| 1 | MODULE physiq_mod |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | SUBROUTINE physiq( |
|---|
| 8 | $ ngrid,nlayer,nq |
|---|
| 9 | $ ,firstcall,lastcall |
|---|
| 10 | $ ,pday,ptime,ptimestep |
|---|
| 11 | $ ,pplev,pplay,pphi |
|---|
| 12 | $ ,pu,pv,pt,pq |
|---|
| 13 | $ ,flxw |
|---|
| 14 | $ ,pdu,pdv,pdt,pdq,pdpsrf) |
|---|
| 15 | |
|---|
| 16 | use watercloud_mod, only: watercloud, zdqcloud, zdqscloud |
|---|
| 17 | use calchim_mod, only: calchim, ichemistry, zdqchim, zdqschim |
|---|
| 18 | use watersat_mod, only: watersat |
|---|
| 19 | use co2condens_mod, only: co2condens |
|---|
| 20 | use co2cloud_mod, only: co2cloud |
|---|
| 21 | use callradite_mod, only: callradite |
|---|
| 22 | use callsedim_mod, only: callsedim |
|---|
| 23 | use rocketduststorm_mod, only: rocketduststorm, dustliftday |
|---|
| 24 | use calcstormfract_mod, only: calcstormfract |
|---|
| 25 | use topmons_mod, only: topmons,topmons_setup |
|---|
| 26 | use tracer_mod, only: noms, mmol, igcm_co2, igcm_n2, igcm_co2_ice, |
|---|
| 27 | & igcm_co, igcm_o, igcm_h2o_vap, igcm_h2o_ice, |
|---|
| 28 | & igcm_hdo_vap, igcm_hdo_ice, |
|---|
| 29 | & igcm_ccn_mass, igcm_ccn_number, |
|---|
| 30 | & igcm_ccnco2_mass, igcm_ccnco2_number, |
|---|
| 31 | & igcm_ccnco2_h2o_mass_ice, |
|---|
| 32 | & igcm_ccnco2_h2o_mass_ccn, |
|---|
| 33 | & igcm_ccnco2_h2o_number, |
|---|
| 34 | & igcm_ccnco2_meteor_mass, |
|---|
| 35 | & igcm_ccnco2_meteor_number, |
|---|
| 36 | & rho_ice_co2,nuiceco2_sed,nuiceco2_ref, |
|---|
| 37 | & igcm_dust_mass, igcm_dust_number, igcm_h2o2, |
|---|
| 38 | & nuice_ref, rho_ice, rho_dust, ref_r0, |
|---|
| 39 | & igcm_he, igcm_stormdust_mass, |
|---|
| 40 | & igcm_stormdust_number, igcm_topdust_mass, |
|---|
| 41 | & igcm_topdust_number, |
|---|
| 42 | & qperemin |
|---|
| 43 | use comsoil_h, only: inertiedat, inertiesoil,! dat: soil thermal inertia for present climate, inertiesoil is the TI read in the start |
|---|
| 44 | & tsoil, nsoilmx,!number of subsurface layers |
|---|
| 45 | & mlayer,layer ! soil mid layer depths |
|---|
| 46 | use geometry_mod, only: longitude, latitude, cell_area, |
|---|
| 47 | & longitude_deg |
|---|
| 48 | use comgeomfi_h, only: sinlon, coslon, sinlat, coslat |
|---|
| 49 | use surfdat_h, only: phisfi, albedodat, zmea, zstd, zsig, zgam, |
|---|
| 50 | & zthe, z0, albedo_h2o_cap,albedo_h2o_frost, |
|---|
| 51 | & frost_albedo_threshold,frost_metam_threshold, |
|---|
| 52 | & tsurf, emis, |
|---|
| 53 | & capcal, fluxgrd, qsurf, |
|---|
| 54 | & hmons,summit,base,watercap,watercaptag, |
|---|
| 55 | & perenial_co2ice |
|---|
| 56 | use comsaison_h, only: dist_sol, declin, zls, |
|---|
| 57 | & mu0, fract, local_time |
|---|
| 58 | use slope_mod, only: theta_sl, psi_sl |
|---|
| 59 | use conc_mod, only: rnew, cpnew, mmean |
|---|
| 60 | use time_phylmdz_mod, only: iphysiq, day_step, ecritstart, daysec |
|---|
| 61 | use dimradmars_mod, only: aerosol, totcloudfrac, |
|---|
| 62 | & dtrad, fluxrad_sky, fluxrad, albedo, |
|---|
| 63 | & naerkind, iaer_dust_doubleq, |
|---|
| 64 | & iaer_stormdust_doubleq, iaer_h2o_ice, |
|---|
| 65 | & flux_1AU |
|---|
| 66 | use dust_param_mod, only: doubleq, lifting, callddevil, |
|---|
| 67 | & tauscaling, odpref, dustbin, |
|---|
| 68 | & dustscaling_mode, dust_rad_adjust, |
|---|
| 69 | & freedust, reff_driven_IRtoVIS_scenario |
|---|
| 70 | use turb_mod, only: q2, wstar, ustar, sensibFlux, |
|---|
| 71 | & zmax_th, hfmax_th, turb_resolved |
|---|
| 72 | use planete_h, only: aphelie, periheli, year_day, peri_day, |
|---|
| 73 | & obliquit |
|---|
| 74 | USE comcstfi_h, only: r, cpp, mugaz, g, rcp, pi, rad |
|---|
| 75 | USE calldrag_noro_mod, ONLY: calldrag_noro |
|---|
| 76 | USE vdifc_mod, ONLY: vdifc |
|---|
| 77 | use param_v4_h, only: nreact,n_avog, |
|---|
| 78 | & fill_data_thermos, allocate_param_thermos |
|---|
| 79 | use iono_h, only: allocate_param_iono |
|---|
| 80 | use compute_dtau_mod, only: compute_dtau |
|---|
| 81 | use nonoro_gwd_ran_mod, only: nonoro_gwd_ran |
|---|
| 82 | use check_fields_mod, only: check_physics_fields |
|---|
| 83 | #ifdef MESOSCALE |
|---|
| 84 | use comsoil_h, only: mlayer,layer |
|---|
| 85 | use surfdat_h, only: z0_default |
|---|
| 86 | use comm_wrf |
|---|
| 87 | #else |
|---|
| 88 | USE planetwide_mod, ONLY: planetwide_maxval, planetwide_minval, |
|---|
| 89 | & planetwide_sumval |
|---|
| 90 | use phyredem, only: physdem0, physdem1 |
|---|
| 91 | use phyetat0_mod, only: phyetat0, tab_cntrl_mod |
|---|
| 92 | use wstats_mod, only: callstats, wstats, mkstats |
|---|
| 93 | use eofdump_mod, only: eofdump |
|---|
| 94 | USE vertical_layers_mod, ONLY: ap,bp,aps,bps,presnivs,pseudoalt |
|---|
| 95 | USE mod_phys_lmdz_omp_data, ONLY: is_omp_master |
|---|
| 96 | USE time_phylmdz_mod, ONLY: day_end |
|---|
| 97 | #endif |
|---|
| 98 | |
|---|
| 99 | #ifdef CPP_XIOS |
|---|
| 100 | use xios_output_mod, only: initialize_xios_output, |
|---|
| 101 | & update_xios_timestep, |
|---|
| 102 | & send_xios_field |
|---|
| 103 | use wxios, only: wxios_context_init, xios_context_finalize |
|---|
| 104 | #endif |
|---|
| 105 | USE mod_grid_phy_lmdz, ONLY: grid_type, unstructured |
|---|
| 106 | use ioipsl_getin_p_mod, only: getin_p |
|---|
| 107 | use comslope_mod, ONLY: nslope,def_slope,def_slope_mean, |
|---|
| 108 | & subslope_dist,iflat,sky_slope, |
|---|
| 109 | & major_slope,compute_meshgridavg, |
|---|
| 110 | & ini_comslope_h |
|---|
| 111 | USE ioipsl_getincom, only: getin |
|---|
| 112 | use write_output_mod, only: write_output |
|---|
| 113 | IMPLICIT NONE |
|---|
| 114 | c======================================================================= |
|---|
| 115 | c |
|---|
| 116 | c subject: |
|---|
| 117 | c -------- |
|---|
| 118 | c |
|---|
| 119 | c Organisation of the physical parametrisations of the LMD |
|---|
| 120 | c martian atmospheric general circulation model. |
|---|
| 121 | c |
|---|
| 122 | c The GCM can be run without or with tracer transport |
|---|
| 123 | c depending on the value of Logical "tracer" in file "callphys.def" |
|---|
| 124 | c Tracers may be water vapor, ice OR chemical species OR dust particles |
|---|
| 125 | c |
|---|
| 126 | c SEE comments in initracer.F about numbering of tracer species... |
|---|
| 127 | c |
|---|
| 128 | c It includes: |
|---|
| 129 | c |
|---|
| 130 | c 1. Initialization: |
|---|
| 131 | c 1.1 First call initializations |
|---|
| 132 | c 1.2 Initialization for every call to physiq |
|---|
| 133 | c 1.2.5 Compute mean mass and cp, R and thermal conduction coeff. |
|---|
| 134 | c 2. Compute radiative transfer tendencies |
|---|
| 135 | c (longwave and shortwave) for CO2 and aerosols. |
|---|
| 136 | c 3. Gravity wave and subgrid scale topography drag : |
|---|
| 137 | c 4. Vertical diffusion (turbulent mixing): |
|---|
| 138 | c 5. Convective adjustment |
|---|
| 139 | c 6. Condensation and sublimation of carbon dioxide. |
|---|
| 140 | c 7. TRACERS : |
|---|
| 141 | c 7a. water, water ice, co2 ice (clouds) |
|---|
| 142 | c 7b. call for photochemistry when tracers are chemical species |
|---|
| 143 | c 7c. other scheme for tracer (dust) transport (lifting, sedimentation) |
|---|
| 144 | c 7d. updates (CO2 pressure variations, surface budget) |
|---|
| 145 | c 8. Contribution to tendencies due to thermosphere |
|---|
| 146 | c 9. Surface and sub-surface temperature calculations |
|---|
| 147 | c 10. Write outputs : |
|---|
| 148 | c - "startfi", "histfi" (if it's time) |
|---|
| 149 | c - Saving statistics (if "callstats = .true.") |
|---|
| 150 | c - Dumping eof (if "calleofdump = .true.") |
|---|
| 151 | c - Output any needed variables in "diagfi" |
|---|
| 152 | c 11. Diagnostic: mass conservation of tracers |
|---|
| 153 | c |
|---|
| 154 | c author: |
|---|
| 155 | c ------- |
|---|
| 156 | c Frederic Hourdin 15/10/93 |
|---|
| 157 | c Francois Forget 1994 |
|---|
| 158 | c Christophe Hourdin 02/1997 |
|---|
| 159 | c Subroutine completly rewritten by F.Forget (01/2000) |
|---|
| 160 | c Introduction of the photochemical module: S. Lebonnois (11/2002) |
|---|
| 161 | c Introduction of the thermosphere module: M. Angelats i Coll (2002) |
|---|
| 162 | c Water ice clouds: Franck Montmessin (update 06/2003) |
|---|
| 163 | c Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
|---|
| 164 | c Nb: See callradite.F for more information. |
|---|
| 165 | c Mesoscale lines: Aymeric Spiga (2007 - 2011) -- check MESOSCALE flags |
|---|
| 166 | c jul 2011 malv+fgg: Modified calls to NIR heating routine and 15 um cooling parameterization |
|---|
| 167 | c |
|---|
| 168 | c 10/16 J. Audouard: modifications for CO2 clouds scheme |
|---|
| 169 | |
|---|
| 170 | c arguments: |
|---|
| 171 | c ---------- |
|---|
| 172 | c |
|---|
| 173 | c input: |
|---|
| 174 | c ------ |
|---|
| 175 | c ecri period (in dynamical timestep) to write output |
|---|
| 176 | c ngrid Size of the horizontal grid. |
|---|
| 177 | c All internal loops are performed on that grid. |
|---|
| 178 | c nlayer Number of vertical layers. |
|---|
| 179 | c nq Number of advected fields |
|---|
| 180 | c firstcall True at the first call |
|---|
| 181 | c lastcall True at the last call |
|---|
| 182 | c pday Number of days counted from the North. Spring |
|---|
| 183 | c equinoxe. |
|---|
| 184 | c ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT |
|---|
| 185 | c ptimestep timestep (s) |
|---|
| 186 | c pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa) |
|---|
| 187 | c pplev(ngrid,nlayer+1) intermediate pressure levels (pa) |
|---|
| 188 | c pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2s-2) |
|---|
| 189 | c pu(ngrid,nlayer) u component of the wind (ms-1) |
|---|
| 190 | c pv(ngrid,nlayer) v component of the wind (ms-1) |
|---|
| 191 | c pt(ngrid,nlayer) Temperature (K) |
|---|
| 192 | c pq(ngrid,nlayer,nq) Advected fields |
|---|
| 193 | c pudyn(ngrid,nlayer) | |
|---|
| 194 | c pvdyn(ngrid,nlayer) | Dynamical temporal derivative for the |
|---|
| 195 | c ptdyn(ngrid,nlayer) | corresponding variables |
|---|
| 196 | c pqdyn(ngrid,nlayer,nq) | |
|---|
| 197 | c flxw(ngrid,nlayer) vertical mass flux (kg/s) at layer lower boundary |
|---|
| 198 | c |
|---|
| 199 | c output: |
|---|
| 200 | c ------- |
|---|
| 201 | c |
|---|
| 202 | c pdu(ngrid,nlayer) | |
|---|
| 203 | c pdv(ngrid,nlayer) | Temporal derivative of the corresponding |
|---|
| 204 | c pdt(ngrid,nlayer) | variables due to physical processes. |
|---|
| 205 | c pdq(ngrid,nlayer,nq) | |
|---|
| 206 | c pdpsrf(ngrid) | |
|---|
| 207 | |
|---|
| 208 | c |
|---|
| 209 | c======================================================================= |
|---|
| 210 | c |
|---|
| 211 | c 0. Declarations : |
|---|
| 212 | c ------------------ |
|---|
| 213 | |
|---|
| 214 | include "callkeys.h" |
|---|
| 215 | include "comg1d.h" |
|---|
| 216 | include "nlteparams.h" |
|---|
| 217 | include "netcdf.inc" |
|---|
| 218 | |
|---|
| 219 | c Arguments : |
|---|
| 220 | c ----------- |
|---|
| 221 | |
|---|
| 222 | c inputs: |
|---|
| 223 | c ------- |
|---|
| 224 | INTEGER,INTENT(in) :: ngrid ! number of atmospheric columns |
|---|
| 225 | INTEGER,INTENT(in) :: nlayer ! number of atmospheric layers |
|---|
| 226 | INTEGER,INTENT(in) :: nq ! number of tracers |
|---|
| 227 | LOGICAL,INTENT(in) :: firstcall ! signals first call to physics |
|---|
| 228 | LOGICAL,INTENT(in) :: lastcall ! signals last call to physics |
|---|
| 229 | REAL,INTENT(in) :: pday ! number of elapsed sols since reference Ls=0 |
|---|
| 230 | REAL,INTENT(in) :: ptime ! "universal time", given as fraction of sol (e.g.: 0.5 for noon) |
|---|
| 231 | REAL,INTENT(in) :: ptimestep ! physics timestep (s) |
|---|
| 232 | REAL,INTENT(in) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
|---|
| 233 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! mid-layer pressure (Pa) |
|---|
| 234 | REAL,INTENT(IN) :: pphi(ngrid,nlayer) ! geopotential at mid-layer (m2s-2) |
|---|
| 235 | REAL,INTENT(in) :: pu(ngrid,nlayer) ! zonal wind component (m/s) |
|---|
| 236 | REAL,INTENT(in) :: pv(ngrid,nlayer) ! meridional wind component (m/s) |
|---|
| 237 | REAL,INTENT(in) :: pt(ngrid,nlayer) ! temperature (K) |
|---|
| 238 | REAL,INTENT(in) :: pq(ngrid,nlayer,nq) ! tracers (.../kg_of_air) |
|---|
| 239 | REAL,INTENT(in) :: flxw(ngrid,nlayer) ! vertical mass flux (ks/s) |
|---|
| 240 | ! at lower boundary of layer |
|---|
| 241 | |
|---|
| 242 | c outputs: |
|---|
| 243 | c -------- |
|---|
| 244 | c physical tendencies |
|---|
| 245 | REAL,INTENT(out) :: pdu(ngrid,nlayer) ! zonal wind tendency (m/s/s) |
|---|
| 246 | REAL,INTENT(out) :: pdv(ngrid,nlayer) ! meridional wind tendency (m/s/s) |
|---|
| 247 | REAL,INTENT(out) :: pdt(ngrid,nlayer) ! temperature tendency (K/s) |
|---|
| 248 | REAL,INTENT(out) :: pdq(ngrid,nlayer,nq) ! tracer tendencies (../kg/s) |
|---|
| 249 | REAL,INTENT(out) :: pdpsrf(ngrid) ! surface pressure tendency (Pa/s) |
|---|
| 250 | |
|---|
| 251 | |
|---|
| 252 | |
|---|
| 253 | c Local saved variables: |
|---|
| 254 | c ---------------------- |
|---|
| 255 | INTEGER,SAVE :: day_ini ! Initial date of the run (sol since Ls=0) |
|---|
| 256 | INTEGER,SAVE :: icount ! counter of calls to physiq during the run. |
|---|
| 257 | REAL,SAVE :: time_phys |
|---|
| 258 | |
|---|
| 259 | !$OMP THREADPRIVATE(day_ini,icount,time_phys) |
|---|
| 260 | |
|---|
| 261 | #ifdef DUSTSTORM |
|---|
| 262 | REAL pq_tmp(ngrid, nlayer, 2) ! To compute tendencies due the dust bomb |
|---|
| 263 | #endif |
|---|
| 264 | |
|---|
| 265 | c Variables used by the water ice microphysical scheme: |
|---|
| 266 | REAL rice(ngrid,nlayer) ! Water ice geometric mean radius (m) |
|---|
| 267 | REAL nuice(ngrid,nlayer) ! Estimated effective variance |
|---|
| 268 | ! of the size distribution |
|---|
| 269 | real rsedcloud(ngrid,nlayer) ! Cloud sedimentation radius |
|---|
| 270 | real rhocloud(ngrid,nlayer) ! Cloud density (kg.m-3) |
|---|
| 271 | real rsedcloudco2(ngrid,nlayer) ! CO2 Cloud sedimentation radius |
|---|
| 272 | real rhocloudco2(ngrid,nlayer) ! CO2 Cloud density (kg.m-3) |
|---|
| 273 | real nuiceco2(ngrid,nlayer) ! Estimated effective variance of the |
|---|
| 274 | ! size distribution |
|---|
| 275 | REAL inertiesoil_tifeedback(ngrid,nsoilmx,nslope) ! Time varying subsurface |
|---|
| 276 | ! thermal inertia (J.s-1/2.m-2.K-1) |
|---|
| 277 | ! (used only when tifeedback=.true.) |
|---|
| 278 | c Variables used by the CO2 clouds microphysical scheme: |
|---|
| 279 | DOUBLE PRECISION riceco2(ngrid,nlayer) ! co2 ice geometric mean radius (m) |
|---|
| 280 | real zdqssed_co2(ngrid) ! CO2 flux at the surface (kg.m-2.s-1) |
|---|
| 281 | real zdqssed_ccn(ngrid,nq) ! CCN flux at the surface (kg.m-2.s-1) |
|---|
| 282 | real zcondicea_co2microp(ngrid,nlayer) |
|---|
| 283 | c Variables used by the photochemistry |
|---|
| 284 | REAL surfdust(ngrid,nlayer) ! dust surface area (m2/m3, if photochemistry) |
|---|
| 285 | REAL surfice(ngrid,nlayer) ! ice surface area (m2/m3, if photochemistry) |
|---|
| 286 | c Variables used by the slope model |
|---|
| 287 | REAL sl_ls, sl_lct, sl_lat |
|---|
| 288 | REAL sl_tau, sl_alb, sl_the, sl_psi |
|---|
| 289 | REAL sl_fl0, sl_flu |
|---|
| 290 | REAL sl_ra, sl_di0 |
|---|
| 291 | REAL sky |
|---|
| 292 | REAL fluxsurf_dir_dn_sw(ngrid) ! Incident direct solar flux on Mars at surface (W.m-2) |
|---|
| 293 | |
|---|
| 294 | REAL,PARAMETER :: stephan = 5.67e-08 ! Stephan Boltzman constant |
|---|
| 295 | |
|---|
| 296 | c Local variables : |
|---|
| 297 | c ----------------- |
|---|
| 298 | |
|---|
| 299 | REAL CBRT |
|---|
| 300 | EXTERNAL CBRT |
|---|
| 301 | |
|---|
| 302 | ! CHARACTER*80 fichier |
|---|
| 303 | INTEGER l,ig,ierr,igout,iq,tapphys,isoil |
|---|
| 304 | |
|---|
| 305 | REAL fluxsurf_lw(ngrid,nslope) !incident LW (IR) surface flux (W.m-2) |
|---|
| 306 | REAL fluxsurf_dn_sw(ngrid,2,nslope) ! Incident SW (solar) surface flux (W.m-2) |
|---|
| 307 | REAL fluxsurf_up_sw(ngrid,2) ! Reflected SW (solar) surface flux (W.m-2) |
|---|
| 308 | REAL fluxtop_lw(ngrid) !Outgoing LW (IR) flux to space (W.m-2) |
|---|
| 309 | REAL fluxtop_dn_sw(ngrid,2) ! Incoming SW (solar) flux from space (W.m-2) |
|---|
| 310 | REAL fluxtop_up_sw(ngrid,2) ! Outgoing SW (solar) flux to space (W.m-2) |
|---|
| 311 | REAL tau_pref_scenario(ngrid) ! prescribed dust column visible opacity |
|---|
| 312 | ! at odpref |
|---|
| 313 | REAL IRtoVIScoef(ngrid) ! conversion coefficient to apply on |
|---|
| 314 | ! scenario absorption IR (9.3um) CDOD |
|---|
| 315 | ! = tau_pref_gcm_VIS / tau_pref_gcm_IR |
|---|
| 316 | REAL tau_pref_gcm(ngrid) ! dust column visible opacity at odpref in the GCM |
|---|
| 317 | c rocket dust storm |
|---|
| 318 | REAL totstormfract(ngrid) ! fraction of the mesh where the dust storm is contained |
|---|
| 319 | logical clearatm ! clearatm used to calculate twice the radiative |
|---|
| 320 | ! transfer when rdstorm is active : |
|---|
| 321 | ! - in a mesh with stormdust and background dust (false) |
|---|
| 322 | ! - in a mesh with background dust only (true) |
|---|
| 323 | c entrainment by mountain top dust flows |
|---|
| 324 | logical nohmons ! nohmons used to calculate twice the radiative |
|---|
| 325 | ! transfer when topflows is active : |
|---|
| 326 | ! - in a mesh with topdust and background dust (false) |
|---|
| 327 | ! - in a mesh with background dust only (true) |
|---|
| 328 | |
|---|
| 329 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
|---|
| 330 | ! AS: TBD: this one should be in a module ! |
|---|
| 331 | REAL zday ! date (time since Ls=0, in martian days) |
|---|
| 332 | REAL zzlay(ngrid,nlayer) ! altitude at the middle of the layers |
|---|
| 333 | REAL zzlev(ngrid,nlayer+1) ! altitude at layer boundaries |
|---|
| 334 | ! REAL latvl1,lonvl1 ! Viking Lander 1 point (for diagnostic) |
|---|
| 335 | |
|---|
| 336 | c Tendancies due to various processes: |
|---|
| 337 | REAL dqsurf(ngrid,nq,nslope) ! tendency for tracers on surface (Kg/m2/s) |
|---|
| 338 | REAL zdtlw(ngrid,nlayer) ! (K/s) |
|---|
| 339 | REAL zdtsw(ngrid,nlayer) ! (K/s) |
|---|
| 340 | REAL pdqrds(ngrid,nlayer,nq) ! tendency for dust after rocketduststorm |
|---|
| 341 | |
|---|
| 342 | REAL zdtnirco2(ngrid,nlayer) ! (K/s) |
|---|
| 343 | REAL zdtnlte(ngrid,nlayer) ! (K/s) |
|---|
| 344 | REAL zdtsurf(ngrid,nslope) ! (K/s) |
|---|
| 345 | REAL zdtcloud(ngrid,nlayer),zdtcloudco2(ngrid,nlayer) |
|---|
| 346 | REAL zdvdif(ngrid,nlayer),zdudif(ngrid,nlayer) ! (m.s-2) |
|---|
| 347 | REAL zdhdif(ngrid,nlayer), zdtsdif(ngrid,nslope) ! (K/s) |
|---|
| 348 | REAL zdvadj(ngrid,nlayer),zduadj(ngrid,nlayer) ! (m.s-2) |
|---|
| 349 | REAL zdhadj(ngrid,nlayer) ! (K/s) |
|---|
| 350 | REAL zdtgw(ngrid,nlayer) ! (K/s) |
|---|
| 351 | REAL zdugw(ngrid,nlayer),zdvgw(ngrid,nlayer) ! (m.s-2) |
|---|
| 352 | REAL zdtc(ngrid,nlayer),zdtsurfc(ngrid,nslope) |
|---|
| 353 | REAL zdvc(ngrid,nlayer),zduc(ngrid,nlayer) |
|---|
| 354 | |
|---|
| 355 | REAL zdqdif(ngrid,nlayer,nq), zdqsdif(ngrid,nq,nslope) |
|---|
| 356 | REAL zdqsed(ngrid,nlayer,nq), zdqssed(ngrid,nq) |
|---|
| 357 | REAL zdqdev(ngrid,nlayer,nq), zdqsdev(ngrid,nq) |
|---|
| 358 | REAL zdqadj(ngrid,nlayer,nq) |
|---|
| 359 | REAL zdqc(ngrid,nlayer,nq) |
|---|
| 360 | REAL zdqcloudco2(ngrid,nlayer,nq) |
|---|
| 361 | REAL zdqsc(ngrid,nq,nslope) |
|---|
| 362 | |
|---|
| 363 | REAL zdteuv(ngrid,nlayer) ! (K/s) |
|---|
| 364 | REAL zdtconduc(ngrid,nlayer) ! (K/s) |
|---|
| 365 | REAL zdumolvis(ngrid,nlayer) |
|---|
| 366 | REAL zdvmolvis(ngrid,nlayer) |
|---|
| 367 | real zdqmoldiff(ngrid,nlayer,nq) |
|---|
| 368 | real*8 PhiEscH,PhiEscH2,PhiEscD |
|---|
| 369 | |
|---|
| 370 | REAL dwatercap(ngrid,nslope), dwatercap_dif(ngrid,nslope) ! (kg/m-2) |
|---|
| 371 | |
|---|
| 372 | c Local variable for local intermediate calcul: |
|---|
| 373 | REAL zflubid(ngrid,nslope) |
|---|
| 374 | REAL zplanck(ngrid),zpopsk(ngrid,nlayer) |
|---|
| 375 | REAL zdum1(ngrid,nlayer) |
|---|
| 376 | REAL zdum2(ngrid,nlayer) |
|---|
| 377 | REAL ztim1,ztim2,ztim3, z1,z2 |
|---|
| 378 | REAL ztime_fin |
|---|
| 379 | REAL zdh(ngrid,nlayer) |
|---|
| 380 | REAL zh(ngrid,nlayer) ! potential temperature (K) |
|---|
| 381 | REAL pw(ngrid,nlayer) ! vertical velocity (m/s) (>0 when downwards) |
|---|
| 382 | INTEGER length |
|---|
| 383 | PARAMETER (length=100) |
|---|
| 384 | |
|---|
| 385 | c Variables for the total dust for diagnostics |
|---|
| 386 | REAL qdusttotal(ngrid,nlayer) !it equals to dust + stormdust |
|---|
| 387 | |
|---|
| 388 | INTEGER iaer |
|---|
| 389 | |
|---|
| 390 | c local variables only used for diagnostic (output in file "diagfi" or "stats") |
|---|
| 391 | c ----------------------------------------------------------------------------- |
|---|
| 392 | REAL ps(ngrid), zt(ngrid,nlayer) |
|---|
| 393 | REAL zu(ngrid,nlayer),zv(ngrid,nlayer) |
|---|
| 394 | REAL zq(ngrid,nlayer,nq) |
|---|
| 395 | |
|---|
| 396 | REAL fluxtop_dn_sw_tot(ngrid), fluxtop_up_sw_tot(ngrid) |
|---|
| 397 | REAL fluxsurf_dn_sw_tot(ngrid,nslope), fluxsurf_up_sw_tot(ngrid) |
|---|
| 398 | character*2 str2 |
|---|
| 399 | ! character*5 str5 |
|---|
| 400 | real zdtdif(ngrid,nlayer), zdtadj(ngrid,nlayer) |
|---|
| 401 | real rdust(ngrid,nlayer) ! dust geometric mean radius (m) |
|---|
| 402 | real rstormdust(ngrid,nlayer) ! stormdust geometric mean radius (m) |
|---|
| 403 | real rtopdust(ngrid,nlayer) ! topdust geometric mean radius (m) |
|---|
| 404 | integer igmin, lmin |
|---|
| 405 | logical tdiag |
|---|
| 406 | |
|---|
| 407 | real co2col(ngrid) ! CO2 column |
|---|
| 408 | ! pplev and pplay are dynamical inputs and must not be modified in the physics. |
|---|
| 409 | ! instead, use zplay and zplev : |
|---|
| 410 | REAL zplev(ngrid,nlayer+1),zplay(ngrid,nlayer) |
|---|
| 411 | ! REAL zstress(ngrid),cd |
|---|
| 412 | real tmean, zlocal(nlayer) |
|---|
| 413 | real rho(ngrid,nlayer) ! density |
|---|
| 414 | real vmr(ngrid,nlayer) ! volume mixing ratio |
|---|
| 415 | real rhopart(ngrid,nlayer) ! number density of a given species |
|---|
| 416 | real colden(ngrid,nq) ! vertical column of tracers |
|---|
| 417 | real mass(nq) ! global mass of tracers (g) |
|---|
| 418 | REAL mtot(ngrid) ! Total mass of water vapor (kg/m2) |
|---|
| 419 | REAL mstormdtot(ngrid) ! Total mass of stormdust tracer (kg/m2) |
|---|
| 420 | REAL mdusttot(ngrid) ! Total mass of dust tracer (kg/m2) |
|---|
| 421 | REAL icetot(ngrid) ! Total mass of water ice (kg/m2) |
|---|
| 422 | REAL mtotco2(ngrid) ! Total mass of co2, including ice at the surface (kg/m2) |
|---|
| 423 | REAL vaptotco2(ngrid) ! Total mass of co2 vapor (kg/m2) |
|---|
| 424 | REAL icetotco2(ngrid) ! Total mass of co2 ice (kg/m2) |
|---|
| 425 | REAL Nccntot(ngrid) ! Total number of ccn (nbr/m2) |
|---|
| 426 | REAL NccnCO2tot(ngrid) ! Total number of ccnCO2 (nbr/m2) |
|---|
| 427 | REAL Mccntot(ngrid) ! Total mass of ccn (kg/m2) |
|---|
| 428 | REAL rave(ngrid) ! Mean water ice effective radius (m) |
|---|
| 429 | REAL opTES(ngrid,nlayer) ! abs optical depth at 825 cm-1 |
|---|
| 430 | REAL tauTES(ngrid) ! column optical depth at 825 cm-1 |
|---|
| 431 | REAL Qabsice ! Water ice absorption coefficient |
|---|
| 432 | REAL taucloudtes(ngrid) ! Cloud opacity at infrared |
|---|
| 433 | ! reference wavelength using |
|---|
| 434 | ! Qabs instead of Qext |
|---|
| 435 | ! (direct comparison with TES) |
|---|
| 436 | REAL mtotD(ngrid) ! Total mass of HDO vapor (kg/m2) |
|---|
| 437 | REAL icetotD(ngrid) ! Total mass of HDO ice (kg/m2) |
|---|
| 438 | REAL DoH_vap(ngrid,nlayer) !D/H ratio |
|---|
| 439 | REAL DoH_ice(ngrid,nlayer) !D/H ratio |
|---|
| 440 | REAL DoH_surf(ngrid) !D/H ratio surface |
|---|
| 441 | |
|---|
| 442 | REAL dqdustsurf(ngrid) ! surface q dust flux (kg/m2/s) |
|---|
| 443 | REAL dndustsurf(ngrid) ! surface n dust flux (number/m2/s) |
|---|
| 444 | REAL ndust(ngrid,nlayer) ! true n dust (kg/kg) |
|---|
| 445 | REAL qdust(ngrid,nlayer) ! true q dust (kg/kg) |
|---|
| 446 | REAL nccn(ngrid,nlayer) ! true n ccn (kg/kg) |
|---|
| 447 | REAL qccn(ngrid,nlayer) ! true q ccn (kg/kg) |
|---|
| 448 | c definition tendancies of stormdust tracers |
|---|
| 449 | REAL rdsdqdustsurf(ngrid) ! surface q stormdust flux (kg/m2/s) |
|---|
| 450 | REAL rdsdndustsurf(ngrid) ! surface n stormdust flux (number/m2/s) |
|---|
| 451 | REAL rdsndust(ngrid,nlayer) ! true n stormdust (kg/kg) |
|---|
| 452 | REAL rdsqdust(ngrid,nlayer) ! true q stormdust (kg/kg) |
|---|
| 453 | REAL wspeed(ngrid,nlayer+1) ! vertical velocity stormdust tracer |
|---|
| 454 | REAL wtop(ngrid,nlayer+1) ! vertical velocity topdust tracer |
|---|
| 455 | |
|---|
| 456 | REAL dsodust(ngrid,nlayer) ! density scaled opacity for background dust |
|---|
| 457 | REAL dsords(ngrid,nlayer) ! density scaled opacity for stormdust |
|---|
| 458 | REAL dsotop(ngrid,nlayer) ! density scaled opacity for topdust |
|---|
| 459 | |
|---|
| 460 | c Test 1d/3d scavenging |
|---|
| 461 | real h2otot(ngrid) |
|---|
| 462 | real hdotot(ngrid) |
|---|
| 463 | REAL satu(ngrid,nlayer) ! satu ratio for output |
|---|
| 464 | REAL zqsat(ngrid,nlayer) ! saturation |
|---|
| 465 | REAL satuco2(ngrid,nlayer) ! co2 satu ratio for output |
|---|
| 466 | REAL zqsatco2(ngrid,nlayer) ! saturation co2 |
|---|
| 467 | |
|---|
| 468 | |
|---|
| 469 | ! Added for new NLTE scheme |
|---|
| 470 | |
|---|
| 471 | real co2vmr_gcm(ngrid,nlayer) |
|---|
| 472 | real n2vmr_gcm(ngrid,nlayer) |
|---|
| 473 | real ovmr_gcm(ngrid,nlayer) |
|---|
| 474 | real covmr_gcm(ngrid,nlayer) |
|---|
| 475 | integer ierr_nlte |
|---|
| 476 | real*8 varerr |
|---|
| 477 | |
|---|
| 478 | C Non-oro GW drag & Calcul of Brunt-Vaisala freq. (BV2) |
|---|
| 479 | REAL ztetalev(ngrid,nlayer) |
|---|
| 480 | real zdtetalev(ngrid,nlayer), zdzlev(ngrid,nlayer) |
|---|
| 481 | REAL bv2(ngrid,nlayer) ! BV2 at zlev |
|---|
| 482 | c Non-oro GW tendencies |
|---|
| 483 | REAL d_u_hin(ngrid,nlayer), d_v_hin(ngrid,nlayer) |
|---|
| 484 | REAL d_t_hin(ngrid,nlayer) |
|---|
| 485 | c Diagnostics 2D of gw_nonoro |
|---|
| 486 | REAL zustrhi(ngrid), zvstrhi(ngrid) |
|---|
| 487 | c Variables for PBL |
|---|
| 488 | REAL zz1(ngrid) |
|---|
| 489 | REAL lmax_th_out(ngrid) |
|---|
| 490 | REAL pdu_th(ngrid,nlayer),pdv_th(ngrid,nlayer) |
|---|
| 491 | REAL pdt_th(ngrid,nlayer),pdq_th(ngrid,nlayer,nq) |
|---|
| 492 | INTEGER lmax_th(ngrid),dimout,n_out,n |
|---|
| 493 | CHARACTER(50) zstring |
|---|
| 494 | REAL dtke_th(ngrid,nlayer+1) |
|---|
| 495 | REAL zcdv(ngrid), zcdh(ngrid) |
|---|
| 496 | REAL, ALLOCATABLE, DIMENSION(:,:) :: T_out |
|---|
| 497 | REAL, ALLOCATABLE, DIMENSION(:,:) :: u_out ! Interpolated teta and u at z_out |
|---|
| 498 | REAL u_out1(ngrid) |
|---|
| 499 | REAL T_out1(ngrid) |
|---|
| 500 | REAL, ALLOCATABLE, DIMENSION(:) :: z_out ! height of interpolation between z0 and z1 [meters] |
|---|
| 501 | REAL tstar(ngrid) ! friction velocity and friction potential temp |
|---|
| 502 | REAL L_mo(ngrid),vhf(ngrid),vvv(ngrid) |
|---|
| 503 | real qdustrds0(ngrid,nlayer),qdustrds1(ngrid,nlayer) |
|---|
| 504 | real qstormrds0(ngrid,nlayer),qstormrds1(ngrid,nlayer) |
|---|
| 505 | real qdusttotal0(ngrid),qdusttotal1(ngrid) |
|---|
| 506 | |
|---|
| 507 | c sub-grid scale water ice clouds (A. Pottier 2013) |
|---|
| 508 | logical clearsky |
|---|
| 509 | ! flux for the part without clouds |
|---|
| 510 | real zdtswclf(ngrid,nlayer) |
|---|
| 511 | real zdtlwclf(ngrid,nlayer) |
|---|
| 512 | real fluxsurf_lwclf(ngrid) |
|---|
| 513 | real fluxsurf_dn_swclf(ngrid,2),fluxsurf_up_swclf(ngrid,2) |
|---|
| 514 | real fluxtop_lwclf(ngrid) |
|---|
| 515 | real fluxtop_dn_swclf(ngrid,2),fluxtop_up_swclf(ngrid,2) |
|---|
| 516 | real taucloudtesclf(ngrid) |
|---|
| 517 | real tf_clf, ntf_clf ! tf: fraction of clouds, ntf: fraction without clouds |
|---|
| 518 | real rave2(ngrid), totrave2(ngrid) ! Mean water ice mean radius (m) |
|---|
| 519 | C test de conservation de la masse de CO2 |
|---|
| 520 | REAL co2totA |
|---|
| 521 | REAL co2totB |
|---|
| 522 | REAL co2conservation |
|---|
| 523 | |
|---|
| 524 | c entrainment by mountain top dust flows above sub-grid scale topography |
|---|
| 525 | REAL pdqtop(ngrid,nlayer,nq) ! tendency for dust after topmons |
|---|
| 526 | |
|---|
| 527 | c when no startfi file is asked for init |
|---|
| 528 | real alpha,lay1 ! coefficients for building layers |
|---|
| 529 | integer iloop |
|---|
| 530 | |
|---|
| 531 | ! flags to trigger extra sanity checks |
|---|
| 532 | logical,save :: check_physics_inputs=.false. |
|---|
| 533 | logical,save :: check_physics_outputs=.false. |
|---|
| 534 | |
|---|
| 535 | !$OMP THREADPRIVATE(check_physics_inputs,check_physics_outputs) |
|---|
| 536 | |
|---|
| 537 | c Sub-grid scale slopes |
|---|
| 538 | real :: tsurf_meshavg(ngrid) ! Surface temperature grid box averaged [K] |
|---|
| 539 | real :: albedo_meshavg(ngrid,2) ! albedo temperature grid box averaged [1] |
|---|
| 540 | real :: emis_meshavg(ngrid,2) ! emis temperature grid box averaged [1] |
|---|
| 541 | real :: qsurf_meshavg(ngrid,nq) ! surface tracer mesh averaged [kg/m^2] |
|---|
| 542 | real :: qsurf_tmp(ngrid,nq) ! temporary qsurf for chimie |
|---|
| 543 | integer :: islope |
|---|
| 544 | real :: zdqsdif_meshavg_tmp(ngrid,nq) ! temporary for dust lifting |
|---|
| 545 | |
|---|
| 546 | logical :: write_restart |
|---|
| 547 | |
|---|
| 548 | ! Variable for ice table |
|---|
| 549 | REAL :: rhowater_surf(ngrid,nslope) ! Water density at the surface [kg/m^3] |
|---|
| 550 | REAL :: rhowater_surf_sat(ngrid,nslope) ! Water density at the surface at saturation [kg/m^3] |
|---|
| 551 | REAL :: rhowater_soil(ngrid,nsoilmx,nslope) ! Water density in soil layers [kg/m^3] |
|---|
| 552 | REAL,PARAMETER :: alpha_clap_h2o = 28.9074 ! Coeff for Clapeyron law [/] |
|---|
| 553 | REAL,PARAMETER :: beta_clap_h2o = -6143.7 ! Coeff for Clapeyron law [K] |
|---|
| 554 | REAL :: pvap_surf(ngrid) ! Water vapor partial pressure in first layer [Pa] |
|---|
| 555 | REAL,PARAMETER :: m_co2 = 44.01E-3 ! CO2 molecular mass [kg/mol] |
|---|
| 556 | REAL,PARAMETER :: m_noco2 = 33.37E-3 ! Non condensible mol mass [kg/mol] |
|---|
| 557 | REAL :: ztmp1,ztmp2 ! intermediate variables to compute the mean molar mass of the layer |
|---|
| 558 | |
|---|
| 559 | c======================================================================= |
|---|
| 560 | pdq(:,:,:) = 0. |
|---|
| 561 | |
|---|
| 562 | c 1. Initialisation: |
|---|
| 563 | c ----------------- |
|---|
| 564 | c 1.1 Initialisation only at first call |
|---|
| 565 | c --------------------------------------- |
|---|
| 566 | |
|---|
| 567 | IF (firstcall) THEN |
|---|
| 568 | |
|---|
| 569 | call getin_p("check_physics_inputs",check_physics_inputs) |
|---|
| 570 | call getin_p("check_physics_outputs",check_physics_outputs) |
|---|
| 571 | |
|---|
| 572 | c variables set to 0 |
|---|
| 573 | c ~~~~~~~~~~~~~~~~~~ |
|---|
| 574 | aerosol(:,:,:)=0 |
|---|
| 575 | dtrad(:,:)=0 |
|---|
| 576 | |
|---|
| 577 | #ifndef MESOSCALE |
|---|
| 578 | fluxrad(:,:)=0 |
|---|
| 579 | wstar(:)=0. |
|---|
| 580 | #endif |
|---|
| 581 | |
|---|
| 582 | #ifdef CPP_XIOS |
|---|
| 583 | ! Initialize XIOS context |
|---|
| 584 | write(*,*) "physiq: call wxios_context_init" |
|---|
| 585 | CALL wxios_context_init |
|---|
| 586 | #endif |
|---|
| 587 | |
|---|
| 588 | c read startfi |
|---|
| 589 | c ~~~~~~~~~~~~ |
|---|
| 590 | #ifndef MESOSCALE |
|---|
| 591 | |
|---|
| 592 | ! GCM. Read netcdf initial physical parameters. |
|---|
| 593 | CALL phyetat0 ("startfi.nc",0,0, |
|---|
| 594 | & nsoilmx,ngrid,nlayer,nq, |
|---|
| 595 | & day_ini,time_phys, |
|---|
| 596 | & tsurf,tsoil,albedo,emis, |
|---|
| 597 | & q2,qsurf,tauscaling,totcloudfrac,wstar, |
|---|
| 598 | & watercap,perenial_co2ice, |
|---|
| 599 | & def_slope,def_slope_mean,subslope_dist) |
|---|
| 600 | |
|---|
| 601 | ! Sky view: |
|---|
| 602 | DO islope=1,nslope |
|---|
| 603 | sky_slope(islope) = (1.+cos(pi*def_slope_mean(islope)/180.))/2. |
|---|
| 604 | END DO |
|---|
| 605 | ! Determine the 'flatest' slopes |
|---|
| 606 | iflat = 1 |
|---|
| 607 | DO islope=2,nslope |
|---|
| 608 | IF(abs(def_slope_mean(islope)).lt. |
|---|
| 609 | & abs(def_slope_mean(iflat)))THEN |
|---|
| 610 | iflat = islope |
|---|
| 611 | ENDIF |
|---|
| 612 | ENDDO |
|---|
| 613 | PRINT*,'Flat slope for islope = ',iflat |
|---|
| 614 | PRINT*,'corresponding criterium = ',def_slope_mean(iflat) |
|---|
| 615 | |
|---|
| 616 | #else |
|---|
| 617 | ! MESOSCALE. Supposedly everything is already set in modules. |
|---|
| 618 | ! So we just check. And we fill day_ini |
|---|
| 619 | print*,"check: --- in physiq.F" |
|---|
| 620 | print*,"check: rad,cpp,g,r,rcp,daysec" |
|---|
| 621 | print*,rad,cpp,g,r,rcp,daysec |
|---|
| 622 | PRINT*,'check: tsurf ',tsurf(1,:),tsurf(ngrid,:) |
|---|
| 623 | PRINT*,'check: tsoil ',tsoil(1,1,:),tsoil(ngrid,nsoilmx,:) |
|---|
| 624 | PRINT*,'check: inert ',inertiedat(1,1),inertiedat(ngrid,nsoilmx) |
|---|
| 625 | PRINT*,'check: midlayer,layer ', mlayer(:),layer(:) |
|---|
| 626 | PRINT*,'check: tracernames ', noms |
|---|
| 627 | PRINT*,'check: emis ',emis(1,:),emis(ngrid,:) |
|---|
| 628 | PRINT*,'check: q2 ',q2(1,1),q2(ngrid,nlayer+1) |
|---|
| 629 | PRINT*,'check: qsurf ',qsurf(1,1,:),qsurf(ngrid,nq,:) |
|---|
| 630 | PRINT*,'check: co2ice ',qsurf(1,igcm_co2,:),qsurf(ngrid,igcm_co2,:) |
|---|
| 631 | !!! |
|---|
| 632 | day_ini = pday |
|---|
| 633 | !!! a couple initializations (dummy for mesoscale) done in phyetat0 |
|---|
| 634 | !!! --- maybe this should be done in update_inputs_physiq_mod |
|---|
| 635 | |
|---|
| 636 | tauscaling(:)=1.0 !! probably important |
|---|
| 637 | totcloudfrac(:)=1.0 |
|---|
| 638 | DO islope = 1,nslope |
|---|
| 639 | albedo(:,1,islope)=albedodat(:) |
|---|
| 640 | albedo(:,2,islope)=albedo(:,1,islope) |
|---|
| 641 | inertiesoil(:,:,islope) = inertiedat(:,:) |
|---|
| 642 | watercap(:,:)=0.0 |
|---|
| 643 | ENDDO |
|---|
| 644 | #endif |
|---|
| 645 | #ifndef MESOSCALE |
|---|
| 646 | if (.not.startphy_file) then |
|---|
| 647 | ! starting without startfi.nc and with callsoil |
|---|
| 648 | ! is not yet possible as soildepth default is not defined |
|---|
| 649 | if (callsoil) then |
|---|
| 650 | ! default mlayer distribution, following a power law: |
|---|
| 651 | ! mlayer(k)=lay1*alpha**(k-1/2) |
|---|
| 652 | lay1=2.e-4 |
|---|
| 653 | alpha=2 |
|---|
| 654 | do iloop=0,nsoilmx-1 |
|---|
| 655 | mlayer(iloop)=lay1*(alpha**(iloop-0.5)) |
|---|
| 656 | enddo |
|---|
| 657 | lay1=sqrt(mlayer(0)*mlayer(1)) |
|---|
| 658 | alpha=mlayer(1)/mlayer(0) |
|---|
| 659 | do iloop=1,nsoilmx |
|---|
| 660 | layer(iloop)=lay1*(alpha**(iloop-1)) |
|---|
| 661 | enddo |
|---|
| 662 | endif |
|---|
| 663 | ! additionnal "academic" initialization of physics |
|---|
| 664 | do islope = 1,nslope |
|---|
| 665 | tsurf(:,islope)=pt(:,1) |
|---|
| 666 | enddo |
|---|
| 667 | write(*,*) "Physiq: initializing tsoil(:) to pt(:,1) !!" |
|---|
| 668 | do isoil=1,nsoilmx |
|---|
| 669 | tsoil(1:ngrid,isoil,:)=tsurf(1:ngrid,:) |
|---|
| 670 | enddo |
|---|
| 671 | write(*,*) "Physiq: initializing inertiedat !!" |
|---|
| 672 | inertiedat(:,:)=400. |
|---|
| 673 | inertiesoil(:,:,:)=400. |
|---|
| 674 | write(*,*) "Physiq: initializing day_ini to pdat !" |
|---|
| 675 | day_ini=pday |
|---|
| 676 | endif |
|---|
| 677 | #endif |
|---|
| 678 | if (pday.ne.day_ini) then |
|---|
| 679 | write(*,*) "PHYSIQ: ERROR: bad synchronization between ", |
|---|
| 680 | & "physics and dynamics" |
|---|
| 681 | write(*,*) "dynamics day [pday]: ",pday |
|---|
| 682 | write(*,*) "physics day [day_ini]: ",day_ini |
|---|
| 683 | call abort_physic("physiq","dynamics day /= physics day",1) |
|---|
| 684 | endif |
|---|
| 685 | |
|---|
| 686 | write (*,*) 'In physiq day_ini =', day_ini |
|---|
| 687 | |
|---|
| 688 | c initialize tracers |
|---|
| 689 | c ~~~~~~~~~~~~~~~~~~ |
|---|
| 690 | CALL initracer(ngrid,nq,qsurf) |
|---|
| 691 | |
|---|
| 692 | c Initialize albedo and orbital calculation |
|---|
| 693 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 694 | CALL surfini(ngrid,qsurf) |
|---|
| 695 | CALL iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
|---|
| 696 | c initialize soil |
|---|
| 697 | c ~~~~~~~~~~~~~~~ |
|---|
| 698 | IF (callsoil) THEN |
|---|
| 699 | c Thermal inertia feedback: |
|---|
| 700 | IF (tifeedback) THEN |
|---|
| 701 | DO islope = 1,nslope |
|---|
| 702 | CALL soil_tifeedback(ngrid,nsoilmx, |
|---|
| 703 | s qsurf(:,:,islope), |
|---|
| 704 | s inertiesoil_tifeedback(:,:,islope)) |
|---|
| 705 | ENDDO |
|---|
| 706 | CALL soil(ngrid,nsoilmx,firstcall, |
|---|
| 707 | s inertiesoil_tifeedback, |
|---|
| 708 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
|---|
| 709 | ELSE |
|---|
| 710 | CALL soil(ngrid,nsoilmx,firstcall,inertiesoil, |
|---|
| 711 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
|---|
| 712 | ENDIF ! of IF (tifeedback) |
|---|
| 713 | ELSE |
|---|
| 714 | PRINT*, |
|---|
| 715 | & 'PHYSIQ WARNING! Thermal conduction in the soil turned off' |
|---|
| 716 | DO ig=1,ngrid |
|---|
| 717 | capcal(ig,:)=1.e5 |
|---|
| 718 | fluxgrd(ig,:)=0. |
|---|
| 719 | ENDDO |
|---|
| 720 | ENDIF |
|---|
| 721 | icount=1 |
|---|
| 722 | |
|---|
| 723 | #ifndef MESOSCALE |
|---|
| 724 | c Initialize thermospheric parameters |
|---|
| 725 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 726 | |
|---|
| 727 | if (callthermos) then |
|---|
| 728 | call fill_data_thermos |
|---|
| 729 | call allocate_param_thermos(nlayer) |
|---|
| 730 | call allocate_param_iono(nlayer,nreact) |
|---|
| 731 | call param_read_e107 |
|---|
| 732 | endif |
|---|
| 733 | #endif |
|---|
| 734 | c Initialize R and Cp as constant |
|---|
| 735 | |
|---|
| 736 | if (.not.callthermos .and. .not.photochem) then |
|---|
| 737 | do l=1,nlayer |
|---|
| 738 | do ig=1,ngrid |
|---|
| 739 | rnew(ig,l)=r |
|---|
| 740 | cpnew(ig,l)=cpp |
|---|
| 741 | mmean(ig,l)=mugaz |
|---|
| 742 | enddo |
|---|
| 743 | enddo |
|---|
| 744 | endif |
|---|
| 745 | |
|---|
| 746 | if(callnlte.and.nltemodel.eq.2) call nlte_setup |
|---|
| 747 | if(callnirco2.and.nircorr.eq.1) call NIR_leedat |
|---|
| 748 | |
|---|
| 749 | |
|---|
| 750 | IF (water.AND.(ngrid.NE.1)) THEN |
|---|
| 751 | write(*,*)"physiq: water_param Surface water frost albedo:", |
|---|
| 752 | . albedo_h2o_frost |
|---|
| 753 | write(*,*)"physiq: water_param Surface watercap albedo:", |
|---|
| 754 | . albedo_h2o_cap |
|---|
| 755 | ENDIF |
|---|
| 756 | |
|---|
| 757 | #ifndef MESOSCALE |
|---|
| 758 | if(ngrid.ne.1) then |
|---|
| 759 | ! no need to compute slopes when in 1D; it is an input |
|---|
| 760 | if (callslope) call getslopes(ngrid,phisfi) |
|---|
| 761 | endif !1D |
|---|
| 762 | if (ecritstart.GT.0) then |
|---|
| 763 | call physdem0("restartfi.nc",longitude,latitude, |
|---|
| 764 | & nsoilmx,ngrid,nlayer,nq, |
|---|
| 765 | & ptimestep,pday,0.,cell_area, |
|---|
| 766 | & albedodat,inertiedat,def_slope, |
|---|
| 767 | & subslope_dist) |
|---|
| 768 | else |
|---|
| 769 | call physdem0("restartfi.nc",longitude,latitude, |
|---|
| 770 | & nsoilmx,ngrid,nlayer,nq, |
|---|
| 771 | & ptimestep,float(day_end),0.,cell_area, |
|---|
| 772 | & albedodat,inertiedat,def_slope, |
|---|
| 773 | & subslope_dist) |
|---|
| 774 | endif |
|---|
| 775 | |
|---|
| 776 | c Initialize mountain mesh fraction for the entrainment by top flows param. |
|---|
| 777 | c ~~~~~~~~~~~~~~~ |
|---|
| 778 | if (topflows) call topmons_setup(ngrid) |
|---|
| 779 | |
|---|
| 780 | #endif |
|---|
| 781 | |
|---|
| 782 | #ifdef CPP_XIOS |
|---|
| 783 | ! XIOS outputs |
|---|
| 784 | write(*,*) "physiq firstcall: call initialize_xios_output" |
|---|
| 785 | call initialize_xios_output(pday,ptime,ptimestep,daysec, |
|---|
| 786 | & presnivs,pseudoalt,mlayer) |
|---|
| 787 | #endif |
|---|
| 788 | ENDIF ! (end of "if firstcall") |
|---|
| 789 | |
|---|
| 790 | if (check_physics_inputs) then |
|---|
| 791 | ! Check the validity of input fields coming from the dynamics |
|---|
| 792 | call check_physics_fields("begin physiq:",pt,pu,pv,pplev,pq) |
|---|
| 793 | endif |
|---|
| 794 | |
|---|
| 795 | c --------------------------------------------------- |
|---|
| 796 | c 1.2 Initializations done at every physical timestep: |
|---|
| 797 | c --------------------------------------------------- |
|---|
| 798 | c |
|---|
| 799 | |
|---|
| 800 | #ifdef CPP_XIOS |
|---|
| 801 | ! update XIOS time/calendar |
|---|
| 802 | call update_xios_timestep |
|---|
| 803 | #endif |
|---|
| 804 | |
|---|
| 805 | |
|---|
| 806 | |
|---|
| 807 | |
|---|
| 808 | |
|---|
| 809 | c Initialize various variables |
|---|
| 810 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 811 | pdv(:,:)=0 |
|---|
| 812 | pdu(:,:)=0 |
|---|
| 813 | pdt(:,:)=0 |
|---|
| 814 | pdq(:,:,:)=0 |
|---|
| 815 | pdpsrf(:)=0 |
|---|
| 816 | zflubid(:,:)=0 |
|---|
| 817 | zdtsurf(:,:)=0 |
|---|
| 818 | dqsurf(:,:,:)=0 |
|---|
| 819 | dsodust(:,:)=0. |
|---|
| 820 | dsords(:,:)=0. |
|---|
| 821 | dsotop(:,:)=0. |
|---|
| 822 | dwatercap(:,:)=0 |
|---|
| 823 | |
|---|
| 824 | call compute_meshgridavg(ngrid,nq,albedo,emis,tsurf,qsurf, |
|---|
| 825 | & albedo_meshavg,emis_meshavg,tsurf_meshavg,qsurf_meshavg) |
|---|
| 826 | |
|---|
| 827 | ! Dust scenario conversion coefficient from IRabs to VISext |
|---|
| 828 | IRtoVIScoef(1:ngrid)=2.6 ! initialized with former value from Montabone et al 2015 |
|---|
| 829 | ! recomputed in aeropacity if reff_driven_IRtoVIS_scenario=.true. |
|---|
| 830 | |
|---|
| 831 | #ifdef DUSTSTORM |
|---|
| 832 | pq_tmp(:,:,:)=0 |
|---|
| 833 | #endif |
|---|
| 834 | igout=ngrid/2+1 |
|---|
| 835 | |
|---|
| 836 | |
|---|
| 837 | zday=pday+ptime ! compute time, in sols (and fraction thereof) |
|---|
| 838 | ! Compute local time at each grid point |
|---|
| 839 | DO ig=1,ngrid |
|---|
| 840 | local_time(ig)=modulo(1.+(zday-INT(zday)) |
|---|
| 841 | & +(longitude_deg(ig)/15)/24,1.) |
|---|
| 842 | ENDDO |
|---|
| 843 | c Compute Solar Longitude (Ls) : |
|---|
| 844 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 845 | if (season) then |
|---|
| 846 | call solarlong(zday,zls) |
|---|
| 847 | else |
|---|
| 848 | call solarlong(float(day_ini),zls) |
|---|
| 849 | end if |
|---|
| 850 | |
|---|
| 851 | c Initialize pressure levels |
|---|
| 852 | c ~~~~~~~~~~~~~~~~~~ |
|---|
| 853 | zplev(:,:) = pplev(:,:) |
|---|
| 854 | zplay(:,:) = pplay(:,:) |
|---|
| 855 | ps(:) = pplev(:,1) |
|---|
| 856 | |
|---|
| 857 | c Compute geopotential at interlayers |
|---|
| 858 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 859 | c ponderation des altitudes au niveau des couches en dp/p |
|---|
| 860 | |
|---|
| 861 | DO l=1,nlayer |
|---|
| 862 | DO ig=1,ngrid |
|---|
| 863 | zzlay(ig,l)=pphi(ig,l)/g |
|---|
| 864 | ENDDO |
|---|
| 865 | ENDDO |
|---|
| 866 | DO ig=1,ngrid |
|---|
| 867 | zzlev(ig,1)=0. |
|---|
| 868 | zzlev(ig,nlayer+1)=1.e7 ! dummy top of last layer above 10000 km... |
|---|
| 869 | ENDDO |
|---|
| 870 | DO l=2,nlayer |
|---|
| 871 | DO ig=1,ngrid |
|---|
| 872 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
|---|
| 873 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
|---|
| 874 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
|---|
| 875 | ENDDO |
|---|
| 876 | ENDDO |
|---|
| 877 | |
|---|
| 878 | |
|---|
| 879 | ! Potential temperature calculation not the same in physiq and dynamic |
|---|
| 880 | |
|---|
| 881 | c Compute potential temperature |
|---|
| 882 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 883 | DO l=1,nlayer |
|---|
| 884 | DO ig=1,ngrid |
|---|
| 885 | zpopsk(ig,l)=(zplay(ig,l)/zplev(ig,1))**rcp |
|---|
| 886 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
|---|
| 887 | ENDDO |
|---|
| 888 | ENDDO |
|---|
| 889 | |
|---|
| 890 | #ifndef MESOSCALE |
|---|
| 891 | c----------------------------------------------------------------------- |
|---|
| 892 | c 1.2.5 Compute mean mass, cp, and R |
|---|
| 893 | c -------------------------------- |
|---|
| 894 | |
|---|
| 895 | if(photochem.or.callthermos) then |
|---|
| 896 | call concentrations(ngrid,nlayer,nq, |
|---|
| 897 | & zplay,pt,pdt,pq,pdq,ptimestep) |
|---|
| 898 | endif |
|---|
| 899 | #endif |
|---|
| 900 | |
|---|
| 901 | ! Compute vertical velocity (m/s) from vertical mass flux |
|---|
| 902 | ! w = F / (rho*area) and rho = P/(r*T) |
|---|
| 903 | ! but first linearly interpolate mass flux to mid-layers |
|---|
| 904 | do l=1,nlayer-1 |
|---|
| 905 | pw(1:ngrid,l)=0.5*(flxw(1:ngrid,l)+flxw(1:ngrid,l+1)) |
|---|
| 906 | enddo |
|---|
| 907 | pw(1:ngrid,nlayer)=0.5*flxw(1:ngrid,nlayer) ! since flxw(nlayer+1)=0 |
|---|
| 908 | do l=1,nlayer |
|---|
| 909 | pw(1:ngrid,l)=(pw(1:ngrid,l)*r*pt(1:ngrid,l)) / |
|---|
| 910 | & (pplay(1:ngrid,l)*cell_area(1:ngrid)) |
|---|
| 911 | ! NB: here we use r and not rnew since this diagnostic comes |
|---|
| 912 | ! from the dynamics |
|---|
| 913 | enddo |
|---|
| 914 | |
|---|
| 915 | ! test for co2 conservation with co2 microphysics |
|---|
| 916 | if (igcm_co2_ice.ne.0) then |
|---|
| 917 | ! calculates the amount of co2 at the beginning of physics |
|---|
| 918 | co2totA = 0. |
|---|
| 919 | do ig=1,ngrid |
|---|
| 920 | do l=1,nlayer |
|---|
| 921 | co2totA = co2totA + (zplev(ig,l)-zplev(ig,l+1))/g* |
|---|
| 922 | & (pq(ig,l,igcm_co2)+pq(ig,l,igcm_co2_ice) |
|---|
| 923 | & +(pdq(ig,l,igcm_co2)+pdq(ig,l,igcm_co2_ice))*ptimestep) |
|---|
| 924 | end do |
|---|
| 925 | do islope = 1,nslope |
|---|
| 926 | co2totA = co2totA + qsurf(ig,igcm_co2,islope)* |
|---|
| 927 | & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
|---|
| 928 | enddo |
|---|
| 929 | end do |
|---|
| 930 | else |
|---|
| 931 | co2totA = 0. |
|---|
| 932 | do ig=1,ngrid |
|---|
| 933 | do l=1,nlayer |
|---|
| 934 | co2totA = co2totA + (zplev(ig,l)-zplev(ig,l+1))/g* |
|---|
| 935 | & (pq(ig,l,igcm_co2) |
|---|
| 936 | & +pdq(ig,l,igcm_co2)*ptimestep) |
|---|
| 937 | end do |
|---|
| 938 | do islope = 1,nslope |
|---|
| 939 | co2totA = co2totA + qsurf(ig,igcm_co2,islope)* |
|---|
| 940 | & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
|---|
| 941 | enddo |
|---|
| 942 | end do |
|---|
| 943 | endif ! of if (igcm_co2_ice.ne.0) |
|---|
| 944 | c----------------------------------------------------------------------- |
|---|
| 945 | c 2. Compute radiative tendencies : |
|---|
| 946 | c------------------------------------ |
|---|
| 947 | |
|---|
| 948 | IF (callrad) THEN |
|---|
| 949 | |
|---|
| 950 | c Local Solar zenith angle |
|---|
| 951 | c ~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 952 | |
|---|
| 953 | CALL orbite(zls,dist_sol,declin) |
|---|
| 954 | |
|---|
| 955 | IF (diurnal) THEN |
|---|
| 956 | ztim1=SIN(declin) |
|---|
| 957 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
|---|
| 958 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
|---|
| 959 | |
|---|
| 960 | CALL solang(ngrid,sinlon,coslon,sinlat,coslat, |
|---|
| 961 | & ztim1,ztim2,ztim3, mu0,fract) |
|---|
| 962 | |
|---|
| 963 | ELSE |
|---|
| 964 | CALL mucorr(ngrid,declin,latitude,mu0,fract,10000.,rad) |
|---|
| 965 | ENDIF ! of IF (diurnal) |
|---|
| 966 | |
|---|
| 967 | IF( MOD(icount-1,iradia).EQ.0) THEN |
|---|
| 968 | |
|---|
| 969 | c NLTE cooling from CO2 emission |
|---|
| 970 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 971 | IF(callnlte) then |
|---|
| 972 | if(nltemodel.eq.0.or.nltemodel.eq.1) then |
|---|
| 973 | CALL nltecool(ngrid,nlayer,nq,zplay,pt,pq,zdtnlte) |
|---|
| 974 | else if(nltemodel.eq.2) then |
|---|
| 975 | co2vmr_gcm(1:ngrid,1:nlayer)= |
|---|
| 976 | & pq(1:ngrid,1:nlayer,igcm_co2)* |
|---|
| 977 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co2) |
|---|
| 978 | n2vmr_gcm(1:ngrid,1:nlayer)= |
|---|
| 979 | & pq(1:ngrid,1:nlayer,igcm_n2)* |
|---|
| 980 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_n2) |
|---|
| 981 | covmr_gcm(1:ngrid,1:nlayer)= |
|---|
| 982 | & pq(1:ngrid,1:nlayer,igcm_co)* |
|---|
| 983 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co) |
|---|
| 984 | ovmr_gcm(1:ngrid,1:nlayer)= |
|---|
| 985 | & pq(1:ngrid,1:nlayer,igcm_o)* |
|---|
| 986 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_o) |
|---|
| 987 | |
|---|
| 988 | CALL nlte_tcool(ngrid,nlayer,zplay*9.869e-6, |
|---|
| 989 | $ pt,zzlay,co2vmr_gcm, n2vmr_gcm, covmr_gcm, |
|---|
| 990 | $ ovmr_gcm, zdtnlte,ierr_nlte,varerr ) |
|---|
| 991 | if(ierr_nlte.gt.0) then |
|---|
| 992 | write(*,*) |
|---|
| 993 | $ 'WARNING: nlte_tcool output with error message', |
|---|
| 994 | $ 'ierr_nlte=',ierr_nlte,'varerr=',varerr |
|---|
| 995 | write(*,*)'I will continue anyway' |
|---|
| 996 | endif |
|---|
| 997 | |
|---|
| 998 | zdtnlte(1:ngrid,1:nlayer)= |
|---|
| 999 | & zdtnlte(1:ngrid,1:nlayer)/86400. |
|---|
| 1000 | endif |
|---|
| 1001 | ELSE |
|---|
| 1002 | zdtnlte(:,:)=0. |
|---|
| 1003 | ENDIF !end callnlte |
|---|
| 1004 | |
|---|
| 1005 | c Find number of layers for LTE radiation calculations |
|---|
| 1006 | IF(MOD(iphysiq*(icount-1),day_step).EQ.0) |
|---|
| 1007 | & CALL nlthermeq(ngrid,nlayer,zplev,zplay) |
|---|
| 1008 | |
|---|
| 1009 | c rocketstorm : compute dust storm mesh fraction |
|---|
| 1010 | IF (rdstorm) THEN |
|---|
| 1011 | CALL calcstormfract(ngrid,nlayer,nq,pq, |
|---|
| 1012 | & totstormfract) |
|---|
| 1013 | ENDIF |
|---|
| 1014 | |
|---|
| 1015 | c Note: Dustopacity.F has been transferred to callradite.F |
|---|
| 1016 | |
|---|
| 1017 | #ifdef DUSTSTORM |
|---|
| 1018 | !! specific case: save the quantity of dust before adding perturbation |
|---|
| 1019 | |
|---|
| 1020 | if (firstcall) then |
|---|
| 1021 | pq_tmp(1:ngrid,1:nlayer,1)=pq(1:ngrid,1:nlayer,igcm_dust_mass) |
|---|
| 1022 | pq_tmp(1:ngrid,1:nlayer,2)=pq(1:ngrid,1:nlayer,igcm_dust_number) |
|---|
| 1023 | endif |
|---|
| 1024 | #endif |
|---|
| 1025 | |
|---|
| 1026 | c Call main radiative transfer scheme |
|---|
| 1027 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1028 | c Transfer through CO2 (except NIR CO2 absorption) |
|---|
| 1029 | c and aerosols (dust and water ice) |
|---|
| 1030 | ! callradite for background dust (out of the rdstorm fraction) |
|---|
| 1031 | clearatm=.true. |
|---|
| 1032 | !! callradite for background dust (out of the topflows fraction) |
|---|
| 1033 | nohmons=.true. |
|---|
| 1034 | |
|---|
| 1035 | c Radiative transfer |
|---|
| 1036 | c ------------------ |
|---|
| 1037 | ! callradite for the part with clouds |
|---|
| 1038 | clearsky=.false. ! part with clouds for both cases CLFvarying true/false |
|---|
| 1039 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq, |
|---|
| 1040 | & albedo_meshavg,emis_meshavg, |
|---|
| 1041 | & mu0,zplev,zplay,pt,tsurf_meshavg,fract,dist_sol,igout, |
|---|
| 1042 | & zdtlw,zdtsw,fluxsurf_lw(:,iflat),fluxsurf_dn_sw(:,:,iflat), |
|---|
| 1043 | & fluxsurf_up_sw, |
|---|
| 1044 | & fluxtop_lw,fluxtop_dn_sw,fluxtop_up_sw, |
|---|
| 1045 | & tau_pref_scenario,tau_pref_gcm, |
|---|
| 1046 | & tau,aerosol,dsodust,tauscaling,dust_rad_adjust,IRtoVIScoef, |
|---|
| 1047 | & taucloudtes,rdust,rice,nuice,riceco2,nuiceco2, |
|---|
| 1048 | & qsurf_meshavg(:,igcm_co2),rstormdust,rtopdust,totstormfract, |
|---|
| 1049 | & clearatm,dsords,dsotop,nohmons,clearsky,totcloudfrac) |
|---|
| 1050 | |
|---|
| 1051 | DO islope=1,nslope |
|---|
| 1052 | fluxsurf_lw(:,islope) =fluxsurf_lw(:,iflat) |
|---|
| 1053 | fluxsurf_dn_sw(:,:,islope) =fluxsurf_dn_sw(:,:,iflat) |
|---|
| 1054 | ENDDO |
|---|
| 1055 | |
|---|
| 1056 | ! case of sub-grid water ice clouds: callradite for the clear case |
|---|
| 1057 | IF (CLFvarying) THEN |
|---|
| 1058 | ! ---> PROBLEMS WITH ALLOCATED ARRAYS |
|---|
| 1059 | ! (temporary solution in callcorrk: do not deallocate |
|---|
| 1060 | ! if |
|---|
| 1061 | ! CLFvarying ...) ?? AP ?? |
|---|
| 1062 | clearsky=.true. |
|---|
| 1063 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq, |
|---|
| 1064 | & albedo_meshavg,emis_meshavg,mu0,zplev,zplay,pt, |
|---|
| 1065 | & tsurf_meshavg,fract, |
|---|
| 1066 | & dist_sol,igout,zdtlwclf,zdtswclf, |
|---|
| 1067 | & fluxsurf_lwclf,fluxsurf_dn_swclf,fluxsurf_up_swclf, |
|---|
| 1068 | & fluxtop_lwclf,fluxtop_dn_swclf,fluxtop_up_swclf, |
|---|
| 1069 | & tau_pref_scenario,tau_pref_gcm,tau,aerosol, |
|---|
| 1070 | & dsodust,tauscaling,dust_rad_adjust,IRtoVIScoef, |
|---|
| 1071 | & taucloudtesclf,rdust, |
|---|
| 1072 | & rice,nuice,riceco2, nuiceco2, |
|---|
| 1073 | & qsurf_meshavg(:,igcm_co2), |
|---|
| 1074 | & rstormdust,rtopdust,totstormfract, |
|---|
| 1075 | & clearatm,dsords,dsotop, |
|---|
| 1076 | & nohmons,clearsky,totcloudfrac) |
|---|
| 1077 | clearsky = .false. ! just in case. |
|---|
| 1078 | ! Sum the fluxes and heating rates from cloudy/clear |
|---|
| 1079 | ! cases |
|---|
| 1080 | DO ig=1,ngrid |
|---|
| 1081 | tf_clf=totcloudfrac(ig) |
|---|
| 1082 | ntf_clf=1.-tf_clf |
|---|
| 1083 | DO islope=1,nslope |
|---|
| 1084 | fluxsurf_lw(ig,islope) = ntf_clf*fluxsurf_lwclf(ig) |
|---|
| 1085 | & + tf_clf*fluxsurf_lw(ig,islope) |
|---|
| 1086 | fluxsurf_dn_sw(ig,1:2,islope) = |
|---|
| 1087 | & ntf_clf*fluxsurf_dn_swclf(ig,1:2) |
|---|
| 1088 | & + tf_clf*fluxsurf_dn_sw(ig,1:2,islope) |
|---|
| 1089 | ENDDO |
|---|
| 1090 | fluxsurf_up_sw(ig,1:2) = |
|---|
| 1091 | & ntf_clf*fluxsurf_up_swclf(ig,1:2) |
|---|
| 1092 | & + tf_clf*fluxsurf_up_sw(ig,1:2) |
|---|
| 1093 | fluxtop_lw(ig) = ntf_clf*fluxtop_lwclf(ig) |
|---|
| 1094 | & + tf_clf*fluxtop_lw(ig) |
|---|
| 1095 | fluxtop_dn_sw(ig,1:2)=ntf_clf*fluxtop_dn_swclf(ig,1:2) |
|---|
| 1096 | & + tf_clf*fluxtop_dn_sw(ig,1:2) |
|---|
| 1097 | fluxtop_up_sw(ig,1:2)=ntf_clf*fluxtop_up_swclf(ig,1:2) |
|---|
| 1098 | & + tf_clf*fluxtop_up_sw(ig,1:2) |
|---|
| 1099 | taucloudtes(ig) = ntf_clf*taucloudtesclf(ig) |
|---|
| 1100 | & + tf_clf*taucloudtes(ig) |
|---|
| 1101 | zdtlw(ig,1:nlayer) = ntf_clf*zdtlwclf(ig,1:nlayer) |
|---|
| 1102 | & + tf_clf*zdtlw(ig,1:nlayer) |
|---|
| 1103 | zdtsw(ig,1:nlayer) = ntf_clf*zdtswclf(ig,1:nlayer) |
|---|
| 1104 | & + tf_clf*zdtsw(ig,1:nlayer) |
|---|
| 1105 | ENDDO |
|---|
| 1106 | |
|---|
| 1107 | ENDIF ! (CLFvarying) |
|---|
| 1108 | |
|---|
| 1109 | !============================================================================ |
|---|
| 1110 | |
|---|
| 1111 | #ifdef DUSTSTORM |
|---|
| 1112 | !! specific case: compute the added quantity of dust for perturbation |
|---|
| 1113 | if (firstcall) then |
|---|
| 1114 | pdq(1:ngrid,1:nlayer,igcm_dust_mass)= |
|---|
| 1115 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) |
|---|
| 1116 | & - pq_tmp(1:ngrid,1:nlayer,1) |
|---|
| 1117 | & + pq(1:ngrid,1:nlayer,igcm_dust_mass) |
|---|
| 1118 | pdq(1:ngrid,1:nlayer,igcm_dust_number)= |
|---|
| 1119 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) |
|---|
| 1120 | & - pq_tmp(1:ngrid,1:nlayer,2) |
|---|
| 1121 | & + pq(1:ngrid,1:nlayer,igcm_dust_number) |
|---|
| 1122 | endif |
|---|
| 1123 | #endif |
|---|
| 1124 | |
|---|
| 1125 | c Outputs for basic check (middle of domain) |
|---|
| 1126 | c ------------------------------------------ |
|---|
| 1127 | write(*,'("Ls =",f11.6," check lat =",f10.6, |
|---|
| 1128 | & " lon =",f11.6)') |
|---|
| 1129 | & zls*180./pi,latitude(igout)*180/pi, |
|---|
| 1130 | & longitude(igout)*180/pi |
|---|
| 1131 | |
|---|
| 1132 | write(*,'(" tau_pref_gcm(",f4.0," Pa) =",f9.6, |
|---|
| 1133 | & " tau(",f4.0," Pa) =",f9.6)') |
|---|
| 1134 | & odpref,tau_pref_gcm(igout), |
|---|
| 1135 | & odpref,tau(igout,1)*odpref/zplev(igout,1) |
|---|
| 1136 | |
|---|
| 1137 | |
|---|
| 1138 | c --------------------------------------------------------- |
|---|
| 1139 | c Call slope parameterization for direct and scattered flux |
|---|
| 1140 | c --------------------------------------------------------- |
|---|
| 1141 | IF(callslope) THEN |
|---|
| 1142 | ! assume that in this case, nslope = 1 |
|---|
| 1143 | if(nslope.ne.1) then |
|---|
| 1144 | call abort_physic( |
|---|
| 1145 | & "physiq","callslope=true but nslope.ne.1",1) |
|---|
| 1146 | endif |
|---|
| 1147 | print *, 'Slope scheme is on and computing...' |
|---|
| 1148 | DO ig=1,ngrid |
|---|
| 1149 | sl_the = theta_sl(ig) |
|---|
| 1150 | IF (sl_the .ne. 0.) THEN |
|---|
| 1151 | ztim1=fluxsurf_dn_sw(ig,1,iflat) |
|---|
| 1152 | & +fluxsurf_dn_sw(ig,2,iflat) |
|---|
| 1153 | DO l=1,2 |
|---|
| 1154 | sl_lct = ptime*24. + 180.*longitude(ig)/pi/15. |
|---|
| 1155 | sl_ra = pi*(1.0-sl_lct/12.) |
|---|
| 1156 | sl_lat = 180.*latitude(ig)/pi |
|---|
| 1157 | sl_tau = tau(ig,1) !il faudrait iaerdust(iaer) |
|---|
| 1158 | sl_alb = albedo(ig,l,iflat) |
|---|
| 1159 | sl_psi = psi_sl(ig) |
|---|
| 1160 | sl_fl0 = fluxsurf_dn_sw(ig,l,iflat) |
|---|
| 1161 | sl_di0 = 0. |
|---|
| 1162 | if ((mu0(ig) .gt. 0.).and.(ztim1.gt.0.)) then |
|---|
| 1163 | sl_di0 = mu0(ig)*(exp(-sl_tau/mu0(ig))) |
|---|
| 1164 | sl_di0 = sl_di0*flux_1AU/dist_sol/dist_sol |
|---|
| 1165 | sl_di0 = sl_di0/ztim1 |
|---|
| 1166 | sl_di0 = fluxsurf_dn_sw(ig,l,iflat)*sl_di0 |
|---|
| 1167 | endif |
|---|
| 1168 | ! you never know (roundup concern...) |
|---|
| 1169 | if (sl_fl0 .lt. sl_di0) sl_di0=sl_fl0 |
|---|
| 1170 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1171 | CALL param_slope( mu0(ig), declin, sl_ra, sl_lat, |
|---|
| 1172 | & sl_tau, sl_alb, sl_the, sl_psi, |
|---|
| 1173 | & sl_di0, sl_fl0, sl_flu ) |
|---|
| 1174 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1175 | fluxsurf_dn_sw(ig,l,1) = sl_flu |
|---|
| 1176 | ENDDO |
|---|
| 1177 | !!! compute correction on IR flux as well |
|---|
| 1178 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
|---|
| 1179 | fluxsurf_lw(ig,:)= fluxsurf_lw(ig,:)*sky |
|---|
| 1180 | ENDIF |
|---|
| 1181 | ENDDO |
|---|
| 1182 | ELSE ! not calling subslope, nslope might be > 1 |
|---|
| 1183 | DO islope = 1,nslope |
|---|
| 1184 | sl_the=abs(def_slope_mean(islope)) |
|---|
| 1185 | IF (sl_the .gt. 1e-6) THEN |
|---|
| 1186 | IF(def_slope_mean(islope).ge.0.) THEN |
|---|
| 1187 | psi_sl(:) = 0. !Northward slope |
|---|
| 1188 | ELSE |
|---|
| 1189 | psi_sl(:) = 180. !Southward slope |
|---|
| 1190 | ENDIF |
|---|
| 1191 | DO ig=1,ngrid |
|---|
| 1192 | ztim1=fluxsurf_dn_sw(ig,1,islope) |
|---|
| 1193 | s +fluxsurf_dn_sw(ig,2,islope) |
|---|
| 1194 | DO l=1,2 |
|---|
| 1195 | sl_lct = ptime*24. + 180.*longitude(ig)/pi/15. |
|---|
| 1196 | sl_ra = pi*(1.0-sl_lct/12.) |
|---|
| 1197 | sl_lat = 180.*latitude(ig)/pi |
|---|
| 1198 | sl_tau = tau(ig,1) !il faudrait iaerdust(iaer) |
|---|
| 1199 | sl_alb = albedo(ig,l,islope) |
|---|
| 1200 | sl_psi = psi_sl(ig) |
|---|
| 1201 | sl_fl0 = fluxsurf_dn_sw(ig,l,islope) |
|---|
| 1202 | sl_di0 = 0. |
|---|
| 1203 | if (mu0(ig) .gt. 0.) then |
|---|
| 1204 | sl_di0 = mu0(ig)*(exp(-sl_tau/mu0(ig))) |
|---|
| 1205 | sl_di0 = sl_di0*flux_1AU/dist_sol/dist_sol |
|---|
| 1206 | sl_di0 = sl_di0/ztim1 |
|---|
| 1207 | sl_di0 = fluxsurf_dn_sw(ig,l,islope)*sl_di0 |
|---|
| 1208 | endif |
|---|
| 1209 | ! you never know (roundup concern...) |
|---|
| 1210 | if (sl_fl0 .lt. sl_di0) sl_di0=sl_fl0 |
|---|
| 1211 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1212 | CALL param_slope( mu0(ig), declin, sl_ra, sl_lat, |
|---|
| 1213 | & sl_tau, sl_alb, sl_the, sl_psi, |
|---|
| 1214 | & sl_di0, sl_fl0, sl_flu ) |
|---|
| 1215 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1216 | fluxsurf_dn_sw(ig,l,islope) = sl_flu |
|---|
| 1217 | ENDDO |
|---|
| 1218 | !!! compute correction on IR flux as well |
|---|
| 1219 | |
|---|
| 1220 | fluxsurf_lw(ig,islope)= fluxsurf_lw(ig,islope) |
|---|
| 1221 | & *sky_slope(islope) |
|---|
| 1222 | ENDDO |
|---|
| 1223 | ENDIF ! sub grid is not flat |
|---|
| 1224 | ENDDO ! islope = 1,nslope |
|---|
| 1225 | ENDIF ! callslope |
|---|
| 1226 | |
|---|
| 1227 | c CO2 near infrared absorption |
|---|
| 1228 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1229 | zdtnirco2(:,:)=0 |
|---|
| 1230 | if (callnirco2) then |
|---|
| 1231 | call nirco2abs (ngrid,nlayer,zplay,dist_sol,nq,pq, |
|---|
| 1232 | . mu0,fract,declin, zdtnirco2) |
|---|
| 1233 | endif |
|---|
| 1234 | |
|---|
| 1235 | c Radiative flux from the sky absorbed by the surface (W.m-2) |
|---|
| 1236 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1237 | DO ig=1,ngrid |
|---|
| 1238 | DO islope = 1,nslope |
|---|
| 1239 | fluxrad_sky(ig,islope) = |
|---|
| 1240 | $ emis(ig,islope)*fluxsurf_lw(ig,islope) |
|---|
| 1241 | $ +fluxsurf_dn_sw(ig,1,islope)*(1.-albedo(ig,1,islope)) |
|---|
| 1242 | $ +fluxsurf_dn_sw(ig,2,islope)*(1.-albedo(ig,2,islope)) |
|---|
| 1243 | ENDDO |
|---|
| 1244 | ENDDO |
|---|
| 1245 | |
|---|
| 1246 | c Net atmospheric radiative heating rate (K.s-1) |
|---|
| 1247 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1248 | IF(callnlte) THEN |
|---|
| 1249 | CALL blendrad(ngrid, nlayer, zplay, |
|---|
| 1250 | & zdtsw, zdtlw, zdtnirco2, zdtnlte, dtrad) |
|---|
| 1251 | ELSE |
|---|
| 1252 | DO l=1,nlayer |
|---|
| 1253 | DO ig=1,ngrid |
|---|
| 1254 | dtrad(ig,l)=zdtsw(ig,l)+zdtlw(ig,l) |
|---|
| 1255 | & +zdtnirco2(ig,l) |
|---|
| 1256 | ENDDO |
|---|
| 1257 | ENDDO |
|---|
| 1258 | ENDIF |
|---|
| 1259 | |
|---|
| 1260 | ENDIF ! of if(mod(icount-1,iradia).eq.0) |
|---|
| 1261 | |
|---|
| 1262 | c Transformation of the radiative tendencies: |
|---|
| 1263 | c ------------------------------------------- |
|---|
| 1264 | |
|---|
| 1265 | c Net radiative surface flux (W.m-2) |
|---|
| 1266 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1267 | |
|---|
| 1268 | c |
|---|
| 1269 | DO ig=1,ngrid |
|---|
| 1270 | DO islope = 1,nslope |
|---|
| 1271 | zplanck(ig)=tsurf(ig,islope)*tsurf(ig,islope) |
|---|
| 1272 | zplanck(ig)=emis(ig,islope)* |
|---|
| 1273 | $ stephan*zplanck(ig)*zplanck(ig) |
|---|
| 1274 | fluxrad(ig,islope)=fluxrad_sky(ig,islope)-zplanck(ig) |
|---|
| 1275 | IF(callslope) THEN |
|---|
| 1276 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
|---|
| 1277 | fluxrad(ig,nslope)=fluxrad(ig,nslope)+ |
|---|
| 1278 | $ (1.-sky)*zplanck(ig) |
|---|
| 1279 | ELSE |
|---|
| 1280 | fluxrad(ig,islope)=fluxrad(ig,islope) + |
|---|
| 1281 | $ (1.-sky_slope(iflat))*emis(ig,iflat)* |
|---|
| 1282 | $ stephan*tsurf(ig,iflat)**4 |
|---|
| 1283 | ENDIF |
|---|
| 1284 | ENDDO |
|---|
| 1285 | ENDDO |
|---|
| 1286 | |
|---|
| 1287 | DO l=1,nlayer |
|---|
| 1288 | DO ig=1,ngrid |
|---|
| 1289 | pdt(ig,l)=pdt(ig,l)+dtrad(ig,l) |
|---|
| 1290 | ENDDO |
|---|
| 1291 | ENDDO |
|---|
| 1292 | |
|---|
| 1293 | ENDIF ! of IF (callrad) |
|---|
| 1294 | |
|---|
| 1295 | c 3.1 Rocket dust storm |
|---|
| 1296 | c ------------------------------------------- |
|---|
| 1297 | IF (rdstorm) THEN |
|---|
| 1298 | clearatm=.false. |
|---|
| 1299 | pdqrds(:,:,:)=0. |
|---|
| 1300 | qdusttotal0(:)=0. |
|---|
| 1301 | qdusttotal1(:)=0. |
|---|
| 1302 | do ig=1,ngrid |
|---|
| 1303 | do l=1,nlayer |
|---|
| 1304 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) ! updated potential |
|---|
| 1305 | ! temperature tendency |
|---|
| 1306 | ! for diagnostics |
|---|
| 1307 | ! qdustrds0(ig,l)=pq(ig,l,igcm_dust_mass)+ |
|---|
| 1308 | ! & pdq(ig,l,igcm_dust_mass)*ptimestep |
|---|
| 1309 | ! qstormrds0(ig,l)=pq(ig,l,igcm_stormdust_mass)+ |
|---|
| 1310 | ! & pdq(ig,l,igcm_stormdust_mass)*ptimestep |
|---|
| 1311 | ! qdusttotal0(ig)=qdusttotal0(ig)+(qdustrds0(ig,l)+ |
|---|
| 1312 | ! & qstormrds0(ig,l))*(zplev(ig,l)- |
|---|
| 1313 | ! & zplev(ig,l+1))/g |
|---|
| 1314 | enddo |
|---|
| 1315 | enddo |
|---|
| 1316 | ! call write_output('qdustrds0','qdust before rds', |
|---|
| 1317 | ! & 'kg/kg ',qdustrds0(:,:)) |
|---|
| 1318 | ! call write_output('qstormrds0','qstorm before rds', |
|---|
| 1319 | ! & 'kg/kg ',qstormrds0(:,:)) |
|---|
| 1320 | |
|---|
| 1321 | CALL rocketduststorm(ngrid,nlayer,nq,ptime,ptimestep, |
|---|
| 1322 | & pq,pdq,pt,pdt,zplev,zplay,zzlev, |
|---|
| 1323 | & zzlay,zdtsw,zdtlw, |
|---|
| 1324 | c for radiative transfer |
|---|
| 1325 | & clearatm,icount,zday,zls, |
|---|
| 1326 | & tsurf_meshavg,qsurf_meshavg(:,igcm_co2), |
|---|
| 1327 | & igout,totstormfract,tauscaling, |
|---|
| 1328 | & dust_rad_adjust,IRtoVIScoef, |
|---|
| 1329 | & albedo_meshavg,emis_meshavg, |
|---|
| 1330 | c input sub-grid scale cloud |
|---|
| 1331 | & clearsky,totcloudfrac, |
|---|
| 1332 | c input sub-grid scale topography |
|---|
| 1333 | & nohmons, |
|---|
| 1334 | c output |
|---|
| 1335 | & pdqrds,wspeed,dsodust,dsords,dsotop, |
|---|
| 1336 | & tau_pref_scenario,tau_pref_gcm) |
|---|
| 1337 | |
|---|
| 1338 | c update the tendencies of both dust after vertical transport |
|---|
| 1339 | DO l=1,nlayer |
|---|
| 1340 | DO ig=1,ngrid |
|---|
| 1341 | pdq(ig,l,igcm_stormdust_mass)= |
|---|
| 1342 | & pdq(ig,l,igcm_stormdust_mass)+ |
|---|
| 1343 | & pdqrds(ig,l,igcm_stormdust_mass) |
|---|
| 1344 | pdq(ig,l,igcm_stormdust_number)= |
|---|
| 1345 | & pdq(ig,l,igcm_stormdust_number)+ |
|---|
| 1346 | & pdqrds(ig,l,igcm_stormdust_number) |
|---|
| 1347 | |
|---|
| 1348 | pdq(ig,l,igcm_dust_mass)= |
|---|
| 1349 | & pdq(ig,l,igcm_dust_mass)+ pdqrds(ig,l,igcm_dust_mass) |
|---|
| 1350 | pdq(ig,l,igcm_dust_number)= |
|---|
| 1351 | & pdq(ig,l,igcm_dust_number)+ |
|---|
| 1352 | & pdqrds(ig,l,igcm_dust_number) |
|---|
| 1353 | |
|---|
| 1354 | ENDDO |
|---|
| 1355 | ENDDO |
|---|
| 1356 | do l=1,nlayer |
|---|
| 1357 | do ig=1,ngrid |
|---|
| 1358 | qdustrds1(ig,l)=pq(ig,l,igcm_dust_mass)+ |
|---|
| 1359 | & pdq(ig,l,igcm_dust_mass)*ptimestep |
|---|
| 1360 | qstormrds1(ig,l)=pq(ig,l,igcm_stormdust_mass)+ |
|---|
| 1361 | & pdq(ig,l,igcm_stormdust_mass)*ptimestep |
|---|
| 1362 | qdusttotal1(ig)=qdusttotal1(ig)+(qdustrds1(ig,l)+ |
|---|
| 1363 | & qstormrds1(ig,l))*(zplev(ig,l)- |
|---|
| 1364 | & zplev(ig,l+1))/g |
|---|
| 1365 | enddo |
|---|
| 1366 | enddo |
|---|
| 1367 | |
|---|
| 1368 | c for diagnostics |
|---|
| 1369 | ! call write_output('qdustrds1','qdust after rds', |
|---|
| 1370 | ! & 'kg/kg ',qdustrds1(:,:)) |
|---|
| 1371 | ! call write_output('qstormrds1','qstorm after rds', |
|---|
| 1372 | ! & 'kg/kg ',qstormrds1(:,:)) |
|---|
| 1373 | ! |
|---|
| 1374 | ! call write_output('qdusttotal0','q sum before rds', |
|---|
| 1375 | ! & 'kg/m2 ',qdusttotal0(:)) |
|---|
| 1376 | ! call write_output('qdusttotal1','q sum after rds', |
|---|
| 1377 | ! & 'kg/m2 ',qdusttotal1(:)) |
|---|
| 1378 | |
|---|
| 1379 | ENDIF ! end of if(rdstorm) |
|---|
| 1380 | |
|---|
| 1381 | c 3.2 Dust entrained from the PBL up to the top of sub-grid scale topography |
|---|
| 1382 | c ------------------------------------------- |
|---|
| 1383 | IF (topflows) THEN |
|---|
| 1384 | clearatm=.true. ! stormdust is not accounted in the extra heating on top of the mountains |
|---|
| 1385 | nohmons=.false. |
|---|
| 1386 | pdqtop(:,:,:)=0. |
|---|
| 1387 | CALL topmons(ngrid,nlayer,nq,ptime,ptimestep, |
|---|
| 1388 | & pq,pdq,pt,pdt,zplev,zplay,zzlev, |
|---|
| 1389 | & zzlay,zdtsw,zdtlw, |
|---|
| 1390 | & icount,zday,zls,tsurf(:,iflat), |
|---|
| 1391 | & qsurf_meshavg(:,igcm_co2), |
|---|
| 1392 | & igout,aerosol,tauscaling,dust_rad_adjust, |
|---|
| 1393 | & IRtoVIScoef,albedo_meshavg,emis_meshavg, |
|---|
| 1394 | & totstormfract,clearatm, |
|---|
| 1395 | & clearsky,totcloudfrac, |
|---|
| 1396 | & nohmons, |
|---|
| 1397 | & pdqtop,wtop,dsodust,dsords,dsotop, |
|---|
| 1398 | & tau_pref_scenario,tau_pref_gcm) |
|---|
| 1399 | |
|---|
| 1400 | c update the tendencies of both dust after vertical transport |
|---|
| 1401 | DO l=1,nlayer |
|---|
| 1402 | DO ig=1,ngrid |
|---|
| 1403 | pdq(ig,l,igcm_topdust_mass)= |
|---|
| 1404 | & pdq(ig,l,igcm_topdust_mass)+ |
|---|
| 1405 | & pdqtop(ig,l,igcm_topdust_mass) |
|---|
| 1406 | pdq(ig,l,igcm_topdust_number)= |
|---|
| 1407 | & pdq(ig,l,igcm_topdust_number)+ |
|---|
| 1408 | & pdqtop(ig,l,igcm_topdust_number) |
|---|
| 1409 | pdq(ig,l,igcm_dust_mass)= |
|---|
| 1410 | & pdq(ig,l,igcm_dust_mass)+ pdqtop(ig,l,igcm_dust_mass) |
|---|
| 1411 | pdq(ig,l,igcm_dust_number)= |
|---|
| 1412 | & pdq(ig,l,igcm_dust_number)+pdqtop(ig,l,igcm_dust_number) |
|---|
| 1413 | |
|---|
| 1414 | ENDDO |
|---|
| 1415 | ENDDO |
|---|
| 1416 | |
|---|
| 1417 | ENDIF ! end of if (topflows) |
|---|
| 1418 | |
|---|
| 1419 | c 3.3 Dust injection from the surface |
|---|
| 1420 | c ------------------------------------------- |
|---|
| 1421 | if (dustinjection.gt.0) then |
|---|
| 1422 | |
|---|
| 1423 | CALL compute_dtau(ngrid,nlayer, |
|---|
| 1424 | & zday,pplev,tau_pref_gcm, |
|---|
| 1425 | & ptimestep,local_time,IRtoVIScoef, |
|---|
| 1426 | & dustliftday) |
|---|
| 1427 | endif ! end of if (dustinjection.gt.0) |
|---|
| 1428 | |
|---|
| 1429 | c----------------------------------------------------------------------- |
|---|
| 1430 | c 4. Gravity wave and subgrid scale topography drag : |
|---|
| 1431 | c ------------------------------------------------- |
|---|
| 1432 | |
|---|
| 1433 | |
|---|
| 1434 | IF(calllott)THEN |
|---|
| 1435 | CALL calldrag_noro(ngrid,nlayer,ptimestep, |
|---|
| 1436 | & zplay,zplev,pt,pu,pv,zdtgw,zdugw,zdvgw) |
|---|
| 1437 | |
|---|
| 1438 | DO l=1,nlayer |
|---|
| 1439 | DO ig=1,ngrid |
|---|
| 1440 | pdv(ig,l)=pdv(ig,l)+zdvgw(ig,l) |
|---|
| 1441 | pdu(ig,l)=pdu(ig,l)+zdugw(ig,l) |
|---|
| 1442 | pdt(ig,l)=pdt(ig,l)+zdtgw(ig,l) |
|---|
| 1443 | ENDDO |
|---|
| 1444 | ENDDO |
|---|
| 1445 | ENDIF |
|---|
| 1446 | |
|---|
| 1447 | c----------------------------------------------------------------------- |
|---|
| 1448 | c 5. Vertical diffusion (turbulent mixing): |
|---|
| 1449 | c ----------------------------------------- |
|---|
| 1450 | |
|---|
| 1451 | IF (calldifv) THEN |
|---|
| 1452 | DO ig=1,ngrid |
|---|
| 1453 | DO islope = 1,nslope |
|---|
| 1454 | zflubid(ig,islope)=fluxrad(ig,islope) |
|---|
| 1455 | & +fluxgrd(ig,islope) |
|---|
| 1456 | ENDDO |
|---|
| 1457 | ENDDO |
|---|
| 1458 | zdum1(:,:)=0 |
|---|
| 1459 | zdum2(:,:)=0 |
|---|
| 1460 | do l=1,nlayer |
|---|
| 1461 | do ig=1,ngrid |
|---|
| 1462 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
|---|
| 1463 | enddo |
|---|
| 1464 | enddo |
|---|
| 1465 | |
|---|
| 1466 | c ---------------------- |
|---|
| 1467 | c Treatment of a special case : using new surface layer (Richardson based) |
|---|
| 1468 | c without using the thermals in gcm and mesoscale can yield problems in |
|---|
| 1469 | c weakly unstable situations when winds are near to 0. For those cases, we add |
|---|
| 1470 | c a unit subgrid gustiness. Remember that thermals should be used we using the |
|---|
| 1471 | c Richardson based surface layer model. |
|---|
| 1472 | IF ( .not.calltherm |
|---|
| 1473 | . .and. callrichsl |
|---|
| 1474 | . .and. .not.turb_resolved) THEN |
|---|
| 1475 | |
|---|
| 1476 | DO ig=1, ngrid |
|---|
| 1477 | IF (zh(ig,1) .lt. tsurf_meshavg(ig)) THEN |
|---|
| 1478 | wstar(ig)=1. |
|---|
| 1479 | hfmax_th(ig)=0.2 |
|---|
| 1480 | ELSE |
|---|
| 1481 | wstar(ig)=0. |
|---|
| 1482 | hfmax_th(ig)=0. |
|---|
| 1483 | ENDIF |
|---|
| 1484 | ENDDO |
|---|
| 1485 | ENDIF |
|---|
| 1486 | |
|---|
| 1487 | c ---------------------- |
|---|
| 1488 | |
|---|
| 1489 | IF (tke_heat_flux .ne. 0.) THEN |
|---|
| 1490 | |
|---|
| 1491 | zz1(:)=(pt(:,1)+pdt(:,1)*ptimestep)*(r/g)* |
|---|
| 1492 | & (-alog(zplay(:,1)/zplev(:,1))) |
|---|
| 1493 | pdt(:,1)=pdt(:,1) + (tke_heat_flux/zz1(:))*zpopsk(:,1) |
|---|
| 1494 | ENDIF |
|---|
| 1495 | |
|---|
| 1496 | c Calling vdif (Martian version WITH CO2 condensation) |
|---|
| 1497 | dwatercap_dif(:,:) = 0. |
|---|
| 1498 | zcdh(:) = 0. |
|---|
| 1499 | zcdv(:) = 0. |
|---|
| 1500 | |
|---|
| 1501 | CALL vdifc(ngrid,nlayer,nq,zpopsk, |
|---|
| 1502 | $ ptimestep,capcal,lwrite, |
|---|
| 1503 | $ zplay,zplev,zzlay,zzlev,z0, |
|---|
| 1504 | $ pu,pv,zh,pq,tsurf,emis,qsurf, |
|---|
| 1505 | $ zdum1,zdum2,zdh,pdq,zflubid, |
|---|
| 1506 | $ zdudif,zdvdif,zdhdif,zdtsdif,q2, |
|---|
| 1507 | & zdqdif,zdqsdif,wstar,zcdv,zcdh,hfmax_th, |
|---|
| 1508 | & zcondicea_co2microp,sensibFlux, |
|---|
| 1509 | & dustliftday,local_time,watercap,dwatercap_dif) |
|---|
| 1510 | |
|---|
| 1511 | DO ig=1,ngrid |
|---|
| 1512 | zdtsurf(ig,:)=zdtsurf(ig,:)+zdtsdif(ig,:) |
|---|
| 1513 | dwatercap(ig,:)=dwatercap(ig,:)+dwatercap_dif(ig,:) |
|---|
| 1514 | ENDDO |
|---|
| 1515 | |
|---|
| 1516 | call compute_meshgridavg(ngrid,nq,albedo,emis,tsurf,zdqsdif, |
|---|
| 1517 | & albedo_meshavg,emis_meshavg,tsurf_meshavg,zdqsdif_meshavg_tmp) |
|---|
| 1518 | IF (.not.turb_resolved) THEN |
|---|
| 1519 | DO l=1,nlayer |
|---|
| 1520 | DO ig=1,ngrid |
|---|
| 1521 | pdv(ig,l)=pdv(ig,l)+zdvdif(ig,l) |
|---|
| 1522 | pdu(ig,l)=pdu(ig,l)+zdudif(ig,l) |
|---|
| 1523 | pdt(ig,l)=pdt(ig,l)+zdhdif(ig,l)*zpopsk(ig,l) |
|---|
| 1524 | |
|---|
| 1525 | zdtdif(ig,l)=zdhdif(ig,l)*zpopsk(ig,l) ! for diagnostic only |
|---|
| 1526 | ENDDO |
|---|
| 1527 | ENDDO |
|---|
| 1528 | |
|---|
| 1529 | DO iq=1, nq |
|---|
| 1530 | DO l=1,nlayer |
|---|
| 1531 | DO ig=1,ngrid |
|---|
| 1532 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
|---|
| 1533 | ENDDO |
|---|
| 1534 | ENDDO |
|---|
| 1535 | ENDDO |
|---|
| 1536 | DO iq=1, nq |
|---|
| 1537 | DO ig=1,ngrid |
|---|
| 1538 | dqsurf(ig,iq,:)=dqsurf(ig,iq,:) + zdqsdif(ig,iq,:) |
|---|
| 1539 | ENDDO |
|---|
| 1540 | ENDDO |
|---|
| 1541 | |
|---|
| 1542 | ELSE |
|---|
| 1543 | write (*,*) '******************************************' |
|---|
| 1544 | write (*,*) '** LES mode: the difv part is only used to' |
|---|
| 1545 | write (*,*) '** - provide HFX and UST to the dynamics' |
|---|
| 1546 | write (*,*) '** - update TSURF' |
|---|
| 1547 | write (*,*) '******************************************' |
|---|
| 1548 | !! Specific treatment for lifting in turbulent-resolving mode (AC) |
|---|
| 1549 | IF (lifting .and. doubleq) THEN |
|---|
| 1550 | !! lifted dust is injected in the first layer. |
|---|
| 1551 | !! Sedimentation must be called after turbulent mixing, i.e. on next step, after WRF. |
|---|
| 1552 | !! => lifted dust is not incremented before the sedimentation step. |
|---|
| 1553 | zdqdif(1:ngrid,1,1:nq)=0. |
|---|
| 1554 | zdqdif(1:ngrid,1,igcm_dust_number) = |
|---|
| 1555 | . -zdqsdif_meshavg_tmp(1:ngrid,igcm_dust_number) |
|---|
| 1556 | zdqdif(1:ngrid,1,igcm_dust_mass) = |
|---|
| 1557 | . -zdqsdif_meshavg_tmp(1:ngrid,igcm_dust_mass) |
|---|
| 1558 | zdqdif(1:ngrid,2:nlayer,1:nq) = 0. |
|---|
| 1559 | DO iq=1, nq |
|---|
| 1560 | IF ((iq .ne. igcm_dust_mass) |
|---|
| 1561 | & .and. (iq .ne. igcm_dust_number)) THEN |
|---|
| 1562 | zdqsdif(:,iq,:)=0. |
|---|
| 1563 | ENDIF |
|---|
| 1564 | ENDDO |
|---|
| 1565 | ELSE |
|---|
| 1566 | zdqdif(1:ngrid,1:nlayer,1:nq) = 0. |
|---|
| 1567 | zdqsdif(1:ngrid,1:nq,1:nslope) = 0. |
|---|
| 1568 | ENDIF |
|---|
| 1569 | ENDIF |
|---|
| 1570 | ELSE |
|---|
| 1571 | DO ig=1,ngrid |
|---|
| 1572 | DO islope=1,nslope |
|---|
| 1573 | zdtsurf(ig,islope)=zdtsurf(ig,islope)+ |
|---|
| 1574 | s (fluxrad(ig,islope)+fluxgrd(ig,islope))/capcal(ig,islope) |
|---|
| 1575 | ENDDO |
|---|
| 1576 | ENDDO |
|---|
| 1577 | |
|---|
| 1578 | IF (turb_resolved) THEN |
|---|
| 1579 | write(*,*) 'Turbulent-resolving mode !' |
|---|
| 1580 | write(*,*) 'Please set calldifv to T in callphys.def' |
|---|
| 1581 | call abort_physic("physiq","turbulent-resolving mode",1) |
|---|
| 1582 | ENDIF |
|---|
| 1583 | ENDIF ! of IF (calldifv) |
|---|
| 1584 | |
|---|
| 1585 | c----------------------------------------------------------------------- |
|---|
| 1586 | c 6. Thermals : |
|---|
| 1587 | c ----------------------------- |
|---|
| 1588 | |
|---|
| 1589 | if(calltherm .and. .not.turb_resolved) then |
|---|
| 1590 | |
|---|
| 1591 | call calltherm_interface(ngrid,nlayer,nq,igcm_co2, |
|---|
| 1592 | $ zzlev,zzlay, |
|---|
| 1593 | $ ptimestep,pu,pv,pt,pq,pdu,pdv,pdt,pdq,q2, |
|---|
| 1594 | $ zplay,zplev,pphi,zpopsk, |
|---|
| 1595 | $ pdu_th,pdv_th,pdt_th,pdq_th,lmax_th,zmax_th, |
|---|
| 1596 | $ dtke_th,zdhdif,hfmax_th,wstar,sensibFlux) |
|---|
| 1597 | |
|---|
| 1598 | DO l=1,nlayer |
|---|
| 1599 | DO ig=1,ngrid |
|---|
| 1600 | pdu(ig,l)=pdu(ig,l)+pdu_th(ig,l) |
|---|
| 1601 | pdv(ig,l)=pdv(ig,l)+pdv_th(ig,l) |
|---|
| 1602 | pdt(ig,l)=pdt(ig,l)+pdt_th(ig,l) |
|---|
| 1603 | q2(ig,l)=q2(ig,l)+dtke_th(ig,l)*ptimestep |
|---|
| 1604 | ENDDO |
|---|
| 1605 | ENDDO |
|---|
| 1606 | |
|---|
| 1607 | DO ig=1,ngrid |
|---|
| 1608 | q2(ig,nlayer+1)=q2(ig,nlayer+1)+dtke_th(ig,nlayer+1)*ptimestep |
|---|
| 1609 | ENDDO |
|---|
| 1610 | |
|---|
| 1611 | DO iq=1,nq |
|---|
| 1612 | DO l=1,nlayer |
|---|
| 1613 | DO ig=1,ngrid |
|---|
| 1614 | pdq(ig,l,iq)=pdq(ig,l,iq)+pdq_th(ig,l,iq) |
|---|
| 1615 | ENDDO |
|---|
| 1616 | ENDDO |
|---|
| 1617 | ENDDO |
|---|
| 1618 | |
|---|
| 1619 | lmax_th_out(:)=real(lmax_th(:)) |
|---|
| 1620 | |
|---|
| 1621 | else !of if calltherm |
|---|
| 1622 | lmax_th(:)=0 |
|---|
| 1623 | wstar(:)=0. |
|---|
| 1624 | hfmax_th(:)=0. |
|---|
| 1625 | lmax_th_out(:)=0. |
|---|
| 1626 | end if |
|---|
| 1627 | |
|---|
| 1628 | c----------------------------------------------------------------------- |
|---|
| 1629 | c 7. Dry convective adjustment: |
|---|
| 1630 | c ----------------------------- |
|---|
| 1631 | |
|---|
| 1632 | IF(calladj) THEN |
|---|
| 1633 | |
|---|
| 1634 | DO l=1,nlayer |
|---|
| 1635 | DO ig=1,ngrid |
|---|
| 1636 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
|---|
| 1637 | ENDDO |
|---|
| 1638 | ENDDO |
|---|
| 1639 | zduadj(:,:)=0 |
|---|
| 1640 | zdvadj(:,:)=0 |
|---|
| 1641 | zdhadj(:,:)=0 |
|---|
| 1642 | |
|---|
| 1643 | CALL convadj(ngrid,nlayer,nq,ptimestep, |
|---|
| 1644 | $ zplay,zplev,zpopsk,lmax_th, |
|---|
| 1645 | $ pu,pv,zh,pq, |
|---|
| 1646 | $ pdu,pdv,zdh,pdq, |
|---|
| 1647 | $ zduadj,zdvadj,zdhadj, |
|---|
| 1648 | $ zdqadj) |
|---|
| 1649 | |
|---|
| 1650 | DO l=1,nlayer |
|---|
| 1651 | DO ig=1,ngrid |
|---|
| 1652 | pdu(ig,l)=pdu(ig,l)+zduadj(ig,l) |
|---|
| 1653 | pdv(ig,l)=pdv(ig,l)+zdvadj(ig,l) |
|---|
| 1654 | pdt(ig,l)=pdt(ig,l)+zdhadj(ig,l)*zpopsk(ig,l) |
|---|
| 1655 | |
|---|
| 1656 | zdtadj(ig,l)=zdhadj(ig,l)*zpopsk(ig,l) ! for diagnostic only |
|---|
| 1657 | ENDDO |
|---|
| 1658 | ENDDO |
|---|
| 1659 | |
|---|
| 1660 | DO iq=1, nq |
|---|
| 1661 | DO l=1,nlayer |
|---|
| 1662 | DO ig=1,ngrid |
|---|
| 1663 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqadj(ig,l,iq) |
|---|
| 1664 | ENDDO |
|---|
| 1665 | ENDDO |
|---|
| 1666 | ENDDO |
|---|
| 1667 | ENDIF ! of IF(calladj) |
|---|
| 1668 | |
|---|
| 1669 | c----------------------------------------------------- |
|---|
| 1670 | c 8. Non orographic Gravity waves : |
|---|
| 1671 | c ------------------------------------------------- |
|---|
| 1672 | |
|---|
| 1673 | IF (calllott_nonoro) THEN |
|---|
| 1674 | |
|---|
| 1675 | CALL nonoro_gwd_ran(ngrid,nlayer,ptimestep, |
|---|
| 1676 | & cpnew,rnew, |
|---|
| 1677 | & zplay, |
|---|
| 1678 | & zmax_th, ! max altitude reached by thermals (m) |
|---|
| 1679 | & pt, pu, pv, |
|---|
| 1680 | & pdt, pdu, pdv, |
|---|
| 1681 | & zustrhi,zvstrhi, |
|---|
| 1682 | & d_t_hin, d_u_hin, d_v_hin) |
|---|
| 1683 | |
|---|
| 1684 | ! Update tendencies |
|---|
| 1685 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer) |
|---|
| 1686 | & +d_t_hin(1:ngrid,1:nlayer) |
|---|
| 1687 | pdu(1:ngrid,1:nlayer)=pdu(1:ngrid,1:nlayer) |
|---|
| 1688 | & +d_u_hin(1:ngrid,1:nlayer) |
|---|
| 1689 | pdv(1:ngrid,1:nlayer)=pdv(1:ngrid,1:nlayer) |
|---|
| 1690 | & +d_v_hin(1:ngrid,1:nlayer) |
|---|
| 1691 | |
|---|
| 1692 | ENDIF ! of IF (calllott_nonoro) |
|---|
| 1693 | |
|---|
| 1694 | c----------------------------------------------------------------------- |
|---|
| 1695 | c 9. Specific parameterizations for tracers |
|---|
| 1696 | c: ----------------------------------------- |
|---|
| 1697 | |
|---|
| 1698 | |
|---|
| 1699 | c 9a. Water and ice |
|---|
| 1700 | c --------------- |
|---|
| 1701 | |
|---|
| 1702 | c --------------------------------------- |
|---|
| 1703 | c Water ice condensation in the atmosphere |
|---|
| 1704 | c ---------------------------------------- |
|---|
| 1705 | IF (water) THEN |
|---|
| 1706 | |
|---|
| 1707 | call watercloud(ngrid,nlayer,ptimestep, |
|---|
| 1708 | & zplev,zplay,pdpsrf,zzlay, pt,pdt, |
|---|
| 1709 | & pq,pdq,zdqcloud,zdtcloud, |
|---|
| 1710 | & nq,tau,tauscaling,rdust,rice,nuice, |
|---|
| 1711 | & rsedcloud,rhocloud,totcloudfrac) |
|---|
| 1712 | c Temperature variation due to latent heat release |
|---|
| 1713 | if (activice) then |
|---|
| 1714 | pdt(1:ngrid,1:nlayer) = |
|---|
| 1715 | & pdt(1:ngrid,1:nlayer) + |
|---|
| 1716 | & zdtcloud(1:ngrid,1:nlayer) |
|---|
| 1717 | endif |
|---|
| 1718 | |
|---|
| 1719 | ! increment water vapour and ice atmospheric tracers tendencies |
|---|
| 1720 | pdq(1:ngrid,1:nlayer,igcm_h2o_vap) = |
|---|
| 1721 | & pdq(1:ngrid,1:nlayer,igcm_h2o_vap) + |
|---|
| 1722 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_vap) |
|---|
| 1723 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = |
|---|
| 1724 | & pdq(1:ngrid,1:nlayer,igcm_h2o_ice) + |
|---|
| 1725 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 1726 | |
|---|
| 1727 | if (hdo) then |
|---|
| 1728 | ! increment HDO vapour and ice atmospheric tracers tendencies |
|---|
| 1729 | pdq(1:ngrid,1:nlayer,igcm_hdo_vap) = |
|---|
| 1730 | & pdq(1:ngrid,1:nlayer,igcm_hdo_vap) + |
|---|
| 1731 | & zdqcloud(1:ngrid,1:nlayer,igcm_hdo_vap) |
|---|
| 1732 | pdq(1:ngrid,1:nlayer,igcm_hdo_ice) = |
|---|
| 1733 | & pdq(1:ngrid,1:nlayer,igcm_hdo_ice) + |
|---|
| 1734 | & zdqcloud(1:ngrid,1:nlayer,igcm_hdo_ice) |
|---|
| 1735 | endif !hdo |
|---|
| 1736 | |
|---|
| 1737 | ! increment dust and ccn masses and numbers |
|---|
| 1738 | ! We need to check that we have Nccn & Ndust > 0 |
|---|
| 1739 | ! This is due to single precision rounding problems |
|---|
| 1740 | if (microphys) then |
|---|
| 1741 | pdq(1:ngrid,1:nlayer,igcm_ccn_mass) = |
|---|
| 1742 | & pdq(1:ngrid,1:nlayer,igcm_ccn_mass) + |
|---|
| 1743 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_mass) |
|---|
| 1744 | pdq(1:ngrid,1:nlayer,igcm_ccn_number) = |
|---|
| 1745 | & pdq(1:ngrid,1:nlayer,igcm_ccn_number) + |
|---|
| 1746 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_number) |
|---|
| 1747 | where (pq(:,:,igcm_ccn_mass) + |
|---|
| 1748 | & ptimestep*pdq(:,:,igcm_ccn_mass) < 0.) |
|---|
| 1749 | pdq(:,:,igcm_ccn_mass) = |
|---|
| 1750 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
|---|
| 1751 | pdq(:,:,igcm_ccn_number) = |
|---|
| 1752 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
|---|
| 1753 | end where |
|---|
| 1754 | where (pq(:,:,igcm_ccn_number) + |
|---|
| 1755 | & ptimestep*pdq(:,:,igcm_ccn_number) < 0.) |
|---|
| 1756 | pdq(:,:,igcm_ccn_mass) = |
|---|
| 1757 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
|---|
| 1758 | pdq(:,:,igcm_ccn_number) = |
|---|
| 1759 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
|---|
| 1760 | end where |
|---|
| 1761 | endif |
|---|
| 1762 | |
|---|
| 1763 | if (scavenging) then |
|---|
| 1764 | pdq(1:ngrid,1:nlayer,igcm_dust_mass) = |
|---|
| 1765 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) + |
|---|
| 1766 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_mass) |
|---|
| 1767 | pdq(1:ngrid,1:nlayer,igcm_dust_number) = |
|---|
| 1768 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) + |
|---|
| 1769 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_number) |
|---|
| 1770 | where (pq(:,:,igcm_dust_mass) + |
|---|
| 1771 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
|---|
| 1772 | pdq(:,:,igcm_dust_mass) = |
|---|
| 1773 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 1774 | pdq(:,:,igcm_dust_number) = |
|---|
| 1775 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 1776 | end where |
|---|
| 1777 | where (pq(:,:,igcm_dust_number) + |
|---|
| 1778 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
|---|
| 1779 | pdq(:,:,igcm_dust_mass) = |
|---|
| 1780 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 1781 | pdq(:,:,igcm_dust_number) = |
|---|
| 1782 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 1783 | end where |
|---|
| 1784 | endif ! of if scavenging |
|---|
| 1785 | |
|---|
| 1786 | END IF ! of IF (water) |
|---|
| 1787 | |
|---|
| 1788 | c 9a bis. CO2 clouds (CL & JA) |
|---|
| 1789 | c --------------------------------------- |
|---|
| 1790 | c CO2 ice cloud condensation in the atmosphere |
|---|
| 1791 | c ---------------------------------------- |
|---|
| 1792 | c flag needed in callphys.def: |
|---|
| 1793 | c co2clouds=.true. is mandatory (default is .false.) |
|---|
| 1794 | c co2useh2o=.true. if you want to allow co2 condensation |
|---|
| 1795 | c on water ice particles |
|---|
| 1796 | c meteo_flux=.true. if you want to add a meteoritic |
|---|
| 1797 | c supply of CCN |
|---|
| 1798 | c CLFvaryingCO2=.true. if you want to have a sub-grid |
|---|
| 1799 | c temperature distribution |
|---|
| 1800 | c spantCO2=integer (i.e. 3) amplitude of the sub-grid T disti |
|---|
| 1801 | c nuiceco2_sed=0.2 variance of the size distribution for the |
|---|
| 1802 | c sedimentation |
|---|
| 1803 | c nuiceco2_ref=0.2 variance of the size distribution for the |
|---|
| 1804 | c nucleation |
|---|
| 1805 | c imicroco2=50 micro-timestep is 1/50 of physical timestep |
|---|
| 1806 | zdqssed_co2(:) = 0. |
|---|
| 1807 | zdqssed_ccn(:,:) = 0. |
|---|
| 1808 | |
|---|
| 1809 | IF (co2clouds) THEN |
|---|
| 1810 | call co2cloud(ngrid,nlayer,ptimestep, |
|---|
| 1811 | & zplev,zplay,pdpsrf,zzlay,pt,pdt, |
|---|
| 1812 | & pq,pdq,zdqcloudco2,zdtcloudco2, |
|---|
| 1813 | & nq,tau,tauscaling,rdust,rice,riceco2,nuice, |
|---|
| 1814 | & rhocloud, rsedcloudco2,rhocloudco2,zzlev,zdqssed_co2, |
|---|
| 1815 | & zdqssed_ccn,pdu,pu,zcondicea_co2microp) |
|---|
| 1816 | |
|---|
| 1817 | DO iq=1, nq |
|---|
| 1818 | DO ig=1,ngrid |
|---|
| 1819 | DO islope = 1,nslope |
|---|
| 1820 | dqsurf(ig,iq,islope)=dqsurf(ig,iq,islope)+ |
|---|
| 1821 | & zdqssed_ccn(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
|---|
| 1822 | ENDDO !(islope) |
|---|
| 1823 | ENDDO ! (ig) |
|---|
| 1824 | ENDDO ! (iq)q) |
|---|
| 1825 | c Temperature variation due to latent heat release |
|---|
| 1826 | pdt(1:ngrid,1:nlayer) = |
|---|
| 1827 | & pdt(1:ngrid,1:nlayer) + |
|---|
| 1828 | & zdtcloudco2(1:ngrid,1:nlayer) |
|---|
| 1829 | |
|---|
| 1830 | ! increment dust and ccn masses and numbers |
|---|
| 1831 | ! We need to check that we have Nccn & Ndust > 0 |
|---|
| 1832 | ! This is due to single precision rounding problems |
|---|
| 1833 | ! increment dust tracers tendancies |
|---|
| 1834 | pdq(:,:,igcm_dust_mass) = pdq(:,:,igcm_dust_mass) |
|---|
| 1835 | & + zdqcloudco2(:,:,igcm_dust_mass) |
|---|
| 1836 | |
|---|
| 1837 | pdq(:,:,igcm_dust_number) = pdq(:,:,igcm_dust_number) |
|---|
| 1838 | & + zdqcloudco2(:,:,igcm_dust_number) |
|---|
| 1839 | |
|---|
| 1840 | pdq(:,:,igcm_co2) = pdq(:,:,igcm_co2) |
|---|
| 1841 | & + zdqcloudco2(:,:,igcm_co2) |
|---|
| 1842 | |
|---|
| 1843 | pdq(:,:,igcm_co2_ice) = pdq(:,:,igcm_co2_ice) |
|---|
| 1844 | & + zdqcloudco2(:,:,igcm_co2_ice) |
|---|
| 1845 | |
|---|
| 1846 | pdq(:,:,igcm_ccnco2_mass) = pdq(:,:,igcm_ccnco2_mass) |
|---|
| 1847 | & + zdqcloudco2(:,:,igcm_ccnco2_mass) |
|---|
| 1848 | |
|---|
| 1849 | pdq(:,:,igcm_ccnco2_number) = pdq(:,:,igcm_ccnco2_number) |
|---|
| 1850 | & + zdqcloudco2(:,:,igcm_ccnco2_number) |
|---|
| 1851 | |
|---|
| 1852 | if (meteo_flux) then |
|---|
| 1853 | pdq(:,:,igcm_ccnco2_meteor_mass) = |
|---|
| 1854 | & pdq(:,:,igcm_ccnco2_meteor_mass) + |
|---|
| 1855 | & zdqcloudco2(:,:,igcm_ccnco2_meteor_mass) |
|---|
| 1856 | |
|---|
| 1857 | pdq(:,:,igcm_ccnco2_meteor_number) = |
|---|
| 1858 | & pdq(:,:,igcm_ccnco2_meteor_number) |
|---|
| 1859 | & + zdqcloudco2(:,:,igcm_ccnco2_meteor_number) |
|---|
| 1860 | end if |
|---|
| 1861 | !Update water ice clouds values as well |
|---|
| 1862 | if (co2useh2o) then |
|---|
| 1863 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = |
|---|
| 1864 | & pdq(1:ngrid,1:nlayer,igcm_h2o_ice) + |
|---|
| 1865 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 1866 | pdq(1:ngrid,1:nlayer,igcm_ccn_mass) = |
|---|
| 1867 | & pdq(1:ngrid,1:nlayer,igcm_ccn_mass) + |
|---|
| 1868 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccn_mass) |
|---|
| 1869 | pdq(1:ngrid,1:nlayer,igcm_ccn_number) = |
|---|
| 1870 | & pdq(1:ngrid,1:nlayer,igcm_ccn_number) + |
|---|
| 1871 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccn_number) |
|---|
| 1872 | |
|---|
| 1873 | pdq(:,:,igcm_ccnco2_h2o_mass_ice) = |
|---|
| 1874 | & pdq(:,:,igcm_ccnco2_h2o_mass_ice) + |
|---|
| 1875 | & zdqcloudco2(:,:,igcm_ccnco2_h2o_mass_ice) |
|---|
| 1876 | |
|---|
| 1877 | pdq(:,:,igcm_ccnco2_h2o_mass_ccn) = |
|---|
| 1878 | & pdq(:,:,igcm_ccnco2_h2o_mass_ccn) + |
|---|
| 1879 | & zdqcloudco2(:,:,igcm_ccnco2_h2o_mass_ccn) |
|---|
| 1880 | |
|---|
| 1881 | pdq(:,:,igcm_ccnco2_h2o_number) = |
|---|
| 1882 | & pdq(:,:,igcm_ccnco2_h2o_number) + |
|---|
| 1883 | & zdqcloudco2(:,:,igcm_ccnco2_h2o_number) |
|---|
| 1884 | |
|---|
| 1885 | c Negative values? |
|---|
| 1886 | where (pq(:,:,igcm_ccn_mass) + |
|---|
| 1887 | & ptimestep*pdq(:,:,igcm_ccn_mass) < 0.) |
|---|
| 1888 | pdq(:,:,igcm_ccn_mass) = |
|---|
| 1889 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
|---|
| 1890 | pdq(:,:,igcm_ccn_number) = |
|---|
| 1891 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
|---|
| 1892 | end where |
|---|
| 1893 | c Negative values? |
|---|
| 1894 | where (pq(:,:,igcm_ccn_number) + |
|---|
| 1895 | & ptimestep*pdq(:,:,igcm_ccn_number) < 0.) |
|---|
| 1896 | pdq(:,:,igcm_ccn_mass) = |
|---|
| 1897 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
|---|
| 1898 | pdq(:,:,igcm_ccn_number) = |
|---|
| 1899 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
|---|
| 1900 | end where |
|---|
| 1901 | where (pq(:,:,igcm_ccnco2_h2o_mass_ice) + |
|---|
| 1902 | & pq(:,:,igcm_ccnco2_h2o_mass_ccn) + |
|---|
| 1903 | & (pdq(:,:,igcm_ccnco2_h2o_mass_ice) + |
|---|
| 1904 | & pdq(:,:,igcm_ccnco2_h2o_mass_ccn) |
|---|
| 1905 | & )*ptimestep < 0.) |
|---|
| 1906 | pdq(:,:,igcm_ccnco2_h2o_mass_ice) = |
|---|
| 1907 | & - pq(:,:,igcm_ccnco2_h2o_mass_ice) |
|---|
| 1908 | & /ptimestep + 1.e-30 |
|---|
| 1909 | pdq(:,:,igcm_ccnco2_h2o_mass_ccn) = |
|---|
| 1910 | & - pq(:,:,igcm_ccnco2_h2o_mass_ccn) |
|---|
| 1911 | & /ptimestep + 1.e-30 |
|---|
| 1912 | pdq(:,:,igcm_ccnco2_h2o_number) = |
|---|
| 1913 | & - pq(:,:,igcm_ccnco2_h2o_number) |
|---|
| 1914 | & /ptimestep + 1.e-30 |
|---|
| 1915 | end where |
|---|
| 1916 | |
|---|
| 1917 | where (pq(:,:,igcm_ccnco2_h2o_number) + |
|---|
| 1918 | & (pdq(:,:,igcm_ccnco2_h2o_number) |
|---|
| 1919 | & )*ptimestep < 0.) |
|---|
| 1920 | pdq(:,:,igcm_ccnco2_h2o_mass_ice) = |
|---|
| 1921 | & - pq(:,:,igcm_ccnco2_h2o_mass_ice) |
|---|
| 1922 | & /ptimestep + 1.e-30 |
|---|
| 1923 | pdq(:,:,igcm_ccnco2_h2o_mass_ccn) = |
|---|
| 1924 | & - pq(:,:,igcm_ccnco2_h2o_mass_ccn) |
|---|
| 1925 | & /ptimestep + 1.e-30 |
|---|
| 1926 | pdq(:,:,igcm_ccnco2_h2o_number) = |
|---|
| 1927 | & - pq(:,:,igcm_ccnco2_h2o_number) |
|---|
| 1928 | & /ptimestep + 1.e-30 |
|---|
| 1929 | end where |
|---|
| 1930 | endif ! of if (co2useh2o) |
|---|
| 1931 | c Negative values? |
|---|
| 1932 | where (pq(:,:,igcm_ccnco2_mass) + |
|---|
| 1933 | & ptimestep*pdq(:,:,igcm_ccnco2_mass) < 0.) |
|---|
| 1934 | pdq(:,:,igcm_ccnco2_mass) = |
|---|
| 1935 | & - pq(:,:,igcm_ccnco2_mass)/ptimestep + 1.e-30 |
|---|
| 1936 | pdq(:,:,igcm_ccnco2_number) = |
|---|
| 1937 | & - pq(:,:,igcm_ccnco2_number)/ptimestep + 1.e-30 |
|---|
| 1938 | end where |
|---|
| 1939 | where (pq(:,:,igcm_ccnco2_number) + |
|---|
| 1940 | & ptimestep*pdq(:,:,igcm_ccnco2_number) < 0.) |
|---|
| 1941 | pdq(:,:,igcm_ccnco2_mass) = |
|---|
| 1942 | & - pq(:,:,igcm_ccnco2_mass)/ptimestep + 1.e-30 |
|---|
| 1943 | pdq(:,:,igcm_ccnco2_number) = |
|---|
| 1944 | & - pq(:,:,igcm_ccnco2_number)/ptimestep + 1.e-30 |
|---|
| 1945 | end where |
|---|
| 1946 | |
|---|
| 1947 | c Negative values? |
|---|
| 1948 | where (pq(:,:,igcm_dust_mass) + |
|---|
| 1949 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
|---|
| 1950 | pdq(:,:,igcm_dust_mass) = |
|---|
| 1951 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 1952 | pdq(:,:,igcm_dust_number) = |
|---|
| 1953 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 1954 | end where |
|---|
| 1955 | where (pq(:,:,igcm_dust_number) + |
|---|
| 1956 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
|---|
| 1957 | pdq(:,:,igcm_dust_mass) = |
|---|
| 1958 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 1959 | pdq(:,:,igcm_dust_number) = |
|---|
| 1960 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 1961 | end where |
|---|
| 1962 | if (meteo_flux) then |
|---|
| 1963 | where (pq(:,:,igcm_ccnco2_meteor_mass) + |
|---|
| 1964 | & ptimestep*pdq(:,:,igcm_ccnco2_meteor_mass) < 0.) |
|---|
| 1965 | pdq(:,:,igcm_ccnco2_meteor_mass) = |
|---|
| 1966 | & - pq(:,:,igcm_ccnco2_meteor_mass)/ptimestep + 1.e-30 |
|---|
| 1967 | pdq(:,:,igcm_ccnco2_meteor_number) = |
|---|
| 1968 | & - pq(:,:,igcm_ccnco2_meteor_number)/ptimestep + 1.e-30 |
|---|
| 1969 | end where |
|---|
| 1970 | where (pq(:,:,igcm_ccnco2_meteor_number) + |
|---|
| 1971 | & ptimestep*pdq(:,:,igcm_ccnco2_meteor_number) < 0.) |
|---|
| 1972 | pdq(:,:,igcm_ccnco2_meteor_mass) = |
|---|
| 1973 | & - pq(:,:,igcm_ccnco2_meteor_mass)/ptimestep + 1.e-30 |
|---|
| 1974 | pdq(:,:,igcm_ccnco2_meteor_number) = |
|---|
| 1975 | & - pq(:,:,igcm_ccnco2_meteor_number)/ptimestep + 1.e-30 |
|---|
| 1976 | end where |
|---|
| 1977 | end if |
|---|
| 1978 | END IF ! of IF (co2clouds) |
|---|
| 1979 | |
|---|
| 1980 | c 9b. Aerosol particles |
|---|
| 1981 | c ------------------- |
|---|
| 1982 | c ---------- |
|---|
| 1983 | c Dust devil : |
|---|
| 1984 | c ---------- |
|---|
| 1985 | IF(callddevil) then |
|---|
| 1986 | call dustdevil(ngrid,nlayer,nq, zplev,pu,pv,pt, tsurf,q2, |
|---|
| 1987 | & zdqdev,zdqsdev) |
|---|
| 1988 | |
|---|
| 1989 | if (dustbin.ge.1) then |
|---|
| 1990 | do iq=1,nq |
|---|
| 1991 | DO l=1,nlayer |
|---|
| 1992 | DO ig=1,ngrid |
|---|
| 1993 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdev(ig,l,iq) |
|---|
| 1994 | ENDDO |
|---|
| 1995 | ENDDO |
|---|
| 1996 | enddo |
|---|
| 1997 | do iq=1,nq |
|---|
| 1998 | DO ig=1,ngrid |
|---|
| 1999 | DO islope = 1,nslope |
|---|
| 2000 | dqsurf(ig,iq,islope)= dqsurf(ig,iq,islope) + |
|---|
| 2001 | & zdqsdev(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
|---|
| 2002 | ENDDO |
|---|
| 2003 | ENDDO |
|---|
| 2004 | enddo |
|---|
| 2005 | endif ! of if (dustbin.ge.1) |
|---|
| 2006 | |
|---|
| 2007 | END IF ! of IF (callddevil) |
|---|
| 2008 | |
|---|
| 2009 | c ------------- |
|---|
| 2010 | c Sedimentation : acts also on water ice |
|---|
| 2011 | c ------------- |
|---|
| 2012 | IF (sedimentation) THEN |
|---|
| 2013 | zdqsed(1:ngrid,1:nlayer,1:nq)=0 |
|---|
| 2014 | zdqssed(1:ngrid,1:nq)=0 |
|---|
| 2015 | |
|---|
| 2016 | c Sedimentation for co2 clouds tracers are inside co2cloud microtimestep |
|---|
| 2017 | c Zdqssed isn't |
|---|
| 2018 | |
|---|
| 2019 | call callsedim(ngrid,nlayer,ptimestep, |
|---|
| 2020 | & zplev,zzlev,zzlay,pt,pdt, |
|---|
| 2021 | & rdust,rstormdust,rtopdust, |
|---|
| 2022 | & rice,rsedcloud,rhocloud, |
|---|
| 2023 | & pq,pdq,zdqsed,zdqssed,nq, |
|---|
| 2024 | & tau,tauscaling) |
|---|
| 2025 | |
|---|
| 2026 | c Flux at the surface of co2 ice computed in co2cloud microtimestep |
|---|
| 2027 | IF (rdstorm) THEN |
|---|
| 2028 | c Storm dust cannot sediment to the surface |
|---|
| 2029 | DO ig=1,ngrid |
|---|
| 2030 | zdqsed(ig,1,igcm_stormdust_mass)= |
|---|
| 2031 | & zdqsed(ig,1,igcm_stormdust_mass)+ |
|---|
| 2032 | & zdqssed(ig,igcm_stormdust_mass) / |
|---|
| 2033 | & ((pplev(ig,1)-pplev(ig,2))/g) |
|---|
| 2034 | zdqsed(ig,1,igcm_stormdust_number)= |
|---|
| 2035 | & zdqsed(ig,1,igcm_stormdust_number)+ |
|---|
| 2036 | & zdqssed(ig,igcm_stormdust_number) / |
|---|
| 2037 | & ((pplev(ig,1)-pplev(ig,2))/g) |
|---|
| 2038 | zdqssed(ig,igcm_stormdust_mass)=0. |
|---|
| 2039 | zdqssed(ig,igcm_stormdust_number)=0. |
|---|
| 2040 | ENDDO |
|---|
| 2041 | ENDIF !rdstorm |
|---|
| 2042 | |
|---|
| 2043 | DO iq=1, nq |
|---|
| 2044 | DO l=1,nlayer |
|---|
| 2045 | DO ig=1,ngrid |
|---|
| 2046 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqsed(ig,l,iq) |
|---|
| 2047 | ENDDO |
|---|
| 2048 | ENDDO |
|---|
| 2049 | ENDDO |
|---|
| 2050 | DO iq=1, nq |
|---|
| 2051 | DO ig=1,ngrid |
|---|
| 2052 | DO islope = 1,nslope |
|---|
| 2053 | dqsurf(ig,iq,islope)= dqsurf(ig,iq,islope) + |
|---|
| 2054 | & zdqssed(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
|---|
| 2055 | ENDDO |
|---|
| 2056 | ENDDO |
|---|
| 2057 | ENDDO |
|---|
| 2058 | |
|---|
| 2059 | END IF ! of IF (sedimentation) |
|---|
| 2060 | |
|---|
| 2061 | c Add lifted dust to tendancies after sedimentation in the LES (AC) |
|---|
| 2062 | IF (turb_resolved) THEN |
|---|
| 2063 | DO iq=1, nq |
|---|
| 2064 | DO l=1,nlayer |
|---|
| 2065 | DO ig=1,ngrid |
|---|
| 2066 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
|---|
| 2067 | ENDDO |
|---|
| 2068 | ENDDO |
|---|
| 2069 | ENDDO |
|---|
| 2070 | DO iq=1, nq |
|---|
| 2071 | DO ig=1,ngrid |
|---|
| 2072 | dqsurf(ig,iq,:)=dqsurf(ig,iq,:) + zdqsdif(ig,iq,:) |
|---|
| 2073 | ENDDO |
|---|
| 2074 | ENDDO |
|---|
| 2075 | ENDIF |
|---|
| 2076 | c |
|---|
| 2077 | c 9c. Chemical species |
|---|
| 2078 | c ------------------ |
|---|
| 2079 | |
|---|
| 2080 | #ifndef MESOSCALE |
|---|
| 2081 | c -------------- |
|---|
| 2082 | c photochemistry : |
|---|
| 2083 | c -------------- |
|---|
| 2084 | IF (photochem) then |
|---|
| 2085 | |
|---|
| 2086 | if (modulo(icount-1,ichemistry).eq.0) then |
|---|
| 2087 | ! compute chemistry every ichemistry physics step |
|---|
| 2088 | |
|---|
| 2089 | ! dust and ice surface area |
|---|
| 2090 | call surfacearea(ngrid, nlayer, naerkind, |
|---|
| 2091 | $ ptimestep, zplay, zzlay, |
|---|
| 2092 | $ pt, pq, pdq, nq, |
|---|
| 2093 | $ rdust, rice, tau, tauscaling, |
|---|
| 2094 | $ surfdust, surfice) |
|---|
| 2095 | ! call photochemistry |
|---|
| 2096 | DO ig = 1,ngrid |
|---|
| 2097 | qsurf_tmp(ig,:) = qsurf(ig,:,major_slope(ig)) |
|---|
| 2098 | ENDDO |
|---|
| 2099 | call calchim(ngrid,nlayer,nq, |
|---|
| 2100 | & ptimestep,zplay,zplev,pt,pdt,dist_sol,mu0, |
|---|
| 2101 | $ zzlev,zzlay,zday,pq,pdq,zdqchim,zdqschim, |
|---|
| 2102 | $ zdqcloud,zdqscloud,tau(:,1), |
|---|
| 2103 | $ qsurf_tmp(:,igcm_co2), |
|---|
| 2104 | $ pu,pdu,pv,pdv,surfdust,surfice) |
|---|
| 2105 | |
|---|
| 2106 | endif ! of if (modulo(icount-1,ichemistry).eq.0) |
|---|
| 2107 | |
|---|
| 2108 | ! increment values of tracers: |
|---|
| 2109 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
|---|
| 2110 | ! tracers is zero anyways |
|---|
| 2111 | DO l=1,nlayer |
|---|
| 2112 | DO ig=1,ngrid |
|---|
| 2113 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqchim(ig,l,iq) |
|---|
| 2114 | ENDDO |
|---|
| 2115 | ENDDO |
|---|
| 2116 | ENDDO ! of DO iq=1,nq |
|---|
| 2117 | |
|---|
| 2118 | ! add condensation tendency for H2O2 |
|---|
| 2119 | if (igcm_h2o2.ne.0) then |
|---|
| 2120 | DO l=1,nlayer |
|---|
| 2121 | DO ig=1,ngrid |
|---|
| 2122 | pdq(ig,l,igcm_h2o2)=pdq(ig,l,igcm_h2o2) |
|---|
| 2123 | & +zdqcloud(ig,l,igcm_h2o2) |
|---|
| 2124 | ENDDO |
|---|
| 2125 | ENDDO |
|---|
| 2126 | endif |
|---|
| 2127 | |
|---|
| 2128 | ! increment surface values of tracers: |
|---|
| 2129 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
|---|
| 2130 | ! tracers is zero anyways |
|---|
| 2131 | DO ig=1,ngrid |
|---|
| 2132 | DO islope = 1,nslope |
|---|
| 2133 | dqsurf(ig,iq,islope)=dqsurf(ig,iq,islope) + |
|---|
| 2134 | & zdqschim(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
|---|
| 2135 | ENDDO |
|---|
| 2136 | ENDDO |
|---|
| 2137 | ENDDO ! of DO iq=1,nq |
|---|
| 2138 | |
|---|
| 2139 | ! add condensation tendency for H2O2 |
|---|
| 2140 | if (igcm_h2o2.ne.0) then |
|---|
| 2141 | DO ig=1,ngrid |
|---|
| 2142 | DO islope = 1,nslope |
|---|
| 2143 | dqsurf(ig,igcm_h2o2,islope)=dqsurf(ig,igcm_h2o2,islope)+ |
|---|
| 2144 | & zdqscloud(ig,igcm_h2o2)*cos(pi*def_slope_mean(islope)/180.) |
|---|
| 2145 | ENDDO |
|---|
| 2146 | ENDDO |
|---|
| 2147 | endif |
|---|
| 2148 | |
|---|
| 2149 | END IF ! of IF (photochem) |
|---|
| 2150 | #endif |
|---|
| 2151 | |
|---|
| 2152 | |
|---|
| 2153 | #ifndef MESOSCALE |
|---|
| 2154 | c----------------------------------------------------------------------- |
|---|
| 2155 | c 10. THERMOSPHERE CALCULATION |
|---|
| 2156 | c----------------------------------------------------------------------- |
|---|
| 2157 | |
|---|
| 2158 | if (callthermos) then |
|---|
| 2159 | call thermosphere(ngrid,nlayer,nq,zplev,zplay,dist_sol, |
|---|
| 2160 | $ mu0,ptimestep,ptime,zday,tsurf_meshavg,zzlev,zzlay, |
|---|
| 2161 | & pt,pq,pu,pv,pdt,pdq, |
|---|
| 2162 | $ zdteuv,zdtconduc,zdumolvis,zdvmolvis,zdqmoldiff, |
|---|
| 2163 | $ PhiEscH,PhiEscH2,PhiEscD) |
|---|
| 2164 | |
|---|
| 2165 | DO l=1,nlayer |
|---|
| 2166 | DO ig=1,ngrid |
|---|
| 2167 | dtrad(ig,l)=dtrad(ig,l)+zdteuv(ig,l) |
|---|
| 2168 | pdt(ig,l)=pdt(ig,l)+zdtconduc(ig,l)+zdteuv(ig,l) |
|---|
| 2169 | pdv(ig,l)=pdv(ig,l)+zdvmolvis(ig,l) |
|---|
| 2170 | pdu(ig,l)=pdu(ig,l)+zdumolvis(ig,l) |
|---|
| 2171 | DO iq=1, nq |
|---|
| 2172 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqmoldiff(ig,l,iq) |
|---|
| 2173 | ENDDO |
|---|
| 2174 | ENDDO |
|---|
| 2175 | ENDDO |
|---|
| 2176 | |
|---|
| 2177 | endif ! of if (callthermos) |
|---|
| 2178 | #endif |
|---|
| 2179 | |
|---|
| 2180 | c----------------------------------------------------------------------- |
|---|
| 2181 | c 11. Carbon dioxide condensation-sublimation: |
|---|
| 2182 | c (should be the last atmospherical physical process to be computed) |
|---|
| 2183 | c ------------------------------------------- |
|---|
| 2184 | IF (tituscap) THEN |
|---|
| 2185 | !!! get the actual co2 seasonal cap from Titus observations |
|---|
| 2186 | CALL geticecover(ngrid, 180.*zls/pi, |
|---|
| 2187 | . 180.*longitude/pi, 180.*latitude/pi, |
|---|
| 2188 | . qsurf_tmp(:,igcm_co2) ) |
|---|
| 2189 | qsurf_tmp(:,igcm_co2) = qsurf_tmp(:,igcm_co2) * 10000. |
|---|
| 2190 | ENDIF |
|---|
| 2191 | |
|---|
| 2192 | |
|---|
| 2193 | IF (callcond) THEN |
|---|
| 2194 | zdtc(:,:) = 0. |
|---|
| 2195 | zdtsurfc(:,:) = 0. |
|---|
| 2196 | zduc(:,:) = 0. |
|---|
| 2197 | zdvc(:,:) = 0. |
|---|
| 2198 | zdqc(:,:,:) = 0. |
|---|
| 2199 | zdqsc(:,:,:) = 0. |
|---|
| 2200 | CALL co2condens(ngrid,nlayer,nq,nslope,ptimestep, |
|---|
| 2201 | $ capcal,zplay,zplev,tsurf,pt, |
|---|
| 2202 | $ pphi,pdt,pdu,pdv,zdtsurf,pu,pv,pq,pdq, |
|---|
| 2203 | $ qsurf(:,igcm_co2,:),perenial_co2ice, |
|---|
| 2204 | $ albedo,emis,rdust, |
|---|
| 2205 | $ zdtc,zdtsurfc,pdpsrf,zduc,zdvc,zdqc, |
|---|
| 2206 | $ fluxsurf_dn_sw,zls, |
|---|
| 2207 | $ zdqssed_co2,zcondicea_co2microp, |
|---|
| 2208 | & zdqsc) |
|---|
| 2209 | |
|---|
| 2210 | DO iq=1, nq |
|---|
| 2211 | DO ig=1,ngrid |
|---|
| 2212 | dqsurf(ig,iq,:)=dqsurf(ig,iq,:)+zdqsc(ig,iq,:) |
|---|
| 2213 | ENDDO ! (ig) |
|---|
| 2214 | ENDDO ! (iq) |
|---|
| 2215 | DO l=1,nlayer |
|---|
| 2216 | DO ig=1,ngrid |
|---|
| 2217 | pdt(ig,l)=pdt(ig,l)+zdtc(ig,l) |
|---|
| 2218 | pdv(ig,l)=pdv(ig,l)+zdvc(ig,l) |
|---|
| 2219 | pdu(ig,l)=pdu(ig,l)+zduc(ig,l) |
|---|
| 2220 | ENDDO |
|---|
| 2221 | ENDDO |
|---|
| 2222 | DO ig=1,ngrid |
|---|
| 2223 | zdtsurf(ig,:) = zdtsurf(ig,:) + zdtsurfc(ig,:) |
|---|
| 2224 | ENDDO |
|---|
| 2225 | |
|---|
| 2226 | DO iq=1, nq |
|---|
| 2227 | DO l=1,nlayer |
|---|
| 2228 | DO ig=1,ngrid |
|---|
| 2229 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqc(ig,l,iq) |
|---|
| 2230 | ENDDO |
|---|
| 2231 | ENDDO |
|---|
| 2232 | ENDDO |
|---|
| 2233 | |
|---|
| 2234 | #ifndef MESOSCALE |
|---|
| 2235 | ! update surface pressure |
|---|
| 2236 | DO ig=1,ngrid |
|---|
| 2237 | ps(ig) = zplev(ig,1) + pdpsrf(ig)*ptimestep |
|---|
| 2238 | ENDDO |
|---|
| 2239 | ! update pressure levels |
|---|
| 2240 | DO l=1,nlayer |
|---|
| 2241 | DO ig=1,ngrid |
|---|
| 2242 | zplay(ig,l) = aps(l) + bps(l)*ps(ig) |
|---|
| 2243 | zplev(ig,l) = ap(l) + bp(l)*ps(ig) |
|---|
| 2244 | ENDDO |
|---|
| 2245 | ENDDO |
|---|
| 2246 | zplev(:,nlayer+1) = 0. |
|---|
| 2247 | ! update layers altitude |
|---|
| 2248 | DO l=2,nlayer |
|---|
| 2249 | DO ig=1,ngrid |
|---|
| 2250 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
|---|
| 2251 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
|---|
| 2252 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
|---|
| 2253 | ENDDO |
|---|
| 2254 | ENDDO |
|---|
| 2255 | #endif |
|---|
| 2256 | ENDIF ! of IF (callcond) |
|---|
| 2257 | |
|---|
| 2258 | c----------------------------------------------------------------------- |
|---|
| 2259 | c Updating tracer budget on surface |
|---|
| 2260 | c----------------------------------------------------------------------- |
|---|
| 2261 | DO iq=1, nq |
|---|
| 2262 | DO ig=1,ngrid |
|---|
| 2263 | DO islope = 1,nslope |
|---|
| 2264 | qsurf(ig,iq,islope)=qsurf(ig,iq,islope)+ |
|---|
| 2265 | & ptimestep*dqsurf(ig,iq,islope) |
|---|
| 2266 | ENDDO |
|---|
| 2267 | ENDDO ! (ig) |
|---|
| 2268 | ENDDO ! (iq) |
|---|
| 2269 | c----------------------------------------------------------------------- |
|---|
| 2270 | c 12. Surface and sub-surface soil temperature |
|---|
| 2271 | c----------------------------------------------------------------------- |
|---|
| 2272 | c |
|---|
| 2273 | c |
|---|
| 2274 | c 12.1 Increment Surface temperature: |
|---|
| 2275 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 2276 | |
|---|
| 2277 | DO ig=1,ngrid |
|---|
| 2278 | DO islope = 1,nslope |
|---|
| 2279 | tsurf(ig,islope)=tsurf(ig,islope)+ |
|---|
| 2280 | & ptimestep*zdtsurf(ig,islope) |
|---|
| 2281 | ENDDO |
|---|
| 2282 | ENDDO |
|---|
| 2283 | |
|---|
| 2284 | c Prescribe a cold trap at south pole (except at high obliquity !!) |
|---|
| 2285 | c Temperature at the surface is set there to be the temperature |
|---|
| 2286 | c corresponding to equilibrium temperature between phases of CO2 |
|---|
| 2287 | |
|---|
| 2288 | |
|---|
| 2289 | IF (water) THEN |
|---|
| 2290 | !#ifndef MESOSCALE |
|---|
| 2291 | ! if (caps.and.(obliquit.lt.27.)) then => now done in co2condens |
|---|
| 2292 | ! NB: Updated surface pressure, at grid point 'ngrid', is |
|---|
| 2293 | ! ps(ngrid)=zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep |
|---|
| 2294 | ! tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095* |
|---|
| 2295 | ! & (zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep))) |
|---|
| 2296 | ! tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095*ps(ngrid))) |
|---|
| 2297 | ! endif |
|---|
| 2298 | !#endif |
|---|
| 2299 | c ------------------------------------------------------------- |
|---|
| 2300 | c Change of surface albedo in case of ground frost |
|---|
| 2301 | c everywhere except on the north permanent cap and in regions |
|---|
| 2302 | c covered by dry ice. |
|---|
| 2303 | c ALWAYS PLACE these lines after co2condens !!! |
|---|
| 2304 | c ------------------------------------------------------------- |
|---|
| 2305 | do ig=1,ngrid |
|---|
| 2306 | do islope = 1,nslope |
|---|
| 2307 | if ((qsurf(ig,igcm_co2,islope).eq.0).and. |
|---|
| 2308 | & (qsurf(ig,igcm_h2o_ice,islope) |
|---|
| 2309 | & .gt.frost_albedo_threshold)) then |
|---|
| 2310 | if ((watercaptag(ig)).and.(cst_cap_albedo)) then |
|---|
| 2311 | albedo(ig,1,islope) = albedo_h2o_cap |
|---|
| 2312 | albedo(ig,2,islope) = albedo_h2o_cap |
|---|
| 2313 | else |
|---|
| 2314 | albedo(ig,1,islope) = albedo_h2o_frost |
|---|
| 2315 | albedo(ig,2,islope) = albedo_h2o_frost |
|---|
| 2316 | endif !((watercaptag(ig)).and.(cst_cap_albedo)) then |
|---|
| 2317 | c write(*,*) "frost thickness", qsurf(ig,igcm_h2o_ice) |
|---|
| 2318 | c write(*,*) "physiq.F frost :" |
|---|
| 2319 | c & ,latitude(ig)*180./pi, longitude(ig)*180./pi |
|---|
| 2320 | endif |
|---|
| 2321 | enddo ! islope |
|---|
| 2322 | enddo ! of do ig=1,ngrid |
|---|
| 2323 | ENDIF ! of IF (water) |
|---|
| 2324 | |
|---|
| 2325 | c |
|---|
| 2326 | c 12.2 Compute soil temperatures and subsurface heat flux: |
|---|
| 2327 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 2328 | IF (callsoil) THEN |
|---|
| 2329 | c Thermal inertia feedback |
|---|
| 2330 | IF (tifeedback) THEN |
|---|
| 2331 | DO islope = 1,nslope |
|---|
| 2332 | CALL soil_tifeedback(ngrid,nsoilmx, |
|---|
| 2333 | s qsurf(:,:,islope), |
|---|
| 2334 | s inertiesoil_tifeedback(:,:,islope)) |
|---|
| 2335 | ENDDO |
|---|
| 2336 | CALL soil(ngrid,nsoilmx,.false.,inertiesoil_tifeedback, |
|---|
| 2337 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
|---|
| 2338 | ELSE |
|---|
| 2339 | CALL soil(ngrid,nsoilmx,.false.,inertiesoil, |
|---|
| 2340 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
|---|
| 2341 | ENDIF |
|---|
| 2342 | ENDIF |
|---|
| 2343 | |
|---|
| 2344 | c To avoid negative values |
|---|
| 2345 | IF (rdstorm) THEN |
|---|
| 2346 | where (pq(:,:,igcm_stormdust_mass) + |
|---|
| 2347 | & ptimestep*pdq(:,:,igcm_stormdust_mass) < 0.) |
|---|
| 2348 | pdq(:,:,igcm_stormdust_mass) = |
|---|
| 2349 | & - pq(:,:,igcm_stormdust_mass)/ptimestep + 1.e-30 |
|---|
| 2350 | pdq(:,:,igcm_stormdust_number) = |
|---|
| 2351 | & - pq(:,:,igcm_stormdust_number)/ptimestep + 1.e-30 |
|---|
| 2352 | end where |
|---|
| 2353 | where (pq(:,:,igcm_stormdust_number) + |
|---|
| 2354 | & ptimestep*pdq(:,:,igcm_stormdust_number) < 0.) |
|---|
| 2355 | pdq(:,:,igcm_stormdust_mass) = |
|---|
| 2356 | & - pq(:,:,igcm_stormdust_mass)/ptimestep + 1.e-30 |
|---|
| 2357 | pdq(:,:,igcm_stormdust_number) = |
|---|
| 2358 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 2359 | end where |
|---|
| 2360 | |
|---|
| 2361 | where (pq(:,:,igcm_dust_mass) + |
|---|
| 2362 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
|---|
| 2363 | pdq(:,:,igcm_dust_mass) = |
|---|
| 2364 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 2365 | pdq(:,:,igcm_dust_number) = |
|---|
| 2366 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 2367 | end where |
|---|
| 2368 | where (pq(:,:,igcm_dust_number) + |
|---|
| 2369 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
|---|
| 2370 | pdq(:,:,igcm_dust_mass) = |
|---|
| 2371 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 2372 | pdq(:,:,igcm_dust_number) = |
|---|
| 2373 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 2374 | end where |
|---|
| 2375 | ENDIF !(rdstorm) |
|---|
| 2376 | |
|---|
| 2377 | c----------------------------------------------------------------------- |
|---|
| 2378 | c J. Naar : Surface and sub-surface water ice |
|---|
| 2379 | c----------------------------------------------------------------------- |
|---|
| 2380 | c |
|---|
| 2381 | c |
|---|
| 2382 | c Increment Watercap (surface h2o reservoirs): |
|---|
| 2383 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 2384 | |
|---|
| 2385 | DO ig=1,ngrid |
|---|
| 2386 | DO islope = 1,nslope |
|---|
| 2387 | watercap(ig,islope)=watercap(ig,islope)+ |
|---|
| 2388 | s ptimestep*dwatercap(ig,islope) |
|---|
| 2389 | ENDDO |
|---|
| 2390 | ENDDO |
|---|
| 2391 | |
|---|
| 2392 | IF (refill_watercap) THEN |
|---|
| 2393 | |
|---|
| 2394 | DO ig=1,ngrid |
|---|
| 2395 | DO islope = 1,nslope |
|---|
| 2396 | if (watercaptag(ig).and. (qsurf(ig,igcm_h2o_ice,islope) |
|---|
| 2397 | & .gt.frost_metam_threshold)) then |
|---|
| 2398 | |
|---|
| 2399 | watercap(ig,islope)=watercap(ig,islope) |
|---|
| 2400 | & +qsurf(ig,igcm_h2o_ice,islope) |
|---|
| 2401 | & - frost_metam_threshold |
|---|
| 2402 | qsurf(ig,igcm_h2o_ice,islope) = frost_metam_threshold |
|---|
| 2403 | endif ! (watercaptag(ig).and. |
|---|
| 2404 | ENDDO |
|---|
| 2405 | ENDDO |
|---|
| 2406 | |
|---|
| 2407 | ENDIF ! (refill_watercap) THEN |
|---|
| 2408 | |
|---|
| 2409 | |
|---|
| 2410 | c----------------------------------------------------------------------- |
|---|
| 2411 | c 13. Write output files |
|---|
| 2412 | c ---------------------- |
|---|
| 2413 | |
|---|
| 2414 | call compute_meshgridavg(ngrid,nq,albedo,emis,tsurf,qsurf, |
|---|
| 2415 | & albedo_meshavg,emis_meshavg,tsurf_meshavg,qsurf_meshavg) |
|---|
| 2416 | |
|---|
| 2417 | c ------------------------------- |
|---|
| 2418 | c Dynamical fields incrementation |
|---|
| 2419 | c ------------------------------- |
|---|
| 2420 | c (FOR OUTPUT ONLY : the actual model integration is performed in the dynamics) |
|---|
| 2421 | ! temperature, zonal and meridional wind |
|---|
| 2422 | DO l=1,nlayer |
|---|
| 2423 | DO ig=1,ngrid |
|---|
| 2424 | zt(ig,l)=pt(ig,l) + pdt(ig,l)*ptimestep |
|---|
| 2425 | zu(ig,l)=pu(ig,l) + pdu(ig,l)*ptimestep |
|---|
| 2426 | zv(ig,l)=pv(ig,l) + pdv(ig,l)*ptimestep |
|---|
| 2427 | ENDDO |
|---|
| 2428 | ENDDO |
|---|
| 2429 | |
|---|
| 2430 | ! tracers |
|---|
| 2431 | DO iq=1, nq |
|---|
| 2432 | DO l=1,nlayer |
|---|
| 2433 | DO ig=1,ngrid |
|---|
| 2434 | zq(ig,l,iq)=pq(ig,l,iq) +pdq(ig,l,iq)*ptimestep |
|---|
| 2435 | ENDDO |
|---|
| 2436 | ENDDO |
|---|
| 2437 | ENDDO |
|---|
| 2438 | |
|---|
| 2439 | ! Density |
|---|
| 2440 | DO l=1,nlayer |
|---|
| 2441 | DO ig=1,ngrid |
|---|
| 2442 | rho(ig,l) = zplay(ig,l)/(rnew(ig,l)*zt(ig,l)) |
|---|
| 2443 | ENDDO |
|---|
| 2444 | ENDDO |
|---|
| 2445 | |
|---|
| 2446 | ! Potential Temperature |
|---|
| 2447 | |
|---|
| 2448 | DO ig=1,ngrid |
|---|
| 2449 | DO l=1,nlayer |
|---|
| 2450 | zh(ig,l) = zt(ig,l)*(zplev(ig,1)/zplay(ig,l))**rcp |
|---|
| 2451 | ENDDO |
|---|
| 2452 | ENDDO |
|---|
| 2453 | |
|---|
| 2454 | c Compute surface stress : (NB: z0 is a common in surfdat.h) |
|---|
| 2455 | c DO ig=1,ngrid |
|---|
| 2456 | c cd = (0.4/log(zzlay(ig,1)/z0(ig)))**2 |
|---|
| 2457 | c zstress(ig) = rho(ig,1)*cd*(zu(ig,1)**2 + zv(ig,1)**2) |
|---|
| 2458 | c ENDDO |
|---|
| 2459 | |
|---|
| 2460 | c Sum of fluxes in solar spectral bands (for output only) |
|---|
| 2461 | fluxtop_dn_sw_tot(1:ngrid)=fluxtop_dn_sw(1:ngrid,1) + |
|---|
| 2462 | & fluxtop_dn_sw(1:ngrid,2) |
|---|
| 2463 | fluxtop_up_sw_tot(1:ngrid)=fluxtop_up_sw(1:ngrid,1) + |
|---|
| 2464 | & fluxtop_up_sw(1:ngrid,2) |
|---|
| 2465 | fluxsurf_dn_sw_tot(1:ngrid,1:nslope)= |
|---|
| 2466 | & fluxsurf_dn_sw(1:ngrid,1,1:nslope) + |
|---|
| 2467 | & fluxsurf_dn_sw(1:ngrid,2,1:nslope) |
|---|
| 2468 | fluxsurf_up_sw_tot(1:ngrid)=fluxsurf_up_sw(1:ngrid,1) + |
|---|
| 2469 | & fluxsurf_up_sw(1:ngrid,2) |
|---|
| 2470 | |
|---|
| 2471 | c ******* TEST ****************************************************** |
|---|
| 2472 | ztim1 = 999 |
|---|
| 2473 | DO l=1,nlayer |
|---|
| 2474 | DO ig=1,ngrid |
|---|
| 2475 | if (pt(ig,l).lt.ztim1) then |
|---|
| 2476 | ztim1 = pt(ig,l) |
|---|
| 2477 | igmin = ig |
|---|
| 2478 | lmin = l |
|---|
| 2479 | end if |
|---|
| 2480 | ENDDO |
|---|
| 2481 | ENDDO |
|---|
| 2482 | if(min(pt(igmin,lmin),zt(igmin,lmin)).lt.70.) then |
|---|
| 2483 | write(*,*) 'PHYSIQ: stability WARNING :' |
|---|
| 2484 | write(*,*) 'pt, zt Tmin = ', pt(igmin,lmin), zt(igmin,lmin), |
|---|
| 2485 | & 'ig l =', igmin, lmin |
|---|
| 2486 | end if |
|---|
| 2487 | c ******************************************************************* |
|---|
| 2488 | |
|---|
| 2489 | c --------------------- |
|---|
| 2490 | c Outputs to the screen |
|---|
| 2491 | c --------------------- |
|---|
| 2492 | |
|---|
| 2493 | IF (lwrite) THEN |
|---|
| 2494 | PRINT*,'Global diagnostics for the physics' |
|---|
| 2495 | PRINT*,'Variables and their increments x and dx/dt * dt' |
|---|
| 2496 | WRITE(*,'(a6,a10,2a15)') 'Ts','dTs','ps','dps' |
|---|
| 2497 | WRITE(*,'(2f10.5,2f15.5)') |
|---|
| 2498 | s tsurf(igout,:),zdtsurf(igout,:)*ptimestep, |
|---|
| 2499 | s zplev(igout,1),pdpsrf(igout)*ptimestep |
|---|
| 2500 | WRITE(*,'(a4,a6,5a10)') 'l','u','du','v','dv','T','dT' |
|---|
| 2501 | WRITE(*,'(i4,6f10.5)') (l, |
|---|
| 2502 | s pu(igout,l),pdu(igout,l)*ptimestep, |
|---|
| 2503 | s pv(igout,l),pdv(igout,l)*ptimestep, |
|---|
| 2504 | s pt(igout,l),pdt(igout,l)*ptimestep, |
|---|
| 2505 | s l=1,nlayer) |
|---|
| 2506 | ENDIF ! of IF (lwrite) |
|---|
| 2507 | |
|---|
| 2508 | c ---------------------------------------------------------- |
|---|
| 2509 | c ---------------------------------------------------------- |
|---|
| 2510 | c INTERPOLATIONS IN THE SURFACE-LAYER |
|---|
| 2511 | c ---------------------------------------------------------- |
|---|
| 2512 | c ---------------------------------------------------------- |
|---|
| 2513 | |
|---|
| 2514 | n_out=0 ! number of elements in the z_out array. |
|---|
| 2515 | ! for z_out=[3.,2.,1.,0.5,0.1], n_out must be set |
|---|
| 2516 | ! to 5 |
|---|
| 2517 | IF (n_out .ne. 0) THEN |
|---|
| 2518 | |
|---|
| 2519 | IF(.NOT. ALLOCATED(z_out)) ALLOCATE(z_out(n_out)) |
|---|
| 2520 | IF(.NOT. ALLOCATED(T_out)) ALLOCATE(T_out(ngrid,n_out)) |
|---|
| 2521 | IF(.NOT. ALLOCATED(u_out)) ALLOCATE(u_out(ngrid,n_out)) |
|---|
| 2522 | |
|---|
| 2523 | z_out(:)=[3.,2.,1.,0.5,0.1] |
|---|
| 2524 | u_out(:,:)=0. |
|---|
| 2525 | T_out(:,:)=0. |
|---|
| 2526 | |
|---|
| 2527 | call pbl_parameters(ngrid,nlayer,ps,zplay,z0, |
|---|
| 2528 | & g,zzlay,zzlev,zu,zv,wstar,hfmax_th,zmax_th,tsurf(:,iflat), |
|---|
| 2529 | & zh,z_out,n_out,T_out,u_out,ustar,tstar,L_mo,vhf,vvv) |
|---|
| 2530 | ! pourquoi ustar recalcule ici? fait dans vdifc. |
|---|
| 2531 | |
|---|
| 2532 | #ifndef MESOSCALE |
|---|
| 2533 | DO n=1,n_out |
|---|
| 2534 | write(zstring, '(F8.6)') z_out(n) |
|---|
| 2535 | call write_output('T_out_'//trim(zstring), |
|---|
| 2536 | & 'potential temperature at z_out','K',T_out(:,n)) |
|---|
| 2537 | call write_output('u_out_'//trim(zstring), |
|---|
| 2538 | & 'horizontal velocity norm at z_out','m/s',u_out(:,n)) |
|---|
| 2539 | ENDDO |
|---|
| 2540 | call write_output('u_star', |
|---|
| 2541 | & 'friction velocity','m/s',ustar) |
|---|
| 2542 | call write_output('teta_star', |
|---|
| 2543 | & 'friction potential temperature','K',tstar) |
|---|
| 2544 | call write_output('vvv', |
|---|
| 2545 | & 'Vertical velocity variance at zout','m',vvv) |
|---|
| 2546 | call write_output('vhf', |
|---|
| 2547 | & 'Vertical heat flux at zout','m',vhf) |
|---|
| 2548 | #else |
|---|
| 2549 | T_out1(:)=T_out(:,1) |
|---|
| 2550 | u_out1(:)=u_out(:,1) |
|---|
| 2551 | #endif |
|---|
| 2552 | |
|---|
| 2553 | ENDIF |
|---|
| 2554 | |
|---|
| 2555 | c ---------------------------------------------------------- |
|---|
| 2556 | c ---------------------------------------------------------- |
|---|
| 2557 | c END OF SURFACE LAYER INTERPOLATIONS |
|---|
| 2558 | c ---------------------------------------------------------- |
|---|
| 2559 | c ---------------------------------------------------------- |
|---|
| 2560 | |
|---|
| 2561 | #ifndef MESOSCALE |
|---|
| 2562 | c ------------------------------------------------------------------- |
|---|
| 2563 | c Writing NetCDF file "RESTARTFI" at the end of the run |
|---|
| 2564 | c ------------------------------------------------------------------- |
|---|
| 2565 | c Note: 'restartfi' is stored just before dynamics are stored |
|---|
| 2566 | c in 'restart'. Between now and the writting of 'restart', |
|---|
| 2567 | c there will have been the itau=itau+1 instruction and |
|---|
| 2568 | c a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
|---|
| 2569 | c thus we store for time=time+dtvr |
|---|
| 2570 | |
|---|
| 2571 | ! default: not writing a restart file at this time step |
|---|
| 2572 | write_restart=.false. |
|---|
| 2573 | IF (ecritstart.GT.0) THEN |
|---|
| 2574 | ! For when we store multiple time steps in the restart file |
|---|
| 2575 | IF (MODULO(icount*iphysiq,ecritstart).EQ.0) THEN |
|---|
| 2576 | write_restart=.true. |
|---|
| 2577 | ENDIF |
|---|
| 2578 | ENDIF |
|---|
| 2579 | IF (lastcall) THEN |
|---|
| 2580 | ! Always write a restart at the end of the simulation |
|---|
| 2581 | write_restart=.true. |
|---|
| 2582 | ENDIF |
|---|
| 2583 | |
|---|
| 2584 | IF (write_restart) THEN |
|---|
| 2585 | IF (grid_type==unstructured) THEN !IF DYNAMICO |
|---|
| 2586 | |
|---|
| 2587 | ! When running Dynamico, no need to add a dynamics time step to ztime_fin |
|---|
| 2588 | IF (ptime.LE. 1.E-10) THEN |
|---|
| 2589 | ! Residual ptime occurs with Dynamico |
|---|
| 2590 | ztime_fin = pday !+ ptime + ptimestep/(float(iphysiq)*daysec) |
|---|
| 2591 | . - day_ini - time_phys |
|---|
| 2592 | ELSE |
|---|
| 2593 | ztime_fin = pday + ptime !+ ptimestep/(float(iphysiq)*daysec) |
|---|
| 2594 | . - day_ini - time_phys |
|---|
| 2595 | ENDIF |
|---|
| 2596 | if (ecritstart==0) then |
|---|
| 2597 | ztime_fin = ztime_fin-(day_end-day_ini) |
|---|
| 2598 | endif |
|---|
| 2599 | |
|---|
| 2600 | ELSE ! IF LMDZ |
|---|
| 2601 | |
|---|
| 2602 | if (ecritstart.GT.0) then !IF MULTIPLE RESTARTS nothing change |
|---|
| 2603 | ztime_fin = pday - day_ini + ptime |
|---|
| 2604 | . + ptimestep/(float(iphysiq)*daysec) |
|---|
| 2605 | else !IF ONE RESTART final time in top of day_end |
|---|
| 2606 | ztime_fin = pday - day_ini-(day_end-day_ini) |
|---|
| 2607 | . + ptime + ptimestep/(float(iphysiq)*daysec) |
|---|
| 2608 | endif |
|---|
| 2609 | |
|---|
| 2610 | ENDIF ! of IF (grid_type==unstructured) |
|---|
| 2611 | write(*,'(A,I7,A,F12.5)') |
|---|
| 2612 | . 'PHYSIQ: writing in restartfi ; icount=', |
|---|
| 2613 | . icount,' date=',ztime_fin |
|---|
| 2614 | |
|---|
| 2615 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq, |
|---|
| 2616 | . ptimestep,ztime_fin, |
|---|
| 2617 | . tsurf,tsoil,inertiesoil,albedo, |
|---|
| 2618 | . emis,q2,qsurf,tauscaling,totcloudfrac,wstar, |
|---|
| 2619 | . watercap,perenial_co2ice) |
|---|
| 2620 | ENDIF ! of IF (write_restart) |
|---|
| 2621 | |
|---|
| 2622 | #endif |
|---|
| 2623 | |
|---|
| 2624 | c IF (ngrid.NE.1) then |
|---|
| 2625 | |
|---|
| 2626 | c ------------------------------------------------------------------- |
|---|
| 2627 | c Calculation of diagnostic variables written in both stats and |
|---|
| 2628 | c diagfi files |
|---|
| 2629 | c ------------------------------------------------------------------- |
|---|
| 2630 | |
|---|
| 2631 | |
|---|
| 2632 | do ig=1,ngrid |
|---|
| 2633 | if(mu0(ig).le.0.01) then |
|---|
| 2634 | fluxsurf_dir_dn_sw(ig) = 0. |
|---|
| 2635 | else |
|---|
| 2636 | fluxsurf_dir_dn_sw(ig) = flux_1AU/dist_sol/dist_sol*mu0(ig)* |
|---|
| 2637 | & exp(-(tau(ig,iaer_dust_doubleq)+ |
|---|
| 2638 | & tau(ig,iaer_h2o_ice))/mu0(ig)) |
|---|
| 2639 | endif |
|---|
| 2640 | enddo |
|---|
| 2641 | |
|---|
| 2642 | ! Density-scaled opacities |
|---|
| 2643 | do ig=1,ngrid |
|---|
| 2644 | dsodust(ig,:) = |
|---|
| 2645 | & dsodust(ig,:)*tauscaling(ig) |
|---|
| 2646 | dsords(ig,:) = |
|---|
| 2647 | & dsords(ig,:)*tauscaling(ig) |
|---|
| 2648 | dsotop(ig,:) = |
|---|
| 2649 | & dsotop(ig,:)*tauscaling(ig) |
|---|
| 2650 | enddo |
|---|
| 2651 | |
|---|
| 2652 | if(doubleq) then |
|---|
| 2653 | do ig=1,ngrid |
|---|
| 2654 | IF (sedimentation) THEN |
|---|
| 2655 | dqdustsurf(ig) = |
|---|
| 2656 | & zdqssed(ig,igcm_dust_mass)*tauscaling(ig) |
|---|
| 2657 | dndustsurf(ig) = |
|---|
| 2658 | & zdqssed(ig,igcm_dust_number)*tauscaling(ig) |
|---|
| 2659 | ENDIF |
|---|
| 2660 | ndust(ig,:) = |
|---|
| 2661 | & zq(ig,:,igcm_dust_number)*tauscaling(ig) |
|---|
| 2662 | qdust(ig,:) = |
|---|
| 2663 | & zq(ig,:,igcm_dust_mass)*tauscaling(ig) |
|---|
| 2664 | enddo |
|---|
| 2665 | if (scavenging) then |
|---|
| 2666 | do ig=1,ngrid |
|---|
| 2667 | IF (sedimentation) THEN |
|---|
| 2668 | dqdustsurf(ig) = dqdustsurf(ig) + |
|---|
| 2669 | & zdqssed(ig,igcm_ccn_mass)*tauscaling(ig) |
|---|
| 2670 | dndustsurf(ig) = dndustsurf(ig) + |
|---|
| 2671 | & zdqssed(ig,igcm_ccn_number)*tauscaling(ig) |
|---|
| 2672 | ENDIF |
|---|
| 2673 | nccn(ig,:) = |
|---|
| 2674 | & zq(ig,:,igcm_ccn_number)*tauscaling(ig) |
|---|
| 2675 | qccn(ig,:) = |
|---|
| 2676 | & zq(ig,:,igcm_ccn_mass)*tauscaling(ig) |
|---|
| 2677 | enddo |
|---|
| 2678 | endif |
|---|
| 2679 | endif ! of (doubleq) |
|---|
| 2680 | |
|---|
| 2681 | if (rdstorm) then ! diagnostics of stormdust tendancies for 1D and 3D |
|---|
| 2682 | mstormdtot(:)=0 |
|---|
| 2683 | mdusttot(:)=0 |
|---|
| 2684 | qdusttotal(:,:)=0 |
|---|
| 2685 | do ig=1,ngrid |
|---|
| 2686 | rdsdqdustsurf(ig) = |
|---|
| 2687 | & zdqssed(ig,igcm_stormdust_mass)*tauscaling(ig) |
|---|
| 2688 | rdsdndustsurf(ig) = |
|---|
| 2689 | & zdqssed(ig,igcm_stormdust_number)*tauscaling(ig) |
|---|
| 2690 | rdsndust(ig,:) = |
|---|
| 2691 | & pq(ig,:,igcm_stormdust_number)*tauscaling(ig) |
|---|
| 2692 | rdsqdust(ig,:) = |
|---|
| 2693 | & pq(ig,:,igcm_stormdust_mass)*tauscaling(ig) |
|---|
| 2694 | do l=1,nlayer |
|---|
| 2695 | mstormdtot(ig) = mstormdtot(ig) + |
|---|
| 2696 | & zq(ig,l,igcm_stormdust_mass) * |
|---|
| 2697 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2698 | mdusttot(ig) = mdusttot(ig) + |
|---|
| 2699 | & zq(ig,l,igcm_dust_mass) * |
|---|
| 2700 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2701 | qdusttotal(ig,l) = qdust(ig,l)+rdsqdust(ig,l) !calculate total dust |
|---|
| 2702 | enddo |
|---|
| 2703 | enddo |
|---|
| 2704 | endif !(rdstorm) |
|---|
| 2705 | |
|---|
| 2706 | if (water) then |
|---|
| 2707 | mtot(:)=0 |
|---|
| 2708 | icetot(:)=0 |
|---|
| 2709 | rave(:)=0 |
|---|
| 2710 | tauTES(:)=0 |
|---|
| 2711 | |
|---|
| 2712 | IF (hdo) then |
|---|
| 2713 | mtotD(:)=0 |
|---|
| 2714 | icetotD(:)=0 |
|---|
| 2715 | ENDIF !hdo |
|---|
| 2716 | |
|---|
| 2717 | do ig=1,ngrid |
|---|
| 2718 | do l=1,nlayer |
|---|
| 2719 | mtot(ig) = mtot(ig) + |
|---|
| 2720 | & zq(ig,l,igcm_h2o_vap) * |
|---|
| 2721 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2722 | icetot(ig) = icetot(ig) + |
|---|
| 2723 | & zq(ig,l,igcm_h2o_ice) * |
|---|
| 2724 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2725 | IF (hdo) then |
|---|
| 2726 | mtotD(ig) = mtotD(ig) + |
|---|
| 2727 | & zq(ig,l,igcm_hdo_vap) * |
|---|
| 2728 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2729 | icetotD(ig) = icetotD(ig) + |
|---|
| 2730 | & zq(ig,l,igcm_hdo_ice) * |
|---|
| 2731 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2732 | ENDIF !hdo |
|---|
| 2733 | |
|---|
| 2734 | c Computing abs optical depth at 825 cm-1 in each |
|---|
| 2735 | c layer to simulate NEW TES retrieval |
|---|
| 2736 | Qabsice = min( |
|---|
| 2737 | & max(0.4e6*rice(ig,l)*(1.+nuice_ref)-0.05 ,0.),1.2 |
|---|
| 2738 | & ) |
|---|
| 2739 | opTES(ig,l)= 0.75 * Qabsice * |
|---|
| 2740 | & zq(ig,l,igcm_h2o_ice) * |
|---|
| 2741 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2742 | & / (rho_ice * rice(ig,l) * (1.+nuice_ref)) |
|---|
| 2743 | tauTES(ig)=tauTES(ig)+ opTES(ig,l) |
|---|
| 2744 | enddo |
|---|
| 2745 | c rave(ig)=rave(ig)/max(icetot(ig),1.e-30) ! mass weight |
|---|
| 2746 | c if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
|---|
| 2747 | enddo |
|---|
| 2748 | call watersat(ngrid*nlayer,zt,zplay,zqsat) |
|---|
| 2749 | satu(:,:) = zq(:,:,igcm_h2o_vap)/zqsat(:,:) |
|---|
| 2750 | |
|---|
| 2751 | if (scavenging) then |
|---|
| 2752 | Nccntot(:)= 0 |
|---|
| 2753 | Mccntot(:)= 0 |
|---|
| 2754 | rave(:)=0 |
|---|
| 2755 | do ig=1,ngrid |
|---|
| 2756 | do l=1,nlayer |
|---|
| 2757 | Nccntot(ig) = Nccntot(ig) + |
|---|
| 2758 | & zq(ig,l,igcm_ccn_number)*tauscaling(ig) |
|---|
| 2759 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2760 | Mccntot(ig) = Mccntot(ig) + |
|---|
| 2761 | & zq(ig,l,igcm_ccn_mass)*tauscaling(ig) |
|---|
| 2762 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2763 | cccc Column integrated effective ice radius |
|---|
| 2764 | cccc is weighted by total ice surface area (BETTER than total ice mass) |
|---|
| 2765 | rave(ig) = rave(ig) + |
|---|
| 2766 | & tauscaling(ig) * |
|---|
| 2767 | & zq(ig,l,igcm_ccn_number) * |
|---|
| 2768 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
|---|
| 2769 | & rice(ig,l) * rice(ig,l)* (1.+nuice_ref) |
|---|
| 2770 | enddo |
|---|
| 2771 | rave(ig)=(icetot(ig)/rho_ice+Mccntot(ig)/rho_dust)*0.75 |
|---|
| 2772 | & /max(pi*rave(ig),1.e-30) ! surface weight |
|---|
| 2773 | if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
|---|
| 2774 | enddo |
|---|
| 2775 | else ! of if (scavenging) |
|---|
| 2776 | rave(:)=0 |
|---|
| 2777 | do ig=1,ngrid |
|---|
| 2778 | do l=1,nlayer |
|---|
| 2779 | rave(ig) = rave(ig) + |
|---|
| 2780 | & zq(ig,l,igcm_h2o_ice) * |
|---|
| 2781 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
|---|
| 2782 | & rice(ig,l) * (1.+nuice_ref) |
|---|
| 2783 | enddo |
|---|
| 2784 | rave(ig) = max(rave(ig) / |
|---|
| 2785 | & max(icetot(ig),1.e-30),1.e-30) ! mass weight |
|---|
| 2786 | enddo |
|---|
| 2787 | endif ! of if (scavenging) |
|---|
| 2788 | |
|---|
| 2789 | !Alternative A. Pottier weighting |
|---|
| 2790 | rave2(:) = 0. |
|---|
| 2791 | totrave2(:) = 0. |
|---|
| 2792 | do ig=1,ngrid |
|---|
| 2793 | do l=1,nlayer |
|---|
| 2794 | rave2(ig) =rave2(ig)+ zq(ig,l,igcm_h2o_ice)*rice(ig,l) |
|---|
| 2795 | totrave2(ig) = totrave2(ig) + zq(ig,l,igcm_h2o_ice) |
|---|
| 2796 | end do |
|---|
| 2797 | rave2(ig)=max(rave2(ig)/max(totrave2(ig),1.e-30),1.e-30) |
|---|
| 2798 | end do |
|---|
| 2799 | |
|---|
| 2800 | endif ! of if (water) |
|---|
| 2801 | |
|---|
| 2802 | if (co2clouds) then |
|---|
| 2803 | mtotco2(1:ngrid) = 0. |
|---|
| 2804 | icetotco2(1:ngrid) = 0. |
|---|
| 2805 | vaptotco2(1:ngrid) = 0. |
|---|
| 2806 | do ig=1,ngrid |
|---|
| 2807 | do l=1,nlayer |
|---|
| 2808 | vaptotco2(ig) = vaptotco2(ig) + |
|---|
| 2809 | & zq(ig,l,igcm_co2) * |
|---|
| 2810 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2811 | icetotco2(ig) = icetot(ig) + |
|---|
| 2812 | & zq(ig,l,igcm_co2_ice) * |
|---|
| 2813 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 2814 | end do |
|---|
| 2815 | mtotco2(ig) = icetotco2(ig) + vaptotco2(ig) |
|---|
| 2816 | end do |
|---|
| 2817 | end if |
|---|
| 2818 | |
|---|
| 2819 | #ifndef MESOSCALE |
|---|
| 2820 | c ----------------------------------------------------------------- |
|---|
| 2821 | c WSTATS: Saving statistics |
|---|
| 2822 | c ----------------------------------------------------------------- |
|---|
| 2823 | c ("stats" stores and accumulates key variables in file "stats.nc" |
|---|
| 2824 | c which can later be used to make the statistic files of the run: |
|---|
| 2825 | c if flag "callstats" from callphys.def is .true.) |
|---|
| 2826 | |
|---|
| 2827 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
|---|
| 2828 | call wstats(ngrid,"tsurf","Surface temperature","K",2 |
|---|
| 2829 | & ,tsurf(:,iflat)) |
|---|
| 2830 | call wstats(ngrid,"co2ice","CO2 ice cover", |
|---|
| 2831 | & "kg.m-2",2,qsurf(:,igcm_co2,iflat)) |
|---|
| 2832 | call wstats(ngrid,"watercap","H2O ice cover", |
|---|
| 2833 | & "kg.m-2",2,watercap(:,iflat)) |
|---|
| 2834 | call wstats(ngrid,"tau_pref_scenario", |
|---|
| 2835 | & "prescribed visible dod at 610 Pa","NU", |
|---|
| 2836 | & 2,tau_pref_scenario) |
|---|
| 2837 | call wstats(ngrid,"tau_pref_gcm", |
|---|
| 2838 | & "visible dod at 610 Pa in the GCM","NU", |
|---|
| 2839 | & 2,tau_pref_gcm) |
|---|
| 2840 | call wstats(ngrid,"fluxsurf_lw", |
|---|
| 2841 | & "Thermal IR radiative flux to surface","W.m-2",2, |
|---|
| 2842 | & fluxsurf_lw(:,iflat)) |
|---|
| 2843 | call wstats(ngrid,"fluxsurf_dn_sw", |
|---|
| 2844 | & "Incoming Solar radiative flux to surface","W.m-2",2, |
|---|
| 2845 | & fluxsurf_dn_sw_tot(:,iflat)) |
|---|
| 2846 | call wstats(ngrid,"fluxsurf_up_sw", |
|---|
| 2847 | & "Reflected Solar radiative flux from surface","W.m-2",2, |
|---|
| 2848 | & fluxsurf_up_sw_tot) |
|---|
| 2849 | call wstats(ngrid,"fluxtop_lw", |
|---|
| 2850 | & "Thermal IR radiative flux to space","W.m-2",2, |
|---|
| 2851 | & fluxtop_lw) |
|---|
| 2852 | call wstats(ngrid,"fluxtop_dn_sw", |
|---|
| 2853 | & "Incoming Solar radiative flux from space","W.m-2",2, |
|---|
| 2854 | & fluxtop_dn_sw_tot) |
|---|
| 2855 | call wstats(ngrid,"fluxtop_up_sw", |
|---|
| 2856 | & "Outgoing Solar radiative flux to space","W.m-2",2, |
|---|
| 2857 | & fluxtop_up_sw_tot) |
|---|
| 2858 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
|---|
| 2859 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
|---|
| 2860 | call wstats(ngrid,"v","Meridional (North-South) wind", |
|---|
| 2861 | & "m.s-1",3,zv) |
|---|
| 2862 | call wstats(ngrid,"w","Vertical (down-up) wind", |
|---|
| 2863 | & "m.s-1",3,pw) |
|---|
| 2864 | call wstats(ngrid,"rho","Atmospheric density","kg/m3",3,rho) |
|---|
| 2865 | call wstats(ngrid,"pressure","Pressure","Pa",3,zplay) |
|---|
| 2866 | call wstats(ngrid,"q2", |
|---|
| 2867 | & "Boundary layer eddy kinetic energy", |
|---|
| 2868 | & "m2.s-2",3,q2) |
|---|
| 2869 | call wstats(ngrid,"emis","Surface emissivity","w.m-1",2, |
|---|
| 2870 | & emis(:,iflat)) |
|---|
| 2871 | call wstats(ngrid,"fluxsurf_dir_dn_sw", |
|---|
| 2872 | & "Direct incoming SW flux at surface", |
|---|
| 2873 | & "W.m-2",2,fluxsurf_dir_dn_sw) |
|---|
| 2874 | |
|---|
| 2875 | if (calltherm) then |
|---|
| 2876 | call wstats(ngrid,"zmax_th","Height of thermals", |
|---|
| 2877 | & "m",2,zmax_th) |
|---|
| 2878 | call wstats(ngrid,"hfmax_th","Max thermals heat flux", |
|---|
| 2879 | & "K.m/s",2,hfmax_th) |
|---|
| 2880 | call wstats(ngrid,"wstar", |
|---|
| 2881 | & "Max vertical velocity in thermals", |
|---|
| 2882 | & "m/s",2,wstar) |
|---|
| 2883 | endif |
|---|
| 2884 | |
|---|
| 2885 | if (water) then |
|---|
| 2886 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
|---|
| 2887 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
|---|
| 2888 | call wstats(ngrid,"vmr_h2ovap", |
|---|
| 2889 | & "H2O vapor volume mixing ratio","mol/mol", |
|---|
| 2890 | & 3,vmr) |
|---|
| 2891 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 2892 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
|---|
| 2893 | call wstats(ngrid,"vmr_h2oice", |
|---|
| 2894 | & "H2O ice volume mixing ratio","mol/mol", |
|---|
| 2895 | & 3,vmr) |
|---|
| 2896 | ! also store vmr_ice*rice for better diagnostics of rice |
|---|
| 2897 | vmr(1:ngrid,1:nlayer)=vmr(1:ngrid,1:nlayer)* |
|---|
| 2898 | & rice(1:ngrid,1:nlayer) |
|---|
| 2899 | call wstats(ngrid,"vmr_h2oice_rice", |
|---|
| 2900 | & "H2O ice mixing ratio times ice particule size", |
|---|
| 2901 | & "(mol/mol)*m", |
|---|
| 2902 | & 3,vmr) |
|---|
| 2903 | vmr=zqsat(1:ngrid,1:nlayer) |
|---|
| 2904 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
|---|
| 2905 | call wstats(ngrid,"vmr_h2osat", |
|---|
| 2906 | & "saturation volume mixing ratio","mol/mol", |
|---|
| 2907 | & 3,vmr) |
|---|
| 2908 | call wstats(ngrid,"h2o_ice_s", |
|---|
| 2909 | & "surface h2o_ice","kg/m2", |
|---|
| 2910 | & 2,qsurf(1,igcm_h2o_ice,iflat)) |
|---|
| 2911 | call wstats(ngrid,'albedo', |
|---|
| 2912 | & 'albedo', |
|---|
| 2913 | & '',2,albedo(1,1,iflat)) |
|---|
| 2914 | call wstats(ngrid,"mtot", |
|---|
| 2915 | & "total mass of water vapor","kg/m2", |
|---|
| 2916 | & 2,mtot) |
|---|
| 2917 | call wstats(ngrid,"icetot", |
|---|
| 2918 | & "total mass of water ice","kg/m2", |
|---|
| 2919 | & 2,icetot) |
|---|
| 2920 | call wstats(ngrid,"reffice", |
|---|
| 2921 | & "Mean reff","m", |
|---|
| 2922 | & 2,rave) |
|---|
| 2923 | call wstats(ngrid,"Nccntot", |
|---|
| 2924 | & "condensation nuclei","Nbr/m2", |
|---|
| 2925 | & 2,Nccntot) |
|---|
| 2926 | call wstats(ngrid,"Mccntot", |
|---|
| 2927 | & "condensation nuclei mass","kg/m2", |
|---|
| 2928 | & 2,Mccntot) |
|---|
| 2929 | call wstats(ngrid,"rice", |
|---|
| 2930 | & "Ice particle size","m", |
|---|
| 2931 | & 3,rice) |
|---|
| 2932 | if (.not.activice) then |
|---|
| 2933 | call wstats(ngrid,"tauTESap", |
|---|
| 2934 | & "tau abs 825 cm-1","", |
|---|
| 2935 | & 2,tauTES) |
|---|
| 2936 | else |
|---|
| 2937 | call wstats(ngrid,'tauTES', |
|---|
| 2938 | & 'tau abs 825 cm-1', |
|---|
| 2939 | & '',2,taucloudtes) |
|---|
| 2940 | endif |
|---|
| 2941 | |
|---|
| 2942 | endif ! of if (water) |
|---|
| 2943 | |
|---|
| 2944 | if (co2clouds) then |
|---|
| 2945 | call wstats(ngrid,"mtotco2", |
|---|
| 2946 | & "total mass atm of co2","kg/m2", |
|---|
| 2947 | & 2,mtotco2) |
|---|
| 2948 | call wstats(ngrid,"icetotco2", |
|---|
| 2949 | & "total mass atm of co2 ice","kg/m2", |
|---|
| 2950 | & 2,icetotco2) |
|---|
| 2951 | call wstats(ngrid,"vaptotco2", |
|---|
| 2952 | & "total mass atm of co2 vapor","kg/m2", |
|---|
| 2953 | & 2,icetotco2) |
|---|
| 2954 | end if |
|---|
| 2955 | |
|---|
| 2956 | |
|---|
| 2957 | if (dustbin.ne.0) then |
|---|
| 2958 | |
|---|
| 2959 | call wstats(ngrid,'tau','taudust','SI',2,tau(1,1)) |
|---|
| 2960 | |
|---|
| 2961 | if (doubleq) then |
|---|
| 2962 | call wstats(ngrid,'dqsdust', |
|---|
| 2963 | & 'deposited surface dust mass', |
|---|
| 2964 | & 'kg.m-2.s-1',2,dqdustsurf) |
|---|
| 2965 | call wstats(ngrid,'dqndust', |
|---|
| 2966 | & 'deposited surface dust number', |
|---|
| 2967 | & 'number.m-2.s-1',2,dndustsurf) |
|---|
| 2968 | call wstats(ngrid,'reffdust','reffdust', |
|---|
| 2969 | & 'm',3,rdust*ref_r0) |
|---|
| 2970 | call wstats(ngrid,'dustq','Dust mass mr', |
|---|
| 2971 | & 'kg/kg',3,qdust) |
|---|
| 2972 | call wstats(ngrid,'dustN','Dust number', |
|---|
| 2973 | & 'part/kg',3,ndust) |
|---|
| 2974 | if (rdstorm) then |
|---|
| 2975 | call wstats(ngrid,'reffstormdust','reffdust', |
|---|
| 2976 | & 'm',3,rstormdust*ref_r0) |
|---|
| 2977 | call wstats(ngrid,'rdsdustq','Dust mass mr', |
|---|
| 2978 | & 'kg/kg',3,rdsqdust) |
|---|
| 2979 | call wstats(ngrid,'rdsdustN','Dust number', |
|---|
| 2980 | & 'part/kg',3,rdsndust) |
|---|
| 2981 | end if |
|---|
| 2982 | else |
|---|
| 2983 | do iq=1,dustbin |
|---|
| 2984 | write(str2(1:2),'(i2.2)') iq |
|---|
| 2985 | call wstats(ngrid,'q'//str2,'mix. ratio', |
|---|
| 2986 | & 'kg/kg',3,zq(1,1,iq)) |
|---|
| 2987 | call wstats(ngrid,'qsurf'//str2,'qsurf', |
|---|
| 2988 | & 'kg.m-2',2,qsurf(1,iq,iflat)) |
|---|
| 2989 | end do |
|---|
| 2990 | endif ! (doubleq) |
|---|
| 2991 | |
|---|
| 2992 | if (scavenging) then |
|---|
| 2993 | call wstats(ngrid,'ccnq','CCN mass mr', |
|---|
| 2994 | & 'kg/kg',3,qccn) |
|---|
| 2995 | call wstats(ngrid,'ccnN','CCN number', |
|---|
| 2996 | & 'part/kg',3,nccn) |
|---|
| 2997 | endif ! (scavenging) |
|---|
| 2998 | |
|---|
| 2999 | endif ! (dustbin.ne.0) |
|---|
| 3000 | |
|---|
| 3001 | if (photochem) then |
|---|
| 3002 | do iq=1,nq |
|---|
| 3003 | if (noms(iq) .ne. "dust_mass" .and. |
|---|
| 3004 | $ noms(iq) .ne. "dust_number" .and. |
|---|
| 3005 | $ noms(iq) .ne. "ccn_mass" .and. |
|---|
| 3006 | $ noms(iq) .ne. "ccn_number" .and. |
|---|
| 3007 | $ noms(iq) .ne. "ccnco2_mass" .and. |
|---|
| 3008 | $ noms(iq) .ne. "ccnco2_number" .and. |
|---|
| 3009 | $ noms(iq) .ne. "stormdust_mass" .and. |
|---|
| 3010 | $ noms(iq) .ne. "stormdust_number" .and. |
|---|
| 3011 | $ noms(iq) .ne. "topdust_mass" .and. |
|---|
| 3012 | $ noms(iq) .ne. "topdust_number") then |
|---|
| 3013 | ! volume mixing ratio |
|---|
| 3014 | |
|---|
| 3015 | vmr(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
|---|
| 3016 | & *mmean(1:ngrid,1:nlayer)/mmol(iq) |
|---|
| 3017 | |
|---|
| 3018 | call wstats(ngrid,"vmr_"//trim(noms(iq)), |
|---|
| 3019 | $ "Volume mixing ratio","mol/mol",3,vmr) |
|---|
| 3020 | if ((noms(iq).eq."o") |
|---|
| 3021 | $ .or. (noms(iq).eq."co2") |
|---|
| 3022 | $ .or. (noms(iq).eq."o3") |
|---|
| 3023 | $ .or. (noms(iq).eq."ar") |
|---|
| 3024 | $ .or. (noms(iq).eq."o2") |
|---|
| 3025 | $ .or. (noms(iq).eq."h2o_vap") ) then |
|---|
| 3026 | call write_output("vmr_"//trim(noms(iq)), |
|---|
| 3027 | $ "Volume mixing ratio","mol/mol",vmr(:,:)) |
|---|
| 3028 | end if |
|---|
| 3029 | |
|---|
| 3030 | ! number density (molecule.cm-3) |
|---|
| 3031 | |
|---|
| 3032 | rhopart(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
|---|
| 3033 | & *rho(1:ngrid,1:nlayer)*n_avog/ |
|---|
| 3034 | & (1000*mmol(iq)) |
|---|
| 3035 | |
|---|
| 3036 | call wstats(ngrid,"num_"//trim(noms(iq)), |
|---|
| 3037 | $ "Number density","cm-3",3,rhopart) |
|---|
| 3038 | call write_output("num_"//trim(noms(iq)), |
|---|
| 3039 | $ "Number density","cm-3",rhopart(:,:)) |
|---|
| 3040 | |
|---|
| 3041 | ! vertical column (molecule.cm-2) |
|---|
| 3042 | |
|---|
| 3043 | do ig = 1,ngrid |
|---|
| 3044 | colden(ig,iq) = 0. |
|---|
| 3045 | end do |
|---|
| 3046 | do l=1,nlayer |
|---|
| 3047 | do ig=1,ngrid |
|---|
| 3048 | colden(ig,iq) = colden(ig,iq) + zq(ig,l,iq) |
|---|
| 3049 | $ *(zplev(ig,l)-zplev(ig,l+1)) |
|---|
| 3050 | $ *6.022e22/(mmol(iq)*g) |
|---|
| 3051 | end do |
|---|
| 3052 | end do |
|---|
| 3053 | |
|---|
| 3054 | call wstats(ngrid,"c_"//trim(noms(iq)), |
|---|
| 3055 | $ "column","mol cm-2",2,colden(1,iq)) |
|---|
| 3056 | call write_output("c_"//trim(noms(iq)), |
|---|
| 3057 | $ "column","mol cm-2",colden(:,iq)) |
|---|
| 3058 | |
|---|
| 3059 | ! global mass (g) |
|---|
| 3060 | |
|---|
| 3061 | call planetwide_sumval(colden(:,iq)/6.022e23 |
|---|
| 3062 | $ *mmol(iq)*1.e4*cell_area(:),mass(iq)) |
|---|
| 3063 | |
|---|
| 3064 | call write_output("mass_"//trim(noms(iq)), |
|---|
| 3065 | $ "global mass","g",mass(iq)) |
|---|
| 3066 | |
|---|
| 3067 | end if ! of if (noms(iq) .ne. "dust_mass" ...) |
|---|
| 3068 | end do ! of do iq=1,nq |
|---|
| 3069 | end if ! of if (photochem) |
|---|
| 3070 | |
|---|
| 3071 | |
|---|
| 3072 | IF(lastcall.and.callstats) THEN |
|---|
| 3073 | write (*,*) "Writing stats..." |
|---|
| 3074 | call mkstats(ierr) |
|---|
| 3075 | ENDIF |
|---|
| 3076 | |
|---|
| 3077 | |
|---|
| 3078 | c (Store EOF for Mars Climate database software) |
|---|
| 3079 | IF (calleofdump) THEN |
|---|
| 3080 | CALL eofdump(ngrid, nlayer, zu, zv, zt, rho, ps) |
|---|
| 3081 | ENDIF |
|---|
| 3082 | #endif |
|---|
| 3083 | !endif of ifndef MESOSCALE |
|---|
| 3084 | |
|---|
| 3085 | #ifdef MESOSCALE |
|---|
| 3086 | |
|---|
| 3087 | !! see comm_wrf. |
|---|
| 3088 | !! not needed when an array is already in a shared module. |
|---|
| 3089 | !! --> example : hfmax_th, zmax_th |
|---|
| 3090 | |
|---|
| 3091 | CALL allocate_comm_wrf(ngrid,nlayer) |
|---|
| 3092 | |
|---|
| 3093 | !state real HR_SW ikj misc 1 - h "HR_SW" "HEATING RATE SW" "K/s" |
|---|
| 3094 | comm_HR_SW(1:ngrid,1:nlayer) = zdtsw(1:ngrid,1:nlayer) |
|---|
| 3095 | !state real HR_LW ikj misc 1 - h "HR_LW" "HEATING RATE LW" "K/s" |
|---|
| 3096 | comm_HR_LW(1:ngrid,1:nlayer) = zdtlw(1:ngrid,1:nlayer) |
|---|
| 3097 | !state real SWDOWNZ ij misc 1 - h "SWDOWNZ" "DOWNWARD SW FLUX AT SURFACE" "W m-2" |
|---|
| 3098 | comm_SWDOWNZ(1:ngrid) = fluxsurf_dn_sw_tot(1:ngrid) |
|---|
| 3099 | !state real TAU_DUST ij misc 1 - h "TAU_DUST" "REFERENCE VISIBLE DUST OPACITY" "" |
|---|
| 3100 | comm_TAU_DUST(1:ngrid) = tau_pref_gcm(1:ngrid) |
|---|
| 3101 | !state real RDUST ikj misc 1 - h "RDUST" "DUST RADIUS" "m" |
|---|
| 3102 | comm_RDUST(1:ngrid,1:nlayer) = rdust(1:ngrid,1:nlayer) |
|---|
| 3103 | !state real QSURFDUST ij misc 1 - h "QSURFDUST" "DUST MASS AT SURFACE" "kg m-2" |
|---|
| 3104 | IF (igcm_dust_mass .ne. 0) THEN |
|---|
| 3105 | comm_QSURFDUST(1:ngrid) = qsurf(1:ngrid,igcm_dust_mass) |
|---|
| 3106 | ELSE |
|---|
| 3107 | comm_QSURFDUST(1:ngrid) = 0. |
|---|
| 3108 | ENDIF |
|---|
| 3109 | !state real MTOT ij misc 1 - h "MTOT" "TOTAL MASS WATER VAPOR in pmic" "pmic" |
|---|
| 3110 | comm_MTOT(1:ngrid) = mtot(1:ngrid) * 1.e6 / rho_ice |
|---|
| 3111 | !state real ICETOT ij misc 1 - h "ICETOT" "TOTAL MASS WATER ICE" "kg m-2" |
|---|
| 3112 | comm_ICETOT(1:ngrid) = icetot(1:ngrid) * 1.e6 / rho_ice |
|---|
| 3113 | !state real VMR_ICE ikj misc 1 - h "VMR_ICE" "VOL. MIXING RATIO ICE" "ppm" |
|---|
| 3114 | IF (igcm_h2o_ice .ne. 0) THEN |
|---|
| 3115 | comm_VMR_ICE(1:ngrid,1:nlayer) = 1.e6 |
|---|
| 3116 | . * zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 3117 | . * mmean(1:ngrid,1:nlayer) / mmol(igcm_h2o_ice) |
|---|
| 3118 | ELSE |
|---|
| 3119 | comm_VMR_ICE(1:ngrid,1:nlayer) = 0. |
|---|
| 3120 | ENDIF |
|---|
| 3121 | !state real TAU_ICE ij misc 1 - h "TAU_ICE" "CLOUD OD at 825 cm-1 TES" "" |
|---|
| 3122 | if (activice) then |
|---|
| 3123 | comm_TAU_ICE(1:ngrid) = taucloudtes(1:ngrid) |
|---|
| 3124 | else |
|---|
| 3125 | comm_TAU_ICE(1:ngrid) = tauTES(1:ngrid) |
|---|
| 3126 | endif |
|---|
| 3127 | !state real RICE ikj misc 1 - h "RICE" "ICE RADIUS" "m" |
|---|
| 3128 | comm_RICE(1:ngrid,1:nlayer) = rice(1:ngrid,1:nlayer) |
|---|
| 3129 | |
|---|
| 3130 | !! calculate sensible heat flux in W/m2 for outputs |
|---|
| 3131 | !! -- the one computed in vdifc is not the real one |
|---|
| 3132 | !! -- vdifc must have been called |
|---|
| 3133 | if (.not.callrichsl) then |
|---|
| 3134 | sensibFlux(1:ngrid) = zflubid(1:ngrid) |
|---|
| 3135 | . - capcal(1:ngrid)*zdtsdif(1:ngrid) |
|---|
| 3136 | else |
|---|
| 3137 | sensibFlux(1:ngrid) = |
|---|
| 3138 | & (pplay(1:ngrid,1)/(r*pt(1:ngrid,1)))*cpp |
|---|
| 3139 | & *sqrt(pu(1:ngrid,1)*pu(1:ngrid,1)+pv(1:ngrid,1)*pv(1:ngrid,1) |
|---|
| 3140 | & +(log(1.+0.7*wstar(1:ngrid) + 2.3*wstar(1:ngrid)**2))**2) |
|---|
| 3141 | & *zcdh(1:ngrid)*(tsurf(1:ngrid)-zh(1:ngrid,1)) |
|---|
| 3142 | endif |
|---|
| 3143 | |
|---|
| 3144 | #else |
|---|
| 3145 | #ifndef MESOINI |
|---|
| 3146 | |
|---|
| 3147 | c ========================================================== |
|---|
| 3148 | c WRITEDIAGFI: Outputs in netcdf file "DIAGFI", containing |
|---|
| 3149 | c any variable for diagnostic (output with period |
|---|
| 3150 | c "ecritphy", set in "run.def") |
|---|
| 3151 | c ========================================================== |
|---|
| 3152 | c WRITEDIAGFI can ALSO be called from any other subroutines |
|---|
| 3153 | c for any variables !! |
|---|
| 3154 | call write_output("emis","Surface emissivity","", |
|---|
| 3155 | & emis(:,iflat)) |
|---|
| 3156 | do islope=1,nslope |
|---|
| 3157 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3158 | call write_output("emis_slope"//str2, |
|---|
| 3159 | & "Surface emissivity","",emis(:,islope)) |
|---|
| 3160 | ENDDO |
|---|
| 3161 | call write_output("zzlay","Midlayer altitude", |
|---|
| 3162 | & "m",zzlay(:,:)) |
|---|
| 3163 | call write_output("zzlev","Interlayer altitude", |
|---|
| 3164 | & "m",zzlev(:,1:nlayer)) |
|---|
| 3165 | call write_output("pphi","Geopotential","m2s-2", |
|---|
| 3166 | & pphi(:,:)) |
|---|
| 3167 | call write_output("phisfi","Surface geopotential", |
|---|
| 3168 | & "m2s-2",phisfi(:)) |
|---|
| 3169 | call write_output("tsurf","Surface temperature","K", |
|---|
| 3170 | & tsurf(:,iflat)) |
|---|
| 3171 | do islope=1,nslope |
|---|
| 3172 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3173 | call write_output("tsurf_slope"//str2, |
|---|
| 3174 | & "Surface temperature","K", |
|---|
| 3175 | & tsurf(:,islope)) |
|---|
| 3176 | ENDDO |
|---|
| 3177 | call write_output("ps","surface pressure","Pa",ps(:)) |
|---|
| 3178 | call write_output("co2ice","co2 ice thickness" |
|---|
| 3179 | & ,"kg.m-2",qsurf(:,igcm_co2,iflat)) |
|---|
| 3180 | do islope=1,nslope |
|---|
| 3181 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3182 | call write_output("co2ice_slope"//str2,"co2 ice thickness" |
|---|
| 3183 | & ,"kg.m-2",qsurf(:,igcm_co2,islope)) |
|---|
| 3184 | ENDDO |
|---|
| 3185 | call write_output("watercap","Perennial water ice thickness" |
|---|
| 3186 | & ,"kg.m-2",watercap(:,iflat)) |
|---|
| 3187 | do islope=1,nslope |
|---|
| 3188 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3189 | call write_output("watercap_slope"//str2, |
|---|
| 3190 | & "Perennial water ice thickness" |
|---|
| 3191 | & ,"kg.m-2",watercap(:,islope)) |
|---|
| 3192 | ENDDO |
|---|
| 3193 | call write_output("temp_layer1","temperature in layer 1", |
|---|
| 3194 | & "K",zt(:,1)) |
|---|
| 3195 | call write_output("temp7","temperature in layer 7", |
|---|
| 3196 | & "K",zt(:,7)) |
|---|
| 3197 | call write_output("fluxsurf_lw","fluxsurf_lw","W.m-2", |
|---|
| 3198 | & fluxsurf_lw(:,iflat)) |
|---|
| 3199 | do islope=1,nslope |
|---|
| 3200 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3201 | call write_output("fluxsurf_lw_slope"//str2, |
|---|
| 3202 | & "fluxsurf_lw","W.m-2", |
|---|
| 3203 | & fluxsurf_lw(:,islope)) |
|---|
| 3204 | ENDDO |
|---|
| 3205 | call write_output("fluxsurf_dn_sw","fluxsurf_dn_sw", |
|---|
| 3206 | & "W.m-2",fluxsurf_dn_sw_tot(:,iflat)) |
|---|
| 3207 | do islope=1,nslope |
|---|
| 3208 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3209 | call write_output("fluxsurf_dn_sw_slope"//str2, |
|---|
| 3210 | & "fluxsurf_dn_sw", |
|---|
| 3211 | & "W.m-2",fluxsurf_dn_sw_tot(:,islope)) |
|---|
| 3212 | ENDDO |
|---|
| 3213 | call write_output("fluxtop_lw","fluxtop_lw","W.m-2", |
|---|
| 3214 | & fluxtop_lw(:)) |
|---|
| 3215 | call write_output("fluxtop_up_sw","fluxtop_up_sw","W.m-2", |
|---|
| 3216 | & fluxtop_up_sw_tot(:)) |
|---|
| 3217 | call write_output("temp","temperature","K",zt(:,:)) |
|---|
| 3218 | call write_output("Sols","Time","sols",zday) |
|---|
| 3219 | call write_output("Ls","Solar longitude","deg", |
|---|
| 3220 | & zls*180./pi) |
|---|
| 3221 | call write_output("u","Zonal wind","m.s-1",zu(:,:)) |
|---|
| 3222 | call write_output("v","Meridional wind","m.s-1",zv(:,:)) |
|---|
| 3223 | call write_output("w","Vertical wind","m.s-1",pw(:,:)) |
|---|
| 3224 | call write_output("rho","density","kg.m-3",rho(:,:)) |
|---|
| 3225 | call write_output("pressure","Pressure","Pa",zplay(:,:)) |
|---|
| 3226 | call write_output("zplev","Interlayer pressure","Pa", |
|---|
| 3227 | & zplev(:,1:nlayer)) |
|---|
| 3228 | call write_output('sw_htrt','sw heat. rate', |
|---|
| 3229 | & 'K/s',zdtsw(:,:)) |
|---|
| 3230 | call write_output('lw_htrt','lw heat. rate', |
|---|
| 3231 | & 'K/s',zdtlw(:,:)) |
|---|
| 3232 | call write_output("local_time","Local time", |
|---|
| 3233 | & 'sol',local_time(:)) |
|---|
| 3234 | if (.not.activice) then |
|---|
| 3235 | CALL write_output('tauTESap', |
|---|
| 3236 | & 'tau abs 825 cm-1', |
|---|
| 3237 | & '',tauTES(:)) |
|---|
| 3238 | else |
|---|
| 3239 | CALL write_output('tauTES', |
|---|
| 3240 | & 'tau abs 825 cm-1', |
|---|
| 3241 | & '',taucloudtes(:)) |
|---|
| 3242 | endif |
|---|
| 3243 | #else |
|---|
| 3244 | !!! this is to ensure correct initialisation of mesoscale model |
|---|
| 3245 | call write_output("tsurf","Surface temperature","K", |
|---|
| 3246 | & tsurf(:,iflat)) |
|---|
| 3247 | call write_output("ps","surface pressure","Pa",ps(:)) |
|---|
| 3248 | call write_output("co2ice","co2 ice thickness","kg.m-2", |
|---|
| 3249 | & qsurf(:,igcm_co2,iflat)) |
|---|
| 3250 | call write_output("temp","temperature","K",zt(:,:)) |
|---|
| 3251 | call write_output("u","Zonal wind","m.s-1",zu(:,:)) |
|---|
| 3252 | call write_output("v","Meridional wind","m.s-1",zv(:,:)) |
|---|
| 3253 | call write_output("emis","Surface emissivity","", |
|---|
| 3254 | & emis(:,iflat)) |
|---|
| 3255 | call write_output("tsoil","Soil temperature", |
|---|
| 3256 | & "K",tsoil(:,:,iflat)) |
|---|
| 3257 | call write_output("inertiedat","Soil inertia", |
|---|
| 3258 | & "K",inertiedat(:,:)) |
|---|
| 3259 | #endif |
|---|
| 3260 | |
|---|
| 3261 | c ---------------------------------------------------------- |
|---|
| 3262 | c Outputs of the CO2 cycle |
|---|
| 3263 | c ---------------------------------------------------------- |
|---|
| 3264 | |
|---|
| 3265 | if (igcm_co2.ne.0) then |
|---|
| 3266 | call write_output("co2","co2 mass mixing ratio", |
|---|
| 3267 | & "kg.kg-1",zq(:,:,igcm_co2)) |
|---|
| 3268 | |
|---|
| 3269 | if (co2clouds) then |
|---|
| 3270 | call write_output('ccnqco2','CCNco2 mmr', |
|---|
| 3271 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_mass)) |
|---|
| 3272 | |
|---|
| 3273 | call write_output('ccnNco2','CCNco2 number', |
|---|
| 3274 | & 'part.kg-1',zq(:,:,igcm_ccnco2_number)) |
|---|
| 3275 | |
|---|
| 3276 | call write_output('co2_ice','co2_ice mmr in atm', |
|---|
| 3277 | & 'kg.kg-1',zq(:,:,igcm_co2_ice)) |
|---|
| 3278 | |
|---|
| 3279 | call write_output("mtotco2","total mass atm of co2", |
|---|
| 3280 | & "kg.m-2",mtotco2(:)) |
|---|
| 3281 | call write_output("icetotco2","total mass atm of co2 ice", |
|---|
| 3282 | & "kg.m-2", icetotco2(:)) |
|---|
| 3283 | call write_output("vaptotco2","total mass atm of co2 "// |
|---|
| 3284 | & "vapor","kg.m-2", vaptotco2(:)) |
|---|
| 3285 | if (co2useh2o) then |
|---|
| 3286 | call write_output('ccnqco2_h2o_m_ice', |
|---|
| 3287 | & 'CCNco2_h2o_mass_ice mmr', |
|---|
| 3288 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_h2o_mass_ice)) |
|---|
| 3289 | |
|---|
| 3290 | call write_output('ccnqco2_h2o_m_ccn', |
|---|
| 3291 | & 'CCNco2_h2o_mass_ccn mmr', |
|---|
| 3292 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_h2o_mass_ccn)) |
|---|
| 3293 | |
|---|
| 3294 | call write_output('ccnNco2_h2o','CCNco2_h2o number', |
|---|
| 3295 | & 'part.kg-1',zq(:,:,igcm_ccnco2_h2o_number)) |
|---|
| 3296 | end if |
|---|
| 3297 | |
|---|
| 3298 | if (meteo_flux) then |
|---|
| 3299 | call write_output('ccnqco2_meteor','CCNco2_meteor mmr', |
|---|
| 3300 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_meteor_mass)) |
|---|
| 3301 | |
|---|
| 3302 | call write_output('ccnNco2_meteor','CCNco2_meteor number', |
|---|
| 3303 | & 'part.kg-1',zq(:,:,igcm_ccnco2_meteor_number)) |
|---|
| 3304 | end if |
|---|
| 3305 | |
|---|
| 3306 | end if ! of if (co2clouds) |
|---|
| 3307 | end if ! of if (igcm_co2.ne.0) |
|---|
| 3308 | |
|---|
| 3309 | ! Output He tracer, if there is one |
|---|
| 3310 | if (igcm_he.ne.0) then |
|---|
| 3311 | call write_output("he","helium mass mixing ratio", |
|---|
| 3312 | & "kg/kg",zq(:,:,igcm_he)) |
|---|
| 3313 | vmr = zq(1:ngrid,1:nlayer,igcm_he) |
|---|
| 3314 | & * mmean(1:ngrid,1:nlayer)/mmol(igcm_he) |
|---|
| 3315 | call write_output('vmr_he','helium vol. mixing ratio', |
|---|
| 3316 | & 'mol/mol',vmr(:,:)) |
|---|
| 3317 | end if |
|---|
| 3318 | |
|---|
| 3319 | c ---------------------------------------------------------- |
|---|
| 3320 | c Outputs of the water cycle |
|---|
| 3321 | c ---------------------------------------------------------- |
|---|
| 3322 | if (water) then |
|---|
| 3323 | #ifdef MESOINI |
|---|
| 3324 | !!!! waterice = q01, voir readmeteo.F90 |
|---|
| 3325 | call write_output('q01',noms(igcm_h2o_ice), |
|---|
| 3326 | & 'kg/kg', |
|---|
| 3327 | & zq(:,:,igcm_h2o_ice)) |
|---|
| 3328 | !!!! watervapor = q02, voir readmeteo.F90 |
|---|
| 3329 | call write_output('q02',noms(igcm_h2o_vap), |
|---|
| 3330 | & 'kg/kg', |
|---|
| 3331 | & zq(:,:,igcm_h2o_vap)) |
|---|
| 3332 | !!!! surface waterice qsurf02 (voir readmeteo) |
|---|
| 3333 | call write_output('qsurf02','surface tracer', |
|---|
| 3334 | & 'kg.m-2', |
|---|
| 3335 | & qsurf(:,igcm_h2o_ice,iflat)) |
|---|
| 3336 | do islope=1,nslope |
|---|
| 3337 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3338 | call write_output('qsurf02_slope'//str2, |
|---|
| 3339 | & 'surface tracer','kg.m-2', |
|---|
| 3340 | & qsurf(:,igcm_h2o_ice,islope)) |
|---|
| 3341 | ENDDO |
|---|
| 3342 | #endif |
|---|
| 3343 | call write_output('mtot', |
|---|
| 3344 | & 'total mass of water vapor', |
|---|
| 3345 | & 'kg/m2',mtot(:)) |
|---|
| 3346 | call write_output('icetot', |
|---|
| 3347 | & 'total mass of water ice', |
|---|
| 3348 | & 'kg/m2',icetot(:)) |
|---|
| 3349 | vmr = zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 3350 | & * mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
|---|
| 3351 | call write_output('vmr_h2oice','h2o ice vmr', |
|---|
| 3352 | & 'mol/mol',vmr(:,:)) |
|---|
| 3353 | vmr = zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
|---|
| 3354 | & * mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
|---|
| 3355 | call write_output('vmr_h2ovap','h2o vap vmr', |
|---|
| 3356 | & 'mol/mol',vmr(:,:)) |
|---|
| 3357 | call write_output('reffice', |
|---|
| 3358 | & 'Mean reff', |
|---|
| 3359 | & 'm',rave(:)) |
|---|
| 3360 | call write_output('h2o_ice','h2o_ice','kg/kg', |
|---|
| 3361 | & zq(:,:,igcm_h2o_ice)) |
|---|
| 3362 | call write_output('h2o_vap','h2o_vap','kg/kg', |
|---|
| 3363 | & zq(:,:,igcm_h2o_vap)) |
|---|
| 3364 | |
|---|
| 3365 | if (hdo) then |
|---|
| 3366 | vmr=zq(1:ngrid,1:nlayer,igcm_hdo_ice) |
|---|
| 3367 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_hdo_ice) |
|---|
| 3368 | CALL write_output('vmr_hdoice','hdo ice vmr', |
|---|
| 3369 | & 'mol/mol',vmr(:,:)) |
|---|
| 3370 | vmr=zq(1:ngrid,1:nlayer,igcm_hdo_vap) |
|---|
| 3371 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_hdo_vap) |
|---|
| 3372 | CALL write_output('vmr_hdovap','hdo vap vmr', |
|---|
| 3373 | & 'mol/mol',vmr(:,:)) |
|---|
| 3374 | call write_output('hdo_ice','hdo_ice','kg/kg', |
|---|
| 3375 | & zq(:,:,igcm_hdo_ice)) |
|---|
| 3376 | call write_output('hdo_vap','hdo_vap','kg/kg', |
|---|
| 3377 | & zq(:,:,igcm_hdo_vap)) |
|---|
| 3378 | |
|---|
| 3379 | CALL write_output('mtotD', |
|---|
| 3380 | & 'total mass of HDO vapor', |
|---|
| 3381 | & 'kg/m2',mtotD(:)) |
|---|
| 3382 | CALL write_output('icetotD', |
|---|
| 3383 | & 'total mass of HDO ice', |
|---|
| 3384 | & 'kg/m2',icetotD(:)) |
|---|
| 3385 | |
|---|
| 3386 | C Calculation of the D/H ratio |
|---|
| 3387 | do l=1,nlayer |
|---|
| 3388 | do ig=1,ngrid |
|---|
| 3389 | if (zq(ig,l,igcm_h2o_vap).gt.qperemin) then |
|---|
| 3390 | DoH_vap(ig,l) = ( zq(ig,l,igcm_hdo_vap)/ |
|---|
| 3391 | & zq(ig,l,igcm_h2o_vap) )*1./(2.*155.76e-6) |
|---|
| 3392 | else |
|---|
| 3393 | DoH_vap(ig,l) = 0. |
|---|
| 3394 | endif |
|---|
| 3395 | enddo |
|---|
| 3396 | enddo |
|---|
| 3397 | |
|---|
| 3398 | do l=1,nlayer |
|---|
| 3399 | do ig=1,ngrid |
|---|
| 3400 | if (zq(ig,l,igcm_h2o_ice).gt.qperemin) then |
|---|
| 3401 | DoH_ice(ig,l) = ( zq(ig,l,igcm_hdo_ice)/ |
|---|
| 3402 | & zq(ig,l,igcm_h2o_ice) )/(2.*155.76e-6) |
|---|
| 3403 | else |
|---|
| 3404 | DoH_ice(ig,l) = 0. |
|---|
| 3405 | endif |
|---|
| 3406 | enddo |
|---|
| 3407 | enddo |
|---|
| 3408 | |
|---|
| 3409 | CALL write_output('DoH_vap', |
|---|
| 3410 | & 'D/H ratio in vapor', |
|---|
| 3411 | & ' ',DoH_vap(:,:)) |
|---|
| 3412 | CALL write_output('DoH_ice', |
|---|
| 3413 | & 'D/H ratio in ice', |
|---|
| 3414 | & '',DoH_ice(:,:)) |
|---|
| 3415 | |
|---|
| 3416 | endif !hdo |
|---|
| 3417 | |
|---|
| 3418 | !A. Pottier |
|---|
| 3419 | ! CALL write_output('rmoym', |
|---|
| 3420 | ! & 'alternative reffice', |
|---|
| 3421 | ! & 'm',rave2(:)) |
|---|
| 3422 | call write_output('h2o_saturation', |
|---|
| 3423 | & 'h2o vap saturation ratio','',satu(:,:)) |
|---|
| 3424 | if (scavenging) then |
|---|
| 3425 | CALL write_output("Nccntot", |
|---|
| 3426 | & "condensation nuclei","Nbr/m2", |
|---|
| 3427 | & Nccntot(:)) |
|---|
| 3428 | CALL write_output("Mccntot", |
|---|
| 3429 | & "mass condensation nuclei","kg/m2", |
|---|
| 3430 | & Mccntot(:)) |
|---|
| 3431 | endif |
|---|
| 3432 | call write_output('rice','Water ice particle size', |
|---|
| 3433 | & 'm',rice(:,:)) |
|---|
| 3434 | call write_output('h2o_ice_s', |
|---|
| 3435 | & 'surface h2o_ice', |
|---|
| 3436 | & 'kg.m-2',qsurf(:,igcm_h2o_ice,iflat)) |
|---|
| 3437 | do islope=1,nslope |
|---|
| 3438 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3439 | call write_output('h2o_ice_s_slope'//str2, |
|---|
| 3440 | & 'surface h2o_ice', |
|---|
| 3441 | & 'kg.m-2',qsurf(:,igcm_h2o_ice,islope)) |
|---|
| 3442 | ENDDO |
|---|
| 3443 | if (hdo) then |
|---|
| 3444 | call write_output('hdo_ice_s', |
|---|
| 3445 | & 'surface hdo_ice', |
|---|
| 3446 | & 'kg.m-2',qsurf(:,igcm_hdo_ice,iflat)) |
|---|
| 3447 | do islope=1,nslope |
|---|
| 3448 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3449 | call write_output('hdo_ice_s_slope'//str2, |
|---|
| 3450 | & 'surface hdo_ice', |
|---|
| 3451 | & 'kg.m-2',qsurf(:,igcm_hdo_ice,islope)) |
|---|
| 3452 | ENDDO |
|---|
| 3453 | |
|---|
| 3454 | do ig=1,ngrid |
|---|
| 3455 | if (qsurf_meshavg(ig,igcm_h2o_ice).gt.qperemin) then |
|---|
| 3456 | DoH_surf(ig) = 0.5*( qsurf_meshavg(ig,igcm_hdo_ice)/ |
|---|
| 3457 | & qsurf_meshavg(ig,igcm_h2o_ice) )/155.76e-6 |
|---|
| 3458 | else |
|---|
| 3459 | DoH_surf(ig) = 0. |
|---|
| 3460 | endif |
|---|
| 3461 | enddo |
|---|
| 3462 | |
|---|
| 3463 | call write_output('DoH_surf', |
|---|
| 3464 | & 'surface D/H', |
|---|
| 3465 | & '',DoH_surf(:)) |
|---|
| 3466 | endif ! hdo |
|---|
| 3467 | |
|---|
| 3468 | CALL write_output('albedo', |
|---|
| 3469 | & 'albedo', |
|---|
| 3470 | & '',albedo(:,1,iflat)) |
|---|
| 3471 | do islope=1,nslope |
|---|
| 3472 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3473 | CALL write_output('albedo_slope'//str2, |
|---|
| 3474 | & 'albedo', |
|---|
| 3475 | & '',albedo(:,1,islope)) |
|---|
| 3476 | ENDDO |
|---|
| 3477 | if (tifeedback) then |
|---|
| 3478 | call write_output("soiltemp", |
|---|
| 3479 | & "Soil temperature","K", |
|---|
| 3480 | & tsoil(:,:,iflat)) |
|---|
| 3481 | call write_output('soilti', |
|---|
| 3482 | & 'Soil Thermal Inertia', |
|---|
| 3483 | & 'J.s-1/2.m-2.K-1',inertiesoil_tifeedback(:,:,iflat)) |
|---|
| 3484 | do islope=1,nslope |
|---|
| 3485 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3486 | call write_output('soilti_slope'//str2, |
|---|
| 3487 | & 'Soil Thermal Inertia', |
|---|
| 3488 | & 'J.s-1/2.m-2.K-1',inertiesoil_tifeedback(:,:,islope)) |
|---|
| 3489 | ENDDO |
|---|
| 3490 | endif |
|---|
| 3491 | !A. Pottier |
|---|
| 3492 | if (CLFvarying) then !AP14 nebulosity |
|---|
| 3493 | call write_output('totcloudfrac', |
|---|
| 3494 | & 'Total cloud fraction', |
|---|
| 3495 | & ' ',totcloudfrac(:)) |
|---|
| 3496 | end if !clf varying |
|---|
| 3497 | end if !(water) |
|---|
| 3498 | |
|---|
| 3499 | c ---------------------------------------------------------- |
|---|
| 3500 | c Outputs of the dust cycle |
|---|
| 3501 | c ---------------------------------------------------------- |
|---|
| 3502 | |
|---|
| 3503 | call write_output('tau_pref_scenario', |
|---|
| 3504 | & 'Prescribed visible dust optical depth at 610Pa', |
|---|
| 3505 | & 'NU',tau_pref_scenario(:)) |
|---|
| 3506 | |
|---|
| 3507 | call write_output('tau_pref_gcm', |
|---|
| 3508 | & 'Visible dust optical depth at 610Pa in the GCM', |
|---|
| 3509 | & 'NU',tau_pref_gcm(:)) |
|---|
| 3510 | |
|---|
| 3511 | if (reff_driven_IRtoVIS_scenario) then |
|---|
| 3512 | call write_output('IRtoVIScoef', |
|---|
| 3513 | & 'Conversion coeff for dust tau from abs9.3um to ext0.67um', |
|---|
| 3514 | & '/',IRtoVIScoef(:)) |
|---|
| 3515 | endif |
|---|
| 3516 | |
|---|
| 3517 | if (dustbin.ne.0) then |
|---|
| 3518 | |
|---|
| 3519 | #ifndef MESOINI |
|---|
| 3520 | if (doubleq) then |
|---|
| 3521 | call write_output('dqsdust', |
|---|
| 3522 | & 'deposited surface dust mass', |
|---|
| 3523 | & 'kg.m-2.s-1',dqdustsurf(:)) |
|---|
| 3524 | call write_output('dqndust', |
|---|
| 3525 | & 'deposited surface dust number', |
|---|
| 3526 | & 'number.m-2.s-1',dndustsurf(:)) |
|---|
| 3527 | call write_output('reffdust','reffdust', |
|---|
| 3528 | & 'm',rdust(:,:)*ref_r0) |
|---|
| 3529 | call write_output('dustq','Dust mass mr', |
|---|
| 3530 | & 'kg/kg',qdust(:,:)) |
|---|
| 3531 | call write_output('dustN','Dust number', |
|---|
| 3532 | & 'part/kg',ndust(:,:)) |
|---|
| 3533 | |
|---|
| 3534 | select case (trim(dustiropacity)) |
|---|
| 3535 | case ("tes") |
|---|
| 3536 | call write_output('dsodust_TES', |
|---|
| 3537 | & 'density scaled extinction opacity of std dust at 9.3um(TES)', |
|---|
| 3538 | & 'm2.kg-1',dsodust(:,:)) |
|---|
| 3539 | call write_output('dso_TES', |
|---|
| 3540 | & 'density scaled extinction opacity of all dust at 9.3um(TES)', |
|---|
| 3541 | & 'm2.kg-1',dsodust(:,:)+dsords(:,:)+dsotop(:,:)) |
|---|
| 3542 | case ("mcs") |
|---|
| 3543 | call write_output('dsodust', |
|---|
| 3544 | & 'density scaled extinction opacity of std dust at 21.6um(MCS)', |
|---|
| 3545 | & 'm2.kg-1',dsodust(:,:)) |
|---|
| 3546 | call write_output('dso', |
|---|
| 3547 | & 'density scaled extinction opacity of all dust at 21.6um(MCS)', |
|---|
| 3548 | & 'm2.kg-1',dsodust(:,:)+dsords(:,:)+dsotop(:,:)) |
|---|
| 3549 | end select |
|---|
| 3550 | else ! (doubleq=.false.) |
|---|
| 3551 | do iq=1,dustbin |
|---|
| 3552 | write(str2(1:2),'(i2.2)') iq |
|---|
| 3553 | call write_output('q'//str2,'mix. ratio', |
|---|
| 3554 | & 'kg/kg',zq(:,:,iq)) |
|---|
| 3555 | call write_output('qsurf'//str2,'qsurf', |
|---|
| 3556 | & 'kg.m-2',qsurf(:,iq,iflat)) |
|---|
| 3557 | do islope=1,nslope |
|---|
| 3558 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3559 | call write_output('qsurf_slope'//str2,'qsurf', |
|---|
| 3560 | & 'kg.m-2',qsurf(:,iq,islope)) |
|---|
| 3561 | ENDDO |
|---|
| 3562 | end do |
|---|
| 3563 | endif ! (doubleq) |
|---|
| 3564 | |
|---|
| 3565 | if (rdstorm) then ! writediagfi tendencies stormdust tracers |
|---|
| 3566 | call write_output('reffstormdust','reffstormdust', |
|---|
| 3567 | & 'm',rstormdust(:,:)*ref_r0) |
|---|
| 3568 | call write_output('mstormdtot', |
|---|
| 3569 | & 'total mass of stormdust only', |
|---|
| 3570 | & 'kg.m-2',mstormdtot(:)) |
|---|
| 3571 | call write_output('mdusttot', |
|---|
| 3572 | & 'total mass of dust only', |
|---|
| 3573 | & 'kg.m-2',mdusttot(:)) |
|---|
| 3574 | call write_output('rdsdqsdust', |
|---|
| 3575 | & 'deposited surface stormdust mass', |
|---|
| 3576 | & 'kg.m-2.s-1',rdsdqdustsurf(:)) |
|---|
| 3577 | call write_output('rdsdustq','storm Dust mass mr', |
|---|
| 3578 | & 'kg/kg',rdsqdust(:,:)) |
|---|
| 3579 | call write_output('rdsdustqmodel','storm Dust massmr', |
|---|
| 3580 | & 'kg/kg',pq(:,:,igcm_stormdust_mass)) |
|---|
| 3581 | call write_output('rdsdustN','storm Dust number', |
|---|
| 3582 | & 'part/kg',rdsndust(:,:)) |
|---|
| 3583 | call write_output("stormfract", |
|---|
| 3584 | & "fraction of the mesh, with stormdust","none", |
|---|
| 3585 | & totstormfract(:)) |
|---|
| 3586 | ! call write_output('qsurf', |
|---|
| 3587 | ! & 'stormdust injection', |
|---|
| 3588 | ! & 'kg.m-2',qsurf(:,igcm_stormdust_mass,iflat)) |
|---|
| 3589 | ! do islope=1,nslope |
|---|
| 3590 | ! write(str2(1:2),'(i2.2)') islope |
|---|
| 3591 | ! call write_output('qsurf_slope'//str2, |
|---|
| 3592 | ! & 'stormdust injection', |
|---|
| 3593 | ! & 'kg.m-2',qsurf(:,igcm_stormdust_mass,islope)) |
|---|
| 3594 | ! ENDDO |
|---|
| 3595 | ! call write_output('pdqsurf', |
|---|
| 3596 | ! & 'tendancy stormdust mass at surface', |
|---|
| 3597 | ! & 'kg.m-2',dqsurf(:,igcm_stormdust_mass,iflat)) |
|---|
| 3598 | ! do islope=1,nslope |
|---|
| 3599 | ! write(str2(1:2),'(i2.2)') islope |
|---|
| 3600 | ! call write_output('pdqsurf_slope'//str2, |
|---|
| 3601 | ! & 'tendancy stormdust mass at surface', |
|---|
| 3602 | ! & 'kg.m-2',dqsurf(:,igcm_stormdust_mass,islope)) |
|---|
| 3603 | ! ENDDO |
|---|
| 3604 | call write_output('wspeed_stormdust', |
|---|
| 3605 | & 'vertical velocity of stormdust', |
|---|
| 3606 | & 'm/s',wspeed(:,:)) |
|---|
| 3607 | call write_output('zdqsed_dust_mass' |
|---|
| 3608 | & ,'sedimentation tendency of background dust mmr' |
|---|
| 3609 | & ,'kg/kg.s-1', |
|---|
| 3610 | & zdqsed(:,:,igcm_dust_mass)) |
|---|
| 3611 | call write_output('zdqssed_dust_mass' |
|---|
| 3612 | & ,'sedimentation tendency of background dust on surface' |
|---|
| 3613 | & ,'kg.m-2.s-1', |
|---|
| 3614 | & zdqssed(:,igcm_dust_mass)) |
|---|
| 3615 | call write_output('zdqsed_stormdust_mass' |
|---|
| 3616 | & ,'sedimentation tendency of stormdust dust mmr' |
|---|
| 3617 | & ,'kg/kg.s-1', |
|---|
| 3618 | & zdqsed(:,:,igcm_stormdust_mass)) |
|---|
| 3619 | call write_output('zdqsed_dust_number' |
|---|
| 3620 | & ,'sedimentation tendency of background dust number' |
|---|
| 3621 | & ,'nbr/kg.s-1', |
|---|
| 3622 | & zdqsed(:,:,igcm_dust_number)) |
|---|
| 3623 | call write_output('rdust','rdust', |
|---|
| 3624 | & 'm',rdust(:,:)) |
|---|
| 3625 | call write_output('rstormdust','rstormdust', |
|---|
| 3626 | & 'm',rstormdust(:,:)) |
|---|
| 3627 | |
|---|
| 3628 | select case (trim(dustiropacity)) |
|---|
| 3629 | case ("tes") |
|---|
| 3630 | call write_output('dsords_TES', |
|---|
| 3631 | & 'density scaled extinction opacity of stormdust at 9.3um(TES)', |
|---|
| 3632 | & 'm2.kg-1',dsords(:,:)) |
|---|
| 3633 | case ("mcs") |
|---|
| 3634 | call write_output('dsords', |
|---|
| 3635 | & 'density scaled extinction opacity of stormdust at 21.6um(MCS)', |
|---|
| 3636 | & 'm2.kg-1',dsords(:,:)) |
|---|
| 3637 | end select |
|---|
| 3638 | endif ! (rdstorm) |
|---|
| 3639 | |
|---|
| 3640 | if (topflows) then |
|---|
| 3641 | call write_output('refftopdust', |
|---|
| 3642 | & 'Topdust dust effective radius', |
|---|
| 3643 | & 'm',rtopdust(:,:)*ref_r0) |
|---|
| 3644 | call write_output('topdustq','top Dust mass mr', |
|---|
| 3645 | & 'kg/kg',pq(:,:,igcm_topdust_mass)) |
|---|
| 3646 | call write_output('topdustN','top Dust number', |
|---|
| 3647 | & 'part/kg',pq(:,:,igcm_topdust_number)) |
|---|
| 3648 | select case (trim(dustiropacity)) |
|---|
| 3649 | case ("tes") |
|---|
| 3650 | call write_output('dsotop_TES', |
|---|
| 3651 | & 'density scaled extinction opacity of topdust at 9.3um(TES)', |
|---|
| 3652 | & 'm2.kg-1',dsotop(:,:)) |
|---|
| 3653 | case ("mcs") |
|---|
| 3654 | call write_output('dsotop', |
|---|
| 3655 | & 'density scaled extinction opacity of topdust at 21.6um(MCS)', |
|---|
| 3656 | & 'm2.kg-1',dsotop(:,:)) |
|---|
| 3657 | end select |
|---|
| 3658 | endif ! (topflows) |
|---|
| 3659 | |
|---|
| 3660 | if (dustscaling_mode==2) then |
|---|
| 3661 | call write_output("dust_rad_adjust", |
|---|
| 3662 | & "radiative adjustment coefficient for dust", |
|---|
| 3663 | & "",dust_rad_adjust(:)) |
|---|
| 3664 | endif |
|---|
| 3665 | |
|---|
| 3666 | ! if (scavenging) then ! these outputs should be in the scavenging routine |
|---|
| 3667 | ! call write_output('ccnq','CCN mass mr', |
|---|
| 3668 | ! & 'kg/kg',qccn(:,:)) |
|---|
| 3669 | ! call write_output('ccnN','CCN number', |
|---|
| 3670 | ! & 'part/kg',nccn(:,:)) |
|---|
| 3671 | ! call write_output('surfccnq','Surf nuclei mass mr', |
|---|
| 3672 | ! & 'kg.m-2',qsurf(:,igcm_ccn_mass,iflat)) |
|---|
| 3673 | ! do islope=1,nslope |
|---|
| 3674 | ! write(str2(1:2),'(i2.2)') islope |
|---|
| 3675 | ! call write_output('surfccnq_slope'//str2, |
|---|
| 3676 | ! & 'Surf nuclei mass mr', |
|---|
| 3677 | ! & 'kg.m-2',qsurf(:,igcm_ccn_mass,islope)) |
|---|
| 3678 | ! ENDDO |
|---|
| 3679 | ! call write_output('surfccnN','Surf nuclei number', |
|---|
| 3680 | ! & 'kg.m-2',qsurf(:,igcm_ccn_number,iflat)) |
|---|
| 3681 | ! do islope=1,nslope |
|---|
| 3682 | ! write(str2(1:2),'(i2.2)') islope |
|---|
| 3683 | ! call write_output('surfccnN_slope'//str2, |
|---|
| 3684 | ! & 'Surf nuclei number', |
|---|
| 3685 | ! & 'kg.m-2',qsurf(:,igcm_ccn_number,islope)) |
|---|
| 3686 | ! ENDDO |
|---|
| 3687 | ! endif ! (scavenging) |
|---|
| 3688 | |
|---|
| 3689 | #else |
|---|
| 3690 | ! !!! to initialize mesoscale we need scaled variables |
|---|
| 3691 | ! !!! because this must correspond to starting point for tracers |
|---|
| 3692 | ! call write_output('dustq','Dust mass mr', |
|---|
| 3693 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_mass)) |
|---|
| 3694 | ! call write_output('dustN','Dust number', |
|---|
| 3695 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_number)) |
|---|
| 3696 | ! call write_output('ccn','Nuclei mass mr', |
|---|
| 3697 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_mass)) |
|---|
| 3698 | ! call write_output('ccnN','Nuclei number', |
|---|
| 3699 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_number)) |
|---|
| 3700 | if (freedust) then |
|---|
| 3701 | call write_output('dustq','Dust mass mr', |
|---|
| 3702 | & 'kg/kg',qdust) |
|---|
| 3703 | call write_output('dustN','Dust number', |
|---|
| 3704 | & 'part/kg',ndust) |
|---|
| 3705 | call write_output('ccn','CCN mass mr', |
|---|
| 3706 | & 'kg/kg',qccn) |
|---|
| 3707 | call write_output('ccnN','CCN number', |
|---|
| 3708 | & 'part/kg',nccn) |
|---|
| 3709 | else |
|---|
| 3710 | call write_output('dustq','Dust mass mr', |
|---|
| 3711 | & 'kg/kg',pq(:,:,igcm_dust_mass)) |
|---|
| 3712 | call write_output('dustN','Dust number', |
|---|
| 3713 | & 'part/kg',pq(:,:,igcm_dust_number)) |
|---|
| 3714 | call write_output('ccn','Nuclei mass mr', |
|---|
| 3715 | & 'kg/kg',pq(:,:,igcm_ccn_mass)) |
|---|
| 3716 | call write_output('ccnN','Nuclei number', |
|---|
| 3717 | & 'part/kg',pq(:,:,igcm_ccn_number)) |
|---|
| 3718 | endif |
|---|
| 3719 | #endif |
|---|
| 3720 | |
|---|
| 3721 | end if ! (dustbin.ne.0) |
|---|
| 3722 | |
|---|
| 3723 | c ---------------------------------------------------------- |
|---|
| 3724 | c Thermospheric outputs |
|---|
| 3725 | c ---------------------------------------------------------- |
|---|
| 3726 | |
|---|
| 3727 | if(callthermos) then |
|---|
| 3728 | |
|---|
| 3729 | call write_output("quv","UV heating","K/s", |
|---|
| 3730 | $ zdteuv(:,:)) |
|---|
| 3731 | call write_output("cond","Thermal conduction","K/s", |
|---|
| 3732 | $ zdtconduc(:,:)) |
|---|
| 3733 | |
|---|
| 3734 | !H, H2 and D escape fluxes |
|---|
| 3735 | |
|---|
| 3736 | call write_output("PhiH","H escape flux","s-1", |
|---|
| 3737 | $ PhiEscH) |
|---|
| 3738 | call write_output("PhiH2","H2 escape flux","s-1", |
|---|
| 3739 | $ PhiEscH2) |
|---|
| 3740 | call write_output("PhiD","D escape flux","s-1", |
|---|
| 3741 | $ PhiEscD) |
|---|
| 3742 | |
|---|
| 3743 | endif !(callthermos) |
|---|
| 3744 | |
|---|
| 3745 | call write_output("q15um","15 um cooling","K/s", |
|---|
| 3746 | $ zdtnlte(:,:)) |
|---|
| 3747 | call write_output("qnir","NIR heating","K/s", |
|---|
| 3748 | $ zdtnirco2(:,:)) |
|---|
| 3749 | |
|---|
| 3750 | c ---------------------------------------------------------- |
|---|
| 3751 | c ---------------------------------------------------------- |
|---|
| 3752 | c PBL OUTPUS |
|---|
| 3753 | c ---------------------------------------------------------- |
|---|
| 3754 | c ---------------------------------------------------------- |
|---|
| 3755 | |
|---|
| 3756 | c ---------------------------------------------------------- |
|---|
| 3757 | c Outputs of thermals |
|---|
| 3758 | c ---------------------------------------------------------- |
|---|
| 3759 | if (calltherm) then |
|---|
| 3760 | call write_output('lmax_th', |
|---|
| 3761 | & 'index of vertical extension of thermals', |
|---|
| 3762 | & 'grid level',lmax_th_out(:)) |
|---|
| 3763 | call write_output('zmax_th', |
|---|
| 3764 | & 'vertical extension of thermals','m', |
|---|
| 3765 | & zmax_th(:)) |
|---|
| 3766 | call write_output('hfmax_th', |
|---|
| 3767 | & 'maximum heat flux in thermals','K.m/s', |
|---|
| 3768 | & hfmax_th(:)) |
|---|
| 3769 | call write_output('wstar', |
|---|
| 3770 | & 'maximum thermals vertical velocity','m/s', |
|---|
| 3771 | & wstar(:)) |
|---|
| 3772 | end if |
|---|
| 3773 | |
|---|
| 3774 | c ---------------------------------------------------------- |
|---|
| 3775 | c ---------------------------------------------------------- |
|---|
| 3776 | c END OF PBL OUTPUS |
|---|
| 3777 | c ---------------------------------------------------------- |
|---|
| 3778 | c ---------------------------------------------------------- |
|---|
| 3779 | |
|---|
| 3780 | |
|---|
| 3781 | c ---------------------------------------------------------- |
|---|
| 3782 | c Output in netcdf file "diagsoil.nc" for subterranean |
|---|
| 3783 | c variables (output every "ecritphy", as for writediagfi) |
|---|
| 3784 | c ---------------------------------------------------------- |
|---|
| 3785 | |
|---|
| 3786 | ! Write soil temperature |
|---|
| 3787 | call write_output("soiltemp","Soil temperature","K", |
|---|
| 3788 | & tsoil(:,:,iflat)) |
|---|
| 3789 | do islope=1,nslope |
|---|
| 3790 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3791 | call write_output("soiltemp_slope"//str2, |
|---|
| 3792 | & "Soil temperature","K", |
|---|
| 3793 | & tsoil(:,:,islope)) |
|---|
| 3794 | ENDDO |
|---|
| 3795 | |
|---|
| 3796 | !PREVIOUSLY IN 1D ONLY |
|---|
| 3797 | call write_output("dtrad","rad. heat. rate", |
|---|
| 3798 | & "K.s-1",dtrad(:,:)) |
|---|
| 3799 | |
|---|
| 3800 | if (rdstorm) then |
|---|
| 3801 | call write_output('aerosol_dust','opacity of env. dust','' |
|---|
| 3802 | & ,aerosol(:,:,iaer_dust_doubleq)) |
|---|
| 3803 | call write_output('aerosol_stormdust', |
|---|
| 3804 | & 'opacity of storm dust','' |
|---|
| 3805 | & ,aerosol(:,:,iaer_stormdust_doubleq)) |
|---|
| 3806 | call write_output('dqsdifdustq', |
|---|
| 3807 | &'tendency due to vertical diffusion of background dust on surface' |
|---|
| 3808 | & ,'kg.m-2.s-1',zdqsdif(:,igcm_dust_mass,iflat)) |
|---|
| 3809 | do islope=1,nslope |
|---|
| 3810 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3811 | call write_output('dqsdifdustq_slope'//str2, |
|---|
| 3812 | &'tendency due to vertical diffusion of background dust on surface' |
|---|
| 3813 | & ,'kg.m-2.s-1',zdqsdif(:,igcm_dust_mass,islope)) |
|---|
| 3814 | ENDDO |
|---|
| 3815 | call write_output('dqsdifrdsq', |
|---|
| 3816 | & 'tendency due to vertical diffusion of stormdust on surface', |
|---|
| 3817 | & 'kg.m-2.s-1',zdqsdif(:,igcm_stormdust_mass,iflat)) |
|---|
| 3818 | do islope=1,nslope |
|---|
| 3819 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3820 | call write_output('dqsdifrdsq_slope'//str2, |
|---|
| 3821 | & 'tendency due to vertical diffusion of stormdust on surface', |
|---|
| 3822 | & 'kg.m-2.s-1',zdqsdif(:,igcm_stormdust_mass,islope)) |
|---|
| 3823 | ENDDO |
|---|
| 3824 | endif !(rdstorm) |
|---|
| 3825 | |
|---|
| 3826 | if(water) then |
|---|
| 3827 | if (.not.scavenging) then |
|---|
| 3828 | call write_output('zdqcloud_ice','cloud ice', |
|---|
| 3829 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_h2o_ice)) |
|---|
| 3830 | call write_output('zdqcloud_vap','cloud vap', |
|---|
| 3831 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_h2o_vap)) |
|---|
| 3832 | call write_output('zdqcloud','cloud', |
|---|
| 3833 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_h2o_ice) |
|---|
| 3834 | & +zdqcloud(:,:,igcm_h2o_vap)) |
|---|
| 3835 | IF (hdo) THEN |
|---|
| 3836 | call write_output('zdqcloud_iceD','cloud ice hdo', |
|---|
| 3837 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_hdo_ice)) |
|---|
| 3838 | call write_output('zdqcloud_vapD','cloud vap hdo', |
|---|
| 3839 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_hdo_vap)) |
|---|
| 3840 | ENDIF ! hdo |
|---|
| 3841 | endif !not.scavenging |
|---|
| 3842 | ENDIF ! of IF (water) |
|---|
| 3843 | |
|---|
| 3844 | ! Output needed by the PEM |
|---|
| 3845 | DO ig = 1,ngrid |
|---|
| 3846 | ztmp1 =(1/m_co2 - 1/m_noco2) |
|---|
| 3847 | ztmp2=1/m_noco2 |
|---|
| 3848 | pvap_surf(ig) = 1/(ztmp1*zq(ig,1,igcm_co2)+ztmp2) |
|---|
| 3849 | & * zq(ig,1,igcm_h2o_vap)/(mmol(igcm_h2o_vap)*1.e-3)*ps(ig) |
|---|
| 3850 | |
|---|
| 3851 | DO islope = 1,nslope |
|---|
| 3852 | ! Clapeyron law for psat (psat = exp(beta/Th2o+alpha)),following Murphy and Koop 2005 |
|---|
| 3853 | rhowater_surf_sat(ig,islope) = |
|---|
| 3854 | & exp(beta_clap_h2o/tsurf(ig,islope)+alpha_clap_h2o) |
|---|
| 3855 | & / tsurf(ig,islope) |
|---|
| 3856 | & * mmol(igcm_h2o_vap)/(mugaz*r) |
|---|
| 3857 | |
|---|
| 3858 | if(qsurf(ig,igcm_h2o_ice,islope).gt.(1.e-4)) then |
|---|
| 3859 | ! we consider to be at saturation above 1.e-4 kg.m-2 |
|---|
| 3860 | rhowater_surf(ig,islope) = rhowater_surf_sat(ig,islope) |
|---|
| 3861 | else |
|---|
| 3862 | ! otherwise, use vapor partial pressure |
|---|
| 3863 | rhowater_surf(ig,islope) = pvap_surf(ig) |
|---|
| 3864 | & / tsurf(ig,islope) |
|---|
| 3865 | & * mmol(igcm_h2o_vap)/(mugaz*r) |
|---|
| 3866 | endif |
|---|
| 3867 | DO isoil = 1,nsoilmx |
|---|
| 3868 | rhowater_soil(ig,isoil,islope) = |
|---|
| 3869 | & exp(beta_clap_h2o/tsoil(ig,isoil,islope)+alpha_clap_h2o) |
|---|
| 3870 | & / tsoil(ig,isoil,islope) |
|---|
| 3871 | & * mmol(igcm_h2o_vap)/(mugaz*r) |
|---|
| 3872 | ENDDO |
|---|
| 3873 | ENDDO |
|---|
| 3874 | ENDDO |
|---|
| 3875 | |
|---|
| 3876 | DO islope = 1,nslope |
|---|
| 3877 | write(str2(1:2),'(i2.2)') islope |
|---|
| 3878 | CALL write_output("Waterdensity_soil_slope"//str2, |
|---|
| 3879 | & "rhowater_soil_slope"//str2,'kg.m-3', |
|---|
| 3880 | & rhowater_soil(:,:,islope)) |
|---|
| 3881 | CALL write_output("Waterdensity_surface"//str2, |
|---|
| 3882 | & "rhowater_surface"//str2,'kg.m-3', |
|---|
| 3883 | & rhowater_surf(:,islope)) |
|---|
| 3884 | ENDDO |
|---|
| 3885 | |
|---|
| 3886 | CALL write_output("h2o_layer1","h2o mass mr in the first layer", |
|---|
| 3887 | & 'kg/kg',zq(:,1,igcm_h2o_vap)) |
|---|
| 3888 | CALL write_output("co2_layer1","co2 mass mr in the first layer", |
|---|
| 3889 | & 'kg/kg',zq(:,1,igcm_co2)) |
|---|
| 3890 | |
|---|
| 3891 | !PREVIOUSLY IN 1D ONLY |
|---|
| 3892 | |
|---|
| 3893 | c ========================================================== |
|---|
| 3894 | c END OF WRITEDIAGFI |
|---|
| 3895 | c ========================================================== |
|---|
| 3896 | #endif |
|---|
| 3897 | ! of ifdef MESOSCALE |
|---|
| 3898 | |
|---|
| 3899 | c ELSE ! if(ngrid.eq.1) |
|---|
| 3900 | |
|---|
| 3901 | c#ifndef MESOSCALE |
|---|
| 3902 | c write(*, |
|---|
| 3903 | c & '("Ls =",f11.6," tau_pref_scenario(",f4.0," Pa) =",f9.6)') |
|---|
| 3904 | c & zls*180./pi,odpref,tau_pref_scenario |
|---|
| 3905 | c#endif |
|---|
| 3906 | |
|---|
| 3907 | c END IF ! if(ngrid.ne.1) |
|---|
| 3908 | |
|---|
| 3909 | |
|---|
| 3910 | ! test for co2 conservation with co2 microphysics |
|---|
| 3911 | if (igcm_co2_ice.ne.0) then |
|---|
| 3912 | co2totB = 0. ! added by C.M. |
|---|
| 3913 | do ig=1,ngrid |
|---|
| 3914 | do l=1,nlayer |
|---|
| 3915 | co2totB = co2totB + (zplev(ig,l)-zplev(ig,l+1))/g* |
|---|
| 3916 | & (pq(ig,l,igcm_co2)+pq(ig,l,igcm_co2_ice) |
|---|
| 3917 | & +(pdq(ig,l,igcm_co2)+pdq(ig,l,igcm_co2_ice))*ptimestep) |
|---|
| 3918 | enddo |
|---|
| 3919 | co2totB = co2totB + qsurf(ig,igcm_co2,iflat) |
|---|
| 3920 | enddo |
|---|
| 3921 | else |
|---|
| 3922 | co2totB = 0. ! added by C.M. |
|---|
| 3923 | do ig=1,ngrid |
|---|
| 3924 | do l=1,nlayer |
|---|
| 3925 | co2totB = co2totB + (zplev(ig,l)-zplev(ig,l+1))/g* |
|---|
| 3926 | & (pq(ig,l,igcm_co2)+pdq(ig,l,igcm_co2)*ptimestep) |
|---|
| 3927 | enddo |
|---|
| 3928 | co2totB = co2totB + qsurf(ig,igcm_co2,iflat) |
|---|
| 3929 | enddo |
|---|
| 3930 | endif ! of if (igcm_co2_ice.ne.0) |
|---|
| 3931 | co2conservation = (co2totA-co2totB)/co2totA |
|---|
| 3932 | call write_output( 'co2conservation', |
|---|
| 3933 | & 'Total CO2 mass conservation in physic', |
|---|
| 3934 | & 'kg', co2conservation) |
|---|
| 3935 | ! XIOS outputs |
|---|
| 3936 | #ifdef CPP_XIOS |
|---|
| 3937 | ! Send fields to XIOS: (NB these fields must also be defined as |
|---|
| 3938 | ! <field id="..." /> in context_lmdz_physics.xml to be correctly used) |
|---|
| 3939 | |
|---|
| 3940 | CALL send_xios_field("controle",tab_cntrl_mod,1) |
|---|
| 3941 | |
|---|
| 3942 | CALL send_xios_field("ap",ap,1) |
|---|
| 3943 | CALL send_xios_field("bp",bp,1) |
|---|
| 3944 | CALL send_xios_field("aps",aps,1) |
|---|
| 3945 | CALL send_xios_field("bps",bps,1) |
|---|
| 3946 | |
|---|
| 3947 | if (lastcall.and.is_omp_master) then |
|---|
| 3948 | write(*,*) "physiq lastcall: call xios_context_finalize" |
|---|
| 3949 | call xios_context_finalize |
|---|
| 3950 | endif |
|---|
| 3951 | #endif |
|---|
| 3952 | |
|---|
| 3953 | if (check_physics_outputs) then |
|---|
| 3954 | ! Check the validity of updated fields at the end of the physics step |
|---|
| 3955 | call check_physics_fields("end of physiq:",zt,zu,zv,zplev,zq) |
|---|
| 3956 | endif |
|---|
| 3957 | |
|---|
| 3958 | icount=icount+1 |
|---|
| 3959 | |
|---|
| 3960 | END SUBROUTINE physiq |
|---|
| 3961 | |
|---|
| 3962 | END MODULE physiq_mod |
|---|