slope |
|---|
| 1218 | ENDIF |
|---|
| 1219 | DO ig=1,ngrid |
|---|
| 1220 | ztim1=fluxsurf_dn_sw(ig,1,islope) |
|---|
| 1221 | s +fluxsurf_dn_sw(ig,2,islope) |
|---|
| 1222 | DO l=1,2 |
|---|
| 1223 | sl_lct = ptime*24. + 180.*longitude(ig)/pi/15. |
|---|
| 1224 | sl_ra = pi*(1.0-sl_lct/12.) |
|---|
| 1225 | sl_lat = 180.*latitude(ig)/pi |
|---|
| 1226 | sl_tau = tau(ig,1) !il faudrait iaerdust(iaer) |
|---|
| 1227 | sl_alb = albedo(ig,l,islope) |
|---|
| 1228 | sl_psi = psi_sl(ig) |
|---|
| 1229 | sl_fl0 = fluxsurf_dn_sw(ig,l,islope) |
|---|
| 1230 | sl_di0 = 0. |
|---|
| 1231 | if (mu0(ig) .gt. 0.) then |
|---|
| 1232 | sl_di0 = mu0(ig)*(exp(-sl_tau/mu0(ig))) |
|---|
| 1233 | sl_di0 = sl_di0*flux_1AU/dist_sol/dist_sol |
|---|
| 1234 | sl_di0 = sl_di0/ztim1 |
|---|
| 1235 | sl_di0 = fluxsurf_dn_sw(ig,l,islope)*sl_di0 |
|---|
| 1236 | endif |
|---|
| 1237 | ! you never know (roundup concern...) |
|---|
| 1238 | if (sl_fl0 .lt. sl_di0) sl_di0=sl_fl0 |
|---|
| 1239 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1240 | CALL param_slope( mu0(ig), declin, sl_ra, sl_lat, |
|---|
| 1241 | & sl_tau, sl_alb, sl_the, sl_psi, |
|---|
| 1242 | & sl_di0, sl_fl0, sl_flu ) |
|---|
| 1243 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1244 | fluxsurf_dn_sw(ig,l,islope) = sl_flu |
|---|
| 1245 | ENDDO |
|---|
| 1246 | !!! compute correction on IR flux as well |
|---|
| 1247 | |
|---|
| 1248 | fluxsurf_lw(ig,islope)= fluxsurf_lw(ig,islope) |
|---|
| 1249 | & *sky_slope(islope) |
|---|
| 1250 | ENDDO |
|---|
| 1251 | ENDIF ! sub grid is not flat |
|---|
| 1252 | ENDDO ! islope = 1,nslope |
|---|
| 1253 | ENDIF ! callslope |
|---|
| 1254 | |
|---|
| 1255 | c CO2 near infrared absorption |
|---|
| 1256 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1257 | zdtnirco2(:,:)=0 |
|---|
| 1258 | if (callnirco2) then |
|---|
| 1259 | call nirco2abs (ngrid,nlayer,zplay,dist_sol,nq,pq, |
|---|
| 1260 | . mu0,fract,declin, zdtnirco2) |
|---|
| 1261 | endif |
|---|
| 1262 | |
|---|
| 1263 | c Radiative flux from the sky absorbed by the surface (W.m-2) |
|---|
| 1264 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1265 | DO ig=1,ngrid |
|---|
| 1266 | DO islope = 1,nslope |
|---|
| 1267 | fluxrad_sky(ig,islope) = |
|---|
| 1268 | $ emis(ig,islope)*fluxsurf_lw(ig,islope) |
|---|
| 1269 | $ +fluxsurf_dn_sw(ig,1,islope)*(1.-albedo(ig,1,islope)) |
|---|
| 1270 | $ +fluxsurf_dn_sw(ig,2,islope)*(1.-albedo(ig,2,islope)) |
|---|
| 1271 | ENDDO |
|---|
| 1272 | ENDDO |
|---|
| 1273 | |
|---|
| 1274 | c Net atmospheric radiative heating rate (K.s-1) |
|---|
| 1275 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1276 | IF(callnlte) THEN |
|---|
| 1277 | CALL blendrad(ngrid, nlayer, zplay, |
|---|
| 1278 | & zdtsw, zdtlw, zdtnirco2, zdtnlte, dtrad) |
|---|
| 1279 | ELSE |
|---|
| 1280 | DO l=1,nlayer |
|---|
| 1281 | DO ig=1,ngrid |
|---|
| 1282 | dtrad(ig,l)=zdtsw(ig,l)+zdtlw(ig,l) |
|---|
| 1283 | & +zdtnirco2(ig,l) |
|---|
| 1284 | ENDDO |
|---|
| 1285 | ENDDO |
|---|
| 1286 | ENDIF |
|---|
| 1287 | |
|---|
| 1288 | ENDIF ! of if(mod(icount-1,iradia).eq.0) |
|---|
| 1289 | |
|---|
| 1290 | c Transformation of the radiative tendencies: |
|---|
| 1291 | c ------------------------------------------- |
|---|
| 1292 | |
|---|
| 1293 | c Net radiative surface flux (W.m-2) |
|---|
| 1294 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1295 | |
|---|
| 1296 | c |
|---|
| 1297 | DO ig=1,ngrid |
|---|
| 1298 | DO islope = 1,nslope |
|---|
| 1299 | zplanck(ig)=tsurf(ig,islope)*tsurf(ig,islope) |
|---|
| 1300 | zplanck(ig)=emis(ig,islope)* |
|---|
| 1301 | $ stephan*zplanck(ig)*zplanck(ig) |
|---|
| 1302 | fluxrad(ig,islope)=fluxrad_sky(ig,islope)-zplanck(ig) |
|---|
| 1303 | IF(callslope) THEN |
|---|
| 1304 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
|---|
| 1305 | fluxrad(ig,nslope)=fluxrad(ig,nslope)+ |
|---|
| 1306 | $ (1.-sky)*zplanck(ig) |
|---|
| 1307 | ELSE |
|---|
| 1308 | fluxrad(ig,islope)=fluxrad(ig,islope) + |
|---|
| 1309 | $ (1.-sky_slope(iflat))*emis(ig,iflat)* |
|---|
| 1310 | $ stephan*tsurf(ig,iflat)**4 |
|---|
| 1311 | ENDIF |
|---|
| 1312 | ENDDO |
|---|
| 1313 | ENDDO |
|---|
| 1314 | |
|---|
| 1315 | DO l=1,nlayer |
|---|
| 1316 | DO ig=1,ngrid |
|---|
| 1317 | pdt(ig,l)=pdt(ig,l)+dtrad(ig,l) |
|---|
| 1318 | ENDDO |
|---|
| 1319 | ENDDO |
|---|
| 1320 | |
|---|
| 1321 | ENDIF ! of IF (callrad) |
|---|
| 1322 | |
|---|
| 1323 | c 3.1 Rocket dust storm |
|---|
| 1324 | c ------------------------------------------- |
|---|
| 1325 | IF (rdstorm) THEN |
|---|
| 1326 | clearatm=.false. |
|---|
| 1327 | pdqrds(:,:,:)=0. |
|---|
| 1328 | qdusttotal0(:)=0. |
|---|
| 1329 | qdusttotal1(:)=0. |
|---|
| 1330 | do ig=1,ngrid |
|---|
| 1331 | do l=1,nlayer |
|---|
| 1332 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) ! updated potential |
|---|
| 1333 | ! temperature tendency |
|---|
| 1334 | ! for diagnostics |
|---|
| 1335 | ! qdustrds0(ig,l)=pq(ig,l,igcm_dust_mass)+ |
|---|
| 1336 | ! & pdq(ig,l,igcm_dust_mass)*ptimestep |
|---|
| 1337 | ! qstormrds0(ig,l)=pq(ig,l,igcm_stormdust_mass)+ |
|---|
| 1338 | ! & pdq(ig,l,igcm_stormdust_mass)*ptimestep |
|---|
| 1339 | ! qdusttotal0(ig)=qdusttotal0(ig)+(qdustrds0(ig,l)+ |
|---|
| 1340 | ! & qstormrds0(ig,l))*(zplev(ig,l)- |
|---|
| 1341 | ! & zplev(ig,l+1))/g |
|---|
| 1342 | enddo |
|---|
| 1343 | enddo |
|---|
| 1344 | ! call write_output('qdustrds0','qdust before rds', |
|---|
| 1345 | ! & 'kg/kg ',qdustrds0(:,:)) |
|---|
| 1346 | ! call write_output('qstormrds0','qstorm before rds', |
|---|
| 1347 | ! & 'kg/kg ',qstormrds0(:,:)) |
|---|
| 1348 | |
|---|
| 1349 | CALL rocketduststorm(ngrid,nlayer,nq,ptime,ptimestep, |
|---|
| 1350 | & pq,pdq,pt,pdt,zplev,zplay,zzlev, |
|---|
| 1351 | & zzlay,zdtsw,zdtlw, |
|---|
| 1352 | c for radiative transfer |
|---|
| 1353 | & clearatm,icount,zday,zls, |
|---|
| 1354 | & tsurf_meshavg,qsurf_meshavg(:,igcm_co2), |
|---|
| 1355 | & igout,totstormfract,tauscaling, |
|---|
| 1356 | & dust_rad_adjust,IRtoVIScoef, |
|---|
| 1357 | & albedo_meshavg,emis_meshavg, |
|---|
| 1358 | c input sub-grid scale cloud |
|---|
| 1359 | & clearsky,totcloudfrac, |
|---|
| 1360 | c input sub-grid scale topography |
|---|
| 1361 | & nohmons, |
|---|
| 1362 | c output |
|---|
| 1363 | & pdqrds,wspeed,dsodust,dsords,dsotop, |
|---|
| 1364 | & tau_pref_scenario,tau_pref_gcm) |
|---|
| 1365 | |
|---|
| 1366 | c update the tendencies of both dust after vertical transport |
|---|
| 1367 | DO l=1,nlayer |
|---|
| 1368 | DO ig=1,ngrid |
|---|
| 1369 | pdq(ig,l,igcm_stormdust_mass)= |
|---|
| 1370 | & pdq(ig,l,igcm_stormdust_mass)+ |
|---|
| 1371 | & pdqrds(ig,l,igcm_stormdust_mass) |
|---|
| 1372 | pdq(ig,l,igcm_stormdust_number)= |
|---|
| 1373 | & pdq(ig,l,igcm_stormdust_number)+ |
|---|
| 1374 | & pdqrds(ig,l,igcm_stormdust_number) |
|---|
| 1375 | |
|---|
| 1376 | pdq(ig,l,igcm_dust_mass)= |
|---|
| 1377 | & pdq(ig,l,igcm_dust_mass)+ pdqrds(ig,l,igcm_dust_mass) |
|---|
| 1378 | pdq(ig,l,igcm_dust_number)= |
|---|
| 1379 | & pdq(ig,l,igcm_dust_number)+ |
|---|
| 1380 | & pdqrds(ig,l,igcm_dust_number) |
|---|
| 1381 | |
|---|
| 1382 | ENDDO |
|---|
| 1383 | ENDDO |
|---|
| 1384 | do l=1,nlayer |
|---|
| 1385 | do ig=1,ngrid |
|---|
| 1386 | qdustrds1(ig,l)=pq(ig,l,igcm_dust_mass)+ |
|---|
| 1387 | & pdq(ig,l,igcm_dust_mass)*ptimestep |
|---|
| 1388 | qstormrds1(ig,l)=pq(ig,l,igcm_stormdust_mass)+ |
|---|
| 1389 | & pdq(ig,l,igcm_stormdust_mass)*ptimestep |
|---|
| 1390 | qdusttotal1(ig)=qdusttotal1(ig)+(qdustrds1(ig,l)+ |
|---|
| 1391 | & qstormrds1(ig,l))*(zplev(ig,l)- |
|---|
| 1392 | & zplev(ig,l+1))/g |
|---|
| 1393 | enddo |
|---|
| 1394 | enddo |
|---|
| 1395 | |
|---|
| 1396 | c for diagnostics |
|---|
| 1397 | ! call write_output('qdustrds1','qdust after rds', |
|---|
| 1398 | ! & 'kg/kg ',qdustrds1(:,:)) |
|---|
| 1399 | ! call write_output('qstormrds1','qstorm after rds', |
|---|
| 1400 | ! & 'kg/kg ',qstormrds1(:,:)) |
|---|
| 1401 | ! |
|---|
| 1402 | ! call write_output('qdusttotal0','q sum before rds', |
|---|
| 1403 | ! & 'kg/m2 ',qdusttotal0(:)) |
|---|
| 1404 | ! call write_output('qdusttotal1','q sum after rds', |
|---|
| 1405 | ! & 'kg/m2 ',qdusttotal1(:)) |
|---|
| 1406 | |
|---|
| 1407 | ENDIF ! end of if(rdstorm) |
|---|
| 1408 | |
|---|
| 1409 | c 3.2 Dust entrained from the PBL up to the top of sub-grid scale topography |
|---|
| 1410 | c ------------------------------------------- |
|---|
| 1411 | IF (topflows) THEN |
|---|
| 1412 | clearatm=.true. ! stormdust is not accounted in the extra heating on top of the mountains |
|---|
| 1413 | nohmons=.false. |
|---|
| 1414 | pdqtop(:,:,:)=0. |
|---|
| 1415 | CALL topmons(ngrid,nlayer,nq,ptime,ptimestep, |
|---|
| 1416 | & pq,pdq,pt,pdt,zplev,zplay,zzlev, |
|---|
| 1417 | & zzlay,zdtsw,zdtlw, |
|---|
| 1418 | & icount,zday,zls,tsurf(:,iflat), |
|---|
| 1419 | & qsurf_meshavg(:,igcm_co2), |
|---|
| 1420 | & igout,aerosol,tauscaling,dust_rad_adjust, |
|---|
| 1421 | & IRtoVIScoef,albedo_meshavg,emis_meshavg, |
|---|
| 1422 | & totstormfract,clearatm, |
|---|
| 1423 | & clearsky,totcloudfrac, |
|---|
| 1424 | & nohmons, |
|---|
| 1425 | & pdqtop,wtop,dsodust,dsords,dsotop, |
|---|
| 1426 | & tau_pref_scenario,tau_pref_gcm) |
|---|
| 1427 | |
|---|
| 1428 | c update the tendencies of both dust after vertical transport |
|---|
| 1429 | DO l=1,nlayer |
|---|
| 1430 | DO ig=1,ngrid |
|---|
| 1431 | pdq(ig,l,igcm_topdust_mass)= |
|---|
| 1432 | & pdq(ig,l,igcm_topdust_mass)+ |
|---|
| 1433 | & pdqtop(ig,l,igcm_topdust_mass) |
|---|
| 1434 | pdq(ig,l,igcm_topdust_number)= |
|---|
| 1435 | & pdq(ig,l,igcm_topdust_number)+ |
|---|
| 1436 | & pdqtop(ig,l,igcm_topdust_number) |
|---|
| 1437 | pdq(ig,l,igcm_dust_mass)= |
|---|
| 1438 | & pdq(ig,l,igcm_dust_mass)+ pdqtop(ig,l,igcm_dust_mass) |
|---|
| 1439 | pdq(ig,l,igcm_dust_number)= |
|---|
| 1440 | & pdq(ig,l,igcm_dust_number)+pdqtop(ig,l,igcm_dust_number) |
|---|
| 1441 | |
|---|
| 1442 | ENDDO |
|---|
| 1443 | ENDDO |
|---|
| 1444 | |
|---|
| 1445 | ENDIF ! end of if (topflows) |
|---|
| 1446 | |
|---|
| 1447 | c 3.3 Dust injection from the surface |
|---|
| 1448 | c ------------------------------------------- |
|---|
| 1449 | if (dustinjection.gt.0) then |
|---|
| 1450 | |
|---|
| 1451 | CALL compute_dtau(ngrid,nlayer, |
|---|
| 1452 | & zday,pplev,tau_pref_gcm, |
|---|
| 1453 | & ptimestep,local_time,IRtoVIScoef, |
|---|
| 1454 | & dustliftday) |
|---|
| 1455 | endif ! end of if (dustinjection.gt.0) |
|---|
| 1456 | |
|---|
| 1457 | c----------------------------------------------------------------------- |
|---|
| 1458 | c 4. Gravity wave and subgrid scale topography drag : |
|---|
| 1459 | c ------------------------------------------------- |
|---|
| 1460 | |
|---|
| 1461 | |
|---|
| 1462 | IF(calllott)THEN |
|---|
| 1463 | CALL calldrag_noro(ngrid,nlayer,ptimestep, |
|---|
| 1464 | & zplay,zplev,pt,pu,pv,zdtgw,zdugw,zdvgw) |
|---|
| 1465 | |
|---|
| 1466 | DO l=1,nlayer |
|---|
| 1467 | DO ig=1,ngrid |
|---|
| 1468 | pdv(ig,l)=pdv(ig,l)+zdvgw(ig,l) |
|---|
| 1469 | pdu(ig,l)=pdu(ig,l)+zdugw(ig,l) |
|---|
| 1470 | pdt(ig,l)=pdt(ig,l)+zdtgw(ig,l) |
|---|
| 1471 | ENDDO |
|---|
| 1472 | ENDDO |
|---|
| 1473 | ENDIF |
|---|
| 1474 | |
|---|
| 1475 | c----------------------------------------------------------------------- |
|---|
| 1476 | c 5. Vertical diffusion (turbulent mixing): |
|---|
| 1477 | c ----------------------------------------- |
|---|
| 1478 | |
|---|
| 1479 | IF (calldifv) THEN |
|---|
| 1480 | DO ig=1,ngrid |
|---|
| 1481 | DO islope = 1,nslope |
|---|
| 1482 | zflubid(ig,islope)=fluxrad(ig,islope) |
|---|
| 1483 | & +fluxgrd(ig,islope) |
|---|
| 1484 | ENDDO |
|---|
| 1485 | ENDDO |
|---|
| 1486 | zdum1(:,:)=0 |
|---|
| 1487 | zdum2(:,:)=0 |
|---|
| 1488 | do l=1,nlayer |
|---|
| 1489 | do ig=1,ngrid |
|---|
| 1490 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
|---|
| 1491 | enddo |
|---|
| 1492 | enddo |
|---|
| 1493 | |
|---|
| 1494 | c ---------------------- |
|---|
| 1495 | c Treatment of a special case : using new surface layer (Richardson based) |
|---|
| 1496 | c without using the thermals in gcm and mesoscale can yield problems in |
|---|
| 1497 | c weakly unstable situations when winds are near to 0. For those cases, we add |
|---|
| 1498 | c a unit subgrid gustiness. Remember that thermals should be used we using the |
|---|
| 1499 | c Richardson based surface layer model. |
|---|
| 1500 | IF ( .not.calltherm |
|---|
| 1501 | . .and. callrichsl |
|---|
| 1502 | . .and. .not.turb_resolved) THEN |
|---|
| 1503 | |
|---|
| 1504 | DO ig=1, ngrid |
|---|
| 1505 | IF (zh(ig,1) .lt. tsurf_meshavg(ig)) THEN |
|---|
| 1506 | wstar(ig)=1. |
|---|
| 1507 | hfmax_th(ig)=0.2 |
|---|
| 1508 | ELSE |
|---|
| 1509 | wstar(ig)=0. |
|---|
| 1510 | hfmax_th(ig)=0. |
|---|
| 1511 | ENDIF |
|---|
| 1512 | ENDDO |
|---|
| 1513 | ENDIF |
|---|
| 1514 | |
|---|
| 1515 | c ---------------------- |
|---|
| 1516 | |
|---|
| 1517 | IF (tke_heat_flux .ne. 0.) THEN |
|---|
| 1518 | |
|---|
| 1519 | zz1(:)=(pt(:,1)+pdt(:,1)*ptimestep)*(r/g)* |
|---|
| 1520 | & (-alog(zplay(:,1)/zplev(:,1))) |
|---|
| 1521 | pdt(:,1)=pdt(:,1) + (tke_heat_flux/zz1(:))*zpopsk(:,1) |
|---|
| 1522 | ENDIF |
|---|
| 1523 | |
|---|
| 1524 | c Calling vdif (Martian version WITH CO2 condensation) |
|---|
| 1525 | dwatercap_dif(:,:) = 0. |
|---|
| 1526 | CALL vdifc(ngrid,nlayer,nsoilmx,nq,nqsoil,zpopsk, |
|---|
| 1527 | $ ptimestep,capcal, |
|---|
| 1528 | $ zplay,zplev,zzlay,zzlev,z0, |
|---|
| 1529 | $ pu,pv,zh,pq,tsurf,tsoil,emis,qsurf, |
|---|
| 1530 | $ qsoil,pore_icefraction, |
|---|
| 1531 | $ zdum1,zdum2,zdh,pdq,zflubid, |
|---|
| 1532 | $ zdudif,zdvdif,zdhdif,zdtsdif,q2, |
|---|
| 1533 | & zdqdif,zdqsdif,wstar,hfmax_th, |
|---|
| 1534 | & zcondicea_co2microp,sensibFlux, |
|---|
| 1535 | & dustliftday,local_time,watercap,dwatercap_dif) |
|---|
| 1536 | |
|---|
| 1537 | DO ig=1,ngrid |
|---|
| 1538 | zdtsurf(ig,:)=zdtsurf(ig,:)+zdtsdif(ig,:) |
|---|
| 1539 | dwatercap(ig,:)=dwatercap(ig,:)+dwatercap_dif(ig,:) |
|---|
| 1540 | ENDDO |
|---|
| 1541 | |
|---|
| 1542 | call compute_meshgridavg(ngrid,nq,albedo,emis,tsurf,zdqsdif, |
|---|
| 1543 | & albedo_meshavg,emis_meshavg,tsurf_meshavg,zdqsdif_meshavg_tmp) |
|---|
| 1544 | IF (.not.turb_resolved) THEN |
|---|
| 1545 | DO l=1,nlayer |
|---|
| 1546 | DO ig=1,ngrid |
|---|
| 1547 | pdv(ig,l)=pdv(ig,l)+zdvdif(ig,l) |
|---|
| 1548 | pdu(ig,l)=pdu(ig,l)+zdudif(ig,l) |
|---|
| 1549 | pdt(ig,l)=pdt(ig,l)+zdhdif(ig,l)*zpopsk(ig,l) |
|---|
| 1550 | |
|---|
| 1551 | zdtdif(ig,l)=zdhdif(ig,l)*zpopsk(ig,l) ! for diagnostic only |
|---|
| 1552 | ENDDO |
|---|
| 1553 | ENDDO |
|---|
| 1554 | |
|---|
| 1555 | DO iq=1, nq |
|---|
| 1556 | DO l=1,nlayer |
|---|
| 1557 | DO ig=1,ngrid |
|---|
| 1558 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
|---|
| 1559 | ENDDO |
|---|
| 1560 | ENDDO |
|---|
| 1561 | ENDDO |
|---|
| 1562 | DO iq=1, nq |
|---|
| 1563 | DO ig=1,ngrid |
|---|
| 1564 | dqsurf(ig,iq,:)=dqsurf(ig,iq,:) + zdqsdif(ig,iq,:) |
|---|
| 1565 | ENDDO |
|---|
| 1566 | ENDDO |
|---|
| 1567 | |
|---|
| 1568 | ELSE |
|---|
| 1569 | write (*,*) '******************************************' |
|---|
| 1570 | write (*,*) '** LES mode: the difv part is only used to' |
|---|
| 1571 | write (*,*) '** - provide HFX and UST to the dynamics' |
|---|
| 1572 | write (*,*) '** - update TSURF' |
|---|
| 1573 | write (*,*) '******************************************' |
|---|
| 1574 | !! Specific treatment for lifting in turbulent-resolving mode (AC) |
|---|
| 1575 | IF (lifting .and. doubleq) THEN |
|---|
| 1576 | !! lifted dust is injected in the first layer. |
|---|
| 1577 | !! Sedimentation must be called after turbulent mixing, i.e. on next step, after WRF. |
|---|
| 1578 | !! => lifted dust is not incremented before the sedimentation step. |
|---|
| 1579 | zdqdif(1:ngrid,1,1:nq)=0. |
|---|
| 1580 | zdqdif(1:ngrid,1,igcm_dust_number) = |
|---|
| 1581 | . -zdqsdif_meshavg_tmp(1:ngrid,igcm_dust_number) |
|---|
| 1582 | zdqdif(1:ngrid,1,igcm_dust_mass) = |
|---|
| 1583 | . -zdqsdif_meshavg_tmp(1:ngrid,igcm_dust_mass) |
|---|
| 1584 | zdqdif(1:ngrid,2:nlayer,1:nq) = 0. |
|---|
| 1585 | DO iq=1, nq |
|---|
| 1586 | IF ((iq .ne. igcm_dust_mass) |
|---|
| 1587 | & .and. (iq .ne. igcm_dust_number)) THEN |
|---|
| 1588 | zdqsdif(:,iq,:)=0. |
|---|
| 1589 | ENDIF |
|---|
| 1590 | ENDDO |
|---|
| 1591 | ELSE |
|---|
| 1592 | zdqdif(1:ngrid,1:nlayer,1:nq) = 0. |
|---|
| 1593 | zdqsdif(1:ngrid,1:nq,1:nslope) = 0. |
|---|
| 1594 | ENDIF |
|---|
| 1595 | ENDIF |
|---|
| 1596 | ELSE |
|---|
| 1597 | DO ig=1,ngrid |
|---|
| 1598 | DO islope=1,nslope |
|---|
| 1599 | zdtsurf(ig,islope)=zdtsurf(ig,islope)+ |
|---|
| 1600 | s (fluxrad(ig,islope)+fluxgrd(ig,islope))/capcal(ig,islope) |
|---|
| 1601 | ENDDO |
|---|
| 1602 | ENDDO |
|---|
| 1603 | |
|---|
| 1604 | IF (turb_resolved) THEN |
|---|
| 1605 | write(*,*) 'Turbulent-resolving mode !' |
|---|
| 1606 | write(*,*) 'Please set calldifv to T in callphys.def' |
|---|
| 1607 | call abort_physic("physiq","turbulent-resolving mode",1) |
|---|
| 1608 | ENDIF |
|---|
| 1609 | ENDIF ! of IF (calldifv) |
|---|
| 1610 | |
|---|
| 1611 | c----------------------------------------------------------------------- |
|---|
| 1612 | c 6. Thermals : |
|---|
| 1613 | c ----------------------------- |
|---|
| 1614 | |
|---|
| 1615 | if(calltherm .and. .not.turb_resolved) then |
|---|
| 1616 | |
|---|
| 1617 | call calltherm_interface(ngrid,nlayer,nq,igcm_co2, |
|---|
| 1618 | $ zzlev,zzlay, |
|---|
| 1619 | $ ptimestep,pu,pv,pt,pq,pdu,pdv,pdt,pdq,q2, |
|---|
| 1620 | $ zplay,zplev,pphi,zpopsk, |
|---|
| 1621 | $ pdu_th,pdv_th,pdt_th,pdq_th,lmax_th,zmax_th, |
|---|
| 1622 | $ dtke_th,zdhdif,hfmax_th,wstar,sensibFlux) |
|---|
| 1623 | |
|---|
| 1624 | DO l=1,nlayer |
|---|
| 1625 | DO ig=1,ngrid |
|---|
| 1626 | pdu(ig,l)=pdu(ig,l)+pdu_th(ig,l) |
|---|
| 1627 | pdv(ig,l)=pdv(ig,l)+pdv_th(ig,l) |
|---|
| 1628 | pdt(ig,l)=pdt(ig,l)+pdt_th(ig,l) |
|---|
| 1629 | q2(ig,l)=q2(ig,l)+dtke_th(ig,l)*ptimestep |
|---|
| 1630 | ENDDO |
|---|
| 1631 | ENDDO |
|---|
| 1632 | |
|---|
| 1633 | DO ig=1,ngrid |
|---|
| 1634 | q2(ig,nlayer+1)=q2(ig,nlayer+1)+dtke_th(ig,nlayer+1)*ptimestep |
|---|
| 1635 | ENDDO |
|---|
| 1636 | |
|---|
| 1637 | DO iq=1,nq |
|---|
| 1638 | DO l=1,nlayer |
|---|
| 1639 | DO ig=1,ngrid |
|---|
| 1640 | pdq(ig,l,iq)=pdq(ig,l,iq)+pdq_th(ig,l,iq) |
|---|
| 1641 | ENDDO |
|---|
| 1642 | ENDDO |
|---|
| 1643 | ENDDO |
|---|
| 1644 | |
|---|
| 1645 | lmax_th_out(:)=real(lmax_th(:)) |
|---|
| 1646 | |
|---|
| 1647 | else !of if calltherm |
|---|
| 1648 | lmax_th(:)=0 |
|---|
| 1649 | wstar(:)=0. |
|---|
| 1650 | hfmax_th(:)=0. |
|---|
| 1651 | lmax_th_out(:)=0. |
|---|
| 1652 | end if |
|---|
| 1653 | |
|---|
| 1654 | c----------------------------------------------------------------------- |
|---|
| 1655 | c 7. Dry convective adjustment: |
|---|
| 1656 | c ----------------------------- |
|---|
| 1657 | |
|---|
| 1658 | IF(calladj) THEN |
|---|
| 1659 | |
|---|
| 1660 | DO l=1,nlayer |
|---|
| 1661 | DO ig=1,ngrid |
|---|
| 1662 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
|---|
| 1663 | ENDDO |
|---|
| 1664 | ENDDO |
|---|
| 1665 | zduadj(:,:)=0 |
|---|
| 1666 | zdvadj(:,:)=0 |
|---|
| 1667 | zdhadj(:,:)=0 |
|---|
| 1668 | |
|---|
| 1669 | CALL convadj(ngrid,nlayer,nq,ptimestep, |
|---|
| 1670 | $ zplay,zplev,zpopsk,lmax_th, |
|---|
| 1671 | $ pu,pv,zh,pq, |
|---|
| 1672 | $ pdu,pdv,zdh,pdq, |
|---|
| 1673 | $ zduadj,zdvadj,zdhadj, |
|---|
| 1674 | $ zdqadj) |
|---|
| 1675 | |
|---|
| 1676 | DO l=1,nlayer |
|---|
| 1677 | DO ig=1,ngrid |
|---|
| 1678 | pdu(ig,l)=pdu(ig,l)+zduadj(ig,l) |
|---|
| 1679 | pdv(ig,l)=pdv(ig,l)+zdvadj(ig,l) |
|---|
| 1680 | pdt(ig,l)=pdt(ig,l)+zdhadj(ig,l)*zpopsk(ig,l) |
|---|
| 1681 | |
|---|
| 1682 | zdtadj(ig,l)=zdhadj(ig,l)*zpopsk(ig,l) ! for diagnostic only |
|---|
| 1683 | ENDDO |
|---|
| 1684 | ENDDO |
|---|
| 1685 | |
|---|
| 1686 | DO iq=1, nq |
|---|
| 1687 | DO l=1,nlayer |
|---|
| 1688 | DO ig=1,ngrid |
|---|
| 1689 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqadj(ig,l,iq) |
|---|
| 1690 | ENDDO |
|---|
| 1691 | ENDDO |
|---|
| 1692 | ENDDO |
|---|
| 1693 | ENDIF ! of IF(calladj) |
|---|
| 1694 | |
|---|
| 1695 | c----------------------------------------------------- |
|---|
| 1696 | c 8. Non orographic Gravity waves : |
|---|
| 1697 | c ------------------------------------------------- |
|---|
| 1698 | |
|---|
| 1699 | IF (calllott_nonoro) THEN |
|---|
| 1700 | |
|---|
| 1701 | CALL nonoro_gwd_ran(ngrid,nlayer,ptimestep, |
|---|
| 1702 | & cpnew,rnew, |
|---|
| 1703 | & zplay, |
|---|
| 1704 | & zmax_th, ! max altitude reached by thermals (m) |
|---|
| 1705 | & pt, pu, pv, |
|---|
| 1706 | & pdt, pdu, pdv, |
|---|
| 1707 | & zustrhi,zvstrhi, |
|---|
| 1708 | & d_t_hin, d_u_hin, d_v_hin) |
|---|
| 1709 | IF (calljliu_gwimix) THEN |
|---|
| 1710 | CALL nonoro_gwd_mix(ngrid,nlayer,ptimestep, |
|---|
| 1711 | & nq,cpnew, rnew, |
|---|
| 1712 | & zplay, |
|---|
| 1713 | & zmax_th, |
|---|
| 1714 | & pt, pu, pv, pq, zh, |
|---|
| 1715 | !loss, chemical reaction loss rates |
|---|
| 1716 | & pdt, pdu, pdv, pdq, zdh, |
|---|
| 1717 | ! zustrhi,zvstrhi, |
|---|
| 1718 | & zdq_mix, d_t_mix, d_u_mix, d_v_mix) |
|---|
| 1719 | ENDIF |
|---|
| 1720 | |
|---|
| 1721 | ! Update tendencies |
|---|
| 1722 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer) |
|---|
| 1723 | & +d_t_hin(1:ngrid,1:nlayer) |
|---|
| 1724 | pdu(1:ngrid,1:nlayer)=pdu(1:ngrid,1:nlayer) |
|---|
| 1725 | & +d_u_hin(1:ngrid,1:nlayer) |
|---|
| 1726 | pdv(1:ngrid,1:nlayer)=pdv(1:ngrid,1:nlayer) |
|---|
| 1727 | & +d_v_hin(1:ngrid,1:nlayer) |
|---|
| 1728 | ! Update tendencies of gw mixing |
|---|
| 1729 | IF (calljliu_gwimix) THEN |
|---|
| 1730 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer) |
|---|
| 1731 | & +d_t_mix(1:ngrid,1:nlayer) |
|---|
| 1732 | pdu(1:ngrid,1:nlayer)=pdu(1:ngrid,1:nlayer) |
|---|
| 1733 | & +d_u_mix(1:ngrid,1:nlayer) |
|---|
| 1734 | pdv(1:ngrid,1:nlayer)=pdv(1:ngrid,1:nlayer) |
|---|
| 1735 | & +d_v_mix(1:ngrid,1:nlayer) |
|---|
| 1736 | pdq(1:ngrid,1:nlayer,1:nq)=pdq(1:ngrid,1:nlayer,1:nq) |
|---|
| 1737 | & +zdq_mix(1:ngrid,1:nlayer,1:nq) |
|---|
| 1738 | ENDIF |
|---|
| 1739 | |
|---|
| 1740 | |
|---|
| 1741 | ENDIF ! of IF (calllott_nonoro) |
|---|
| 1742 | |
|---|
| 1743 | c----------------------------------------------------------------------- |
|---|
| 1744 | c 9. Specific parameterizations for tracers |
|---|
| 1745 | c: ----------------------------------------- |
|---|
| 1746 | |
|---|
| 1747 | |
|---|
| 1748 | c 9a. Water and ice |
|---|
| 1749 | c --------------- |
|---|
| 1750 | |
|---|
| 1751 | c --------------------------------------- |
|---|
| 1752 | c Water ice condensation in the atmosphere |
|---|
| 1753 | c ---------------------------------------- |
|---|
| 1754 | IF (water) THEN |
|---|
| 1755 | |
|---|
| 1756 | call watercloud(ngrid,nlayer,ptimestep, |
|---|
| 1757 | & zplev,zplay,pdpsrf,zzlay, pt,pdt, |
|---|
| 1758 | & pq,pdq,zdqcloud,zdtcloud, |
|---|
| 1759 | & nq,tau,tauscaling,rdust,rice,nuice, |
|---|
| 1760 | & rsedcloud,rhocloud,totcloudfrac) |
|---|
| 1761 | c Temperature variation due to latent heat release |
|---|
| 1762 | if (activice) then |
|---|
| 1763 | pdt(1:ngrid,1:nlayer) = |
|---|
| 1764 | & pdt(1:ngrid,1:nlayer) + |
|---|
| 1765 | & zdtcloud(1:ngrid,1:nlayer) |
|---|
| 1766 | endif |
|---|
| 1767 | |
|---|
| 1768 | ! increment water vapour and ice atmospheric tracers tendencies |
|---|
| 1769 | pdq(1:ngrid,1:nlayer,igcm_h2o_vap) = |
|---|
| 1770 | & pdq(1:ngrid,1:nlayer,igcm_h2o_vap) + |
|---|
| 1771 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_vap) |
|---|
| 1772 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = |
|---|
| 1773 | & pdq(1:ngrid,1:nlayer,igcm_h2o_ice) + |
|---|
| 1774 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 1775 | |
|---|
| 1776 | if (hdo) then |
|---|
| 1777 | ! increment HDO vapour and ice atmospheric tracers tendencies |
|---|
| 1778 | pdq(1:ngrid,1:nlayer,igcm_hdo_vap) = |
|---|
| 1779 | & pdq(1:ngrid,1:nlayer,igcm_hdo_vap) + |
|---|
| 1780 | & zdqcloud(1:ngrid,1:nlayer,igcm_hdo_vap) |
|---|
| 1781 | pdq(1:ngrid,1:nlayer,igcm_hdo_ice) = |
|---|
| 1782 | & pdq(1:ngrid,1:nlayer,igcm_hdo_ice) + |
|---|
| 1783 | & zdqcloud(1:ngrid,1:nlayer,igcm_hdo_ice) |
|---|
| 1784 | endif !hdo |
|---|
| 1785 | |
|---|
| 1786 | ! increment dust and ccn masses and numbers |
|---|
| 1787 | ! We need to check that we have Nccn & Ndust > 0 |
|---|
| 1788 | ! This is due to single precision rounding problems |
|---|
| 1789 | if (microphys) then |
|---|
| 1790 | pdq(1:ngrid,1:nlayer,igcm_ccn_mass) = |
|---|
| 1791 | & pdq(1:ngrid,1:nlayer,igcm_ccn_mass) + |
|---|
| 1792 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_mass) |
|---|
| 1793 | pdq(1:ngrid,1:nlayer,igcm_ccn_number) = |
|---|
| 1794 | & pdq(1:ngrid,1:nlayer,igcm_ccn_number) + |
|---|
| 1795 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_number) |
|---|
| 1796 | where (pq(:,:,igcm_ccn_mass) + |
|---|
| 1797 | & ptimestep*pdq(:,:,igcm_ccn_mass) < 0.) |
|---|
| 1798 | pdq(:,:,igcm_ccn_mass) = |
|---|
| 1799 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
|---|
| 1800 | pdq(:,:,igcm_ccn_number) = |
|---|
| 1801 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
|---|
| 1802 | end where |
|---|
| 1803 | where (pq(:,:,igcm_ccn_number) + |
|---|
| 1804 | & ptimestep*pdq(:,:,igcm_ccn_number) < 0.) |
|---|
| 1805 | pdq(:,:,igcm_ccn_mass) = |
|---|
| 1806 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
|---|
| 1807 | pdq(:,:,igcm_ccn_number) = |
|---|
| 1808 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
|---|
| 1809 | end where |
|---|
| 1810 | endif |
|---|
| 1811 | |
|---|
| 1812 | if (scavenging) then |
|---|
| 1813 | pdq(1:ngrid,1:nlayer,igcm_dust_mass) = |
|---|
| 1814 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) + |
|---|
| 1815 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_mass) |
|---|
| 1816 | pdq(1:ngrid,1:nlayer,igcm_dust_number) = |
|---|
| 1817 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) + |
|---|
| 1818 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_number) |
|---|
| 1819 | where (pq(:,:,igcm_dust_mass) + |
|---|
| 1820 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
|---|
| 1821 | pdq(:,:,igcm_dust_mass) = |
|---|
| 1822 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 1823 | pdq(:,:,igcm_dust_number) = |
|---|
| 1824 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 1825 | end where |
|---|
| 1826 | where (pq(:,:,igcm_dust_number) + |
|---|
| 1827 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
|---|
| 1828 | pdq(:,:,igcm_dust_mass) = |
|---|
| 1829 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 1830 | pdq(:,:,igcm_dust_number) = |
|---|
| 1831 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 1832 | end where |
|---|
| 1833 | endif ! of if scavenging |
|---|
| 1834 | |
|---|
| 1835 | END IF ! of IF (water) |
|---|
| 1836 | |
|---|
| 1837 | c 9a bis. CO2 clouds (CL & JA) |
|---|
| 1838 | c --------------------------------------- |
|---|
| 1839 | c CO2 ice cloud condensation in the atmosphere |
|---|
| 1840 | c ---------------------------------------- |
|---|
| 1841 | c flag needed in callphys.def: |
|---|
| 1842 | c co2clouds=.true. is mandatory (default is .false.) |
|---|
| 1843 | c co2useh2o=.true. if you want to allow co2 condensation |
|---|
| 1844 | c on water ice particles |
|---|
| 1845 | c meteo_flux=.true. if you want to add a meteoritic |
|---|
| 1846 | c supply of CCN |
|---|
| 1847 | c CLFvaryingCO2=.true. if you want to have a sub-grid |
|---|
| 1848 | c temperature distribution |
|---|
| 1849 | c spantCO2=integer (i.e. 3) amplitude of the sub-grid T disti |
|---|
| 1850 | c nuiceco2_sed=0.2 variance of the size distribution for the |
|---|
| 1851 | c sedimentation |
|---|
| 1852 | c nuiceco2_ref=0.2 variance of the size distribution for the |
|---|
| 1853 | c nucleation |
|---|
| 1854 | c imicroco2=50 micro-timestep is 1/50 of physical timestep |
|---|
| 1855 | zdqssed_co2(:) = 0. |
|---|
| 1856 | zdqssed_ccn(:,:) = 0. |
|---|
| 1857 | |
|---|
| 1858 | IF (co2clouds) THEN |
|---|
| 1859 | call co2cloud(ngrid,nlayer,ptimestep, |
|---|
| 1860 | & zplev,zplay,pdpsrf,zzlay,pt,pdt, |
|---|
| 1861 | & pq,pdq,zdqcloudco2,zdtcloudco2, |
|---|
| 1862 | & nq,tau,tauscaling,rdust,rice,riceco2,nuice, |
|---|
| 1863 | & rhocloud, rsedcloudco2,rhocloudco2,zzlev,zdqssed_co2, |
|---|
| 1864 | & zdqssed_ccn,pdu,pu,zcondicea_co2microp) |
|---|
| 1865 | |
|---|
| 1866 | DO iq=1, nq |
|---|
| 1867 | DO ig=1,ngrid |
|---|
| 1868 | DO islope = 1,nslope |
|---|
| 1869 | dqsurf(ig,iq,islope)=dqsurf(ig,iq,islope)+ |
|---|
| 1870 | & zdqssed_ccn(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
|---|
| 1871 | ENDDO !(islope) |
|---|
| 1872 | ENDDO ! (ig) |
|---|
| 1873 | ENDDO ! (iq)q) |
|---|
| 1874 | c Temperature variation due to latent heat release |
|---|
| 1875 | pdt(1:ngrid,1:nlayer) = |
|---|
| 1876 | & pdt(1:ngrid,1:nlayer) + |
|---|
| 1877 | & zdtcloudco2(1:ngrid,1:nlayer) |
|---|
| 1878 | |
|---|
| 1879 | ! increment dust and ccn masses and numbers |
|---|
| 1880 | ! We need to check that we have Nccn & Ndust > 0 |
|---|
| 1881 | ! This is due to single precision rounding problems |
|---|
| 1882 | ! increment dust tracers tendancies |
|---|
| 1883 | pdq(:,:,igcm_dust_mass) = pdq(:,:,igcm_dust_mass) |
|---|
| 1884 | & + zdqcloudco2(:,:,igcm_dust_mass) |
|---|
| 1885 | |
|---|
| 1886 | pdq(:,:,igcm_dust_number) = pdq(:,:,igcm_dust_number) |
|---|
| 1887 | & + zdqcloudco2(:,:,igcm_dust_number) |
|---|
| 1888 | |
|---|
| 1889 | pdq(:,:,igcm_co2) = pdq(:,:,igcm_co2) |
|---|
| 1890 | & + zdqcloudco2(:,:,igcm_co2) |
|---|
| 1891 | |
|---|
| 1892 | pdq(:,:,igcm_co2_ice) = pdq(:,:,igcm_co2_ice) |
|---|
| 1893 | & + zdqcloudco2(:,:,igcm_co2_ice) |
|---|
| 1894 | |
|---|
| 1895 | pdq(:,:,igcm_ccnco2_mass) = pdq(:,:,igcm_ccnco2_mass) |
|---|
| 1896 | & + zdqcloudco2(:,:,igcm_ccnco2_mass) |
|---|
| 1897 | |
|---|
| 1898 | pdq(:,:,igcm_ccnco2_number) = pdq(:,:,igcm_ccnco2_number) |
|---|
| 1899 | & + zdqcloudco2(:,:,igcm_ccnco2_number) |
|---|
| 1900 | |
|---|
| 1901 | if (meteo_flux) then |
|---|
| 1902 | pdq(:,:,igcm_ccnco2_meteor_mass) = |
|---|
| 1903 | & pdq(:,:,igcm_ccnco2_meteor_mass) + |
|---|
| 1904 | & zdqcloudco2(:,:,igcm_ccnco2_meteor_mass) |
|---|
| 1905 | |
|---|
| 1906 | pdq(:,:,igcm_ccnco2_meteor_number) = |
|---|
| 1907 | & pdq(:,:,igcm_ccnco2_meteor_number) |
|---|
| 1908 | & + zdqcloudco2(:,:,igcm_ccnco2_meteor_number) |
|---|
| 1909 | end if |
|---|
| 1910 | !Update water ice clouds values as well |
|---|
| 1911 | if (co2useh2o) then |
|---|
| 1912 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = |
|---|
| 1913 | & pdq(1:ngrid,1:nlayer,igcm_h2o_ice) + |
|---|
| 1914 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 1915 | pdq(1:ngrid,1:nlayer,igcm_ccn_mass) = |
|---|
| 1916 | & pdq(1:ngrid,1:nlayer,igcm_ccn_mass) + |
|---|
| 1917 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccn_mass) |
|---|
| 1918 | pdq(1:ngrid,1:nlayer,igcm_ccn_number) = |
|---|
| 1919 | & pdq(1:ngrid,1:nlayer,igcm_ccn_number) + |
|---|
| 1920 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccn_number) |
|---|
| 1921 | |
|---|
| 1922 | pdq(:,:,igcm_ccnco2_h2o_mass_ice) = |
|---|
| 1923 | & pdq(:,:,igcm_ccnco2_h2o_mass_ice) + |
|---|
| 1924 | & zdqcloudco2(:,:,igcm_ccnco2_h2o_mass_ice) |
|---|
| 1925 | |
|---|
| 1926 | pdq(:,:,igcm_ccnco2_h2o_mass_ccn) = |
|---|
| 1927 | & pdq(:,:,igcm_ccnco2_h2o_mass_ccn) + |
|---|
| 1928 | & zdqcloudco2(:,:,igcm_ccnco2_h2o_mass_ccn) |
|---|
| 1929 | |
|---|
| 1930 | pdq(:,:,igcm_ccnco2_h2o_number) = |
|---|
| 1931 | & pdq(:,:,igcm_ccnco2_h2o_number) + |
|---|
| 1932 | & zdqcloudco2(:,:,igcm_ccnco2_h2o_number) |
|---|
| 1933 | |
|---|
| 1934 | c Negative values? |
|---|
| 1935 | where (pq(:,:,igcm_ccn_mass) + |
|---|
| 1936 | & ptimestep*pdq(:,:,igcm_ccn_mass) < 0.) |
|---|
| 1937 | pdq(:,:,igcm_ccn_mass) = |
|---|
| 1938 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
|---|
| 1939 | pdq(:,:,igcm_ccn_number) = |
|---|
| 1940 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
|---|
| 1941 | end where |
|---|
| 1942 | c Negative values? |
|---|
| 1943 | where (pq(:,:,igcm_ccn_number) + |
|---|
| 1944 | & ptimestep*pdq(:,:,igcm_ccn_number) < 0.) |
|---|
| 1945 | pdq(:,:,igcm_ccn_mass) = |
|---|
| 1946 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
|---|
| 1947 | pdq(:,:,igcm_ccn_number) = |
|---|
| 1948 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
|---|
| 1949 | end where |
|---|
| 1950 | where (pq(:,:,igcm_ccnco2_h2o_mass_ice) + |
|---|
| 1951 | & pq(:,:,igcm_ccnco2_h2o_mass_ccn) + |
|---|
| 1952 | & (pdq(:,:,igcm_ccnco2_h2o_mass_ice) + |
|---|
| 1953 | & pdq(:,:,igcm_ccnco2_h2o_mass_ccn) |
|---|
| 1954 | & )*ptimestep < 0.) |
|---|
| 1955 | pdq(:,:,igcm_ccnco2_h2o_mass_ice) = |
|---|
| 1956 | & - pq(:,:,igcm_ccnco2_h2o_mass_ice) |
|---|
| 1957 | & /ptimestep + 1.e-30 |
|---|
| 1958 | pdq(:,:,igcm_ccnco2_h2o_mass_ccn) = |
|---|
| 1959 | & - pq(:,:,igcm_ccnco2_h2o_mass_ccn) |
|---|
| 1960 | & /ptimestep + 1.e-30 |
|---|
| 1961 | pdq(:,:,igcm_ccnco2_h2o_number) = |
|---|
| 1962 | & - pq(:,:,igcm_ccnco2_h2o_number) |
|---|
| 1963 | & /ptimestep + 1.e-30 |
|---|
| 1964 | end where |
|---|
| 1965 | |
|---|
| 1966 | where (pq(:,:,igcm_ccnco2_h2o_number) + |
|---|
| 1967 | & (pdq(:,:,igcm_ccnco2_h2o_number) |
|---|
| 1968 | & )*ptimestep < 0.) |
|---|
| 1969 | pdq(:,:,igcm_ccnco2_h2o_mass_ice) = |
|---|
| 1970 | & - pq(:,:,igcm_ccnco2_h2o_mass_ice) |
|---|
| 1971 | & /ptimestep + 1.e-30 |
|---|
| 1972 | pdq(:,:,igcm_ccnco2_h2o_mass_ccn) = |
|---|
| 1973 | & - pq(:,:,igcm_ccnco2_h2o_mass_ccn) |
|---|
| 1974 | & /ptimestep + 1.e-30 |
|---|
| 1975 | pdq(:,:,igcm_ccnco2_h2o_number) = |
|---|
| 1976 | & - pq(:,:,igcm_ccnco2_h2o_number) |
|---|
| 1977 | & /ptimestep + 1.e-30 |
|---|
| 1978 | end where |
|---|
| 1979 | endif ! of if (co2useh2o) |
|---|
| 1980 | c Negative values? |
|---|
| 1981 | where (pq(:,:,igcm_ccnco2_mass) + |
|---|
| 1982 | & ptimestep*pdq(:,:,igcm_ccnco2_mass) < 0.) |
|---|
| 1983 | pdq(:,:,igcm_ccnco2_mass) = |
|---|
| 1984 | & - pq(:,:,igcm_ccnco2_mass)/ptimestep + 1.e-30 |
|---|
| 1985 | pdq(:,:,igcm_ccnco2_number) = |
|---|
| 1986 | & - pq(:,:,igcm_ccnco2_number)/ptimestep + 1.e-30 |
|---|
| 1987 | end where |
|---|
| 1988 | where (pq(:,:,igcm_ccnco2_number) + |
|---|
| 1989 | & ptimestep*pdq(:,:,igcm_ccnco2_number) < 0.) |
|---|
| 1990 | pdq(:,:,igcm_ccnco2_mass) = |
|---|
| 1991 | & - pq(:,:,igcm_ccnco2_mass)/ptimestep + 1.e-30 |
|---|
| 1992 | pdq(:,:,igcm_ccnco2_number) = |
|---|
| 1993 | & - pq(:,:,igcm_ccnco2_number)/ptimestep + 1.e-30 |
|---|
| 1994 | end where |
|---|
| 1995 | |
|---|
| 1996 | c Negative values? |
|---|
| 1997 | where (pq(:,:,igcm_dust_mass) + |
|---|
| 1998 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
|---|
| 1999 | pdq(:,:,igcm_dust_mass) = |
|---|
| 2000 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 2001 | pdq(:,:,igcm_dust_number) = |
|---|
| 2002 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 2003 | end where |
|---|
| 2004 | where (pq(:,:,igcm_dust_number) + |
|---|
| 2005 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
|---|
| 2006 | pdq(:,:,igcm_dust_mass) = |
|---|
| 2007 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 2008 | pdq(:,:,igcm_dust_number) = |
|---|
| 2009 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 2010 | end where |
|---|
| 2011 | if (meteo_flux) then |
|---|
| 2012 | where (pq(:,:,igcm_ccnco2_meteor_mass) + |
|---|
| 2013 | & ptimestep*pdq(:,:,igcm_ccnco2_meteor_mass) < 0.) |
|---|
| 2014 | pdq(:,:,igcm_ccnco2_meteor_mass) = |
|---|
| 2015 | & - pq(:,:,igcm_ccnco2_meteor_mass)/ptimestep + 1.e-30 |
|---|
| 2016 | pdq(:,:,igcm_ccnco2_meteor_number) = |
|---|
| 2017 | & - pq(:,:,igcm_ccnco2_meteor_number)/ptimestep + 1.e-30 |
|---|
| 2018 | end where |
|---|
| 2019 | where (pq(:,:,igcm_ccnco2_meteor_number) + |
|---|
| 2020 | & ptimestep*pdq(:,:,igcm_ccnco2_meteor_number) < 0.) |
|---|
| 2021 | pdq(:,:,igcm_ccnco2_meteor_mass) = |
|---|
| 2022 | & - pq(:,:,igcm_ccnco2_meteor_mass)/ptimestep + 1.e-30 |
|---|
| 2023 | pdq(:,:,igcm_ccnco2_meteor_number) = |
|---|
| 2024 | & - pq(:,:,igcm_ccnco2_meteor_number)/ptimestep + 1.e-30 |
|---|
| 2025 | end where |
|---|
| 2026 | end if |
|---|
| 2027 | END IF ! of IF (co2clouds) |
|---|
| 2028 | |
|---|
| 2029 | c 9b. Aerosol particles |
|---|
| 2030 | c ------------------- |
|---|
| 2031 | c ---------- |
|---|
| 2032 | c Dust devil : |
|---|
| 2033 | c ---------- |
|---|
| 2034 | IF(callddevil) then |
|---|
| 2035 | call dustdevil(ngrid,nlayer,nq, zplev,pu,pv,pt, tsurf,q2, |
|---|
| 2036 | & zdqdev,zdqsdev) |
|---|
| 2037 | |
|---|
| 2038 | if (dustbin.ge.1) then |
|---|
| 2039 | do iq=1,nq |
|---|
| 2040 | DO l=1,nlayer |
|---|
| 2041 | DO ig=1,ngrid |
|---|
| 2042 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdev(ig,l,iq) |
|---|
| 2043 | ENDDO |
|---|
| 2044 | ENDDO |
|---|
| 2045 | enddo |
|---|
| 2046 | do iq=1,nq |
|---|
| 2047 | DO ig=1,ngrid |
|---|
| 2048 | DO islope = 1,nslope |
|---|
| 2049 | dqsurf(ig,iq,islope)= dqsurf(ig,iq,islope) + |
|---|
| 2050 | & zdqsdev(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
|---|
| 2051 | ENDDO |
|---|
| 2052 | ENDDO |
|---|
| 2053 | enddo |
|---|
| 2054 | endif ! of if (dustbin.ge.1) |
|---|
| 2055 | |
|---|
| 2056 | END IF ! of IF (callddevil) |
|---|
| 2057 | |
|---|
| 2058 | c ------------- |
|---|
| 2059 | c Sedimentation : acts also on water ice |
|---|
| 2060 | c ------------- |
|---|
| 2061 | IF (sedimentation) THEN |
|---|
| 2062 | zdqsed(1:ngrid,1:nlayer,1:nq)=0 |
|---|
| 2063 | zdqssed(1:ngrid,1:nq)=0 |
|---|
| 2064 | |
|---|
| 2065 | c Sedimentation for co2 clouds tracers are inside co2cloud microtimestep |
|---|
| 2066 | c Zdqssed isn't |
|---|
| 2067 | |
|---|
| 2068 | call callsedim(ngrid,nlayer,ptimestep, |
|---|
| 2069 | & zplev,zzlev,zzlay,pt,pdt, |
|---|
| 2070 | & rdust,rstormdust,rtopdust, |
|---|
| 2071 | & rice,rsedcloud,rhocloud, |
|---|
| 2072 | & pq,pdq,zdqsed,zdqssed,nq, |
|---|
| 2073 | & tau,tauscaling) |
|---|
| 2074 | |
|---|
| 2075 | |
|---|
| 2076 | c Flux at the surface of co2 ice computed in co2cloud microtimestep |
|---|
| 2077 | IF (rdstorm) THEN |
|---|
| 2078 | c Storm dust cannot sediment to the surface |
|---|
| 2079 | DO ig=1,ngrid |
|---|
| 2080 | zdqsed(ig,1,igcm_stormdust_mass)= |
|---|
| 2081 | & zdqsed(ig,1,igcm_stormdust_mass)+ |
|---|
| 2082 | & zdqssed(ig,igcm_stormdust_mass) / |
|---|
| 2083 | & ((pplev(ig,1)-pplev(ig,2))/g) |
|---|
| 2084 | zdqsed(ig,1,igcm_stormdust_number)= |
|---|
| 2085 | & zdqsed(ig,1,igcm_stormdust_number)+ |
|---|
| 2086 | & zdqssed(ig,igcm_stormdust_number) / |
|---|
| 2087 | & ((pplev(ig,1)-pplev(ig,2))/g) |
|---|
| 2088 | zdqssed(ig,igcm_stormdust_mass)=0. |
|---|
| 2089 | zdqssed(ig,igcm_stormdust_number)=0. |
|---|
| 2090 | ENDDO |
|---|
| 2091 | ENDIF !rdstorm |
|---|
| 2092 | |
|---|
| 2093 | DO iq=1, nq |
|---|
| 2094 | DO l=1,nlayer |
|---|
| 2095 | DO ig=1,ngrid |
|---|
| 2096 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqsed(ig,l,iq) |
|---|
| 2097 | ENDDO |
|---|
| 2098 | ENDDO |
|---|
| 2099 | ENDDO |
|---|
| 2100 | DO iq=1, nq |
|---|
| 2101 | DO ig=1,ngrid |
|---|
| 2102 | DO islope = 1,nslope |
|---|
| 2103 | dqsurf(ig,iq,islope)= dqsurf(ig,iq,islope) + |
|---|
| 2104 | & zdqssed(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
|---|
| 2105 | ENDDO |
|---|
| 2106 | ENDDO |
|---|
| 2107 | ENDDO |
|---|
| 2108 | |
|---|
| 2109 | END IF ! of IF (sedimentation) |
|---|
| 2110 | |
|---|
| 2111 | c Add lifted dust to tendancies after sedimentation in the LES (AC) |
|---|
| 2112 | IF (turb_resolved) THEN |
|---|
| 2113 | DO iq=1, nq |
|---|
| 2114 | DO l=1,nlayer |
|---|
| 2115 | DO ig=1,ngrid |
|---|
| 2116 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
|---|
| 2117 | ENDDO |
|---|
| 2118 | ENDDO |
|---|
| 2119 | ENDDO |
|---|
| 2120 | DO iq=1, nq |
|---|
| 2121 | DO ig=1,ngrid |
|---|
| 2122 | dqsurf(ig,iq,:)=dqsurf(ig,iq,:) + zdqsdif(ig,iq,:) |
|---|
| 2123 | ENDDO |
|---|
| 2124 | ENDDO |
|---|
| 2125 | ENDIF |
|---|
| 2126 | c |
|---|
| 2127 | c 9c. Chemical species |
|---|
| 2128 | c ------------------ |
|---|
| 2129 | |
|---|
| 2130 | #ifndef MESOSCALE |
|---|
| 2131 | c -------------- |
|---|
| 2132 | c photochemistry : |
|---|
| 2133 | c -------------- |
|---|
| 2134 | IF (photochem) then |
|---|
| 2135 | |
|---|
| 2136 | if (modulo(icount-1,ichemistry).eq.0) then |
|---|
| 2137 | ! compute chemistry every ichemistry physics step |
|---|
| 2138 | |
|---|
| 2139 | ! dust and ice surface area |
|---|
| 2140 | call surfacearea(ngrid, nlayer, naerkind, |
|---|
| 2141 | $ ptimestep, zplay, zzlay, |
|---|
| 2142 | $ pt, pq, pdq, nq, |
|---|
| 2143 | $ rdust, rice, tau, tauscaling, |
|---|
| 2144 | $ surfdust, surfice) |
|---|
| 2145 | ! call photochemistry |
|---|
| 2146 | DO ig = 1,ngrid |
|---|
| 2147 | qsurf_tmp(ig,:) = qsurf(ig,:,major_slope(ig)) |
|---|
| 2148 | ENDDO |
|---|
| 2149 | call calchim(ngrid,nlayer,nq, |
|---|
| 2150 | & ptimestep,zplay,zplev,pt,pdt,dist_sol,mu0, |
|---|
| 2151 | $ zzlev,zzlay,zday,pq,pdq,zdqchim,zdqschim, |
|---|
| 2152 | $ zdqcloud,zdqscloud,tau(:,1), |
|---|
| 2153 | $ qsurf_tmp(:,igcm_co2), |
|---|
| 2154 | $ pu,pdu,pv,pdv,surfdust,surfice) |
|---|
| 2155 | |
|---|
| 2156 | endif ! of if (modulo(icount-1,ichemistry).eq.0) |
|---|
| 2157 | |
|---|
| 2158 | ! increment values of tracers: |
|---|
| 2159 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
|---|
| 2160 | ! tracers is zero anyways |
|---|
| 2161 | DO l=1,nlayer |
|---|
| 2162 | DO ig=1,ngrid |
|---|
| 2163 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqchim(ig,l,iq) |
|---|
| 2164 | ENDDO |
|---|
| 2165 | ENDDO |
|---|
| 2166 | ENDDO ! of DO iq=1,nq |
|---|
| 2167 | |
|---|
| 2168 | ! add condensation tendency for H2O2 |
|---|
| 2169 | if (igcm_h2o2.ne.0) then |
|---|
| 2170 | DO l=1,nlayer |
|---|
| 2171 | DO ig=1,ngrid |
|---|
| 2172 | pdq(ig,l,igcm_h2o2)=pdq(ig,l,igcm_h2o2) |
|---|
| 2173 | & +zdqcloud(ig,l,igcm_h2o2) |
|---|
| 2174 | ENDDO |
|---|
| 2175 | ENDDO |
|---|
| 2176 | endif |
|---|
| 2177 | |
|---|
| 2178 | ! increment surface values of tracers: |
|---|
| 2179 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
|---|
| 2180 | ! tracers is zero anyways |
|---|
| 2181 | DO ig=1,ngrid |
|---|
| 2182 | DO islope = 1,nslope |
|---|
| 2183 | dqsurf(ig,iq,islope)=dqsurf(ig,iq,islope) + |
|---|
| 2184 | & zdqschim(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
|---|
| 2185 | ENDDO |
|---|
| 2186 | ENDDO |
|---|
| 2187 | ENDDO ! of DO iq=1,nq |
|---|
| 2188 | |
|---|
| 2189 | ! add condensation tendency for H2O2 |
|---|
| 2190 | if (igcm_h2o2.ne.0) then |
|---|
| 2191 | DO ig=1,ngrid |
|---|
| 2192 | DO islope = 1,nslope |
|---|
| 2193 | dqsurf(ig,igcm_h2o2,islope)=dqsurf(ig,igcm_h2o2,islope)+ |
|---|
| 2194 | & zdqscloud(ig,igcm_h2o2)*cos(pi*def_slope_mean(islope)/180.) |
|---|
| 2195 | ENDDO |
|---|
| 2196 | ENDDO |
|---|
| 2197 | endif |
|---|
| 2198 | |
|---|
| 2199 | END IF ! of IF (photochem) |
|---|
| 2200 | #endif |
|---|
| 2201 | |
|---|
| 2202 | |
|---|
| 2203 | #ifndef MESOSCALE |
|---|
| 2204 | c----------------------------------------------------------------------- |
|---|
| 2205 | c 10. THERMOSPHERE CALCULATION |
|---|
| 2206 | c----------------------------------------------------------------------- |
|---|
| 2207 | |
|---|
| 2208 | if (callthermos) then |
|---|
| 2209 | call thermosphere(ngrid,nlayer,nq,zplev,zplay,dist_sol, |
|---|
| 2210 | $ mu0,ptimestep,ptime,zday,tsurf_meshavg,zzlev,zzlay, |
|---|
| 2211 | & pt,pq,pu,pv,pdt,pdq, |
|---|
| 2212 | $ zdteuv,zdtconduc,zdumolvis,zdvmolvis,zdqmoldiff, |
|---|
| 2213 | $ PhiEscH,PhiEscH2,PhiEscD) |
|---|
| 2214 | |
|---|
| 2215 | DO l=1,nlayer |
|---|
| 2216 | DO ig=1,ngrid |
|---|
| 2217 | dtrad(ig,l)=dtrad(ig,l)+zdteuv(ig,l) |
|---|
| 2218 | pdt(ig,l)=pdt(ig,l)+zdtconduc(ig,l)+zdteuv(ig,l) |
|---|
| 2219 | pdv(ig,l)=pdv(ig,l)+zdvmolvis(ig,l) |
|---|
| 2220 | pdu(ig,l)=pdu(ig,l)+zdumolvis(ig,l) |
|---|
| 2221 | DO iq=1, nq |
|---|
| 2222 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqmoldiff(ig,l,iq) |
|---|
| 2223 | ENDDO |
|---|
| 2224 | ENDDO |
|---|
| 2225 | ENDDO |
|---|
| 2226 | |
|---|
| 2227 | endif ! of if (callthermos) |
|---|
| 2228 | #endif |
|---|
| 2229 | |
|---|
| 2230 | c----------------------------------------------------------------------- |
|---|
| 2231 | c 11. Carbon dioxide condensation-sublimation: |
|---|
| 2232 | c (should be the last atmospherical physical process to be computed) |
|---|
| 2233 | c ------------------------------------------- |
|---|
| 2234 | IF (tituscap) THEN |
|---|
| 2235 | !!! get the actual co2 seasonal cap from Titus observations |
|---|
| 2236 | CALL geticecover(ngrid, 180.*zls/pi, |
|---|
| 2237 | . 180.*longitude/pi, 180.*latitude/pi, |
|---|
| 2238 | . qsurf_tmp(:,igcm_co2) ) |
|---|
| 2239 | qsurf_tmp(:,igcm_co2) = qsurf_tmp(:,igcm_co2) * 10000. |
|---|
| 2240 | ENDIF |
|---|
| 2241 | |
|---|
| 2242 | |
|---|
| 2243 | IF (callcond) THEN |
|---|
| 2244 | zdtc(:,:) = 0. |
|---|
| 2245 | zdtsurfc(:,:) = 0. |
|---|
| 2246 | zduc(:,:) = 0. |
|---|
| 2247 | zdvc(:,:) = 0. |
|---|
| 2248 | zdqc(:,:,:) = 0. |
|---|
| 2249 | zdqsc(:,:,:) = 0. |
|---|
| 2250 | CALL co2condens(ngrid,nlayer,nq,nslope,ptimestep, |
|---|
| 2251 | $ capcal,zplay,zplev,tsurf,pt, |
|---|
| 2252 | $ pphi,pdt,pdu,pdv,zdtsurf,pu,pv,pq,pdq, |
|---|
| 2253 | $ qsurf(:,igcm_co2,:),perennial_co2ice, |
|---|
| 2254 | $ albedo,emis,rdust, |
|---|
| 2255 | $ zdtc,zdtsurfc,pdpsrf,zduc,zdvc,zdqc, |
|---|
| 2256 | $ fluxsurf_dn_sw,zls, |
|---|
| 2257 | $ zdqssed_co2,zcondicea_co2microp, |
|---|
| 2258 | & zdqsc) |
|---|
| 2259 | |
|---|
| 2260 | if (ngrid == 1) then ! For the 1D model |
|---|
| 2261 | ! CO2cond_ps is a coefficient to control the surface pressure change |
|---|
| 2262 | pdpsrf = CO2cond_ps*pdpsrf |
|---|
| 2263 | zduc = CO2cond_ps*zduc |
|---|
| 2264 | zdvc = CO2cond_ps*zdvc |
|---|
| 2265 | zdqc = CO2cond_ps*zdqc |
|---|
| 2266 | endif |
|---|
| 2267 | |
|---|
| 2268 | DO iq=1, nq |
|---|
| 2269 | DO ig=1,ngrid |
|---|
| 2270 | dqsurf(ig,iq,:)=dqsurf(ig,iq,:)+zdqsc(ig,iq,:) |
|---|
| 2271 | ENDDO ! (ig) |
|---|
| 2272 | ENDDO ! (iq) |
|---|
| 2273 | DO l=1,nlayer |
|---|
| 2274 | DO ig=1,ngrid |
|---|
| 2275 | pdt(ig,l)=pdt(ig,l)+zdtc(ig,l) |
|---|
| 2276 | pdv(ig,l)=pdv(ig,l)+zdvc(ig,l) |
|---|
| 2277 | pdu(ig,l)=pdu(ig,l)+zduc(ig,l) |
|---|
| 2278 | ENDDO |
|---|
| 2279 | ENDDO |
|---|
| 2280 | DO ig=1,ngrid |
|---|
| 2281 | zdtsurf(ig,:) = zdtsurf(ig,:) + zdtsurfc(ig,:) |
|---|
| 2282 | ENDDO |
|---|
| 2283 | |
|---|
| 2284 | DO iq=1, nq |
|---|
| 2285 | DO l=1,nlayer |
|---|
| 2286 | DO ig=1,ngrid |
|---|
| 2287 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqc(ig,l,iq) |
|---|
| 2288 | ENDDO |
|---|
| 2289 | ENDDO |
|---|
| 2290 | ENDDO |
|---|
| 2291 | |
|---|
| 2292 | #ifndef MESOSCALE |
|---|
| 2293 | ! update surface pressure |
|---|
| 2294 | DO ig=1,ngrid |
|---|
| 2295 | ps(ig) = zplev(ig,1) + pdpsrf(ig)*ptimestep |
|---|
| 2296 | ENDDO |
|---|
| 2297 | ! update pressure levels |
|---|
| 2298 | DO l=1,nlayer |
|---|
| 2299 | DO ig=1,ngrid |
|---|
| 2300 | zplay(ig,l) = aps(l) + bps(l)*ps(ig) |
|---|
| 2301 | zplev(ig,l) = ap(l) + bp(l)*ps(ig) |
|---|
| 2302 | ENDDO |
|---|
| 2303 | ENDDO |
|---|
| 2304 | zplev(:,nlayer+1) = 0. |
|---|
| 2305 | |
|---|
| 2306 | ! Calculation of zzlay and zzlay with udpated pressure and temperature |
|---|
| 2307 | DO ig=1,ngrid |
|---|
| 2308 | zzlay(ig,1)=-(log(zplay(ig,1)/ps(ig)))*rnew(ig,1)* |
|---|
| 2309 | & (pt(ig,1)+pdt(ig,1)*ptimestep) /g |
|---|
| 2310 | |
|---|
| 2311 | DO l=2,nlayer |
|---|
| 2312 | |
|---|
| 2313 | ! compute "mean" temperature of the layer |
|---|
| 2314 | if((pt(ig,l)+pdt(ig,l)*ptimestep) .eq. |
|---|
| 2315 | & (pt(ig,l-1)+pdt(ig,l-1)*ptimestep)) then |
|---|
| 2316 | tlaymean= pt(ig,l)+pdt(ig,l)*ptimestep |
|---|
| 2317 | else |
|---|
| 2318 | tlaymean=((pt(ig,l)+pdt(ig,l)*ptimestep)- |
|---|
| 2319 | & (pt(ig,l-1)+pdt(ig,l-1)*ptimestep))/ |
|---|
| 2320 | & log((pt(ig,l)+pdt(ig,l)*ptimestep)/ |
|---|
| 2321 | & (pt(ig,l-1)+pdt(ig,l-1)*ptimestep)) |
|---|
| 2322 | endif |
|---|
| 2323 | |
|---|
| 2324 | ! compute gravitational acceleration (at altitude zaeroid(nlayer-1)) |
|---|
| 2325 | gz(ig,l)=g*(rad**2)/(rad+zzlay(ig,l-1)+(phisfi(ig)/g))**2 |
|---|
| 2326 | |
|---|
| 2327 | |
|---|
| 2328 | zzlay(ig,l)=zzlay(ig,l-1)- |
|---|
| 2329 | & (log(zplay(ig,l)/zplay(ig,l-1))*rnew(ig,l)*tlaymean/gz(ig,l)) |
|---|
| 2330 | |
|---|
| 2331 | |
|---|
| 2332 | ! update layers altitude |
|---|
| 2333 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
|---|
| 2334 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
|---|
| 2335 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
|---|
| 2336 | ENDDO |
|---|
| 2337 | ENDDO |
|---|
| 2338 | #endif |
|---|
| 2339 | ENDIF ! of IF (callcond) |
|---|
| 2340 | |
|---|
| 2341 | c----------------------------------------------------------------------- |
|---|
| 2342 | c Updating tracer budget on surface |
|---|
| 2343 | c----------------------------------------------------------------------- |
|---|
| 2344 | DO iq=1, nq |
|---|
| 2345 | DO ig=1,ngrid |
|---|
| 2346 | DO islope = 1,nslope |
|---|
| 2347 | qsurf(ig,iq,islope)=qsurf(ig,iq,islope)+ |
|---|
| 2348 | & ptimestep*dqsurf(ig,iq,islope) |
|---|
| 2349 | ENDDO |
|---|
| 2350 | ENDDO ! (ig) |
|---|
| 2351 | ENDDO ! (iq) |
|---|
| 2352 | c----------------------------------------------------------------------- |
|---|
| 2353 | c 12. Surface and sub-surface soil temperature |
|---|
| 2354 | c----------------------------------------------------------------------- |
|---|
| 2355 | c |
|---|
| 2356 | c |
|---|
| 2357 | c 12.1 Increment Surface temperature: |
|---|
| 2358 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 2359 | |
|---|
| 2360 | DO ig=1,ngrid |
|---|
| 2361 | DO islope = 1,nslope |
|---|
| 2362 | tsurf(ig,islope)=tsurf(ig,islope)+ |
|---|
| 2363 | & ptimestep*zdtsurf(ig,islope) |
|---|
| 2364 | ENDDO |
|---|
| 2365 | ENDDO |
|---|
| 2366 | |
|---|
| 2367 | c Prescribe a cold trap at south pole (except at high obliquity !!) |
|---|
| 2368 | c Temperature at the surface is set there to be the temperature |
|---|
| 2369 | c corresponding to equilibrium temperature between phases of CO2 |
|---|
| 2370 | |
|---|
| 2371 | |
|---|
| 2372 | IF (water) THEN |
|---|
| 2373 | !#ifndef MESOSCALE |
|---|
| 2374 | ! if (caps.and.(obliquit.lt.27.)) then => now done in co2condens |
|---|
| 2375 | ! NB: Updated surface pressure, at grid point 'ngrid', is |
|---|
| 2376 | ! ps(ngrid)=zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep |
|---|
| 2377 | ! tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095* |
|---|
| 2378 | ! & (zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep))) |
|---|
| 2379 | ! tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095*ps(ngrid))) |
|---|
| 2380 | ! endif |
|---|
| 2381 | !#endif |
|---|
| 2382 | c ------------------------------------------------------------- |
|---|
| 2383 | c Change of surface albedo in case of ground frost |
|---|
| 2384 | c everywhere except on the north permanent cap and in regions |
|---|
| 2385 | c covered by dry ice. |
|---|
| 2386 | c ALWAYS PLACE these lines after co2condens !!! |
|---|
| 2387 | c ------------------------------------------------------------- |
|---|
| 2388 | do ig = 1,ngrid |
|---|
| 2389 | do islope = 1,nslope |
|---|
| 2390 | if (abs(qsurf(ig,igcm_co2,islope)) < 1.e-10) then ! No CO2 frost |
|---|
| 2391 | |
|---|
| 2392 | if (qsurf(ig,igcm_h2o_ice,islope) > frost_albedo_threshold) |
|---|
| 2393 | & then ! There is H2O frost |
|---|
| 2394 | if (cst_cap_albedo .and. watercaptag(ig) .and. |
|---|
| 2395 | & abs(perennial_co2ice(ig,islope)) < 1.e-10) then ! Water cap remains unchanged by water frost deposition and no CO2 perennial ice |
|---|
| 2396 | albedo(ig,:,islope) = albedo_h2o_cap |
|---|
| 2397 | emis(ig,islope) = 1. |
|---|
| 2398 | else |
|---|
| 2399 | albedo(ig,:,islope) = albedo_h2o_frost |
|---|
| 2400 | emis(ig,islope) = 1. |
|---|
| 2401 | endif |
|---|
| 2402 | else ! No H2O frost |
|---|
| 2403 | if (abs(perennial_co2ice(ig,islope)) < 1.e-10 .and. |
|---|
| 2404 | & watercaptag(ig)) then ! No CO2 perennial ice but there is water cap |
|---|
| 2405 | albedo(ig,:,islope) = albedo_h2o_cap |
|---|
| 2406 | emis(ig,islope) = 1. |
|---|
| 2407 | endif |
|---|
| 2408 | endif |
|---|
| 2409 | |
|---|
| 2410 | endif |
|---|
| 2411 | enddo ! islope |
|---|
| 2412 | enddo ! of do ig=1,ngrid |
|---|
| 2413 | ENDIF ! of IF (water) |
|---|
| 2414 | |
|---|
| 2415 | c |
|---|
| 2416 | c 12.2 Compute soil temperatures and subsurface heat flux: |
|---|
| 2417 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 2418 | IF (callsoil) THEN |
|---|
| 2419 | c Thermal inertia feedback |
|---|
| 2420 | IF (surfaceice_tifeedback.or.poreice_tifeedback) THEN |
|---|
| 2421 | |
|---|
| 2422 | CALL waterice_tifeedback(ngrid,nsoilmx,nslope, |
|---|
| 2423 | s qsurf(:,igcm_h2o_ice,:),pore_icefraction, |
|---|
| 2424 | s inertiesoil_tifeedback(:,:,:)) |
|---|
| 2425 | |
|---|
| 2426 | CALL soil(ngrid,nsoilmx,.false.,inertiesoil_tifeedback, |
|---|
| 2427 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
|---|
| 2428 | ELSE |
|---|
| 2429 | CALL soil(ngrid,nsoilmx,.false.,inertiesoil, |
|---|
| 2430 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
|---|
| 2431 | ENDIF |
|---|
| 2432 | ENDIF |
|---|
| 2433 | |
|---|
| 2434 | c To avoid negative values |
|---|
| 2435 | IF (rdstorm) THEN |
|---|
| 2436 | where (pq(:,:,igcm_stormdust_mass) + |
|---|
| 2437 | & ptimestep*pdq(:,:,igcm_stormdust_mass) < 0.) |
|---|
| 2438 | pdq(:,:,igcm_stormdust_mass) = |
|---|
| 2439 | & - pq(:,:,igcm_stormdust_mass)/ptimestep + 1.e-30 |
|---|
| 2440 | pdq(:,:,igcm_stormdust_number) = |
|---|
| 2441 | & - pq(:,:,igcm_stormdust_number)/ptimestep + 1.e-30 |
|---|
| 2442 | end where |
|---|
| 2443 | where (pq(:,:,igcm_stormdust_number) + |
|---|
| 2444 | & ptimestep*pdq(:,:,igcm_stormdust_number) < 0.) |
|---|
| 2445 | pdq(:,:,igcm_stormdust_mass) = |
|---|
| 2446 | & - pq(:,:,igcm_stormdust_mass)/ptimestep + 1.e-30 |
|---|
| 2447 | pdq(:,:,igcm_stormdust_number) = |
|---|
| 2448 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 2449 | end where |
|---|
| 2450 | |
|---|
| 2451 | where (pq(:,:,igcm_dust_mass) + |
|---|
| 2452 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
|---|
| 2453 | pdq(:,:,igcm_dust_mass) = |
|---|
| 2454 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 2455 | pdq(:,:,igcm_dust_number) = |
|---|
| 2456 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 2457 | end where |
|---|
| 2458 | where (pq(:,:,igcm_dust_number) + |
|---|
| 2459 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
|---|
| 2460 | pdq(:,:,igcm_dust_mass) = |
|---|
| 2461 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 2462 | pdq(:,:,igcm_dust_number) = |
|---|
| 2463 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 2464 | end where |
|---|
| 2465 | ENDIF !(rdstorm) |
|---|
| 2466 | |
|---|
| 2467 | c----------------------------------------------------------------------- |
|---|
| 2468 | c J. Naar : Surface and sub-surface water ice |
|---|
| 2469 | c----------------------------------------------------------------------- |
|---|
| 2470 | c |
|---|
| 2471 | c |
|---|
| 2472 | c Increment Watercap (surface h2o reservoirs): |
|---|
| 2473 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 2474 | |
|---|
| 2475 | DO ig=1,ngrid |
|---|
| 2476 | DO islope = 1,nslope |
|---|
| 2477 | watercap(ig,islope)=watercap(ig,islope)+ |
|---|
| 2478 | s ptimestep*dwatercap(ig,islope) |
|---|
| 2479 | ENDDO |
|---|
| 2480 | ENDDO |
|---|
| 2481 | |
|---|
| 2482 | IF (refill_watercap) THEN |
|---|
| 2483 | |
|---|
| 2484 | DO ig = 1,ngrid |
|---|
| 2485 | DO islope = 1,nslope |
|---|
| 2486 | if (watercaptag(ig) .and. (qsurf(ig,igcm_h2o_ice,islope) |
|---|
| 2487 | & > frost_metam_threshold)) then |
|---|
| 2488 | |
|---|
| 2489 | watercap(ig,islope) = watercap(ig,islope) |
|---|
| 2490 | & + qsurf(ig,igcm_h2o_ice,islope) |
|---|
| 2491 | & - frost_metam_threshold |
|---|
| 2492 | qsurf(ig,igcm_h2o_ice,islope) = frost_metam_threshold |
|---|
| 2493 | endif ! watercaptag |
|---|
| 2494 | ENDDO |
|---|
| 2495 | ENDDO |
|---|
| 2496 | |
|---|
| 2497 | ENDIF ! refill_watercap |
|---|
| 2498 | |
|---|
| 2499 | c----------------------------------------------------------------------- |
|---|
| 2500 | c 13. Write output files |
|---|
| 2501 | c ---------------------- |
|---|
| 2502 | call compute_meshgridavg(ngrid,nq,albedo,emis,tsurf,qsurf, |
|---|
| 2503 | & albedo_meshavg,emis_meshavg,tsurf_meshavg,qsurf_meshavg) |
|---|
| 2504 | |
|---|
| 2505 | c ------------------------------- |
|---|
| 2506 | c Dynamical fields incrementation |
|---|
| 2507 | c ------------------------------- |
|---|
| 2508 | c (FOR OUTPUT ONLY : the actual model integration is performed in the dynamics) |
|---|
| 2509 | ! temperature, zonal and meridional wind |
|---|
| 2510 | DO l=1,nlayer |
|---|
| 2511 | DO ig=1,ngrid |
|---|
| 2512 | zt(ig,l)=pt(ig,l) + pdt(ig,l)*ptimestep |
|---|
| 2513 | zu(ig,l)=pu(ig,l) + pdu(ig,l)*ptimestep |
|---|
| 2514 | zv(ig,l)=pv(ig,l) + pdv(ig,l)*ptimestep |
|---|
| 2515 | ENDDO |
|---|
| 2516 | ENDDO |
|---|
| 2517 | |
|---|
| 2518 | ! tracers |
|---|
| 2519 | DO iq=1, nq |
|---|
| 2520 | DO l=1,nlayer |
|---|
| 2521 | DO ig=1,ngrid |
|---|
| 2522 | zq(ig,l,iq)=pq(ig,l,iq) +pdq(ig,l,iq)*ptimestep |
|---|
| 2523 | ENDDO |
|---|
| 2524 | ENDDO |
|---|
| 2525 | ENDDO |
|---|
| 2526 | |
|---|
| 2527 | ! Density |
|---|
| 2528 | DO l=1,nlayer |
|---|
| 2529 | DO ig=1,ngrid |
|---|
| 2530 | rho(ig,l) = zplay(ig,l)/(rnew(ig,l)*zt(ig,l)) |
|---|
| 2531 | ENDDO |
|---|
| 2532 | ENDDO |
|---|
| 2533 | |
|---|
| 2534 | ! Potential Temperature |
|---|
| 2535 | |
|---|
| 2536 | DO ig=1,ngrid |
|---|
| 2537 | DO l=1,nlayer |
|---|
| 2538 | zh(ig,l) = zt(ig,l)*(zplev(ig,1)/zplay(ig,l))**rcp |
|---|
| 2539 | ENDDO |
|---|
| 2540 | ENDDO |
|---|
| 2541 | |
|---|
| 2542 | c Compute surface stress : (NB: z0 is a common in surfdat.h) |
|---|
| 2543 | c DO ig=1,ngrid |
|---|
| 2544 | c cd = (0.4/log(zzlay(ig,1)/z0(ig)))**2 |
|---|
| 2545 | c zstress(ig) = rho(ig,1)*cd*(zu(ig,1)**2 + zv(ig,1)**2) |
|---|
| 2546 | c ENDDO |
|---|
| 2547 | |
|---|
| 2548 | c Sum of fluxes in solar spectral bands (for output only) |
|---|
| 2549 | fluxtop_dn_sw_tot(1:ngrid)=fluxtop_dn_sw(1:ngrid,1) + |
|---|
| 2550 | & fluxtop_dn_sw(1:ngrid,2) |
|---|
| 2551 | fluxtop_up_sw_tot(1:ngrid)=fluxtop_up_sw(1:ngrid,1) + |
|---|
| 2552 | & fluxtop_up_sw(1:ngrid,2) |
|---|
| 2553 | fluxsurf_dn_sw_tot(1:ngrid,1:nslope)= |
|---|
| 2554 | & fluxsurf_dn_sw(1:ngrid,1,1:nslope) + |
|---|
| 2555 | & fluxsurf_dn_sw(1:ngrid,2,1:nslope) |
|---|
| 2556 | fluxsurf_up_sw_tot(1:ngrid)=fluxsurf_up_sw(1:ngrid,1) + |
|---|
| 2557 | & fluxsurf_up_sw(1:ngrid,2) |
|---|
| 2558 | |
|---|
| 2559 | c ******* TEST ****************************************************** |
|---|
| 2560 | ztim1 = 999 |
|---|
| 2561 | DO l=1,nlayer |
|---|
| 2562 | DO ig=1,ngrid |
|---|
| 2563 | if (pt(ig,l).lt.ztim1) then |
|---|
| 2564 | ztim1 = pt(ig,l) |
|---|
| 2565 | igmin = ig |
|---|
| 2566 | lmin = l |
|---|
| 2567 | end if |
|---|
| 2568 | ENDDO |
|---|
| 2569 | ENDDO |
|---|
| 2570 | if(min(pt(igmin,lmin),zt(igmin,lmin)).lt.70.) then |
|---|
| 2571 | write(*,*) 'PHYSIQ: stability WARNING :' |
|---|
| 2572 | write(*,*) 'pt, zt Tmin = ', pt(igmin,lmin), zt(igmin,lmin), |
|---|
| 2573 | & 'ig l =', igmin, lmin |
|---|
| 2574 | end if |
|---|
| 2575 | |
|---|
| 2576 | c ---------------------------------------------------------- |
|---|
| 2577 | c ---------------------------------------------------------- |
|---|
| 2578 | c INTERPOLATIONS IN THE SURFACE-LAYER |
|---|
| 2579 | c ---------------------------------------------------------- |
|---|
| 2580 | c ---------------------------------------------------------- |
|---|
| 2581 | |
|---|
| 2582 | n_out=0 ! number of elements in the z_out array. |
|---|
| 2583 | ! for z_out=[3.,2.,1.,0.5,0.1], n_out must be set |
|---|
| 2584 | ! to 5 |
|---|
| 2585 | IF (n_out .ne. 0) THEN |
|---|
| 2586 | |
|---|
| 2587 | IF(.NOT. ALLOCATED(z_out)) ALLOCATE(z_out(n_out)) |
|---|
| 2588 | IF(.NOT. ALLOCATED(T_out)) ALLOCATE(T_out(ngrid,n_out)) |
|---|
| 2589 | IF(.NOT. ALLOCATED(u_out)) ALLOCATE(u_out(ngrid,n_out)) |
|---|
| 2590 | |
|---|
| 2591 | z_out(:)=[3.,2.,1.,0.5,0.1] |
|---|
| 2592 | u_out(:,:)=0. |
|---|
| 2593 | T_out(:,:)=0. |
|---|
| 2594 | |
|---|
| 2595 | call pbl_parameters(ngrid,nlayer,ps,zplay,z0, |
|---|
| 2596 | & g,zzlay,zzlev,zu,zv,wstar,hfmax_th,zmax_th,q2,tsurf(:,iflat), |
|---|
| 2597 | & zh,zq(:,1,igcm_h2o_vap),qsurf(:,igcm_h2o_ice,iflat),mmean(:,1), |
|---|
| 2598 | & z_out,n_out,T_out,u_out,ustar,tstar,vhf,vvv) |
|---|
| 2599 | ! pourquoi ustar recalcule ici? fait dans vdifc. |
|---|
| 2600 | |
|---|
| 2601 | #ifndef MESOSCALE |
|---|
| 2602 | DO n=1,n_out |
|---|
| 2603 | write(zstring, '(F8.6)') z_out(n) |
|---|
| 2604 | call write_output('T_out_'//trim(zstring), |
|---|
| 2605 | & 'potential temperature at z_out','K',T_out(:,n)) |
|---|
| 2606 | call write_output('u_out_'//trim(zstring), |
|---|
| 2607 | & 'horizontal velocity norm at z_out','m/s',u_out(:,n)) |
|---|
| 2608 | ENDDO |
|---|
| 2609 | call write_output('u_star', |
|---|
| 2610 | & 'friction velocity','m/s',ustar) |
|---|
| 2611 | call write_output('teta_star', |
|---|
| 2612 | & 'friction potential temperature','K',tstar) |
|---|
| 2613 | call write_output('vvv', |
|---|
| 2614 | & 'Vertical velocity variance at zout','m',vvv) |
|---|
| 2615 | call write_output('vhf', |
|---|
| 2616 | & 'Vertical heat flux at zout','m',vhf) |
|---|
| 2617 | #else |
|---|
| 2618 | T_out1(:)=T_out(:,1) |
|---|
| 2619 | u_out1(:)=u_out(:,1) |
|---|
| 2620 | #endif |
|---|
| 2621 | |
|---|
| 2622 | ENDIF |
|---|
| 2623 | |
|---|
| 2624 | c ---------------------------------------------------------- |
|---|
| 2625 | c ---------------------------------------------------------- |
|---|
| 2626 | c END OF SURFACE LAYER INTERPOLATIONS |
|---|
| 2627 | c ---------------------------------------------------------- |
|---|
| 2628 | c ---------------------------------------------------------- |
|---|
| 2629 | |
|---|
| 2630 | #ifndef MESOSCALE |
|---|
| 2631 | c ------------------------------------------------------------------- |
|---|
| 2632 | c Writing NetCDF file "RESTARTFI" at the end of the run |
|---|
| 2633 | c ------------------------------------------------------------------- |
|---|
| 2634 | c Note: 'restartfi' is stored just before dynamics are stored |
|---|
| 2635 | c in 'restart'. Between now and the writting of 'restart', |
|---|
| 2636 | c there will have been the itau=itau+1 instruction and |
|---|
| 2637 | c a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
|---|
| 2638 | c thus we store for time=time+dtvr |
|---|
| 2639 | |
|---|
| 2640 | ! default: not writing a restart file at this time step |
|---|
| 2641 | write_restart=.false. |
|---|
| 2642 | IF (ecritstart.GT.0) THEN |
|---|
| 2643 | ! For when we store multiple time steps in the restart file |
|---|
| 2644 | IF (MODULO(icount*iphysiq,ecritstart).EQ.0) THEN |
|---|
| 2645 | write_restart=.true. |
|---|
| 2646 | ENDIF |
|---|
| 2647 | ENDIF |
|---|
| 2648 | IF (lastcall) THEN |
|---|
| 2649 | ! Always write a restart at the end of the simulation |
|---|
| 2650 | write_restart=.true. |
|---|
| 2651 | ENDIF |
|---|
| 2652 | |
|---|
| 2653 | IF (write_restart) THEN |
|---|
| 2654 | IF (grid_type==unstructured) THEN !IF DYNAMICO |
|---|
| 2655 | |
|---|
| 2656 | ! When running Dynamico, no need to add a dynamics time step to ztime_fin |
|---|
| 2657 | IF (ptime.LE. 1.E-10) THEN |
|---|
| 2658 | ! Residual ptime occurs with Dynamico |
|---|
| 2659 | ztime_fin = pday !+ ptime + ptimestep/(float(iphysiq)*daysec) |
|---|
| 2660 | . - day_ini - time_phys |
|---|
| 2661 | ELSE |
|---|
| 2662 | ztime_fin = pday + ptime !+ ptimestep/(float(iphysiq)*daysec) |
|---|
| 2663 | . - day_ini - time_phys |
|---|
| 2664 | ENDIF |
|---|
| 2665 | if (ecritstart==0) then |
|---|
| 2666 | ztime_fin = ztime_fin-(day_end-day_ini) |
|---|
| 2667 | endif |
|---|
| 2668 | |
|---|
| 2669 | ELSE ! IF LMDZ |
|---|
| 2670 | |
|---|
| 2671 | if (ecritstart.GT.0) then !IF MULTIPLE RESTARTS nothing change |
|---|
| 2672 | ztime_fin = pday - day_ini + ptime |
|---|
| 2673 | & + ptimestep/(float(iphysiq)*daysec) |
|---|
| 2674 | else !IF ONE RESTART final time in top of day_end |
|---|
| 2675 | ztime_fin = pday - day_ini-(day_end-day_ini) |
|---|
| 2676 | & + ptime + ptimestep/(float(iphysiq)*daysec) |
|---|
| 2677 | endif |
|---|
| 2678 | |
|---|
| 2679 | ENDIF ! of IF (grid_type==unstructured) |
|---|
| 2680 | write(*,'(A,I7,A,F12.5)') |
|---|
| 2681 | . 'PHYSIQ: writing in restartfi ; icount=', |
|---|
| 2682 | . icount,' date=',ztime_fin |
|---|
| 2683 | |
|---|
| 2684 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil, |
|---|
| 2685 | . ptimestep,ztime_fin, |
|---|
| 2686 | . tsurf,tsoil,inertiesoil,albedo, |
|---|
| 2687 | . emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, |
|---|
| 2688 | . wstar,watercap,perennial_co2ice) |
|---|
| 2689 | ENDIF ! of IF (write_restart) |
|---|
| 2690 | |
|---|
| 2691 | #endif |
|---|
| 2692 | |
|---|
| 2693 | c IF (ngrid.NE.1) then |
|---|
| 2694 | |
|---|
| 2695 | c ------------------------------------------------------------------- |
|---|
| 2696 | c Calculation of diagnostic variables written in both stats and |
|---|
| 2697 | c diagfi files |
|---|
| 2698 | c ------------------------------------------------------------------- |
|---|
| 2699 | do ig=1,ngrid |
|---|
| 2700 | if(mu0(ig).le.0.01) then |
|---|
| 2701 | fluxsurf_dir_dn_sw(ig) = 0. |
|---|
| 2702 | else |
|---|
| 2703 | if (water) then |
|---|
| 2704 | ! both water and dust contribute |
|---|
| 2705 | fluxsurf_dir_dn_sw(ig) = flux_1AU/dist_sol/dist_sol*mu0(ig)* |
|---|
| 2706 | & exp(-(tau(ig,iaer_dust_doubleq)+ |
|---|
| 2707 | & tau(ig,iaer_h2o_ice))/mu0(ig)) |
|---|
| 2708 | else |
|---|
| 2709 | ! only dust contributes |
|---|
| 2710 | fluxsurf_dir_dn_sw(ig) = flux_1AU/dist_sol/dist_sol*mu0(ig)* |
|---|
| 2711 | & exp(-(tau(ig,iaer_dust_doubleq))/mu0(ig)) |
|---|
| 2712 | endif ! of if (water) |
|---|
| 2713 | endif ! of if(mu0(ig).le.0.01) |
|---|
| 2714 | enddo |
|---|
| 2715 | |
|---|
| 2716 | ! Density-scaled opacities |
|---|
| 2717 | do ig=1,ngrid |
|---|
| 2718 | dsodust(ig,:) = |
|---|
| 2719 | & dsodust(ig,:)*tauscaling(ig) |
|---|
| 2720 | dsords(ig,:) = |
|---|
| 2721 | & dsords(ig,:)*tauscaling(ig) |
|---|
| 2722 | dsotop(ig,:) = |
|---|
| 2723 | & dsotop(ig,:)*tauscaling(ig) |
|---|
| 2724 | enddo |
|---|
| 2725 | |
|---|
| 2726 | if(doubleq) then |
|---|
| 2727 | do ig=1,ngrid |
|---|
| 2728 | IF (sedimentation) THEN |
|---|
| 2729 | dqdustsurf(ig) = |
|---|
| 2730 | & zdqssed(ig,igcm_dust_mass)*tauscaling(ig) |
|---|
| 2731 | dndustsurf(ig) = |
|---|
| 2732 | & zdqssed(ig,igcm_dust_number)*tauscaling(ig) |
|---|
| 2733 | ENDIF |
|---|
| 2734 | ndust(ig,:) = |
|---|
| 2735 | & zq(ig,:,igcm_dust_number)*tauscaling(ig) |
|---|
| 2736 | qdust(ig,:) = |
|---|
| 2737 | & zq(ig,:,igcm_dust_mass)*tauscaling(ig) |
|---|
| 2738 | enddo |
|---|
| 2739 | if (scavenging) then |
|---|
| 2740 | do ig=1,ngrid |
|---|
| 2741 | IF (sedimentation) THEN |
|---|
| 2742 | dqdustsurf(ig) = dqdustsurf(ig) + |
|---|
| 2743 | & zdqssed(ig,igcm_ccn_mass)*tauscaling(ig) |
|---|
| 2744 | dndustsurf(ig) = dndustsurf(ig) + |
|---|
| 2745 | & zdqssed(ig,igcm_ccn_number)*tauscaling(ig) |
|---|
| 2746 | ENDIF |
|---|
| 2747 | nccn(ig,:) = |
|---|
| 2748 | & zq(ig,:,igcm_ccn_number)*tauscaling(ig) |
|---|
| 2749 | qccn(ig,:) = |
|---|
| 2750 | & zq(ig,:,igcm_ccn_mass)*tauscaling(ig) |
|---|
| 2751 | enddo |
|---|
| 2752 | endif |
|---|
| 2753 | endif ! of (doubleq) |
|---|
| 2754 | |
|---|
| 2755 | if (rdstorm) then ! diagnostics of stormdust tendancies for 1D and 3D |
|---|
| 2756 | mstormdtot(:)=0 |
|---|
| 2757 | mdusttot(:)=0 |
|---|
| 2758 | qdusttotal(:,:)=0 |
|---|
| 2759 | do ig=1,ngrid |
|---|
| 2760 | rdsdqdustsurf(ig) = |
|---|
| 2761 | & zdqssed(ig,igcm_stormdust_mass)*tauscaling(ig) |
|---|
| 2762 | rdsdndustsurf(ig) = |
|---|
| 2763 | & zdqssed(ig,igcm_stormdust_number)*tauscaling(ig) |
|---|
| 2764 | rdsndust(ig,:) = |
|---|
| 2765 | & pq(ig,:,igcm_stormdust_number)*tauscaling(ig) |
|---|
| 2766 | rdsqdust(ig,:) = |
|---|
| 2767 | & pq(ig,:,igcm_stormdust_mass)*tauscaling(ig) |
|---|
| 2768 | do l=1,nlayer |
|---|
| 2769 | mstormdtot(ig) = mstormdtot(ig) + |
|---|
| 2770 | & zq(ig,l,igcm_stormdust_mass) * |
|---|
| 2771 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2772 | mdusttot(ig) = mdusttot(ig) + |
|---|
| 2773 | & zq(ig,l,igcm_dust_mass) * |
|---|
| 2774 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2775 | qdusttotal(ig,l) = qdust(ig,l)+rdsqdust(ig,l) !calculate total dust |
|---|
| 2776 | enddo |
|---|
| 2777 | enddo |
|---|
| 2778 | endif !(rdstorm) |
|---|
| 2779 | |
|---|
| 2780 | if (water) then |
|---|
| 2781 | mtot(:)=0 |
|---|
| 2782 | icetot(:)=0 |
|---|
| 2783 | rave(:)=0 |
|---|
| 2784 | tauTES(:)=0 |
|---|
| 2785 | |
|---|
| 2786 | IF (hdo) then |
|---|
| 2787 | mtotD(:)=0 |
|---|
| 2788 | icetotD(:)=0 |
|---|
| 2789 | ENDIF !hdo |
|---|
| 2790 | |
|---|
| 2791 | do ig=1,ngrid |
|---|
| 2792 | do l=1,nlayer |
|---|
| 2793 | mtot(ig) = mtot(ig) + |
|---|
| 2794 | & zq(ig,l,igcm_h2o_vap) * |
|---|
| 2795 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2796 | icetot(ig) = icetot(ig) + |
|---|
| 2797 | & zq(ig,l,igcm_h2o_ice) * |
|---|
| 2798 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2799 | IF (hdo) then |
|---|
| 2800 | mtotD(ig) = mtotD(ig) + |
|---|
| 2801 | & zq(ig,l,igcm_hdo_vap) * |
|---|
| 2802 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2803 | icetotD(ig) = icetotD(ig) + |
|---|
| 2804 | & zq(ig,l,igcm_hdo_ice) * |
|---|
| 2805 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2806 | ENDIF !hdo |
|---|
| 2807 | |
|---|
| 2808 | c Computing abs optical depth at 825 cm-1 in each |
|---|
| 2809 | c layer to simulate NEW TES retrieval |
|---|
| 2810 | Qabsice = min( |
|---|
| 2811 | & max(0.4e6*rice(ig,l)*(1.+nuice_ref)-0.05 ,0.),1.2 |
|---|
| 2812 | & ) |
|---|
| 2813 | opTES(ig,l)= 0.75 * Qabsice * |
|---|
| 2814 | & zq(ig,l,igcm_h2o_ice) * |
|---|
| 2815 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2816 | & / (rho_ice * rice(ig,l) * (1.+nuice_ref)) |
|---|
| 2817 | tauTES(ig)=tauTES(ig)+ opTES(ig,l) |
|---|
| 2818 | enddo |
|---|
| 2819 | c rave(ig)=rave(ig)/max(icetot(ig),1.e-30) ! mass weight |
|---|
| 2820 | c if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
|---|
| 2821 | enddo |
|---|
| 2822 | call watersat(ngrid*nlayer,zt,zplay,zqsat) |
|---|
| 2823 | satu(:,:) = zq(:,:,igcm_h2o_vap)/zqsat(:,:) |
|---|
| 2824 | |
|---|
| 2825 | if (scavenging) then |
|---|
| 2826 | Nccntot(:)= 0 |
|---|
| 2827 | Mccntot(:)= 0 |
|---|
| 2828 | rave(:)=0 |
|---|
| 2829 | do ig=1,ngrid |
|---|
| 2830 | do l=1,nlayer |
|---|
| 2831 | Nccntot(ig) = Nccntot(ig) + |
|---|
| 2832 | & zq(ig,l,igcm_ccn_number)*tauscaling(ig) |
|---|
| 2833 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2834 | Mccntot(ig) = Mccntot(ig) + |
|---|
| 2835 | & zq(ig,l,igcm_ccn_mass)*tauscaling(ig) |
|---|
| 2836 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2837 | cccc Column integrated effective ice radius |
|---|
| 2838 | cccc is weighted by total ice surface area (BETTER than total ice mass) |
|---|
| 2839 | rave(ig) = rave(ig) + |
|---|
| 2840 | & tauscaling(ig) * |
|---|
| 2841 | & zq(ig,l,igcm_ccn_number) * |
|---|
| 2842 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
|---|
| 2843 | & rice(ig,l) * rice(ig,l)* (1.+nuice_ref) |
|---|
| 2844 | enddo |
|---|
| 2845 | rave(ig)=(icetot(ig)/rho_ice+Mccntot(ig)/rho_dust)*0.75 |
|---|
| 2846 | & /max(pi*rave(ig),1.e-30) ! surface weight |
|---|
| 2847 | if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
|---|
| 2848 | enddo |
|---|
| 2849 | else ! of if (scavenging) |
|---|
| 2850 | rave(:)=0 |
|---|
| 2851 | do ig=1,ngrid |
|---|
| 2852 | do l=1,nlayer |
|---|
| 2853 | rave(ig) = rave(ig) + |
|---|
| 2854 | & zq(ig,l,igcm_h2o_ice) * |
|---|
| 2855 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
|---|
| 2856 | & rice(ig,l) * (1.+nuice_ref) |
|---|
| 2857 | enddo |
|---|
| 2858 | rave(ig) = max(rave(ig) / |
|---|
| 2859 | & max(icetot(ig),1.e-30),1.e-30) ! mass weight |
|---|
| 2860 | enddo |
|---|
| 2861 | endif ! of if (scavenging) |
|---|
| 2862 | |
|---|
| 2863 | !Alternative A. Pottier weighting |
|---|
| 2864 | rave2(:) = 0. |
|---|
| 2865 | totrave2(:) = 0. |
|---|
| 2866 | do ig=1,ngrid |
|---|
| 2867 | do l=1,nlayer |
|---|
| 2868 | rave2(ig) =rave2(ig)+ zq(ig,l,igcm_h2o_ice)*rice(ig,l) |
|---|
| 2869 | totrave2(ig) = totrave2(ig) + zq(ig,l,igcm_h2o_ice) |
|---|
| 2870 | end do |
|---|
| 2871 | rave2(ig)=max(rave2(ig)/max(totrave2(ig),1.e-30),1.e-30) |
|---|
| 2872 | end do |
|---|
| 2873 | |
|---|
| 2874 | endif ! of if (water) |
|---|
| 2875 | |
|---|
| 2876 | if (co2clouds) then |
|---|
| 2877 | mtotco2(1:ngrid) = 0. |
|---|
| 2878 | icetotco2(1:ngrid) = 0. |
|---|
| 2879 | vaptotco2(1:ngrid) = 0. |
|---|
| 2880 | do ig=1,ngrid |
|---|
| 2881 | do l=1,nlayer |
|---|
| 2882 | vaptotco2(ig) = vaptotco2(ig) + |
|---|
| 2883 | & zq(ig,l,igcm_co2) * |
|---|
| 2884 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2885 | icetotco2(ig) = icetot(ig) + |
|---|
| 2886 | & zq(ig,l,igcm_co2_ice) * |
|---|
| 2887 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2888 | end do |
|---|
| 2889 | mtotco2(ig) = icetotco2(ig) + vaptotco2(ig) |
|---|
| 2890 | end do |
|---|
| 2891 | end if |
|---|
| 2892 | |
|---|
| 2893 | #ifndef MESOSCALE |
|---|
| 2894 | c ----------------------------------------------------------------- |
|---|
| 2895 | c WSTATS: Saving statistics |
|---|
| 2896 | c ----------------------------------------------------------------- |
|---|
| 2897 | c ("stats" stores and accumulates key variables in file "stats.nc" |
|---|
| 2898 | c which can later be used to make the statistic files of the run: |
|---|
| 2899 | c if flag "callstats" from callphys.def is .true.) |
|---|
| 2900 | |
|---|
| 2901 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
|---|
| 2902 | call wstats(ngrid,"tsurf","Surface temperature","K",2 |
|---|
| 2903 | & ,tsurf(:,iflat)) |
|---|
| 2904 | call wstats(ngrid,"co2ice","CO2 ice cover", |
|---|
| 2905 | & "kg.m-2",2,qsurf(:,igcm_co2,iflat)) |
|---|
| 2906 | call wstats(ngrid,"watercap","H2O ice cover", |
|---|
| 2907 | & "kg.m-2",2,watercap(:,iflat)) |
|---|
| 2908 | call wstats(ngrid,"tau_pref_scenario", |
|---|
| 2909 | & "prescribed visible dod at 610 Pa","NU", |
|---|
| 2910 | & 2,tau_pref_scenario) |
|---|
| 2911 | call wstats(ngrid,"tau_pref_gcm", |
|---|
| 2912 | & "visible dod at 610 Pa in the GCM","NU", |
|---|
| 2913 | & 2,tau_pref_gcm) |
|---|
| 2914 | call wstats(ngrid,"fluxsurf_lw", |
|---|
| 2915 | & "Thermal IR radiative flux to surface","W.m-2",2, |
|---|
| 2916 | & fluxsurf_lw(:,iflat)) |
|---|
| 2917 | call wstats(ngrid,"fluxsurf_dn_sw", |
|---|
| 2918 | & "Incoming Solar radiative flux to surface","W.m-2",2, |
|---|
| 2919 | & fluxsurf_dn_sw_tot(:,iflat)) |
|---|
| 2920 | call wstats(ngrid,"fluxsurf_up_sw", |
|---|
| 2921 | & "Reflected Solar radiative flux from surface","W.m-2",2, |
|---|
| 2922 | & fluxsurf_up_sw_tot) |
|---|
| 2923 | call wstats(ngrid,"fluxtop_lw", |
|---|
| 2924 | & "Thermal IR radiative flux to space","W.m-2",2, |
|---|
| 2925 | & fluxtop_lw) |
|---|
| 2926 | call wstats(ngrid,"fluxtop_dn_sw", |
|---|
| 2927 | & "Incoming Solar radiative flux from space","W.m-2",2, |
|---|
| 2928 | & fluxtop_dn_sw_tot) |
|---|
| 2929 | call wstats(ngrid,"fluxtop_up_sw", |
|---|
| 2930 | & "Outgoing Solar radiative flux to space","W.m-2",2, |
|---|
| 2931 | & fluxtop_up_sw_tot) |
|---|
| 2932 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
|---|
| 2933 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
|---|
| 2934 | call wstats(ngrid,"v","Meridional (North-South) wind", |
|---|
| 2935 | & "m.s-1",3,zv) |
|---|
| 2936 | call wstats(ngrid,"w","Vertical (down-up) wind", |
|---|
| 2937 | & "m.s-1",3,pw) |
|---|
| 2938 | call wstats(ngrid,"rho","Atmospheric density","kg/m3",3,rho) |
|---|
| 2939 | call wstats(ngrid,"pressure","Pressure","Pa",3,zplay) |
|---|
| 2940 | call wstats(ngrid,"q2", |
|---|
| 2941 | & "Boundary layer eddy kinetic energy", |
|---|
| 2942 | & "m2.s-2",3,q2) |
|---|
| 2943 | call wstats(ngrid,"emis","Surface emissivity","w.m-1",2, |
|---|
| 2944 | & emis(:,iflat)) |
|---|
| 2945 | call wstats(ngrid,"fluxsurf_dir_dn_sw", |
|---|
| 2946 | & "Direct incoming SW flux at surface", |
|---|
| 2947 | & "W.m-2",2,fluxsurf_dir_dn_sw) |
|---|
| 2948 | |
|---|
| 2949 | if (calltherm) then |
|---|
| 2950 | call wstats(ngrid,"zmax_th","Height of thermals", |
|---|
| 2951 | & "m",2,zmax_th) |
|---|
| 2952 | call wstats(ngrid,"hfmax_th","Max thermals heat flux", |
|---|
| 2953 | & "K.m/s",2,hfmax_th) |
|---|
| 2954 | call wstats(ngrid,"wstar", |
|---|
| 2955 | & "Max vertical velocity in thermals", |
|---|
| 2956 | & "m/s",2,wstar) |
|---|
| 2957 | endif |
|---|
| 2958 | |
|---|
| 2959 | if (water) then |
|---|
| 2960 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
|---|
| 2961 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
|---|
| 2962 | call wstats(ngrid,"vmr_h2ovap", |
|---|
| 2963 | & "H2O vapor volume mixing ratio","mol/mol", |
|---|
| 2964 | & 3,vmr) |
|---|
| 2965 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 2966 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
|---|
| 2967 | call wstats(ngrid,"vmr_h2oice", |
|---|
| 2968 | & "H2O ice volume mixing ratio","mol/mol", |
|---|
| 2969 | & 3,vmr) |
|---|
| 2970 | ! also store vmr_ice*rice for better diagnostics of rice |
|---|
| 2971 | vmr(1:ngrid,1:nlayer)=vmr(1:ngrid,1:nlayer)* |
|---|
| 2972 | & rice(1:ngrid,1:nlayer) |
|---|
| 2973 | call wstats(ngrid,"vmr_h2oice_rice", |
|---|
| 2974 | & "H2O ice mixing ratio times ice particule size", |
|---|
| 2975 | & "(mol/mol)*m", |
|---|
| 2976 | & 3,vmr) |
|---|
| 2977 | vmr=zqsat(1:ngrid,1:nlayer) |
|---|
| 2978 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
|---|
| 2979 | call wstats(ngrid,"vmr_h2osat", |
|---|
| 2980 | & "saturation volume mixing ratio","mol/mol", |
|---|
| 2981 | & 3,vmr) |
|---|
| 2982 | call wstats(ngrid,"h2o_ice_s", |
|---|
| 2983 | & "surface h2o_ice","kg/m2", |
|---|
| 2984 | & 2,qsurf(1,igcm_h2o_ice,iflat)) |
|---|
| 2985 | call wstats(ngrid,'albedo', |
|---|
| 2986 | & 'albedo', |
|---|
| 2987 | & '',2,albedo(1,1,iflat)) |
|---|
| 2988 | call wstats(ngrid,"mtot", |
|---|
| 2989 | & "total mass of water vapor","kg/m2", |
|---|
| 2990 | & 2,mtot) |
|---|
| 2991 | call wstats(ngrid,"icetot", |
|---|
| 2992 | & "total mass of water ice","kg/m2", |
|---|
| 2993 | & 2,icetot) |
|---|
| 2994 | call wstats(ngrid,"reffice", |
|---|
| 2995 | & "Mean reff","m", |
|---|
| 2996 | & 2,rave) |
|---|
| 2997 | call wstats(ngrid,"Nccntot", |
|---|
| 2998 | & "condensation nuclei","Nbr/m2", |
|---|
| 2999 | & 2,Nccntot) |
|---|
| 3000 | call wstats(ngrid,"Mccntot", |
|---|
| 3001 | & "condensation nuclei mass","kg/m2", |
|---|
| 3002 | & 2,Mccntot) |
|---|
| 3003 | call wstats(ngrid,"rice", |
|---|
| 3004 | & "Ice particle size","m", |
|---|
| 3005 | & 3,rice) |
|---|
| 3006 | if (.not.activice) then |
|---|
| 3007 | call wstats(ngrid,"tauTESap", |
|---|
| 3008 | & "tau abs 825 cm-1","", |
|---|
| 3009 | & 2,tauTES) |
|---|
| 3010 | else |
|---|
| 3011 | call wstats(ngrid,'tauTES', |
|---|
| 3012 | & 'tau abs 825 cm-1', |
|---|
| 3013 | & '',2,taucloudtes) |
|---|
| 3014 | endif |
|---|
| 3015 | |
|---|
| 3016 | endif ! of if (water) |
|---|
| 3017 | |
|---|
| 3018 | if (co2clouds) then |
|---|
| 3019 | call wstats(ngrid,"mtotco2", |
|---|
| 3020 | & "total mass atm of co2","kg/m2", |
|---|
| 3021 | & 2,mtotco2) |
|---|
| 3022 | call wstats(ngrid,"icetotco2", |
|---|
| 3023 | & "total mass atm of co2 ice","kg/m2", |
|---|
| 3024 | & 2,icetotco2) |
|---|
| 3025 | call wstats(ngrid,"vaptotco2", |
|---|
| 3026 | & "total mass atm of co2 vapor","kg/m2", |
|---|
| 3027 | & 2,vaptotco2) |
|---|
| 3028 | end if |
|---|
| 3029 | |
|---|
| 3030 | |
|---|
| 3031 | if (dustbin.ne.0) then |
|---|
| 3032 | |
|---|
| 3033 | call wstats(ngrid,'tau','taudust','SI',2,tau(1,1)) |
|---|
| 3034 | |
|---|
| 3035 | if (doubleq) then |
|---|
| 3036 | call wstats(ngrid,'dqsdust', |
|---|
| 3037 | & 'deposited surface dust mass', |
|---|
| 3038 | & 'kg.m-2.s-1',2,dqdustsurf) |
|---|
| 3039 | call wstats(ngrid,'dqndust', |
|---|
| 3040 | & 'deposited surface dust number', |
|---|
| 3041 | & 'number.m-2.s-1',2,dndustsurf) |
|---|
| 3042 | call wstats(ngrid,'reffdust','reffdust', |
|---|
| 3043 | & 'm',3,rdust*ref_r0) |
|---|
| 3044 | call wstats(ngrid,'dustq','Dust mass mr', |
|---|
| 3045 | & 'kg/kg',3,qdust) |
|---|
| 3046 | call wstats(ngrid,'dustN','Dust number', |
|---|
| 3047 | & 'part/kg',3,ndust) |
|---|
| 3048 | if (rdstorm) then |
|---|
| 3049 | call wstats(ngrid,'reffstormdust','reffdust', |
|---|
| 3050 | & 'm',3,rstormdust*ref_r0) |
|---|
| 3051 | call wstats(ngrid,'rdsdustq','Dust mass mr', |
|---|
| 3052 | & 'kg/kg',3,rdsqdust) |
|---|
| 3053 | call wstats(ngrid,'rdsdustN','Dust number', |
|---|
| 3054 | & 'part/kg',3,rdsndust) |
|---|
| 3055 | end if |
|---|
| 3056 | else |
|---|
| 3057 | do iq=1,dustbin |
|---|
| 3058 | write(str2(1:2),'(i2.2)') iq |
|---|
| 3059 | call wstats(ngrid,'q'//str2,'mix. ratio', |
|---|
| 3060 | & 'kg/kg',3,zq(1,1,iq)) |
|---|
| 3061 | call wstats(ngrid,'qsurf'//str2,'qsurf', |
|---|
| 3062 | & 'kg.m-2',2,qsurf(1,iq,iflat)) |
|---|
| 3063 | end do |
|---|
| 3064 | endif ! (doubleq) |
|---|
| 3065 | |
|---|
| 3066 | if (scavenging) then |
|---|
| 3067 | call wstats(ngrid,'ccnq','CCN mass mr', |
|---|
| 3068 | & 'kg/kg',3,qccn) |
|---|
| 3069 | call wstats(ngrid,'ccnN','CCN number', |
|---|
| 3070 | & 'part/kg',3,nccn) |
|---|
| 3071 | endif ! (scavenging) |
|---|
| 3072 | |
|---|
| 3073 | endif ! (dustbin.ne.0) |
|---|
| 3074 | |
|---|
| 3075 | if (photochem) then |
|---|
| 3076 | do iq=1,nq |
|---|
| 3077 | if (noms(iq) .ne. "dust_mass" .and. |
|---|
| 3078 | $ noms(iq) .ne. "dust_number" .and. |
|---|
| 3079 | $ noms(iq) .ne. "ccn_mass" .and. |
|---|
| 3080 | $ noms(iq) .ne. "ccn_number" .and. |
|---|
| 3081 | $ noms(iq) .ne. "ccnco2_mass" .and. |
|---|
| 3082 | $ noms(iq) .ne. "ccnco2_number" .and. |
|---|
| 3083 | $ noms(iq) .ne. "stormdust_mass" .and. |
|---|
| 3084 | $ noms(iq) .ne. "stormdust_number" .and. |
|---|
| 3085 | $ noms(iq) .ne. "topdust_mass" .and. |
|---|
| 3086 | $ noms(iq) .ne. "topdust_number") then |
|---|
| 3087 | ! volume mixing ratio |
|---|
| 3088 | |
|---|
| 3089 | vmr(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
|---|
| 3090 | & *mmean(1:ngrid,1:nlayer)/mmol(iq) |
|---|
| 3091 | |
|---|
| 3092 | call wstats(ngrid,"vmr_"//trim(noms(iq)), |
|---|
| 3093 | $ "Volume mixing ratio","mol/mol",3,vmr) |
|---|
| 3094 | if ((noms(iq).eq."o") |
|---|
| 3095 | $ .or. (noms(iq).eq."co2") |
|---|
| 3096 | $ .or. (noms(iq).eq."o3") |
|---|
| 3097 | $ .or. (noms(iq).eq."ar") |
|---|
| 3098 | $ .or. (noms(iq).eq."o2") |
|---|
| 3099 | $ .or. (noms(iq).eq."h2o_vap") ) then |
|---|
| 3100 | call write_output("vmr_"//trim(noms(iq)), |
|---|
| 3101 | $ "Volume mixing ratio","mol/mol",vmr(:,:)) |
|---|
| 3102 | end if |
|---|
| 3103 | |
|---|
| 3104 | ! number density (molecule.cm-3) |
|---|
| 3105 | |
|---|
| 3106 | rhopart(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
|---|
| 3107 | & *rho(1:ngrid,1:nlayer)*n_avog/ |
|---|
| 3108 | & (1000*mmol(iq)) |
|---|
| 3109 | |
|---|
| 3110 | call wstats(ngrid,"num_"//trim(noms(iq)), |
|---|
| 3111 | $ "Number density","cm-3",3,rhopart) |
|---|
| 3112 | call write_output("num_"//trim(noms(iq)), |
|---|
| 3113 | $ "Number density","cm-3",rhopart(:,:)) |
|---|
| 3114 | |
|---|
| 3115 | ! vertical column (molecule.cm-2) |
|---|
| 3116 | |
|---|
| 3117 | do ig = 1,ngrid |
|---|
| 3118 | colden(ig,iq) = 0. |
|---|
| 3119 | end do |
|---|
| 3120 | do l=1,nlayer |
|---|
| 3121 | do ig=1,ngrid |
|---|
| 3122 | colden(ig,iq) = colden(ig,iq) + zq(ig,l,iq) |
|---|
| 3123 | $ *(zplev(ig,l)-zplev(ig,l+1)) |
|---|
| 3124 | $ *6.022e22/(mmol(iq)*g) |
|---|
| 3125 | end do |
|---|
| 3126 | end do |
|---|
| 3127 | |
|---|
| 3128 | call wstats(ngrid,"c_"//trim(noms(iq)), |
|---|
| 3129 | $ "column","mol cm-2",2,colden(1,iq)) |
|---|
| 3130 | call write_output("c_"//trim(noms(iq)), |
|---|
| 3131 | $ "column","mol cm-2",colden(:,iq)) |
|---|
| 3132 | |
|---|
| 3133 | ! global mass (g) |
|---|
| 3134 | |
|---|
| 3135 | call planetwide_sumval(colden(:,iq)/6.022e23 |
|---|
| 3136 | $ *mmol(iq)*1.e4*cell_area(:),mass(iq)) |
|---|
| 3137 | |
|---|
| 3138 | call write_output("mass_"//trim(noms(iq)), |
|---|
| 3139 | $ "global mass","g",mass(iq)) |
|---|
| 3140 | |
|---|
| 3141 | end if ! of if (noms(iq) .ne. "dust_mass" ...) |
|---|
| 3142 | end do ! of do iq=1,nq |
|---|
| 3143 | end if ! of if (photochem) |
|---|
| 3144 | |
|---|
| 3145 | IF(lastcall.and.callstats) THEN |
|---|
| 3146 | write (*,*) "Writing stats..." |
|---|
| 3147 | call mkstats(ierr) |
|---|
| 3148 | ENDIF |
|---|
| 3149 | |
|---|
| 3150 | c (Store EOF for Mars Climate database software) |
|---|
| 3151 | IF (calleofdump) THEN |
|---|
| 3152 | CALL eofdump(ngrid, nlayer, zu, zv, zt, rho, ps) |
|---|
| 3153 | ENDIF |
|---|
| 3154 | #endif |
|---|
| 3155 | !endif of ifndef MESOSCALE |
|---|
| 3156 | |
|---|
| 3157 | #ifdef MESOSCALE |
|---|
| 3158 | |
|---|
| 3159 | !! see comm_wrf. |
|---|
| 3160 | !! not needed when an array is already in a shared module. |
|---|
| 3161 | !! --> example : hfmax_th, zmax_th |
|---|
| 3162 | |
|---|
| 3163 | CALL allocate_comm_wrf(ngrid,nlayer) |
|---|
| 3164 | |
|---|
| 3165 | !state real HR_SW ikj misc 1 - h "HR_SW" "HEATING RATE SW" "K/s" |
|---|
| 3166 | comm_HR_SW(1:ngrid,1:nlayer) = zdtsw(1:ngrid,1:nlayer) |
|---|
| 3167 | !state real HR_LW ikj misc 1 - h "HR_LW" "HEATING RATE LW" "K/s" |
|---|
| 3168 | comm_HR_LW(1:ngrid,1:nlayer) = zdtlw(1:ngrid,1:nlayer) |
|---|
| 3169 | !state real SWDOWNZ ij misc 1 - h "SWDOWNZ" "DOWNWARD SW FLUX AT SURFACE" "W m-2" |
|---|
| 3170 | comm_SWDOWNZ(1:ngrid) = fluxsurf_dn_sw_tot(1:ngrid) |
|---|
| 3171 | !state real TAU_DUST ij misc 1 - h "TAU_DUST" "REFERENCE VISIBLE DUST OPACITY" "" |
|---|
| 3172 | comm_TAU_DUST(1:ngrid) = tau_pref_gcm(1:ngrid) |
|---|
| 3173 | !state real RDUST ikj misc 1 - h "RDUST" "DUST RADIUS" "m" |
|---|
| 3174 | comm_RDUST(1:ngrid,1:nlayer) = rdust(1:ngrid,1:nlayer) |
|---|
| 3175 | !state real QSURFDUST ij misc 1 - h "QSURFDUST" "DUST MASS AT SURFACE" "kg m-2" |
|---|
| 3176 | IF (igcm_dust_mass .ne. 0) THEN |
|---|
| 3177 | comm_QSURFDUST(1:ngrid) = qsurf(1:ngrid,igcm_dust_mass) |
|---|
| 3178 | ELSE |
|---|
| 3179 | comm_QSURFDUST(1:ngrid) = 0. |
|---|
| 3180 | ENDIF |
|---|
| 3181 | !state real MTOT ij misc 1 - h "MTOT" "TOTAL MASS WATER VAPOR in pmic" "pmic" |
|---|
| 3182 | comm_MTOT(1:ngrid) = mtot(1:ngrid) * 1.e6 / rho_ice |
|---|
| 3183 | !state real ICETOT ij misc 1 - h "ICETOT" "TOTAL MASS WATER ICE" "kg m-2" |
|---|
| 3184 | comm_ICETOT(1:ngrid) = icetot(1:ngrid) * 1.e6 / rho_ice |
|---|
| 3185 | !state real VMR_ICE ikj misc 1 - h "VMR_ICE" "VOL. MIXING RATIO ICE" "ppm" |
|---|
| 3186 | IF (igcm_h2o_ice .ne. 0) THEN |
|---|
| 3187 | comm_VMR_ICE(1:ngrid,1:nlayer) = 1.e6 |
|---|
| 3188 | . * zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 3189 | . * mmean(1:ngrid,1:nlayer) / mmol(igcm_h2o_ice) |
|---|
| 3190 | ELSE |
|---|
| 3191 | comm_VMR_ICE(1:ngrid,1:nlayer) = 0. |
|---|
| 3192 | ENDIF |
|---|
| 3193 | !state real TAU_ICE ij misc 1 - h "TAU_ICE" "CLOUD OD at 825 cm-1 TES" "" |
|---|
| 3194 | if (activice) then |
|---|
| 3195 | comm_TAU_ICE(1:ngrid) = taucloudtes(1:ngrid) |
|---|
| 3196 | else |
|---|
| 3197 | comm_TAU_ICE(1:ngrid) = tauTES(1:ngrid) |
|---|
| 3198 | endif |
|---|
| 3199 | !state real RICE ikj misc 1 - h "RICE" "ICE RADIUS" "m" |
|---|
| 3200 | comm_RICE(1:ngrid,1:nlayer) = rice(1:ngrid,1:nlayer) |
|---|
| 3201 | |
|---|
| 3202 | !! calculate sensible heat flux in W/m2 for outputs |
|---|
| 3203 | !! -- the one computed in vdifc is not the real one |
|---|
| 3204 | !! -- vdifc must have been called |
|---|
| 3205 | if (.not.callrichsl) then |
|---|
| 3206 | sensibFlux(1:ngrid) = zflubid(1:ngrid) |
|---|
| 3207 | . - capcal(1:ngrid)*zdtsdif(1:ngrid) |
|---|
| 3208 | else |
|---|
| 3209 | sensibFlux(1:ngrid) = |
|---|
| 3210 | & (pplay(1:ngrid,1)/(r*pt(1:ngrid,1)))*cpp |
|---|
| 3211 | & *sqrt(pu(1:ngrid,1)*pu(1:ngrid,1)+pv(1:ngrid,1)*pv(1:ngrid,1) |
|---|
| 3212 | & +(log(1.+0.7*wstar(1:ngrid) + 2.3*wstar(1:ngrid)**2))**2) |
|---|
| 3213 | & *zcdh(1:ngrid)*(tsurf(1:ngrid)-zh(1:ngrid,1)) |
|---|
| 3214 | endif |
|---|
| 3215 | |
|---|
| 3216 | #else |
|---|
| 3217 | #ifndef MESOINI |
|---|
| 3218 | |
|---|
| 3219 | c ========================================================== |
|---|
| 3220 | c WRITEDIAGFI: Outputs in netcdf file "DIAGFI", containing |
|---|
| 3221 | c any variable for diagnostic (output with period |
|---|
| 3222 | c "ecritphy", set in "run.def") |
|---|
| 3223 | c ========================================================== |
|---|
| 3224 | c WRITEDIAGFI can ALSO be called from any other subroutines |
|---|
| 3225 | c for any variables !! |
|---|
| 3226 | call write_output("emis","Surface emissivity","", |
|---|
| 3227 | & emis(:,iflat)) |
|---|
| 3228 | do islope=1,nslope |
|---|
| 3229 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3230 | call write_output("emis_slope"//str2, |
|---|
| 3231 | & "Surface emissivity","",emis(:,islope)) |
|---|
| 3232 | ENDDO |
|---|
| 3233 | call write_output("zzlay","Midlayer altitude", |
|---|
| 3234 | & "m",zzlay(:,:)) |
|---|
| 3235 | call write_output("zzlev","Interlayer altitude", |
|---|
| 3236 | & "m",zzlev(:,1:nlayer)) |
|---|
| 3237 | call write_output("pphi","Geopotential","m2s-2", |
|---|
| 3238 | & pphi(:,:)) |
|---|
| 3239 | call write_output("phisfi","Surface geopotential", |
|---|
| 3240 | & "m2s-2",phisfi(:)) |
|---|
| 3241 | if (grid_type == regular_lonlat) then |
|---|
| 3242 | call write_output("area","Mesh area","m2", |
|---|
| 3243 | & cell_area_for_lonlat_outputs) |
|---|
| 3244 | else ! unstructured grid (e.g. dynamico) |
|---|
| 3245 | call write_output("area","Mesh area","m2",cell_area) |
|---|
| 3246 | endif |
|---|
| 3247 | call write_output("tsurf","Surface temperature","K", |
|---|
| 3248 | & tsurf(:,iflat)) |
|---|
| 3249 | do islope=1,nslope |
|---|
| 3250 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3251 | call write_output("tsurf_slope"//str2, |
|---|
| 3252 | & "Surface temperature","K", |
|---|
| 3253 | & tsurf(:,islope)) |
|---|
| 3254 | ENDDO |
|---|
| 3255 | call write_output("ps","surface pressure","Pa",ps(:)) |
|---|
| 3256 | call write_output("co2ice","co2 ice thickness" |
|---|
| 3257 | & ,"kg.m-2",qsurf(:,igcm_co2,iflat)) |
|---|
| 3258 | do islope=1,nslope |
|---|
| 3259 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3260 | call write_output("co2ice_slope"//str2,"co2 ice thickness" |
|---|
| 3261 | & ,"kg.m-2",qsurf(:,igcm_co2,islope)) |
|---|
| 3262 | ENDDO |
|---|
| 3263 | call write_output("watercap","Perennial water ice thickness" |
|---|
| 3264 | & ,"kg.m-2",watercap(:,iflat)) |
|---|
| 3265 | do islope=1,nslope |
|---|
| 3266 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3267 | call write_output("watercap_slope"//str2, |
|---|
| 3268 | & "Perennial water ice thickness" |
|---|
| 3269 | & ,"kg.m-2",watercap(:,islope)) |
|---|
| 3270 | ENDDO |
|---|
| 3271 | call write_output("perennial_co2ice", |
|---|
| 3272 | & "Perennial co2 ice thickness","kg.m-2", |
|---|
| 3273 | & perennial_co2ice(:,iflat)) |
|---|
| 3274 | do islope=1,nslope |
|---|
| 3275 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3276 | call write_output("perennial_co2ice_slope"//str2, |
|---|
| 3277 | & "Perennial co2 ice thickness" |
|---|
| 3278 | & ,"kg.m-2",perennial_co2ice(:,islope)) |
|---|
| 3279 | ENDDO |
|---|
| 3280 | call write_output("temp_layer1","temperature in layer 1", |
|---|
| 3281 | & "K",zt(:,1)) |
|---|
| 3282 | call write_output("temp7","temperature in layer 7", |
|---|
| 3283 | & "K",zt(:,7)) |
|---|
| 3284 | call write_output("fluxsurf_lw","fluxsurf_lw","W.m-2", |
|---|
| 3285 | & fluxsurf_lw(:,iflat)) |
|---|
| 3286 | do islope=1,nslope |
|---|
| 3287 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3288 | call write_output("fluxsurf_lw_slope"//str2, |
|---|
| 3289 | & "fluxsurf_lw","W.m-2", |
|---|
| 3290 | & fluxsurf_lw(:,islope)) |
|---|
| 3291 | ENDDO |
|---|
| 3292 | call write_output("fluxsurf_dn_sw","fluxsurf_dn_sw", |
|---|
| 3293 | & "W.m-2",fluxsurf_dn_sw_tot(:,iflat)) |
|---|
| 3294 | do islope=1,nslope |
|---|
| 3295 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3296 | call write_output("fluxsurf_dn_sw_slope"//str2, |
|---|
| 3297 | & "fluxsurf_dn_sw", |
|---|
| 3298 | & "W.m-2",fluxsurf_dn_sw_tot(:,islope)) |
|---|
| 3299 | ENDDO |
|---|
| 3300 | call write_output("fluxtop_dn_sw","fluxtop_dn_sw", |
|---|
| 3301 | & "W.m-2",fluxtop_dn_sw(:,1) + fluxtop_dn_sw(:,2)) |
|---|
| 3302 | call write_output("fluxtop_lw","fluxtop_lw","W.m-2", |
|---|
| 3303 | & fluxtop_lw(:)) |
|---|
| 3304 | call write_output("fluxtop_up_sw","fluxtop_up_sw","W.m-2", |
|---|
| 3305 | & fluxtop_up_sw_tot(:)) |
|---|
| 3306 | call write_output("temp","temperature","K",zt(:,:)) |
|---|
| 3307 | call write_output("Sols","Time","sols",zday) |
|---|
| 3308 | call write_output("Ls","Solar longitude","deg", |
|---|
| 3309 | & zls*180./pi) |
|---|
| 3310 | call write_output("u","Zonal wind","m.s-1",zu(:,:)) |
|---|
| 3311 | call write_output("v","Meridional wind","m.s-1",zv(:,:)) |
|---|
| 3312 | call write_output("w","Vertical wind","m.s-1",pw(:,:)) |
|---|
| 3313 | call write_output("rho","density","kg.m-3",rho(:,:)) |
|---|
| 3314 | call write_output("pressure","Pressure","Pa",zplay(:,:)) |
|---|
| 3315 | call write_output("zplev","Interlayer pressure","Pa", |
|---|
| 3316 | & zplev(:,1:nlayer)) |
|---|
| 3317 | call write_output('sw_htrt','sw heat. rate', |
|---|
| 3318 | & 'K/s',zdtsw(:,:)) |
|---|
| 3319 | call write_output('lw_htrt','lw heat. rate', |
|---|
| 3320 | & 'K/s',zdtlw(:,:)) |
|---|
| 3321 | call write_output("local_time","Local time", |
|---|
| 3322 | & 'sol',local_time(:)) |
|---|
| 3323 | if (water) then |
|---|
| 3324 | if (.not.activice) then |
|---|
| 3325 | CALL write_output('tauTESap', |
|---|
| 3326 | & 'tau abs 825 cm-1', |
|---|
| 3327 | & '',tauTES(:)) |
|---|
| 3328 | else |
|---|
| 3329 | CALL write_output('tauTES', |
|---|
| 3330 | & 'tau abs 825 cm-1', |
|---|
| 3331 | & '',taucloudtes(:)) |
|---|
| 3332 | endif |
|---|
| 3333 | endif ! of if (water) |
|---|
| 3334 | #else |
|---|
| 3335 | !!! this is to ensure correct initialisation of mesoscale model |
|---|
| 3336 | call write_output("tsurf","Surface temperature","K", |
|---|
| 3337 | & tsurf(:,iflat)) |
|---|
| 3338 | call write_output("ps","surface pressure","Pa",ps(:)) |
|---|
| 3339 | call write_output("co2ice","co2 ice thickness","kg.m-2", |
|---|
| 3340 | & qsurf(:,igcm_co2,iflat)) |
|---|
| 3341 | call write_output("temp","temperature","K",zt(:,:)) |
|---|
| 3342 | call write_output("u","Zonal wind","m.s-1",zu(:,:)) |
|---|
| 3343 | call write_output("v","Meridional wind","m.s-1",zv(:,:)) |
|---|
| 3344 | call write_output("emis","Surface emissivity","", |
|---|
| 3345 | & emis(:,iflat)) |
|---|
| 3346 | call write_output("tsoil","Soil temperature", |
|---|
| 3347 | & "K",tsoil(:,:,iflat)) |
|---|
| 3348 | call write_output("inertiedat","Soil inertia", |
|---|
| 3349 | & "K",inertiedat(:,:)) |
|---|
| 3350 | #endif |
|---|
| 3351 | |
|---|
| 3352 | c ---------------------------------------------------------- |
|---|
| 3353 | c Outputs of the CO2 cycle |
|---|
| 3354 | c ---------------------------------------------------------- |
|---|
| 3355 | if (igcm_co2.ne.0) then |
|---|
| 3356 | call write_output("co2","co2 mass mixing ratio", |
|---|
| 3357 | & "kg.kg-1",zq(:,:,igcm_co2)) |
|---|
| 3358 | |
|---|
| 3359 | if (co2clouds) then |
|---|
| 3360 | call write_output('ccnqco2','CCNco2 mmr', |
|---|
| 3361 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_mass)) |
|---|
| 3362 | |
|---|
| 3363 | call write_output('ccnNco2','CCNco2 number', |
|---|
| 3364 | & 'part.kg-1',zq(:,:,igcm_ccnco2_number)) |
|---|
| 3365 | |
|---|
| 3366 | call write_output('co2_ice','co2_ice mmr in atm', |
|---|
| 3367 | & 'kg.kg-1',zq(:,:,igcm_co2_ice)) |
|---|
| 3368 | |
|---|
| 3369 | call write_output("mtotco2","total mass atm of co2", |
|---|
| 3370 | & "kg.m-2",mtotco2(:)) |
|---|
| 3371 | call write_output("icetotco2","total mass atm of co2 ice", |
|---|
| 3372 | & "kg.m-2", icetotco2(:)) |
|---|
| 3373 | call write_output("vaptotco2","total mass atm of co2 "// |
|---|
| 3374 | & "vapor","kg.m-2", vaptotco2(:)) |
|---|
| 3375 | if (co2useh2o) then |
|---|
| 3376 | call write_output('ccnqco2_h2o_m_ice', |
|---|
| 3377 | & 'CCNco2_h2o_mass_ice mmr', |
|---|
| 3378 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_h2o_mass_ice)) |
|---|
| 3379 | |
|---|
| 3380 | call write_output('ccnqco2_h2o_m_ccn', |
|---|
| 3381 | & 'CCNco2_h2o_mass_ccn mmr', |
|---|
| 3382 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_h2o_mass_ccn)) |
|---|
| 3383 | |
|---|
| 3384 | call write_output('ccnNco2_h2o','CCNco2_h2o number', |
|---|
| 3385 | & 'part.kg-1',zq(:,:,igcm_ccnco2_h2o_number)) |
|---|
| 3386 | end if |
|---|
| 3387 | |
|---|
| 3388 | if (meteo_flux) then |
|---|
| 3389 | call write_output('ccnqco2_meteor','CCNco2_meteor mmr', |
|---|
| 3390 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_meteor_mass)) |
|---|
| 3391 | |
|---|
| 3392 | call write_output('ccnNco2_meteor','CCNco2_meteor number', |
|---|
| 3393 | & 'part.kg-1',zq(:,:,igcm_ccnco2_meteor_number)) |
|---|
| 3394 | end if |
|---|
| 3395 | |
|---|
| 3396 | end if ! of if (co2clouds) |
|---|
| 3397 | end if ! of if (igcm_co2.ne.0) |
|---|
| 3398 | |
|---|
| 3399 | ! Output He tracer, if there is one |
|---|
| 3400 | if (igcm_he.ne.0) then |
|---|
| 3401 | call write_output("he","helium mass mixing ratio", |
|---|
| 3402 | & "kg/kg",zq(:,:,igcm_he)) |
|---|
| 3403 | vmr = zq(1:ngrid,1:nlayer,igcm_he) |
|---|
| 3404 | & * mmean(1:ngrid,1:nlayer)/mmol(igcm_he) |
|---|
| 3405 | call write_output('vmr_he','helium vol. mixing ratio', |
|---|
| 3406 | & 'mol/mol',vmr(:,:)) |
|---|
| 3407 | end if |
|---|
| 3408 | |
|---|
| 3409 | c ---------------------------------------------------------- |
|---|
| 3410 | c Outputs of the water cycle |
|---|
| 3411 | c ---------------------------------------------------------- |
|---|
| 3412 | if (water) then |
|---|
| 3413 | #ifdef MESOINI |
|---|
| 3414 | !!!! waterice = q01, voir readmeteo.F90 |
|---|
| 3415 | call write_output('q01',noms(igcm_h2o_ice), |
|---|
| 3416 | & 'kg/kg', |
|---|
| 3417 | & zq(:,:,igcm_h2o_ice)) |
|---|
| 3418 | !!!! watervapor = q02, voir readmeteo.F90 |
|---|
| 3419 | call write_output('q02',noms(igcm_h2o_vap), |
|---|
| 3420 | & 'kg/kg', |
|---|
| 3421 | & zq(:,:,igcm_h2o_vap)) |
|---|
| 3422 | !!!! surface waterice qsurf02 (voir readmeteo) |
|---|
| 3423 | call write_output('qsurf02','surface tracer', |
|---|
| 3424 | & 'kg.m-2', |
|---|
| 3425 | & qsurf(:,igcm_h2o_ice,iflat)) |
|---|
| 3426 | do islope=1,nslope |
|---|
| 3427 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3428 | call write_output('qsurf02_slope'//str2, |
|---|
| 3429 | & 'surface tracer','kg.m-2', |
|---|
| 3430 | & qsurf(:,igcm_h2o_ice,islope)) |
|---|
| 3431 | ENDDO |
|---|
| 3432 | #endif |
|---|
| 3433 | call write_output('mtot', |
|---|
| 3434 | & 'total mass of water vapor', |
|---|
| 3435 | & 'kg/m2',mtot(:)) |
|---|
| 3436 | call write_output('icetot', |
|---|
| 3437 | & 'total mass of water ice', |
|---|
| 3438 | & 'kg/m2',icetot(:)) |
|---|
| 3439 | vmr = zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 3440 | & * mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
|---|
| 3441 | call write_output('vmr_h2oice','h2o ice vmr', |
|---|
| 3442 | & 'mol/mol',vmr(:,:)) |
|---|
| 3443 | vmr = zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
|---|
| 3444 | & * mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
|---|
| 3445 | call write_output('vmr_h2ovap','h2o vap vmr', |
|---|
| 3446 | & 'mol/mol',vmr(:,:)) |
|---|
| 3447 | call write_output('reffice', |
|---|
| 3448 | & 'Mean reff', |
|---|
| 3449 | & 'm',rave(:)) |
|---|
| 3450 | call write_output('h2o_ice','h2o_ice','kg/kg', |
|---|
| 3451 | & zq(:,:,igcm_h2o_ice)) |
|---|
| 3452 | call write_output('h2o_vap','h2o_vap','kg/kg', |
|---|
| 3453 | & zq(:,:,igcm_h2o_vap)) |
|---|
| 3454 | |
|---|
| 3455 | if (hdo) then |
|---|
| 3456 | vmr=zq(1:ngrid,1:nlayer,igcm_hdo_ice) |
|---|
| 3457 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_hdo_ice) |
|---|
| 3458 | CALL write_output('vmr_hdoice','hdo ice vmr', |
|---|
| 3459 | & 'mol/mol',vmr(:,:)) |
|---|
| 3460 | vmr=zq(1:ngrid,1:nlayer,igcm_hdo_vap) |
|---|
| 3461 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_hdo_vap) |
|---|
| 3462 | CALL write_output('vmr_hdovap','hdo vap vmr', |
|---|
| 3463 | & 'mol/mol',vmr(:,:)) |
|---|
| 3464 | call write_output('hdo_ice','hdo_ice','kg/kg', |
|---|
| 3465 | & zq(:,:,igcm_hdo_ice)) |
|---|
| 3466 | call write_output('hdo_vap','hdo_vap','kg/kg', |
|---|
| 3467 | & zq(:,:,igcm_hdo_vap)) |
|---|
| 3468 | |
|---|
| 3469 | CALL write_output('mtotD', |
|---|
| 3470 | & 'total mass of HDO vapor', |
|---|
| 3471 | & 'kg/m2',mtotD(:)) |
|---|
| 3472 | CALL write_output('icetotD', |
|---|
| 3473 | & 'total mass of HDO ice', |
|---|
| 3474 | & 'kg/m2',icetotD(:)) |
|---|
| 3475 | |
|---|
| 3476 | C Calculation of the D/H ratio |
|---|
| 3477 | do l=1,nlayer |
|---|
| 3478 | do ig=1,ngrid |
|---|
| 3479 | if (zq(ig,l,igcm_h2o_vap).gt.qperemin) then |
|---|
| 3480 | DoH_vap(ig,l) = ( zq(ig,l,igcm_hdo_vap)/ |
|---|
| 3481 | & zq(ig,l,igcm_h2o_vap) )*1./(2.*155.76e-6) |
|---|
| 3482 | else |
|---|
| 3483 | DoH_vap(ig,l) = 0. |
|---|
| 3484 | endif |
|---|
| 3485 | enddo |
|---|
| 3486 | enddo |
|---|
| 3487 | |
|---|
| 3488 | do l=1,nlayer |
|---|
| 3489 | do ig=1,ngrid |
|---|
| 3490 | if (zq(ig,l,igcm_h2o_ice).gt.qperemin) then |
|---|
| 3491 | DoH_ice(ig,l) = ( zq(ig,l,igcm_hdo_ice)/ |
|---|
| 3492 | & zq(ig,l,igcm_h2o_ice) )/(2.*155.76e-6) |
|---|
| 3493 | else |
|---|
| 3494 | DoH_ice(ig,l) = 0. |
|---|
| 3495 | endif |
|---|
| 3496 | enddo |
|---|
| 3497 | enddo |
|---|
| 3498 | |
|---|
| 3499 | CALL write_output('DoH_vap', |
|---|
| 3500 | & 'D/H ratio in vapor', |
|---|
| 3501 | & ' ',DoH_vap(:,:)) |
|---|
| 3502 | CALL write_output('DoH_ice', |
|---|
| 3503 | & 'D/H ratio in ice', |
|---|
| 3504 | & '',DoH_ice(:,:)) |
|---|
| 3505 | |
|---|
| 3506 | endif !hdo |
|---|
| 3507 | |
|---|
| 3508 | !A. Pottier |
|---|
| 3509 | ! CALL write_output('rmoym', |
|---|
| 3510 | ! & 'alternative reffice', |
|---|
| 3511 | ! & 'm',rave2(:)) |
|---|
| 3512 | call write_output('h2o_saturation', |
|---|
| 3513 | & 'h2o vap saturation ratio','',satu(:,:)) |
|---|
| 3514 | if (scavenging) then |
|---|
| 3515 | CALL write_output("Nccntot", |
|---|
| 3516 | & "condensation nuclei","Nbr/m2", |
|---|
| 3517 | & Nccntot(:)) |
|---|
| 3518 | CALL write_output("Mccntot", |
|---|
| 3519 | & "mass condensation nuclei","kg/m2", |
|---|
| 3520 | & Mccntot(:)) |
|---|
| 3521 | endif |
|---|
| 3522 | call write_output('rice','Water ice particle size', |
|---|
| 3523 | & 'm',rice(:,:)) |
|---|
| 3524 | call write_output('h2o_ice_s', |
|---|
| 3525 | & 'surface h2o_ice', |
|---|
| 3526 | & 'kg.m-2',qsurf(:,igcm_h2o_ice,iflat)) |
|---|
| 3527 | do islope=1,nslope |
|---|
| 3528 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3529 | call write_output('h2o_ice_s_slope'//str2, |
|---|
| 3530 | & 'surface h2o_ice', |
|---|
| 3531 | & 'kg.m-2',qsurf(:,igcm_h2o_ice,islope)) |
|---|
| 3532 | ENDDO |
|---|
| 3533 | if (hdo) then |
|---|
| 3534 | call write_output('hdo_ice_s', |
|---|
| 3535 | & 'surface hdo_ice', |
|---|
| 3536 | & 'kg.m-2',qsurf(:,igcm_hdo_ice,iflat)) |
|---|
| 3537 | do islope=1,nslope |
|---|
| 3538 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3539 | call write_output('hdo_ice_s_slope'//str2, |
|---|
| 3540 | & 'surface hdo_ice', |
|---|
| 3541 | & 'kg.m-2',qsurf(:,igcm_hdo_ice,islope)) |
|---|
| 3542 | ENDDO |
|---|
| 3543 | |
|---|
| 3544 | do ig=1,ngrid |
|---|
| 3545 | if (qsurf_meshavg(ig,igcm_h2o_ice).gt.qperemin) then |
|---|
| 3546 | DoH_surf(ig) = 0.5*( qsurf_meshavg(ig,igcm_hdo_ice)/ |
|---|
| 3547 | & qsurf_meshavg(ig,igcm_h2o_ice) )/155.76e-6 |
|---|
| 3548 | else |
|---|
| 3549 | DoH_surf(ig) = 0. |
|---|
| 3550 | endif |
|---|
| 3551 | enddo |
|---|
| 3552 | |
|---|
| 3553 | call write_output('DoH_surf', |
|---|
| 3554 | & 'surface D/H', |
|---|
| 3555 | & '',DoH_surf(:)) |
|---|
| 3556 | endif ! hdo |
|---|
| 3557 | |
|---|
| 3558 | CALL write_output('albedo', |
|---|
| 3559 | & 'albedo', |
|---|
| 3560 | & '',albedo(:,1,iflat)) |
|---|
| 3561 | do islope=1,nslope |
|---|
| 3562 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3563 | CALL write_output('albedo_slope'//str2, |
|---|
| 3564 | & 'albedo', |
|---|
| 3565 | & '',albedo(:,1,islope)) |
|---|
| 3566 | ENDDO |
|---|
| 3567 | if (surfaceice_tifeedback.or.poreice_tifeedback) then |
|---|
| 3568 | call write_output("soiltemp", |
|---|
| 3569 | & "Soil temperature","K", |
|---|
| 3570 | & tsoil(:,:,iflat)) |
|---|
| 3571 | call write_output('soilti', |
|---|
| 3572 | & 'Soil Thermal Inertia', |
|---|
| 3573 | & 'J.s-1/2.m-2.K-1',inertiesoil_tifeedback(:,:,iflat)) |
|---|
| 3574 | |
|---|
| 3575 | do islope=1,nslope |
|---|
| 3576 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3577 | call write_output('soilti_slope'//str2, |
|---|
| 3578 | & 'Soil Thermal Inertia', |
|---|
| 3579 | & 'J.s-1/2.m-2.K-1',inertiesoil_tifeedback(:,:,islope)) |
|---|
| 3580 | ENDDO |
|---|
| 3581 | endif |
|---|
| 3582 | !A. Pottier |
|---|
| 3583 | if (CLFvarying) then !AP14 nebulosity |
|---|
| 3584 | call write_output('totcloudfrac', |
|---|
| 3585 | & 'Total cloud fraction', |
|---|
| 3586 | & ' ',totcloudfrac(:)) |
|---|
| 3587 | end if !clf varying |
|---|
| 3588 | end if !(water) |
|---|
| 3589 | |
|---|
| 3590 | c ---------------------------------------------------------- |
|---|
| 3591 | c Outputs of the dust cycle |
|---|
| 3592 | c ---------------------------------------------------------- |
|---|
| 3593 | |
|---|
| 3594 | call write_output('tau_pref_scenario', |
|---|
| 3595 | & 'Prescribed visible dust optical depth at 610Pa', |
|---|
| 3596 | & 'NU',tau_pref_scenario(:)) |
|---|
| 3597 | |
|---|
| 3598 | call write_output('tau_pref_gcm', |
|---|
| 3599 | & 'Visible dust optical depth at 610Pa in the GCM', |
|---|
| 3600 | & 'NU',tau_pref_gcm(:)) |
|---|
| 3601 | |
|---|
| 3602 | if (reff_driven_IRtoVIS_scenario) then |
|---|
| 3603 | call write_output('IRtoVIScoef', |
|---|
| 3604 | & 'Conversion coeff for dust tau from abs9.3um to ext0.67um', |
|---|
| 3605 | & '/',IRtoVIScoef(:)) |
|---|
| 3606 | endif |
|---|
| 3607 | |
|---|
| 3608 | if (dustbin.ne.0) then |
|---|
| 3609 | |
|---|
| 3610 | #ifndef MESOINI |
|---|
| 3611 | if (doubleq) then |
|---|
| 3612 | call write_output('dqsdust', |
|---|
| 3613 | & 'deposited surface dust mass', |
|---|
| 3614 | & 'kg.m-2.s-1',dqdustsurf(:)) |
|---|
| 3615 | call write_output('dqndust', |
|---|
| 3616 | & 'deposited surface dust number', |
|---|
| 3617 | & 'number.m-2.s-1',dndustsurf(:)) |
|---|
| 3618 | call write_output('reffdust','reffdust', |
|---|
| 3619 | & 'm',rdust(:,:)*ref_r0) |
|---|
| 3620 | call write_output('dustq','Dust mass mr', |
|---|
| 3621 | & 'kg/kg',qdust(:,:)) |
|---|
| 3622 | call write_output('dustN','Dust number', |
|---|
| 3623 | & 'part/kg',ndust(:,:)) |
|---|
| 3624 | |
|---|
| 3625 | select case (trim(dustiropacity)) |
|---|
| 3626 | case ("tes") |
|---|
| 3627 | call write_output('dsodust_TES', |
|---|
| 3628 | & 'density scaled extinction opacity of std dust at 9.3um(TES)', |
|---|
| 3629 | & 'm2.kg-1',dsodust(:,:)) |
|---|
| 3630 | call write_output('dso_TES', |
|---|
| 3631 | & 'density scaled extinction opacity of all dust at 9.3um(TES)', |
|---|
| 3632 | & 'm2.kg-1',dsodust(:,:)+dsords(:,:)+dsotop(:,:)) |
|---|
| 3633 | case ("mcs") |
|---|
| 3634 | call write_output('dsodust', |
|---|
| 3635 | & 'density scaled extinction opacity of std dust at 21.6um(MCS)', |
|---|
| 3636 | & 'm2.kg-1',dsodust(:,:)) |
|---|
| 3637 | call write_output('dso', |
|---|
| 3638 | & 'density scaled extinction opacity of all dust at 21.6um(MCS)', |
|---|
| 3639 | & 'm2.kg-1',dsodust(:,:)+dsords(:,:)+dsotop(:,:)) |
|---|
| 3640 | end select |
|---|
| 3641 | else ! (doubleq=.false.) |
|---|
| 3642 | do iq=1,dustbin |
|---|
| 3643 | write(str2(1:2),'(i2.2)') iq |
|---|
| 3644 | call write_output('q'//str2,'mix. ratio', |
|---|
| 3645 | & 'kg/kg',zq(:,:,iq)) |
|---|
| 3646 | call write_output('qsurf'//str2,'qsurf', |
|---|
| 3647 | & 'kg.m-2',qsurf(:,iq,iflat)) |
|---|
| 3648 | do islope=1,nslope |
|---|
| 3649 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3650 | call write_output('qsurf_slope'//str2,'qsurf', |
|---|
| 3651 | & 'kg.m-2',qsurf(:,iq,islope)) |
|---|
| 3652 | ENDDO |
|---|
| 3653 | end do |
|---|
| 3654 | endif ! (doubleq) |
|---|
| 3655 | |
|---|
| 3656 | if (rdstorm) then ! writediagfi tendencies stormdust tracers |
|---|
| 3657 | call write_output('reffstormdust','reffstormdust', |
|---|
| 3658 | & 'm',rstormdust(:,:)*ref_r0) |
|---|
| 3659 | call write_output('mstormdtot', |
|---|
| 3660 | & 'total mass of stormdust only', |
|---|
| 3661 | & 'kg.m-2',mstormdtot(:)) |
|---|
| 3662 | call write_output('mdusttot', |
|---|
| 3663 | & 'total mass of dust only', |
|---|
| 3664 | & 'kg.m-2',mdusttot(:)) |
|---|
| 3665 | call write_output('rdsdqsdust', |
|---|
| 3666 | & 'deposited surface stormdust mass', |
|---|
| 3667 | & 'kg.m-2.s-1',rdsdqdustsurf(:)) |
|---|
| 3668 | call write_output('rdsdustq','storm Dust mass mr', |
|---|
| 3669 | & 'kg/kg',rdsqdust(:,:)) |
|---|
| 3670 | call write_output('rdsdustqmodel','storm Dust massmr', |
|---|
| 3671 | & 'kg/kg',pq(:,:,igcm_stormdust_mass)) |
|---|
| 3672 | call write_output('rdsdustN','storm Dust number', |
|---|
| 3673 | & 'part/kg',rdsndust(:,:)) |
|---|
| 3674 | call write_output("stormfract", |
|---|
| 3675 | & "fraction of the mesh, with stormdust","none", |
|---|
| 3676 | & totstormfract(:)) |
|---|
| 3677 | ! call write_output('qsurf', |
|---|
| 3678 | ! & 'stormdust injection', |
|---|
| 3679 | ! & 'kg.m-2',qsurf(:,igcm_stormdust_mass,iflat)) |
|---|
| 3680 | ! do islope=1,nslope |
|---|
| 3681 | ! write(str2(1:2),'(i2.2)') islope |
|---|
| 3682 | ! call write_output('qsurf_slope'//str2, |
|---|
| 3683 | ! & 'stormdust injection', |
|---|
| 3684 | ! & 'kg.m-2',qsurf(:,igcm_stormdust_mass,islope)) |
|---|
| 3685 | ! ENDDO |
|---|
| 3686 | ! call write_output('pdqsurf', |
|---|
| 3687 | ! & 'tendancy stormdust mass at surface', |
|---|
| 3688 | ! & 'kg.m-2',dqsurf(:,igcm_stormdust_mass,iflat)) |
|---|
| 3689 | ! do islope=1,nslope |
|---|
| 3690 | ! write(str2(1:2),'(i2.2)') islope |
|---|
| 3691 | ! call write_output('pdqsurf_slope'//str2, |
|---|
| 3692 | ! & 'tendancy stormdust mass at surface', |
|---|
| 3693 | ! & 'kg.m-2',dqsurf(:,igcm_stormdust_mass,islope)) |
|---|
| 3694 | ! ENDDO |
|---|
| 3695 | call write_output('wspeed_stormdust', |
|---|
| 3696 | & 'vertical velocity of stormdust', |
|---|
| 3697 | & 'm/s',wspeed(:,:)) |
|---|
| 3698 | call write_output('zdqsed_dust_mass' |
|---|
| 3699 | & ,'sedimentation tendency of background dust mmr' |
|---|
| 3700 | & ,'kg/kg.s-1', |
|---|
| 3701 | & zdqsed(:,:,igcm_dust_mass)) |
|---|
| 3702 | call write_output('zdqssed_dust_mass' |
|---|
| 3703 | & ,'sedimentation tendency of background dust on surface' |
|---|
| 3704 | & ,'kg.m-2.s-1', |
|---|
| 3705 | & zdqssed(:,igcm_dust_mass)) |
|---|
| 3706 | call write_output('zdqsed_stormdust_mass' |
|---|
| 3707 | & ,'sedimentation tendency of stormdust dust mmr' |
|---|
| 3708 | & ,'kg/kg.s-1', |
|---|
| 3709 | & zdqsed(:,:,igcm_stormdust_mass)) |
|---|
| 3710 | call write_output('zdqsed_dust_number' |
|---|
| 3711 | & ,'sedimentation tendency of background dust number' |
|---|
| 3712 | & ,'nbr/kg.s-1', |
|---|
| 3713 | & zdqsed(:,:,igcm_dust_number)) |
|---|
| 3714 | call write_output('rdust','rdust', |
|---|
| 3715 | & 'm',rdust(:,:)) |
|---|
| 3716 | call write_output('rstormdust','rstormdust', |
|---|
| 3717 | & 'm',rstormdust(:,:)) |
|---|
| 3718 | |
|---|
| 3719 | select case (trim(dustiropacity)) |
|---|
| 3720 | case ("tes") |
|---|
| 3721 | call write_output('dsords_TES', |
|---|
| 3722 | & 'density scaled extinction opacity of stormdust at 9.3um(TES)', |
|---|
| 3723 | & 'm2.kg-1',dsords(:,:)) |
|---|
| 3724 | case ("mcs") |
|---|
| 3725 | call write_output('dsords', |
|---|
| 3726 | & 'density scaled extinction opacity of stormdust at 21.6um(MCS)', |
|---|
| 3727 | & 'm2.kg-1',dsords(:,:)) |
|---|
| 3728 | end select |
|---|
| 3729 | endif ! (rdstorm) |
|---|
| 3730 | |
|---|
| 3731 | if (topflows) then |
|---|
| 3732 | call write_output('refftopdust', |
|---|
| 3733 | & 'Topdust dust effective radius', |
|---|
| 3734 | & 'm',rtopdust(:,:)*ref_r0) |
|---|
| 3735 | call write_output('topdustq','top Dust mass mr', |
|---|
| 3736 | & 'kg/kg',pq(:,:,igcm_topdust_mass)) |
|---|
| 3737 | call write_output('topdustN','top Dust number', |
|---|
| 3738 | & 'part/kg',pq(:,:,igcm_topdust_number)) |
|---|
| 3739 | select case (trim(dustiropacity)) |
|---|
| 3740 | case ("tes") |
|---|
| 3741 | call write_output('dsotop_TES', |
|---|
| 3742 | & 'density scaled extinction opacity of topdust at 9.3um(TES)', |
|---|
| 3743 | & 'm2.kg-1',dsotop(:,:)) |
|---|
| 3744 | case ("mcs") |
|---|
| 3745 | call write_output('dsotop', |
|---|
| 3746 | & 'density scaled extinction opacity of topdust at 21.6um(MCS)', |
|---|
| 3747 | & 'm2.kg-1',dsotop(:,:)) |
|---|
| 3748 | end select |
|---|
| 3749 | endif ! (topflows) |
|---|
| 3750 | |
|---|
| 3751 | if (dustscaling_mode==2) then |
|---|
| 3752 | call write_output("dust_rad_adjust", |
|---|
| 3753 | & "radiative adjustment coefficient for dust", |
|---|
| 3754 | & "",dust_rad_adjust(:)) |
|---|
| 3755 | endif |
|---|
| 3756 | |
|---|
| 3757 | ! if (scavenging) then ! these outputs should be in the scavenging routine |
|---|
| 3758 | ! call write_output('ccnq','CCN mass mr', |
|---|
| 3759 | ! & 'kg/kg',qccn(:,:)) |
|---|
| 3760 | ! call write_output('ccnN','CCN number', |
|---|
| 3761 | ! & 'part/kg',nccn(:,:)) |
|---|
| 3762 | ! call write_output('surfccnq','Surf nuclei mass mr', |
|---|
| 3763 | ! & 'kg.m-2',qsurf(:,igcm_ccn_mass,iflat)) |
|---|
| 3764 | ! do islope=1,nslope |
|---|
| 3765 | ! write(str2(1:2),'(i2.2)') islope |
|---|
| 3766 | ! call write_output('surfccnq_slope'//str2, |
|---|
| 3767 | ! & 'Surf nuclei mass mr', |
|---|
| 3768 | ! & 'kg.m-2',qsurf(:,igcm_ccn_mass,islope)) |
|---|
| 3769 | ! ENDDO |
|---|
| 3770 | ! call write_output('surfccnN','Surf nuclei number', |
|---|
| 3771 | ! & 'kg.m-2',qsurf(:,igcm_ccn_number,iflat)) |
|---|
| 3772 | ! do islope=1,nslope |
|---|
| 3773 | ! write(str2(1:2),'(i2.2)') islope |
|---|
| 3774 | ! call write_output('surfccnN_slope'//str2, |
|---|
| 3775 | ! & 'Surf nuclei number', |
|---|
| 3776 | ! & 'kg.m-2',qsurf(:,igcm_ccn_number,islope)) |
|---|
| 3777 | ! ENDDO |
|---|
| 3778 | ! endif ! (scavenging) |
|---|
| 3779 | |
|---|
| 3780 | #else |
|---|
| 3781 | ! !!! to initialize mesoscale we need scaled variables |
|---|
| 3782 | ! !!! because this must correspond to starting point for tracers |
|---|
| 3783 | ! call write_output('dustq','Dust mass mr', |
|---|
| 3784 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_mass)) |
|---|
| 3785 | ! call write_output('dustN','Dust number', |
|---|
| 3786 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_number)) |
|---|
| 3787 | ! call write_output('ccn','Nuclei mass mr', |
|---|
| 3788 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_mass)) |
|---|
| 3789 | ! call write_output('ccnN','Nuclei number', |
|---|
| 3790 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_number)) |
|---|
| 3791 | if (freedust) then |
|---|
| 3792 | call write_output('dustq','Dust mass mr', |
|---|
| 3793 | & 'kg/kg',qdust) |
|---|
| 3794 | call write_output('dustN','Dust number', |
|---|
| 3795 | & 'part/kg',ndust) |
|---|
| 3796 | call write_output('ccn','CCN mass mr', |
|---|
| 3797 | & 'kg/kg',qccn) |
|---|
| 3798 | call write_output('ccnN','CCN number', |
|---|
| 3799 | & 'part/kg',nccn) |
|---|
| 3800 | else |
|---|
| 3801 | call write_output('dustq','Dust mass mr', |
|---|
| 3802 | & 'kg/kg',pq(:,:,igcm_dust_mass)) |
|---|
| 3803 | call write_output('dustN','Dust number', |
|---|
| 3804 | & 'part/kg',pq(:,:,igcm_dust_number)) |
|---|
| 3805 | call write_output('ccn','Nuclei mass mr', |
|---|
| 3806 | & 'kg/kg',pq(:,:,igcm_ccn_mass)) |
|---|
| 3807 | call write_output('ccnN','Nuclei number', |
|---|
| 3808 | & 'part/kg',pq(:,:,igcm_ccn_number)) |
|---|
| 3809 | endif |
|---|
| 3810 | #endif |
|---|
| 3811 | |
|---|
| 3812 | end if ! (dustbin.ne.0) |
|---|
| 3813 | |
|---|
| 3814 | c ---------------------------------------------------------- |
|---|
| 3815 | c Thermospheric outputs |
|---|
| 3816 | c ---------------------------------------------------------- |
|---|
| 3817 | if(callthermos) then |
|---|
| 3818 | |
|---|
| 3819 | call write_output("quv","UV heating","K/s", |
|---|
| 3820 | $ zdteuv(:,:)) |
|---|
| 3821 | call write_output("cond","Thermal conduction","K/s", |
|---|
| 3822 | $ zdtconduc(:,:)) |
|---|
| 3823 | |
|---|
| 3824 | !H, H2 and D escape fluxes |
|---|
| 3825 | |
|---|
| 3826 | call write_output("PhiH","H escape flux","s-1", |
|---|
| 3827 | $ PhiEscH) |
|---|
| 3828 | call write_output("PhiH2","H2 escape flux","s-1", |
|---|
| 3829 | $ PhiEscH2) |
|---|
| 3830 | call write_output("PhiD","D escape flux","s-1", |
|---|
| 3831 | $ PhiEscD) |
|---|
| 3832 | |
|---|
| 3833 | endif !(callthermos) |
|---|
| 3834 | |
|---|
| 3835 | call write_output("q15um","15 um cooling","K/s", |
|---|
| 3836 | $ zdtnlte(:,:)) |
|---|
| 3837 | call write_output("qnir","NIR heating","K/s", |
|---|
| 3838 | $ zdtnirco2(:,:)) |
|---|
| 3839 | |
|---|
| 3840 | c ---------------------------------------------------------- |
|---|
| 3841 | c ---------------------------------------------------------- |
|---|
| 3842 | c PBL OUTPUS |
|---|
| 3843 | c ---------------------------------------------------------- |
|---|
| 3844 | c ---------------------------------------------------------- |
|---|
| 3845 | |
|---|
| 3846 | c ---------------------------------------------------------- |
|---|
| 3847 | c Outputs of thermals |
|---|
| 3848 | c ---------------------------------------------------------- |
|---|
| 3849 | if (calltherm) then |
|---|
| 3850 | call write_output('lmax_th', |
|---|
| 3851 | & 'index of vertical extension of thermals', |
|---|
| 3852 | & 'grid level',lmax_th_out(:)) |
|---|
| 3853 | call write_output('zmax_th', |
|---|
| 3854 | & 'vertical extension of thermals','m', |
|---|
| 3855 | & zmax_th(:)) |
|---|
| 3856 | call write_output('hfmax_th', |
|---|
| 3857 | & 'maximum heat flux in thermals','K.m/s', |
|---|
| 3858 | & hfmax_th(:)) |
|---|
| 3859 | call write_output('wstar', |
|---|
| 3860 | & 'maximum thermals vertical velocity','m/s', |
|---|
| 3861 | & wstar(:)) |
|---|
| 3862 | end if |
|---|
| 3863 | |
|---|
| 3864 | c ---------------------------------------------------------- |
|---|
| 3865 | c ---------------------------------------------------------- |
|---|
| 3866 | c END OF PBL OUTPUS |
|---|
| 3867 | c ---------------------------------------------------------- |
|---|
| 3868 | c ---------------------------------------------------------- |
|---|
| 3869 | |
|---|
| 3870 | c ---------------------------------------------------------- |
|---|
| 3871 | c Output in netcdf file "diagsoil.nc" for subterranean |
|---|
| 3872 | c variables (output every "ecritphy", as for writediagfi) |
|---|
| 3873 | c ---------------------------------------------------------- |
|---|
| 3874 | ! Write soil temperature |
|---|
| 3875 | call write_output("soiltemp","Soil temperature","K", |
|---|
| 3876 | & tsoil(:,:,iflat)) |
|---|
| 3877 | do islope=1,nslope |
|---|
| 3878 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3879 | call write_output("soiltemp_slope"//str2, |
|---|
| 3880 | & "Soil temperature","K", |
|---|
| 3881 | & tsoil(:,:,islope)) |
|---|
| 3882 | ENDDO |
|---|
| 3883 | |
|---|
| 3884 | !PREVIOUSLY IN 1D ONLY |
|---|
| 3885 | call write_output("dtrad","rad. heat. rate", |
|---|
| 3886 | & "K.s-1",dtrad(:,:)) |
|---|
| 3887 | |
|---|
| 3888 | if (rdstorm) then |
|---|
| 3889 | call write_output('aerosol_dust','opacity of env. dust','' |
|---|
| 3890 | & ,aerosol(:,:,iaer_dust_doubleq)) |
|---|
| 3891 | call write_output('aerosol_stormdust', |
|---|
| 3892 | & 'opacity of storm dust','' |
|---|
| 3893 | & ,aerosol(:,:,iaer_stormdust_doubleq)) |
|---|
| 3894 | call write_output('dqsdifdustq', |
|---|
| 3895 | &'tendency due to vertical diffusion of background dust on surface' |
|---|
| 3896 | & ,'kg.m-2.s-1',zdqsdif(:,igcm_dust_mass,iflat)) |
|---|
| 3897 | do islope=1,nslope |
|---|
| 3898 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3899 | call write_output('dqsdifdustq_slope'//str2, |
|---|
| 3900 | &'tendency due to vertical diffusion of background dust on surface' |
|---|
| 3901 | & ,'kg.m-2.s-1',zdqsdif(:,igcm_dust_mass,islope)) |
|---|
| 3902 | ENDDO |
|---|
| 3903 | call write_output('dqsdifrdsq', |
|---|
| 3904 | & 'tendency due to vertical diffusion of stormdust on surface', |
|---|
| 3905 | & 'kg.m-2.s-1',zdqsdif(:,igcm_stormdust_mass,iflat)) |
|---|
| 3906 | do islope=1,nslope |
|---|
| 3907 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3908 | call write_output('dqsdifrdsq_slope'//str2, |
|---|
| 3909 | & 'tendency due to vertical diffusion of stormdust on surface', |
|---|
| 3910 | & 'kg.m-2.s-1',zdqsdif(:,igcm_stormdust_mass,islope)) |
|---|
| 3911 | ENDDO |
|---|
| 3912 | endif !(rdstorm) |
|---|
| 3913 | |
|---|
| 3914 | if(water) then |
|---|
| 3915 | if (.not.scavenging) then |
|---|
| 3916 | call write_output('zdqcloud_ice','cloud ice', |
|---|
| 3917 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_h2o_ice)) |
|---|
| 3918 | call write_output('zdqcloud_vap','cloud vap', |
|---|
| 3919 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_h2o_vap)) |
|---|
| 3920 | call write_output('zdqcloud','cloud', |
|---|
| 3921 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_h2o_ice) |
|---|
| 3922 | & +zdqcloud(:,:,igcm_h2o_vap)) |
|---|
| 3923 | IF (hdo) THEN |
|---|
| 3924 | call write_output('zdqcloud_iceD','cloud ice hdo', |
|---|
| 3925 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_hdo_ice)) |
|---|
| 3926 | call write_output('zdqcloud_vapD','cloud vap hdo', |
|---|
| 3927 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_hdo_vap)) |
|---|
| 3928 | ENDIF ! hdo |
|---|
| 3929 | endif !not.scavenging |
|---|
| 3930 | |
|---|
| 3931 | ! Output needed by the PEM |
|---|
| 3932 | DO ig = 1,ngrid |
|---|
| 3933 | ztmp1 =(1/m_co2 - 1/m_noco2) |
|---|
| 3934 | ztmp2=1/m_noco2 |
|---|
| 3935 | pvap_surf(ig) = 1/(ztmp1*zq(ig,1,igcm_co2)+ztmp2) |
|---|
| 3936 | & * zq(ig,1,igcm_h2o_vap)/(mmol(igcm_h2o_vap)*1.e-3)*ps(ig) |
|---|
| 3937 | |
|---|
| 3938 | DO islope = 1,nslope |
|---|
| 3939 | ! Clapeyron law for psat (psat = exp(beta/Th2o+alpha)),following Murphy and Koop 2005 |
|---|
| 3940 | rhowater_surf_sat(ig,islope) = |
|---|
| 3941 | & exp(beta_clap_h2o/tsurf(ig,islope)+alpha_clap_h2o) |
|---|
| 3942 | & / tsurf(ig,islope) |
|---|
| 3943 | & * mmol(igcm_h2o_vap)/(mugaz*r) |
|---|
| 3944 | |
|---|
| 3945 | if(qsurf(ig,igcm_h2o_ice,islope).gt.(1.e-4)) then |
|---|
| 3946 | ! we consider to be at saturation above 1.e-4 kg.m-2 |
|---|
| 3947 | rhowater_surf(ig,islope) = rhowater_surf_sat(ig,islope) |
|---|
| 3948 | else |
|---|
| 3949 | ! otherwise, use vapor partial pressure |
|---|
| 3950 | rhowater_surf(ig,islope) = pvap_surf(ig) |
|---|
| 3951 | & / tsurf(ig,islope) |
|---|
| 3952 | & * mmol(igcm_h2o_vap)/(mugaz*r) |
|---|
| 3953 | endif |
|---|
| 3954 | DO isoil = 1,nsoilmx |
|---|
| 3955 | rhowater_soil(ig,isoil,islope) = |
|---|
| 3956 | & exp(beta_clap_h2o/tsoil(ig,isoil,islope)+alpha_clap_h2o) |
|---|
| 3957 | & / tsoil(ig,isoil,islope) |
|---|
| 3958 | & * mmol(igcm_h2o_vap)/(mugaz*r) |
|---|
| 3959 | ENDDO |
|---|
| 3960 | ENDDO |
|---|
| 3961 | ENDDO |
|---|
| 3962 | |
|---|
| 3963 | CALL write_output("waterdensity_soil", |
|---|
| 3964 | & "rhowater_soil",'kg.m-3', |
|---|
| 3965 | & rhowater_soil(:,:,iflat)) |
|---|
| 3966 | CALL write_output("waterdensity_surface", |
|---|
| 3967 | & "rhowater_surface",'kg.m-3', |
|---|
| 3968 | & rhowater_surf(:,iflat)) |
|---|
| 3969 | DO islope = 1,nslope |
|---|
| 3970 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3971 | CALL write_output("waterdensity_soil_slope"//str2, |
|---|
| 3972 | & "rhowater_soil_slope"//str2,'kg.m-3', |
|---|
| 3973 | & rhowater_soil(:,:,islope)) |
|---|
| 3974 | CALL write_output("waterdensity_surface_slope"//str2, |
|---|
| 3975 | & "rhowater_surface"//str2,'kg.m-3', |
|---|
| 3976 | & rhowater_surf(:,islope)) |
|---|
| 3977 | ENDDO |
|---|
| 3978 | |
|---|
| 3979 | CALL write_output("h2o_layer1","h2o mass mr in the first layer", |
|---|
| 3980 | & 'kg/kg',zq(:,1,igcm_h2o_vap)) |
|---|
| 3981 | CALL write_output("co2_layer1","co2 mass mr in the first layer", |
|---|
| 3982 | & 'kg/kg',zq(:,1,igcm_co2)) |
|---|
| 3983 | ENDIF ! of IF (water) |
|---|
| 3984 | |
|---|
| 3985 | !PREVIOUSLY IN 1D ONLY |
|---|
| 3986 | |
|---|
| 3987 | c ========================================================== |
|---|
| 3988 | c END OF WRITEDIAGFI |
|---|
| 3989 | c ========================================================== |
|---|
| 3990 | #endif |
|---|
| 3991 | ! of ifdef MESOSCALE |
|---|
| 3992 | |
|---|
| 3993 | c ELSE ! if(ngrid.eq.1) |
|---|
| 3994 | |
|---|
| 3995 | c#ifndef MESOSCALE |
|---|
| 3996 | c write(*, |
|---|
| 3997 | c & '("Ls =",f11.6," tau_pref_scenario(",f4.0," Pa) =",f9.6)') |
|---|
| 3998 | c & zls*180./pi,odpref,tau_pref_scenario |
|---|
| 3999 | c#endif |
|---|
| 4000 | |
|---|
| 4001 | c END IF ! if(ngrid.ne.1) |
|---|
| 4002 | |
|---|
| 4003 | ! test for co2 conservation with co2 microphysics |
|---|
| 4004 | if (igcm_co2_ice.ne.0) then |
|---|
| 4005 | co2totB = 0. ! added by C.M. |
|---|
| 4006 | do ig=1,ngrid |
|---|
| 4007 | do l=1,nlayer |
|---|
| 4008 | co2totB = co2totB + (zplev(ig,l)-zplev(ig,l+1))/g* |
|---|
| 4009 | & (pq(ig,l,igcm_co2)+pq(ig,l,igcm_co2_ice) |
|---|
| 4010 | & +(pdq(ig,l,igcm_co2)+pdq(ig,l,igcm_co2_ice))*ptimestep) |
|---|
| 4011 | enddo |
|---|
| 4012 | co2totB = co2totB + qsurf(ig,igcm_co2,iflat) |
|---|
| 4013 | enddo |
|---|
| 4014 | else |
|---|
| 4015 | co2totB = 0. ! added by C.M. |
|---|
| 4016 | do ig=1,ngrid |
|---|
| 4017 | do l=1,nlayer |
|---|
| 4018 | co2totB = co2totB + (zplev(ig,l)-zplev(ig,l+1))/g* |
|---|
| 4019 | & (pq(ig,l,igcm_co2)+pdq(ig,l,igcm_co2)*ptimestep) |
|---|
| 4020 | enddo |
|---|
| 4021 | co2totB = co2totB + qsurf(ig,igcm_co2,iflat) |
|---|
| 4022 | enddo |
|---|
| 4023 | endif ! of if (igcm_co2_ice.ne.0) |
|---|
| 4024 | co2conservation = (co2totA-co2totB)/co2totA |
|---|
| 4025 | call write_output( 'co2conservation', |
|---|
| 4026 | & 'Total CO2 mass conservation in physic', |
|---|
| 4027 | & 'kg', co2conservation) |
|---|
| 4028 | ! XIOS outputs |
|---|
| 4029 | #ifdef CPP_XIOS |
|---|
| 4030 | ! Send fields to XIOS: (NB these fields must also be defined as |
|---|
| 4031 | ! <field id="..." /> in context_lmdz_physics.xml to be correctly used) |
|---|
| 4032 | |
|---|
| 4033 | CALL send_xios_field("controle",tab_cntrl_mod,1) |
|---|
| 4034 | |
|---|
| 4035 | CALL send_xios_field("ap",ap,1) |
|---|
| 4036 | CALL send_xios_field("bp",bp,1) |
|---|
| 4037 | CALL send_xios_field("aps",aps,1) |
|---|
| 4038 | CALL send_xios_field("bps",bps,1) |
|---|
| 4039 | |
|---|
| 4040 | if (lastcall.and.is_omp_master) then |
|---|
| 4041 | write(*,*) "physiq lastcall: call xios_context_finalize" |
|---|
| 4042 | call xios_context_finalize |
|---|
| 4043 | endif |
|---|
| 4044 | #endif |
|---|
| 4045 | |
|---|
| 4046 | if (check_physics_outputs) then |
|---|
| 4047 | ! Check the validity of updated fields at the end of the physics step |
|---|
| 4048 | call check_physics_fields("end of physiq:",zt,zu,zv,zplev,zq) |
|---|
| 4049 | endif |
|---|
| 4050 | |
|---|
| 4051 | icount=icount+1 |
|---|
| 4052 | |
|---|
| 4053 | END SUBROUTINE physiq |
|---|
| 4054 | |
|---|
| 4055 | END MODULE physiq_mod |
|---|