| 1 | MODULE physiq_mod |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | SUBROUTINE physiq( |
|---|
| 8 | $ ngrid,nlayer,nq |
|---|
| 9 | $ ,firstcall,lastcall |
|---|
| 10 | $ ,pday,ptime,ptimestep |
|---|
| 11 | $ ,pplev,pplay,pphi |
|---|
| 12 | $ ,pu,pv,pt,pq |
|---|
| 13 | $ ,flxw |
|---|
| 14 | $ ,pdu,pdv,pdt,pdq,pdpsrf) |
|---|
| 15 | |
|---|
| 16 | use watercloud_mod |
|---|
| 17 | use co2cloud_mod, only: co2cloud, mem_Mccn_co2, mem_Mh2o_co2, |
|---|
| 18 | & mem_Nccn_co2 |
|---|
| 19 | use aeropacity_mod |
|---|
| 20 | use callradite_mod |
|---|
| 21 | use tracer_mod, only: noms, mmol, igcm_co2, igcm_n2, igcm_co2_ice, |
|---|
| 22 | & igcm_co, igcm_o, igcm_h2o_vap, igcm_h2o_ice, |
|---|
| 23 | & igcm_ccn_mass, igcm_ccn_number, |
|---|
| 24 | & igcm_ccnco2_mass, igcm_ccnco2_number, |
|---|
| 25 | & rho_ice_co2,nuiceco2_sed,nuiceco2_ref, |
|---|
| 26 | & igcm_dust_mass, igcm_dust_number, igcm_h2o2, |
|---|
| 27 | & nuice_ref, rho_ice, rho_dust, ref_r0, |
|---|
| 28 | & igcm_he |
|---|
| 29 | use comsoil_h, only: inertiedat, ! soil thermal inertia |
|---|
| 30 | & tsoil, nsoilmx ! number of subsurface layers |
|---|
| 31 | use geometry_mod, only: longitude, latitude, cell_area |
|---|
| 32 | use comgeomfi_h, only: sinlon, coslon, sinlat, coslat |
|---|
| 33 | use surfdat_h, only: phisfi, albedodat, zmea, zstd, zsig, zgam, |
|---|
| 34 | & zthe, z0, albedo_h2o_ice, |
|---|
| 35 | & frost_albedo_threshold, |
|---|
| 36 | & tsurf, co2ice, emis, |
|---|
| 37 | & capcal, fluxgrd, qsurf |
|---|
| 38 | use comsaison_h, only: dist_sol, declin, mu0, fract |
|---|
| 39 | use slope_mod, only: theta_sl, psi_sl |
|---|
| 40 | use conc_mod, only: rnew, cpnew, mmean |
|---|
| 41 | use time_phylmdz_mod, only: iphysiq, day_step, ecritstart, daysec |
|---|
| 42 | use dimradmars_mod, only: tauscaling, aerosol, totcloudfrac, |
|---|
| 43 | & dtrad, fluxrad_sky, fluxrad, albedo, |
|---|
| 44 | & naerkind |
|---|
| 45 | use turb_mod, only: q2, wstar, ustar, sensibFlux, |
|---|
| 46 | & zmax_th, hfmax_th, turb_resolved |
|---|
| 47 | use planete_h, only: aphelie, periheli, year_day, peri_day, |
|---|
| 48 | & obliquit |
|---|
| 49 | USE comcstfi_h, only: r, cpp, mugaz, g, rcp, pi, rad |
|---|
| 50 | USE calldrag_noro_mod, ONLY: calldrag_noro |
|---|
| 51 | use param_v4_h, only: nreact,n_avog, |
|---|
| 52 | & fill_data_thermos, allocate_param_thermos |
|---|
| 53 | use iono_h, only: allocate_param_iono |
|---|
| 54 | #ifdef MESOSCALE |
|---|
| 55 | use comsoil_h, only: mlayer,layer |
|---|
| 56 | use surfdat_h, only: z0_default |
|---|
| 57 | use comm_wrf |
|---|
| 58 | #else |
|---|
| 59 | use planetwide_mod |
|---|
| 60 | use phyredem, only: physdem0, physdem1 |
|---|
| 61 | use eofdump_mod, only: eofdump |
|---|
| 62 | USE vertical_layers_mod, ONLY: ap,bp,aps,bps |
|---|
| 63 | #endif |
|---|
| 64 | |
|---|
| 65 | |
|---|
| 66 | |
|---|
| 67 | IMPLICIT NONE |
|---|
| 68 | c======================================================================= |
|---|
| 69 | c |
|---|
| 70 | c subject: |
|---|
| 71 | c -------- |
|---|
| 72 | c |
|---|
| 73 | c Organisation of the physical parametrisations of the LMD |
|---|
| 74 | c martian atmospheric general circulation model. |
|---|
| 75 | c |
|---|
| 76 | c The GCM can be run without or with tracer transport |
|---|
| 77 | c depending on the value of Logical "tracer" in file "callphys.def" |
|---|
| 78 | c Tracers may be water vapor, ice OR chemical species OR dust particles |
|---|
| 79 | c |
|---|
| 80 | c SEE comments in initracer.F about numbering of tracer species... |
|---|
| 81 | c |
|---|
| 82 | c It includes: |
|---|
| 83 | c |
|---|
| 84 | c 1. Initialization: |
|---|
| 85 | c 1.1 First call initializations |
|---|
| 86 | c 1.2 Initialization for every call to physiq |
|---|
| 87 | c 1.2.5 Compute mean mass and cp, R and thermal conduction coeff. |
|---|
| 88 | c 2. Compute radiative transfer tendencies |
|---|
| 89 | c (longwave and shortwave) for CO2 and aerosols. |
|---|
| 90 | c 3. Gravity wave and subgrid scale topography drag : |
|---|
| 91 | c 4. Vertical diffusion (turbulent mixing): |
|---|
| 92 | c 5. Convective adjustment |
|---|
| 93 | c 6. Condensation and sublimation of carbon dioxide. |
|---|
| 94 | c 7. TRACERS : |
|---|
| 95 | c 7a. water, water ice, co2 ice (clouds) |
|---|
| 96 | c 7b. call for photochemistry when tracers are chemical species |
|---|
| 97 | c 7c. other scheme for tracer (dust) transport (lifting, sedimentation) |
|---|
| 98 | c 7d. updates (CO2 pressure variations, surface budget) |
|---|
| 99 | c 8. Contribution to tendencies due to thermosphere |
|---|
| 100 | c 9. Surface and sub-surface temperature calculations |
|---|
| 101 | c 10. Write outputs : |
|---|
| 102 | c - "startfi", "histfi" (if it's time) |
|---|
| 103 | c - Saving statistics (if "callstats = .true.") |
|---|
| 104 | c - Dumping eof (if "calleofdump = .true.") |
|---|
| 105 | c - Output any needed variables in "diagfi" |
|---|
| 106 | c 11. Diagnostic: mass conservation of tracers |
|---|
| 107 | c |
|---|
| 108 | c author: |
|---|
| 109 | c ------- |
|---|
| 110 | c Frederic Hourdin 15/10/93 |
|---|
| 111 | c Francois Forget 1994 |
|---|
| 112 | c Christophe Hourdin 02/1997 |
|---|
| 113 | c Subroutine completly rewritten by F.Forget (01/2000) |
|---|
| 114 | c Introduction of the photochemical module: S. Lebonnois (11/2002) |
|---|
| 115 | c Introduction of the thermosphere module: M. Angelats i Coll (2002) |
|---|
| 116 | c Water ice clouds: Franck Montmessin (update 06/2003) |
|---|
| 117 | c Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
|---|
| 118 | c Nb: See callradite.F for more information. |
|---|
| 119 | c Mesoscale lines: Aymeric Spiga (2007 - 2011) -- check MESOSCALE flags |
|---|
| 120 | c jul 2011 malv+fgg: Modified calls to NIR heating routine and 15 um cooling parameterization |
|---|
| 121 | c |
|---|
| 122 | c 10/16 J. Audouard: modifications for CO2 clouds scheme |
|---|
| 123 | |
|---|
| 124 | c arguments: |
|---|
| 125 | c ---------- |
|---|
| 126 | c |
|---|
| 127 | c input: |
|---|
| 128 | c ------ |
|---|
| 129 | c ecri period (in dynamical timestep) to write output |
|---|
| 130 | c ngrid Size of the horizontal grid. |
|---|
| 131 | c All internal loops are performed on that grid. |
|---|
| 132 | c nlayer Number of vertical layers. |
|---|
| 133 | c nq Number of advected fields |
|---|
| 134 | c firstcall True at the first call |
|---|
| 135 | c lastcall True at the last call |
|---|
| 136 | c pday Number of days counted from the North. Spring |
|---|
| 137 | c equinoxe. |
|---|
| 138 | c ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT |
|---|
| 139 | c ptimestep timestep (s) |
|---|
| 140 | c pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa) |
|---|
| 141 | c pplev(ngrid,nlayer+1) intermediate pressure levels (pa) |
|---|
| 142 | c pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2s-2) |
|---|
| 143 | c pu(ngrid,nlayer) u component of the wind (ms-1) |
|---|
| 144 | c pv(ngrid,nlayer) v component of the wind (ms-1) |
|---|
| 145 | c pt(ngrid,nlayer) Temperature (K) |
|---|
| 146 | c pq(ngrid,nlayer,nq) Advected fields |
|---|
| 147 | c pudyn(ngrid,nlayer) | |
|---|
| 148 | c pvdyn(ngrid,nlayer) | Dynamical temporal derivative for the |
|---|
| 149 | c ptdyn(ngrid,nlayer) | corresponding variables |
|---|
| 150 | c pqdyn(ngrid,nlayer,nq) | |
|---|
| 151 | c flxw(ngrid,nlayer) vertical mass flux (kg/s) at layer lower boundary |
|---|
| 152 | c |
|---|
| 153 | c output: |
|---|
| 154 | c ------- |
|---|
| 155 | c |
|---|
| 156 | c pdu(ngrid,nlayer) | |
|---|
| 157 | c pdv(ngrid,nlayer) | Temporal derivative of the corresponding |
|---|
| 158 | c pdt(ngrid,nlayer) | variables due to physical processes. |
|---|
| 159 | c pdq(ngrid,nlayer,nq) | |
|---|
| 160 | c pdpsrf(ngrid) | |
|---|
| 161 | |
|---|
| 162 | c |
|---|
| 163 | c======================================================================= |
|---|
| 164 | c |
|---|
| 165 | c 0. Declarations : |
|---|
| 166 | c ------------------ |
|---|
| 167 | |
|---|
| 168 | include "callkeys.h" |
|---|
| 169 | include "comg1d.h" |
|---|
| 170 | include "nlteparams.h" |
|---|
| 171 | include "chimiedata.h" |
|---|
| 172 | include "netcdf.inc" |
|---|
| 173 | |
|---|
| 174 | c Arguments : |
|---|
| 175 | c ----------- |
|---|
| 176 | |
|---|
| 177 | c inputs: |
|---|
| 178 | c ------- |
|---|
| 179 | INTEGER,INTENT(in) :: ngrid ! number of atmospheric columns |
|---|
| 180 | INTEGER,INTENT(in) :: nlayer ! number of atmospheric layers |
|---|
| 181 | INTEGER,INTENT(in) :: nq ! number of tracers |
|---|
| 182 | LOGICAL,INTENT(in) :: firstcall ! signals first call to physics |
|---|
| 183 | LOGICAL,INTENT(in) :: lastcall ! signals last call to physics |
|---|
| 184 | REAL,INTENT(in) :: pday ! number of elapsed sols since reference Ls=0 |
|---|
| 185 | REAL,INTENT(in) :: ptime ! "universal time", given as fraction of sol (e.g.: 0.5 for noon) |
|---|
| 186 | REAL,INTENT(in) :: ptimestep ! physics timestep (s) |
|---|
| 187 | REAL,INTENT(in) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
|---|
| 188 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! mid-layer pressure (Pa) |
|---|
| 189 | REAL,INTENT(IN) :: pphi(ngrid,nlayer) ! geopotential at mid-layer (m2s-2) |
|---|
| 190 | REAL,INTENT(in) :: pu(ngrid,nlayer) ! zonal wind component (m/s) |
|---|
| 191 | REAL,INTENT(in) :: pv(ngrid,nlayer) ! meridional wind component (m/s) |
|---|
| 192 | REAL,INTENT(in) :: pt(ngrid,nlayer) ! temperature (K) |
|---|
| 193 | REAL,INTENT(in) :: pq(ngrid,nlayer,nq) ! tracers (.../kg_of_air) |
|---|
| 194 | REAL,INTENT(in) :: flxw(ngrid,nlayer) ! vertical mass flux (ks/s) |
|---|
| 195 | ! at lower boundary of layer |
|---|
| 196 | |
|---|
| 197 | c outputs: |
|---|
| 198 | c -------- |
|---|
| 199 | c physical tendencies |
|---|
| 200 | REAL,INTENT(out) :: pdu(ngrid,nlayer) ! zonal wind tendency (m/s/s) |
|---|
| 201 | REAL,INTENT(out) :: pdv(ngrid,nlayer) ! meridional wind tendency (m/s/s) |
|---|
| 202 | REAL,INTENT(out) :: pdt(ngrid,nlayer) ! temperature tendency (K/s) |
|---|
| 203 | REAL,INTENT(out) :: pdq(ngrid,nlayer,nq) ! tracer tendencies (../kg/s) |
|---|
| 204 | REAL,INTENT(out) :: pdpsrf(ngrid) ! surface pressure tendency (Pa/s) |
|---|
| 205 | |
|---|
| 206 | |
|---|
| 207 | c Local saved variables: |
|---|
| 208 | c ---------------------- |
|---|
| 209 | INTEGER,SAVE :: day_ini ! Initial date of the run (sol since Ls=0) |
|---|
| 210 | INTEGER,SAVE :: icount ! counter of calls to physiq during the run. |
|---|
| 211 | #ifdef DUSTSTORM |
|---|
| 212 | REAL pq_tmp(ngrid, nlayer, 2) ! To compute tendencies due the dust bomb |
|---|
| 213 | #endif |
|---|
| 214 | c Variables used by the water ice microphysical scheme: |
|---|
| 215 | REAL rice(ngrid,nlayer) ! Water ice geometric mean radius (m) |
|---|
| 216 | REAL nuice(ngrid,nlayer) ! Estimated effective variance |
|---|
| 217 | ! of the size distribution |
|---|
| 218 | real rsedcloud(ngrid,nlayer) ! Cloud sedimentation radius |
|---|
| 219 | real rhocloud(ngrid,nlayer) ! Cloud density (kg.m-3) |
|---|
| 220 | REAL inertiesoil(ngrid,nsoilmx) ! Time varying subsurface |
|---|
| 221 | ! thermal inertia (J.s-1/2.m-2.K-1) |
|---|
| 222 | ! (used only when tifeedback=.true.) |
|---|
| 223 | c Variables used by the CO2 clouds microphysical scheme: |
|---|
| 224 | REAL riceco2(ngrid,nlayer) ! co2 ice geometric mean radius (m) |
|---|
| 225 | real rsedcloudco2(ngrid,nlayer) !CO2 Cloud sedimentation radius |
|---|
| 226 | real rhocloudco2(ngrid,nlayer) !co2 Cloud density (kg.m-3) |
|---|
| 227 | real zdqssed_co2(ngrid) ! CO2 flux at the surface (kg.m-2.s-1) |
|---|
| 228 | c Variables used by the photochemistry |
|---|
| 229 | logical :: asis ! true : adaptative semi-implicit symmetric (asis) chemical solver |
|---|
| 230 | ! false : euler backward chemical solver |
|---|
| 231 | REAL surfdust(ngrid,nlayer) ! dust surface area (m2/m3, if photochemistry) |
|---|
| 232 | REAL surfice(ngrid,nlayer) ! ice surface area (m2/m3, if photochemistry) |
|---|
| 233 | c Variables used by the slope model |
|---|
| 234 | REAL sl_ls, sl_lct, sl_lat |
|---|
| 235 | REAL sl_tau, sl_alb, sl_the, sl_psi |
|---|
| 236 | REAL sl_fl0, sl_flu |
|---|
| 237 | REAL sl_ra, sl_di0 |
|---|
| 238 | REAL sky |
|---|
| 239 | |
|---|
| 240 | REAL,PARAMETER :: stephan = 5.67e-08 ! Stephan Boltzman constant |
|---|
| 241 | |
|---|
| 242 | c Local variables : |
|---|
| 243 | c ----------------- |
|---|
| 244 | |
|---|
| 245 | REAL CBRT |
|---|
| 246 | EXTERNAL CBRT |
|---|
| 247 | |
|---|
| 248 | ! CHARACTER*80 fichier |
|---|
| 249 | INTEGER l,ig,ierr,igout,iq,tapphys |
|---|
| 250 | |
|---|
| 251 | REAL fluxsurf_lw(ngrid) !incident LW (IR) surface flux (W.m-2) |
|---|
| 252 | REAL fluxsurf_sw(ngrid,2) !incident SW (solar) surface flux (W.m-2) |
|---|
| 253 | REAL fluxtop_lw(ngrid) !Outgoing LW (IR) flux to space (W.m-2) |
|---|
| 254 | REAL fluxtop_sw(ngrid,2) !Outgoing SW (solar) flux to space (W.m-2) |
|---|
| 255 | REAL tauref(ngrid) ! Reference column optical depth at odpref |
|---|
| 256 | real,parameter :: odpref=610. ! DOD reference pressure (Pa) |
|---|
| 257 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
|---|
| 258 | ! AS: TBD: this one should be in a module ! |
|---|
| 259 | REAL dsodust(ngrid,nlayer) ! density-scaled opacity (in infrared) |
|---|
| 260 | REAL zls ! solar longitude (rad) |
|---|
| 261 | REAL zday ! date (time since Ls=0, in martian days) |
|---|
| 262 | REAL zzlay(ngrid,nlayer) ! altitude at the middle of the layers |
|---|
| 263 | REAL zzlev(ngrid,nlayer+1) ! altitude at layer boundaries |
|---|
| 264 | ! REAL latvl1,lonvl1 ! Viking Lander 1 point (for diagnostic) |
|---|
| 265 | |
|---|
| 266 | c Tendancies due to various processes: |
|---|
| 267 | REAL dqsurf(ngrid,nq) |
|---|
| 268 | REAL zdtlw(ngrid,nlayer) ! (K/s) |
|---|
| 269 | REAL zdtsw(ngrid,nlayer) ! (K/s) |
|---|
| 270 | ! REAL cldtlw(ngrid,nlayer) ! (K/s) LW heating rate for clear area |
|---|
| 271 | ! REAL cldtsw(ngrid,nlayer) ! (K/s) SW heating rate for clear area |
|---|
| 272 | REAL zdtnirco2(ngrid,nlayer) ! (K/s) |
|---|
| 273 | REAL zdtnlte(ngrid,nlayer) ! (K/s) |
|---|
| 274 | REAL zdtsurf(ngrid) ! (K/s) |
|---|
| 275 | REAL zdtcloud(ngrid,nlayer),zdtcloudco2(ngrid,nlayer) |
|---|
| 276 | REAL zdvdif(ngrid,nlayer),zdudif(ngrid,nlayer) ! (m.s-2) |
|---|
| 277 | REAL zdhdif(ngrid,nlayer), zdtsdif(ngrid) ! (K/s) |
|---|
| 278 | REAL zdvadj(ngrid,nlayer),zduadj(ngrid,nlayer) ! (m.s-2) |
|---|
| 279 | REAL zdhadj(ngrid,nlayer) ! (K/s) |
|---|
| 280 | REAL zdtgw(ngrid,nlayer) ! (K/s) |
|---|
| 281 | REAL zdugw(ngrid,nlayer),zdvgw(ngrid,nlayer) ! (m.s-2) |
|---|
| 282 | REAL zdtc(ngrid,nlayer),zdtsurfc(ngrid) |
|---|
| 283 | REAL zdvc(ngrid,nlayer),zduc(ngrid,nlayer) |
|---|
| 284 | |
|---|
| 285 | REAL zdqdif(ngrid,nlayer,nq), zdqsdif(ngrid,nq) |
|---|
| 286 | REAL zdqsed(ngrid,nlayer,nq), zdqssed(ngrid,nq) |
|---|
| 287 | REAL zdqdev(ngrid,nlayer,nq), zdqsdev(ngrid,nq) |
|---|
| 288 | REAL zdqadj(ngrid,nlayer,nq) |
|---|
| 289 | REAL zdqc(ngrid,nlayer,nq) |
|---|
| 290 | REAL zdqcloud(ngrid,nlayer,nq),zdqcloudco2(ngrid,nlayer,nq) |
|---|
| 291 | REAL zdqscloud(ngrid,nq) |
|---|
| 292 | REAL zdqchim(ngrid,nlayer,nq) |
|---|
| 293 | REAL zdqschim(ngrid,nq) |
|---|
| 294 | |
|---|
| 295 | REAL zdteuv(ngrid,nlayer) ! (K/s) |
|---|
| 296 | REAL zdtconduc(ngrid,nlayer) ! (K/s) |
|---|
| 297 | REAL zdumolvis(ngrid,nlayer) |
|---|
| 298 | REAL zdvmolvis(ngrid,nlayer) |
|---|
| 299 | real zdqmoldiff(ngrid,nlayer,nq) |
|---|
| 300 | |
|---|
| 301 | c Local variable for local intermediate calcul: |
|---|
| 302 | REAL zflubid(ngrid) |
|---|
| 303 | REAL zplanck(ngrid),zpopsk(ngrid,nlayer) |
|---|
| 304 | REAL zdum1(ngrid,nlayer) |
|---|
| 305 | REAL zdum2(ngrid,nlayer) |
|---|
| 306 | REAL ztim1,ztim2,ztim3, z1,z2 |
|---|
| 307 | REAL ztime_fin |
|---|
| 308 | REAL zdh(ngrid,nlayer) |
|---|
| 309 | REAL zh(ngrid,nlayer) ! potential temperature (K) |
|---|
| 310 | REAL pw(ngrid,nlayer) ! vertical velocity (m/s) (>0 when downwards) |
|---|
| 311 | INTEGER length |
|---|
| 312 | PARAMETER (length=100) |
|---|
| 313 | |
|---|
| 314 | c local variables only used for diagnostic (output in file "diagfi" or "stats") |
|---|
| 315 | c ----------------------------------------------------------------------------- |
|---|
| 316 | REAL ps(ngrid), zt(ngrid,nlayer) |
|---|
| 317 | REAL zu(ngrid,nlayer),zv(ngrid,nlayer) |
|---|
| 318 | REAL zq(ngrid,nlayer,nq) |
|---|
| 319 | REAL fluxtop_sw_tot(ngrid), fluxsurf_sw_tot(ngrid) |
|---|
| 320 | character*2 str2 |
|---|
| 321 | ! character*5 str5 |
|---|
| 322 | real zdtdif(ngrid,nlayer), zdtadj(ngrid,nlayer) |
|---|
| 323 | real rdust(ngrid,nlayer) ! dust geometric mean radius (m) |
|---|
| 324 | integer igmin, lmin |
|---|
| 325 | logical tdiag |
|---|
| 326 | |
|---|
| 327 | real co2col(ngrid) ! CO2 column |
|---|
| 328 | ! pplev and pplay are dynamical inputs and must not be modified in the physics. |
|---|
| 329 | ! instead, use zplay and zplev : |
|---|
| 330 | REAL zplev(ngrid,nlayer+1),zplay(ngrid,nlayer) |
|---|
| 331 | ! REAL zstress(ngrid),cd |
|---|
| 332 | real tmean, zlocal(nlayer) |
|---|
| 333 | real rho(ngrid,nlayer) ! density |
|---|
| 334 | real vmr(ngrid,nlayer) ! volume mixing ratio |
|---|
| 335 | real rhopart(ngrid,nlayer) ! number density of a given species |
|---|
| 336 | real colden(ngrid,nq) ! vertical column of tracers |
|---|
| 337 | real mass(nq) ! global mass of tracers (g) |
|---|
| 338 | REAL mtot(ngrid) ! Total mass of water vapor (kg/m2) |
|---|
| 339 | REAL icetot(ngrid) ! Total mass of water ice (kg/m2) |
|---|
| 340 | REAL mtotco2(ngrid) ! Total mass of co2 vapor (kg/m2) |
|---|
| 341 | REAL icetotco2(ngrid) ! Total mass of co2 ice (kg/m2) |
|---|
| 342 | REAL Nccntot(ngrid) ! Total number of ccn (nbr/m2) |
|---|
| 343 | REAL Mccntot(ngrid) ! Total mass of ccn (kg/m2) |
|---|
| 344 | REAL rave(ngrid) ! Mean water ice effective radius (m) |
|---|
| 345 | REAL opTES(ngrid,nlayer) ! abs optical depth at 825 cm-1 |
|---|
| 346 | REAL tauTES(ngrid) ! column optical depth at 825 cm-1 |
|---|
| 347 | REAL Qabsice ! Water ice absorption coefficient |
|---|
| 348 | REAL taucloudtes(ngrid) ! Cloud opacity at infrared |
|---|
| 349 | ! reference wavelength using |
|---|
| 350 | ! Qabs instead of Qext |
|---|
| 351 | ! (direct comparison with TES) |
|---|
| 352 | |
|---|
| 353 | REAL dqdustsurf(ngrid) ! surface q dust flux (kg/m2/s) |
|---|
| 354 | REAL dndustsurf(ngrid) ! surface n dust flux (number/m2/s) |
|---|
| 355 | REAL ndust(ngrid,nlayer) ! true n dust (kg/kg) |
|---|
| 356 | REAL qdust(ngrid,nlayer) ! true q dust (kg/kg) |
|---|
| 357 | REAL nccn(ngrid,nlayer) ! true n ccn (kg/kg) |
|---|
| 358 | REAL qccn(ngrid,nlayer) ! true q ccn (kg/kg) |
|---|
| 359 | REAL nccnco2(ngrid,nlayer) ! true n ccnco2 (kg/kg) |
|---|
| 360 | REAL qccnco2(ngrid,nlayer) ! true q ccnco2 (kg/kg) |
|---|
| 361 | |
|---|
| 362 | c Test 1d/3d scavenging |
|---|
| 363 | real h2otot(ngrid) |
|---|
| 364 | REAL satu(ngrid,nlayer) ! satu ratio for output |
|---|
| 365 | REAL zqsat(ngrid,nlayer) ! saturation |
|---|
| 366 | REAL satuco2(ngrid,nlayer) ! co2 satu ratio for output |
|---|
| 367 | REAL zqsatco2(ngrid,nlayer) ! saturation co2 |
|---|
| 368 | REAL,SAVE :: time_phys |
|---|
| 369 | |
|---|
| 370 | ! Added for new NLTE scheme |
|---|
| 371 | |
|---|
| 372 | real co2vmr_gcm(ngrid,nlayer) |
|---|
| 373 | real n2vmr_gcm(ngrid,nlayer) |
|---|
| 374 | real ovmr_gcm(ngrid,nlayer) |
|---|
| 375 | real covmr_gcm(ngrid,nlayer) |
|---|
| 376 | integer ierr_nlte |
|---|
| 377 | real*8 varerr |
|---|
| 378 | |
|---|
| 379 | c Variables for PBL |
|---|
| 380 | REAL zz1(ngrid) |
|---|
| 381 | REAL lmax_th_out(ngrid) |
|---|
| 382 | REAL pdu_th(ngrid,nlayer),pdv_th(ngrid,nlayer) |
|---|
| 383 | REAL pdt_th(ngrid,nlayer),pdq_th(ngrid,nlayer,nq) |
|---|
| 384 | INTEGER lmax_th(ngrid),dimout,n_out,n |
|---|
| 385 | CHARACTER(50) zstring |
|---|
| 386 | REAL dtke_th(ngrid,nlayer+1) |
|---|
| 387 | REAL zcdv(ngrid), zcdh(ngrid) |
|---|
| 388 | REAL, ALLOCATABLE, DIMENSION(:,:) :: T_out |
|---|
| 389 | REAL, ALLOCATABLE, DIMENSION(:,:) :: u_out ! Interpolated teta and u at z_out |
|---|
| 390 | REAL u_out1(ngrid) |
|---|
| 391 | REAL T_out1(ngrid) |
|---|
| 392 | REAL, ALLOCATABLE, DIMENSION(:) :: z_out ! height of interpolation between z0 and z1 [meters] |
|---|
| 393 | REAL tstar(ngrid) ! friction velocity and friction potential temp |
|---|
| 394 | REAL L_mo(ngrid),vhf(ngrid),vvv(ngrid) |
|---|
| 395 | ! REAL zu2(ngrid) |
|---|
| 396 | |
|---|
| 397 | c sub-grid scale water ice clouds (A. Pottier 2013) |
|---|
| 398 | logical clearsky |
|---|
| 399 | ! flux for the part without clouds |
|---|
| 400 | real zdtsw1(ngrid,nlayer) |
|---|
| 401 | real zdtlw1(ngrid,nlayer) |
|---|
| 402 | real fluxsurf_lw1(ngrid) |
|---|
| 403 | real fluxsurf_sw1(ngrid,2) |
|---|
| 404 | real fluxtop_lw1(ngrid) |
|---|
| 405 | real fluxtop_sw1(ngrid,2) |
|---|
| 406 | REAL taucloudtes1(ngrid) |
|---|
| 407 | ! tf: fraction of clouds, ntf: fraction without clouds |
|---|
| 408 | real tf, ntf |
|---|
| 409 | REAL rave2(ngrid), totrave2(ngrid) ! Mean water ice mean radius (m) |
|---|
| 410 | |
|---|
| 411 | c======================================================================= |
|---|
| 412 | |
|---|
| 413 | c 1. Initialisation: |
|---|
| 414 | c ----------------- |
|---|
| 415 | |
|---|
| 416 | c 1.1 Initialisation only at first call |
|---|
| 417 | c --------------------------------------- |
|---|
| 418 | IF (firstcall) THEN |
|---|
| 419 | |
|---|
| 420 | c variables set to 0 |
|---|
| 421 | c ~~~~~~~~~~~~~~~~~~ |
|---|
| 422 | aerosol(:,:,:)=0 |
|---|
| 423 | dtrad(:,:)=0 |
|---|
| 424 | |
|---|
| 425 | #ifndef MESOSCALE |
|---|
| 426 | fluxrad(:)=0 |
|---|
| 427 | wstar(:)=0. |
|---|
| 428 | #endif |
|---|
| 429 | |
|---|
| 430 | c read startfi |
|---|
| 431 | c ~~~~~~~~~~~~ |
|---|
| 432 | #ifndef MESOSCALE |
|---|
| 433 | ! GCM. Read netcdf initial physical parameters. |
|---|
| 434 | CALL phyetat0 ("startfi.nc",0,0, |
|---|
| 435 | & nsoilmx,ngrid,nlayer,nq, |
|---|
| 436 | & day_ini,time_phys, |
|---|
| 437 | & tsurf,tsoil,emis,q2,qsurf,co2ice,tauscaling, |
|---|
| 438 | & totcloudfrac,mem_Mccn_co2,mem_Nccn_co2, |
|---|
| 439 | & mem_Mh2o_co2) |
|---|
| 440 | |
|---|
| 441 | if (pday.ne.day_ini) then |
|---|
| 442 | write(*,*) "PHYSIQ: ERROR: bad synchronization between ", |
|---|
| 443 | & "physics and dynamics" |
|---|
| 444 | write(*,*) "dynamics day: ",pday |
|---|
| 445 | write(*,*) "physics day: ",day_ini |
|---|
| 446 | stop |
|---|
| 447 | endif |
|---|
| 448 | |
|---|
| 449 | write (*,*) 'In physiq day_ini =', day_ini |
|---|
| 450 | |
|---|
| 451 | #else |
|---|
| 452 | ! MESOSCALE. Supposedly everything is already set in modules. |
|---|
| 453 | ! So we just check. And we fill day_ini |
|---|
| 454 | print*,"check: --- in physiq.F" |
|---|
| 455 | print*,"check: rad,cpp,g,r,rcp,daysec" |
|---|
| 456 | print*,rad,cpp,g,r,rcp,daysec |
|---|
| 457 | PRINT*,'check: tsurf ',tsurf(1),tsurf(ngrid) |
|---|
| 458 | PRINT*,'check: tsoil ',tsoil(1,1),tsoil(ngrid,nsoilmx) |
|---|
| 459 | PRINT*,'check: inert ',inertiedat(1,1),inertiedat(ngrid,nsoilmx) |
|---|
| 460 | PRINT*,'check: midlayer,layer ', mlayer(:),layer(:) |
|---|
| 461 | PRINT*,'check: tracernames ', noms |
|---|
| 462 | PRINT*,'check: emis ',emis(1),emis(ngrid) |
|---|
| 463 | PRINT*,'check: q2 ',q2(1,1),q2(ngrid,nlayer+1) |
|---|
| 464 | PRINT*,'check: qsurf ',qsurf(1,1),qsurf(ngrid,nq) |
|---|
| 465 | PRINT*,'check: co2 ',co2ice(1),co2ice(ngrid) |
|---|
| 466 | !!! |
|---|
| 467 | day_ini = pday |
|---|
| 468 | #endif |
|---|
| 469 | |
|---|
| 470 | c initialize tracers |
|---|
| 471 | c ~~~~~~~~~~~~~~~~~~ |
|---|
| 472 | IF (tracer) THEN |
|---|
| 473 | CALL initracer(ngrid,nq,qsurf) |
|---|
| 474 | ENDIF ! end tracer |
|---|
| 475 | |
|---|
| 476 | c Initialize albedo and orbital calculation |
|---|
| 477 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 478 | CALL surfini(ngrid,co2ice,qsurf,albedo) |
|---|
| 479 | CALL iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
|---|
| 480 | |
|---|
| 481 | c initialize soil |
|---|
| 482 | c ~~~~~~~~~~~~~~~ |
|---|
| 483 | IF (callsoil) THEN |
|---|
| 484 | c Thermal inertia feedback: |
|---|
| 485 | IF (tifeedback) THEN |
|---|
| 486 | CALL soil_tifeedback(ngrid,nsoilmx,qsurf,inertiesoil) |
|---|
| 487 | CALL soil(ngrid,nsoilmx,firstcall,inertiesoil, |
|---|
| 488 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
|---|
| 489 | ELSE |
|---|
| 490 | CALL soil(ngrid,nsoilmx,firstcall,inertiedat, |
|---|
| 491 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
|---|
| 492 | ENDIF ! of IF (tifeedback) |
|---|
| 493 | ELSE |
|---|
| 494 | PRINT*, |
|---|
| 495 | & 'PHYSIQ WARNING! Thermal conduction in the soil turned off' |
|---|
| 496 | DO ig=1,ngrid |
|---|
| 497 | capcal(ig)=1.e5 |
|---|
| 498 | fluxgrd(ig)=0. |
|---|
| 499 | ENDDO |
|---|
| 500 | ENDIF |
|---|
| 501 | icount=1 |
|---|
| 502 | |
|---|
| 503 | #ifndef MESOSCALE |
|---|
| 504 | c Initialize thermospheric parameters |
|---|
| 505 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 506 | |
|---|
| 507 | if (callthermos) then |
|---|
| 508 | call fill_data_thermos |
|---|
| 509 | call allocate_param_thermos(nlayer) |
|---|
| 510 | call allocate_param_iono(nlayer,nreact) |
|---|
| 511 | call param_read_e107 |
|---|
| 512 | endif |
|---|
| 513 | #endif |
|---|
| 514 | c Initialize R and Cp as constant |
|---|
| 515 | |
|---|
| 516 | if (.not.callthermos .and. .not.photochem) then |
|---|
| 517 | do l=1,nlayer |
|---|
| 518 | do ig=1,ngrid |
|---|
| 519 | rnew(ig,l)=r |
|---|
| 520 | cpnew(ig,l)=cpp |
|---|
| 521 | mmean(ig,l)=mugaz |
|---|
| 522 | enddo |
|---|
| 523 | enddo |
|---|
| 524 | endif |
|---|
| 525 | |
|---|
| 526 | if(callnlte.and.nltemodel.eq.2) call nlte_setup |
|---|
| 527 | if(callnirco2.and.nircorr.eq.1) call NIR_leedat |
|---|
| 528 | if(thermochem) call chemthermos_readini |
|---|
| 529 | |
|---|
| 530 | IF (tracer.AND.water.AND.(ngrid.NE.1)) THEN |
|---|
| 531 | write(*,*)"physiq: water_param Surface water ice albedo:", |
|---|
| 532 | . albedo_h2o_ice |
|---|
| 533 | ENDIF |
|---|
| 534 | |
|---|
| 535 | #ifndef MESOSCALE |
|---|
| 536 | if (callslope) call getslopes(ngrid,phisfi) |
|---|
| 537 | |
|---|
| 538 | if (ngrid.ne.1) then ! no need to create a restart file in 1d |
|---|
| 539 | call physdem0("restartfi.nc",longitude,latitude, |
|---|
| 540 | & nsoilmx,ngrid,nlayer,nq, |
|---|
| 541 | & ptimestep,pday,time_phys,cell_area, |
|---|
| 542 | & albedodat,inertiedat,zmea,zstd,zsig,zgam,zthe) |
|---|
| 543 | endif |
|---|
| 544 | #endif |
|---|
| 545 | |
|---|
| 546 | ENDIF ! (end of "if firstcall") |
|---|
| 547 | |
|---|
| 548 | |
|---|
| 549 | c --------------------------------------------------- |
|---|
| 550 | c 1.2 Initializations done at every physical timestep: |
|---|
| 551 | c --------------------------------------------------- |
|---|
| 552 | c |
|---|
| 553 | |
|---|
| 554 | c Initialize various variables |
|---|
| 555 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 556 | pdv(:,:)=0 |
|---|
| 557 | pdu(:,:)=0 |
|---|
| 558 | pdt(:,:)=0 |
|---|
| 559 | pdq(:,:,:)=0 |
|---|
| 560 | pdpsrf(:)=0 |
|---|
| 561 | zflubid(:)=0 |
|---|
| 562 | zdtsurf(:)=0 |
|---|
| 563 | dqsurf(:,:)=0 |
|---|
| 564 | #ifdef DUSTSTORM |
|---|
| 565 | pq_tmp(:,:,:)=0 |
|---|
| 566 | #endif |
|---|
| 567 | igout=ngrid/2+1 |
|---|
| 568 | |
|---|
| 569 | |
|---|
| 570 | zday=pday+ptime ! compute time, in sols (and fraction thereof) |
|---|
| 571 | |
|---|
| 572 | c Compute Solar Longitude (Ls) : |
|---|
| 573 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 574 | if (season) then |
|---|
| 575 | call solarlong(zday,zls) |
|---|
| 576 | else |
|---|
| 577 | call solarlong(float(day_ini),zls) |
|---|
| 578 | end if |
|---|
| 579 | |
|---|
| 580 | c Initialize pressure levels |
|---|
| 581 | c ~~~~~~~~~~~~~~~~~~ |
|---|
| 582 | zplev(:,:) = pplev(:,:) |
|---|
| 583 | zplay(:,:) = pplay(:,:) |
|---|
| 584 | ps(:) = pplev(:,1) |
|---|
| 585 | |
|---|
| 586 | |
|---|
| 587 | c Compute geopotential at interlayers |
|---|
| 588 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 589 | c ponderation des altitudes au niveau des couches en dp/p |
|---|
| 590 | |
|---|
| 591 | DO l=1,nlayer |
|---|
| 592 | DO ig=1,ngrid |
|---|
| 593 | zzlay(ig,l)=pphi(ig,l)/g |
|---|
| 594 | ENDDO |
|---|
| 595 | ENDDO |
|---|
| 596 | DO ig=1,ngrid |
|---|
| 597 | zzlev(ig,1)=0. |
|---|
| 598 | zzlev(ig,nlayer+1)=1.e7 ! dummy top of last layer above 10000 km... |
|---|
| 599 | ENDDO |
|---|
| 600 | DO l=2,nlayer |
|---|
| 601 | DO ig=1,ngrid |
|---|
| 602 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
|---|
| 603 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
|---|
| 604 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
|---|
| 605 | ENDDO |
|---|
| 606 | ENDDO |
|---|
| 607 | |
|---|
| 608 | |
|---|
| 609 | ! Potential temperature calculation not the same in physiq and dynamic |
|---|
| 610 | |
|---|
| 611 | c Compute potential temperature |
|---|
| 612 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 613 | DO l=1,nlayer |
|---|
| 614 | DO ig=1,ngrid |
|---|
| 615 | zpopsk(ig,l)=(zplay(ig,l)/zplev(ig,1))**rcp |
|---|
| 616 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
|---|
| 617 | ENDDO |
|---|
| 618 | ENDDO |
|---|
| 619 | |
|---|
| 620 | #ifndef MESOSCALE |
|---|
| 621 | c----------------------------------------------------------------------- |
|---|
| 622 | c 1.2.5 Compute mean mass, cp, and R |
|---|
| 623 | c -------------------------------- |
|---|
| 624 | |
|---|
| 625 | if(photochem.or.callthermos) then |
|---|
| 626 | call concentrations(ngrid,nlayer,nq, |
|---|
| 627 | & zplay,pt,pdt,pq,pdq,ptimestep) |
|---|
| 628 | endif |
|---|
| 629 | #endif |
|---|
| 630 | |
|---|
| 631 | ! Compute vertical velocity (m/s) from vertical mass flux |
|---|
| 632 | ! w = F / (rho*area) and rho = P/(r*T) |
|---|
| 633 | ! but first linearly interpolate mass flux to mid-layers |
|---|
| 634 | do l=1,nlayer-1 |
|---|
| 635 | pw(1:ngrid,l)=0.5*(flxw(1:ngrid,l)+flxw(1:ngrid,l+1)) |
|---|
| 636 | enddo |
|---|
| 637 | pw(1:ngrid,nlayer)=0.5*flxw(1:ngrid,nlayer) ! since flxw(nlayer+1)=0 |
|---|
| 638 | do l=1,nlayer |
|---|
| 639 | pw(1:ngrid,l)=(pw(1:ngrid,l)*r*pt(1:ngrid,l)) / |
|---|
| 640 | & (pplay(1:ngrid,l)*cell_area(1:ngrid)) |
|---|
| 641 | ! NB: here we use r and not rnew since this diagnostic comes |
|---|
| 642 | ! from the dynamics |
|---|
| 643 | enddo |
|---|
| 644 | |
|---|
| 645 | c----------------------------------------------------------------------- |
|---|
| 646 | c 2. Compute radiative tendencies : |
|---|
| 647 | c------------------------------------ |
|---|
| 648 | |
|---|
| 649 | |
|---|
| 650 | IF (callrad) THEN |
|---|
| 651 | IF( MOD(icount-1,iradia).EQ.0) THEN |
|---|
| 652 | |
|---|
| 653 | c Local Solar zenith angle |
|---|
| 654 | c ~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 655 | CALL orbite(zls,dist_sol,declin) |
|---|
| 656 | |
|---|
| 657 | IF(diurnal) THEN |
|---|
| 658 | ztim1=SIN(declin) |
|---|
| 659 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
|---|
| 660 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
|---|
| 661 | |
|---|
| 662 | CALL solang(ngrid,sinlon,coslon,sinlat,coslat, |
|---|
| 663 | s ztim1,ztim2,ztim3, mu0,fract) |
|---|
| 664 | |
|---|
| 665 | ELSE |
|---|
| 666 | CALL mucorr(ngrid,declin,latitude,mu0,fract,10000.,rad) |
|---|
| 667 | ENDIF |
|---|
| 668 | |
|---|
| 669 | c NLTE cooling from CO2 emission |
|---|
| 670 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 671 | IF(callnlte) then |
|---|
| 672 | if(nltemodel.eq.0.or.nltemodel.eq.1) then |
|---|
| 673 | CALL nltecool(ngrid,nlayer,nq,zplay,pt,pq,zdtnlte) |
|---|
| 674 | else if(nltemodel.eq.2) then |
|---|
| 675 | co2vmr_gcm(1:ngrid,1:nlayer)= |
|---|
| 676 | & pq(1:ngrid,1:nlayer,igcm_co2)* |
|---|
| 677 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co2) |
|---|
| 678 | n2vmr_gcm(1:ngrid,1:nlayer)= |
|---|
| 679 | & pq(1:ngrid,1:nlayer,igcm_n2)* |
|---|
| 680 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_n2) |
|---|
| 681 | covmr_gcm(1:ngrid,1:nlayer)= |
|---|
| 682 | & pq(1:ngrid,1:nlayer,igcm_co)* |
|---|
| 683 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co) |
|---|
| 684 | ovmr_gcm(1:ngrid,1:nlayer)= |
|---|
| 685 | & pq(1:ngrid,1:nlayer,igcm_o)* |
|---|
| 686 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_o) |
|---|
| 687 | |
|---|
| 688 | CALL nlte_tcool(ngrid,nlayer,zplay*9.869e-6, |
|---|
| 689 | $ pt,zzlay,co2vmr_gcm, n2vmr_gcm, covmr_gcm, |
|---|
| 690 | $ ovmr_gcm, zdtnlte,ierr_nlte,varerr ) |
|---|
| 691 | if(ierr_nlte.gt.0) then |
|---|
| 692 | write(*,*) |
|---|
| 693 | $ 'WARNING: nlte_tcool output with error message', |
|---|
| 694 | $ 'ierr_nlte=',ierr_nlte,'varerr=',varerr |
|---|
| 695 | write(*,*)'I will continue anyway' |
|---|
| 696 | endif |
|---|
| 697 | |
|---|
| 698 | zdtnlte(1:ngrid,1:nlayer)= |
|---|
| 699 | & zdtnlte(1:ngrid,1:nlayer)/86400. |
|---|
| 700 | endif |
|---|
| 701 | else |
|---|
| 702 | zdtnlte(:,:)=0. |
|---|
| 703 | endif |
|---|
| 704 | |
|---|
| 705 | c Find number of layers for LTE radiation calculations |
|---|
| 706 | IF(MOD(iphysiq*(icount-1),day_step).EQ.0) |
|---|
| 707 | & CALL nlthermeq(ngrid,nlayer,zplev,zplay) |
|---|
| 708 | |
|---|
| 709 | c Note: Dustopacity.F has been transferred to callradite.F |
|---|
| 710 | |
|---|
| 711 | #ifdef DUSTSTORM |
|---|
| 712 | !! specific case: save the quantity of dust before adding perturbation |
|---|
| 713 | if (firstcall) then |
|---|
| 714 | pq_tmp(1:ngrid,1:nlayer,1)=pq(1:ngrid,1:nlayer,igcm_dust_mass) |
|---|
| 715 | pq_tmp(1:ngrid,1:nlayer,2)=pq(1:ngrid,1:nlayer,igcm_dust_number) |
|---|
| 716 | endif |
|---|
| 717 | #endif |
|---|
| 718 | |
|---|
| 719 | c Call main radiative transfer scheme |
|---|
| 720 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 721 | c Transfer through CO2 (except NIR CO2 absorption) |
|---|
| 722 | c and aerosols (dust and water ice) |
|---|
| 723 | |
|---|
| 724 | c Radiative transfer |
|---|
| 725 | c ------------------ |
|---|
| 726 | ! callradite for the part with clouds |
|---|
| 727 | clearsky=.false. ! part with clouds for both cases CLFvarying true/false |
|---|
| 728 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq,albedo, |
|---|
| 729 | $ emis,mu0,zplev,zplay,pt,tsurf,fract,dist_sol,igout, |
|---|
| 730 | $ zdtlw,zdtsw,fluxsurf_lw,fluxsurf_sw,fluxtop_lw,fluxtop_sw, |
|---|
| 731 | $ tauref,tau,aerosol,dsodust,tauscaling,taucloudtes,rdust,rice, |
|---|
| 732 | $ nuice,co2ice,clearsky,totcloudfrac) |
|---|
| 733 | ! case of sub-grid water ice clouds: callradite for the clear case |
|---|
| 734 | IF (CLFvarying) THEN |
|---|
| 735 | ! ---> PROBLEMS WITH ALLOCATED ARRAYS |
|---|
| 736 | ! (temporary solution in callcorrk: do not deallocate |
|---|
| 737 | ! if |
|---|
| 738 | ! CLFvarying ...) ?? AP ?? |
|---|
| 739 | clearsky=.true. ! |
|---|
| 740 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq, |
|---|
| 741 | & albedo,emis,mu0,zplev,zplay,pt,tsurf,fract, |
|---|
| 742 | & dist_sol,igout,zdtlw1,zdtsw1,fluxsurf_lw1, |
|---|
| 743 | & fluxsurf_sw1,fluxtop_lw1,fluxtop_sw1,tauref,tau, |
|---|
| 744 | & aerosol,dsodust,tauscaling,taucloudtes1,rdust, |
|---|
| 745 | & rice,nuice,co2ice, clearsky, totcloudfrac) |
|---|
| 746 | clearsky = .false. ! just in case. |
|---|
| 747 | ! Sum the fluxes and heating rates from cloudy/clear |
|---|
| 748 | ! cases |
|---|
| 749 | DO ig=1,ngrid |
|---|
| 750 | tf=totcloudfrac(ig) |
|---|
| 751 | ntf=1.-tf |
|---|
| 752 | fluxsurf_lw(ig) = ntf*fluxsurf_lw1(ig) |
|---|
| 753 | & + tf*fluxsurf_lw(ig) |
|---|
| 754 | fluxsurf_sw(ig,1) = ntf*fluxsurf_sw1(ig,1) |
|---|
| 755 | & + tf*fluxsurf_sw(ig,1) |
|---|
| 756 | fluxsurf_sw(ig,2) = ntf*fluxsurf_sw1(ig,2) |
|---|
| 757 | & + tf*fluxsurf_sw(ig,2) |
|---|
| 758 | fluxtop_lw(ig) = ntf*fluxtop_lw1(ig) |
|---|
| 759 | & + tf*fluxtop_lw(ig) |
|---|
| 760 | fluxtop_sw(ig,1) = ntf*fluxtop_sw1(ig,1) |
|---|
| 761 | & + tf*fluxtop_sw(ig,1) |
|---|
| 762 | fluxtop_sw(ig,2) = ntf*fluxtop_sw1(ig,2) |
|---|
| 763 | & + tf*fluxtop_sw(ig,2) |
|---|
| 764 | taucloudtes(ig) = ntf*taucloudtes1(ig) |
|---|
| 765 | & + tf*taucloudtes(ig) |
|---|
| 766 | zdtlw(ig,1:nlayer) = ntf*zdtlw1(ig,1:nlayer) |
|---|
| 767 | & + tf*zdtlw(ig,1:nlayer) |
|---|
| 768 | zdtsw(ig,1:nlayer) = ntf*zdtsw1(ig,1:nlayer) |
|---|
| 769 | & + tf*zdtsw(ig,1:nlayer) |
|---|
| 770 | ENDDO |
|---|
| 771 | |
|---|
| 772 | ENDIF ! (CLFvarying) |
|---|
| 773 | |
|---|
| 774 | #ifdef DUSTSTORM |
|---|
| 775 | !! specific case: compute the added quantity of dust for perturbation |
|---|
| 776 | if (firstcall) then |
|---|
| 777 | pdq(1:ngrid,1:nlayer,igcm_dust_mass)= |
|---|
| 778 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) |
|---|
| 779 | & - pq_tmp(1:ngrid,1:nlayer,1) |
|---|
| 780 | & + pq(1:ngrid,1:nlayer,igcm_dust_mass) |
|---|
| 781 | pdq(1:ngrid,1:nlayer,igcm_dust_number)= |
|---|
| 782 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) |
|---|
| 783 | & - pq_tmp(1:ngrid,1:nlayer,2) |
|---|
| 784 | & + pq(1:ngrid,1:nlayer,igcm_dust_number) |
|---|
| 785 | endif |
|---|
| 786 | #endif |
|---|
| 787 | |
|---|
| 788 | c Outputs for basic check (middle of domain) |
|---|
| 789 | c ------------------------------------------ |
|---|
| 790 | write(*,'("Ls =",f11.6," check lat =",f10.6, |
|---|
| 791 | & " lon =",f11.6)') |
|---|
| 792 | & zls*180./pi,latitude(igout)*180/pi, |
|---|
| 793 | & longitude(igout)*180/pi |
|---|
| 794 | write(*,'(" tauref(",f4.0," Pa) =",f9.6, |
|---|
| 795 | & " tau(",f4.0," Pa) =",f9.6)') |
|---|
| 796 | & odpref,tauref(igout), |
|---|
| 797 | & odpref,tau(igout,1)*odpref/zplev(igout,1) |
|---|
| 798 | c --------------------------------------------------------- |
|---|
| 799 | c Call slope parameterization for direct and scattered flux |
|---|
| 800 | c --------------------------------------------------------- |
|---|
| 801 | IF(callslope) THEN |
|---|
| 802 | print *, 'Slope scheme is on and computing...' |
|---|
| 803 | DO ig=1,ngrid |
|---|
| 804 | sl_the = theta_sl(ig) |
|---|
| 805 | IF (sl_the .ne. 0.) THEN |
|---|
| 806 | ztim1=fluxsurf_sw(ig,1)+fluxsurf_sw(ig,2) |
|---|
| 807 | DO l=1,2 |
|---|
| 808 | sl_lct = ptime*24. + 180.*longitude(ig)/pi/15. |
|---|
| 809 | sl_ra = pi*(1.0-sl_lct/12.) |
|---|
| 810 | sl_lat = 180.*latitude(ig)/pi |
|---|
| 811 | sl_tau = tau(ig,1) !il faudrait iaerdust(iaer) |
|---|
| 812 | sl_alb = albedo(ig,l) |
|---|
| 813 | sl_psi = psi_sl(ig) |
|---|
| 814 | sl_fl0 = fluxsurf_sw(ig,l) |
|---|
| 815 | sl_di0 = 0. |
|---|
| 816 | if (mu0(ig) .gt. 0.) then |
|---|
| 817 | sl_di0 = mu0(ig)*(exp(-sl_tau/mu0(ig))) |
|---|
| 818 | sl_di0 = sl_di0*1370./dist_sol/dist_sol |
|---|
| 819 | sl_di0 = sl_di0/ztim1 |
|---|
| 820 | sl_di0 = fluxsurf_sw(ig,l)*sl_di0 |
|---|
| 821 | endif |
|---|
| 822 | ! you never know (roundup concern...) |
|---|
| 823 | if (sl_fl0 .lt. sl_di0) sl_di0=sl_fl0 |
|---|
| 824 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 825 | CALL param_slope( mu0(ig), declin, sl_ra, sl_lat, |
|---|
| 826 | & sl_tau, sl_alb, sl_the, sl_psi, |
|---|
| 827 | & sl_di0, sl_fl0, sl_flu ) |
|---|
| 828 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 829 | fluxsurf_sw(ig,l) = sl_flu |
|---|
| 830 | ENDDO |
|---|
| 831 | !!! compute correction on IR flux as well |
|---|
| 832 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
|---|
| 833 | fluxsurf_lw(ig)= fluxsurf_lw(ig)*sky |
|---|
| 834 | ENDIF |
|---|
| 835 | ENDDO |
|---|
| 836 | ENDIF |
|---|
| 837 | |
|---|
| 838 | c CO2 near infrared absorption |
|---|
| 839 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 840 | zdtnirco2(:,:)=0 |
|---|
| 841 | if (callnirco2) then |
|---|
| 842 | call nirco2abs (ngrid,nlayer,zplay,dist_sol,nq,pq, |
|---|
| 843 | . mu0,fract,declin, zdtnirco2) |
|---|
| 844 | endif |
|---|
| 845 | |
|---|
| 846 | c Radiative flux from the sky absorbed by the surface (W.m-2) |
|---|
| 847 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 848 | DO ig=1,ngrid |
|---|
| 849 | fluxrad_sky(ig)=emis(ig)*fluxsurf_lw(ig) |
|---|
| 850 | $ +fluxsurf_sw(ig,1)*(1.-albedo(ig,1)) |
|---|
| 851 | $ +fluxsurf_sw(ig,2)*(1.-albedo(ig,2)) |
|---|
| 852 | ENDDO |
|---|
| 853 | |
|---|
| 854 | |
|---|
| 855 | c Net atmospheric radiative heating rate (K.s-1) |
|---|
| 856 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 857 | IF(callnlte) THEN |
|---|
| 858 | CALL blendrad(ngrid, nlayer, zplay, |
|---|
| 859 | & zdtsw, zdtlw, zdtnirco2, zdtnlte, dtrad) |
|---|
| 860 | ELSE |
|---|
| 861 | DO l=1,nlayer |
|---|
| 862 | DO ig=1,ngrid |
|---|
| 863 | dtrad(ig,l)=zdtsw(ig,l)+zdtlw(ig,l) |
|---|
| 864 | & +zdtnirco2(ig,l) |
|---|
| 865 | ENDDO |
|---|
| 866 | ENDDO |
|---|
| 867 | ENDIF |
|---|
| 868 | |
|---|
| 869 | ENDIF ! of if(mod(icount-1,iradia).eq.0) |
|---|
| 870 | |
|---|
| 871 | c Transformation of the radiative tendencies: |
|---|
| 872 | c ------------------------------------------- |
|---|
| 873 | |
|---|
| 874 | c Net radiative surface flux (W.m-2) |
|---|
| 875 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 876 | c |
|---|
| 877 | DO ig=1,ngrid |
|---|
| 878 | zplanck(ig)=tsurf(ig)*tsurf(ig) |
|---|
| 879 | zplanck(ig)=emis(ig)* |
|---|
| 880 | $ stephan*zplanck(ig)*zplanck(ig) |
|---|
| 881 | fluxrad(ig)=fluxrad_sky(ig)-zplanck(ig) |
|---|
| 882 | IF(callslope) THEN |
|---|
| 883 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
|---|
| 884 | fluxrad(ig)=fluxrad(ig)+(1.-sky)*zplanck(ig) |
|---|
| 885 | ENDIF |
|---|
| 886 | ENDDO |
|---|
| 887 | |
|---|
| 888 | DO l=1,nlayer |
|---|
| 889 | DO ig=1,ngrid |
|---|
| 890 | pdt(ig,l)=pdt(ig,l)+dtrad(ig,l) |
|---|
| 891 | ENDDO |
|---|
| 892 | ENDDO |
|---|
| 893 | |
|---|
| 894 | ENDIF ! of IF (callrad) |
|---|
| 895 | |
|---|
| 896 | c----------------------------------------------------------------------- |
|---|
| 897 | c 3. Gravity wave and subgrid scale topography drag : |
|---|
| 898 | c ------------------------------------------------- |
|---|
| 899 | |
|---|
| 900 | |
|---|
| 901 | IF(calllott)THEN |
|---|
| 902 | |
|---|
| 903 | CALL calldrag_noro(ngrid,nlayer,ptimestep, |
|---|
| 904 | & zplay,zplev,pt,pu,pv,zdtgw,zdugw,zdvgw) |
|---|
| 905 | |
|---|
| 906 | DO l=1,nlayer |
|---|
| 907 | DO ig=1,ngrid |
|---|
| 908 | pdv(ig,l)=pdv(ig,l)+zdvgw(ig,l) |
|---|
| 909 | pdu(ig,l)=pdu(ig,l)+zdugw(ig,l) |
|---|
| 910 | pdt(ig,l)=pdt(ig,l)+zdtgw(ig,l) |
|---|
| 911 | ENDDO |
|---|
| 912 | ENDDO |
|---|
| 913 | ENDIF |
|---|
| 914 | |
|---|
| 915 | c----------------------------------------------------------------------- |
|---|
| 916 | c 4. Vertical diffusion (turbulent mixing): |
|---|
| 917 | c ----------------------------------------- |
|---|
| 918 | |
|---|
| 919 | IF (calldifv) THEN |
|---|
| 920 | |
|---|
| 921 | DO ig=1,ngrid |
|---|
| 922 | zflubid(ig)=fluxrad(ig)+fluxgrd(ig) |
|---|
| 923 | ENDDO |
|---|
| 924 | |
|---|
| 925 | zdum1(:,:)=0 |
|---|
| 926 | zdum2(:,:)=0 |
|---|
| 927 | do l=1,nlayer |
|---|
| 928 | do ig=1,ngrid |
|---|
| 929 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
|---|
| 930 | enddo |
|---|
| 931 | enddo |
|---|
| 932 | |
|---|
| 933 | c ---------------------- |
|---|
| 934 | c Treatment of a special case : using new surface layer (Richardson based) |
|---|
| 935 | c without using the thermals in gcm and mesoscale can yield problems in |
|---|
| 936 | c weakly unstable situations when winds are near to 0. For those cases, we add |
|---|
| 937 | c a unit subgrid gustiness. Remember that thermals should be used we using the |
|---|
| 938 | c Richardson based surface layer model. |
|---|
| 939 | IF ( .not.calltherm |
|---|
| 940 | . .and. callrichsl |
|---|
| 941 | . .and. .not.turb_resolved) THEN |
|---|
| 942 | DO ig=1, ngrid |
|---|
| 943 | IF (zh(ig,1) .lt. tsurf(ig)) THEN |
|---|
| 944 | wstar(ig)=1. |
|---|
| 945 | hfmax_th(ig)=0.2 |
|---|
| 946 | ELSE |
|---|
| 947 | wstar(ig)=0. |
|---|
| 948 | hfmax_th(ig)=0. |
|---|
| 949 | ENDIF |
|---|
| 950 | ENDDO |
|---|
| 951 | ENDIF |
|---|
| 952 | c ---------------------- |
|---|
| 953 | |
|---|
| 954 | IF (tke_heat_flux .ne. 0.) THEN |
|---|
| 955 | zz1(:)=(pt(:,1)+pdt(:,1)*ptimestep)*(r/g)* |
|---|
| 956 | & (-alog(zplay(:,1)/zplev(:,1))) |
|---|
| 957 | pdt(:,1)=pdt(:,1) + (tke_heat_flux/zz1(:))*zpopsk(:,1) |
|---|
| 958 | ENDIF |
|---|
| 959 | |
|---|
| 960 | c Calling vdif (Martian version WITH CO2 condensation) |
|---|
| 961 | CALL vdifc(ngrid,nlayer,nq,co2ice,zpopsk, |
|---|
| 962 | $ ptimestep,capcal,lwrite, |
|---|
| 963 | $ zplay,zplev,zzlay,zzlev,z0, |
|---|
| 964 | $ pu,pv,zh,pq,tsurf,emis,qsurf, |
|---|
| 965 | $ zdum1,zdum2,zdh,pdq,zflubid, |
|---|
| 966 | $ zdudif,zdvdif,zdhdif,zdtsdif,q2, |
|---|
| 967 | & zdqdif,zdqsdif,wstar,zcdv,zcdh,hfmax_th,sensibFlux) |
|---|
| 968 | |
|---|
| 969 | |
|---|
| 970 | DO ig=1,ngrid |
|---|
| 971 | zdtsurf(ig)=zdtsurf(ig)+zdtsdif(ig) |
|---|
| 972 | ENDDO |
|---|
| 973 | |
|---|
| 974 | IF (.not.turb_resolved) THEN |
|---|
| 975 | DO l=1,nlayer |
|---|
| 976 | DO ig=1,ngrid |
|---|
| 977 | pdv(ig,l)=pdv(ig,l)+zdvdif(ig,l) |
|---|
| 978 | pdu(ig,l)=pdu(ig,l)+zdudif(ig,l) |
|---|
| 979 | pdt(ig,l)=pdt(ig,l)+zdhdif(ig,l)*zpopsk(ig,l) |
|---|
| 980 | |
|---|
| 981 | zdtdif(ig,l)=zdhdif(ig,l)*zpopsk(ig,l) ! for diagnostic only |
|---|
| 982 | ENDDO |
|---|
| 983 | ENDDO |
|---|
| 984 | |
|---|
| 985 | if (tracer) then |
|---|
| 986 | DO iq=1, nq |
|---|
| 987 | DO l=1,nlayer |
|---|
| 988 | DO ig=1,ngrid |
|---|
| 989 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
|---|
| 990 | ENDDO |
|---|
| 991 | ENDDO |
|---|
| 992 | ENDDO |
|---|
| 993 | DO iq=1, nq |
|---|
| 994 | DO ig=1,ngrid |
|---|
| 995 | dqsurf(ig,iq)=dqsurf(ig,iq) + zdqsdif(ig,iq) |
|---|
| 996 | ENDDO |
|---|
| 997 | ENDDO |
|---|
| 998 | end if ! of if (tracer) |
|---|
| 999 | ELSE |
|---|
| 1000 | write (*,*) '******************************************' |
|---|
| 1001 | write (*,*) '** LES mode: the difv part is only used to' |
|---|
| 1002 | write (*,*) '** - provide HFX and UST to the dynamics' |
|---|
| 1003 | write (*,*) '** - update TSURF' |
|---|
| 1004 | write (*,*) '******************************************' |
|---|
| 1005 | !! Specific treatment for lifting in turbulent-resolving mode (AC) |
|---|
| 1006 | IF (lifting .and. doubleq) THEN |
|---|
| 1007 | !! lifted dust is injected in the first layer. |
|---|
| 1008 | !! Sedimentation must be called after turbulent mixing, i.e. on next step, after WRF. |
|---|
| 1009 | !! => lifted dust is not incremented before the sedimentation step. |
|---|
| 1010 | zdqdif(1:ngrid,1,1:nq)=0. |
|---|
| 1011 | zdqdif(1:ngrid,1,igcm_dust_number) = |
|---|
| 1012 | . -zdqsdif(1:ngrid,igcm_dust_number) |
|---|
| 1013 | zdqdif(1:ngrid,1,igcm_dust_mass) = |
|---|
| 1014 | . -zdqsdif(1:ngrid,igcm_dust_mass) |
|---|
| 1015 | zdqdif(1:ngrid,2:nlayer,1:nq) = 0. |
|---|
| 1016 | DO iq=1, nq |
|---|
| 1017 | IF ((iq .ne. igcm_dust_mass) |
|---|
| 1018 | & .and. (iq .ne. igcm_dust_number)) THEN |
|---|
| 1019 | zdqsdif(:,iq)=0. |
|---|
| 1020 | ENDIF |
|---|
| 1021 | ENDDO |
|---|
| 1022 | ELSE |
|---|
| 1023 | zdqdif(1:ngrid,1:nlayer,1:nq) = 0. |
|---|
| 1024 | zdqsdif(1:ngrid,1:nq) = 0. |
|---|
| 1025 | ENDIF |
|---|
| 1026 | ENDIF |
|---|
| 1027 | ELSE |
|---|
| 1028 | DO ig=1,ngrid |
|---|
| 1029 | zdtsurf(ig)=zdtsurf(ig)+ |
|---|
| 1030 | s (fluxrad(ig)+fluxgrd(ig))/capcal(ig) |
|---|
| 1031 | ENDDO |
|---|
| 1032 | IF (turb_resolved) THEN |
|---|
| 1033 | write(*,*) 'Turbulent-resolving mode !' |
|---|
| 1034 | write(*,*) 'Please set calldifv to T in callphys.def' |
|---|
| 1035 | STOP |
|---|
| 1036 | ENDIF |
|---|
| 1037 | ENDIF ! of IF (calldifv) |
|---|
| 1038 | |
|---|
| 1039 | c----------------------------------------------------------------------- |
|---|
| 1040 | c 5. Thermals : |
|---|
| 1041 | c ----------------------------- |
|---|
| 1042 | |
|---|
| 1043 | if(calltherm .and. .not.turb_resolved) then |
|---|
| 1044 | |
|---|
| 1045 | call calltherm_interface(ngrid,nlayer,nq, |
|---|
| 1046 | $ tracer,igcm_co2, |
|---|
| 1047 | $ zzlev,zzlay, |
|---|
| 1048 | $ ptimestep,pu,pv,pt,pq,pdu,pdv,pdt,pdq,q2, |
|---|
| 1049 | $ zplay,zplev,pphi,zpopsk, |
|---|
| 1050 | $ pdu_th,pdv_th,pdt_th,pdq_th,lmax_th,zmax_th, |
|---|
| 1051 | $ dtke_th,zdhdif,hfmax_th,wstar,sensibFlux) |
|---|
| 1052 | |
|---|
| 1053 | DO l=1,nlayer |
|---|
| 1054 | DO ig=1,ngrid |
|---|
| 1055 | pdu(ig,l)=pdu(ig,l)+pdu_th(ig,l) |
|---|
| 1056 | pdv(ig,l)=pdv(ig,l)+pdv_th(ig,l) |
|---|
| 1057 | pdt(ig,l)=pdt(ig,l)+pdt_th(ig,l) |
|---|
| 1058 | q2(ig,l)=q2(ig,l)+dtke_th(ig,l)*ptimestep |
|---|
| 1059 | ENDDO |
|---|
| 1060 | ENDDO |
|---|
| 1061 | |
|---|
| 1062 | DO ig=1,ngrid |
|---|
| 1063 | q2(ig,nlayer+1)=q2(ig,nlayer+1)+dtke_th(ig,nlayer+1)*ptimestep |
|---|
| 1064 | ENDDO |
|---|
| 1065 | |
|---|
| 1066 | if (tracer) then |
|---|
| 1067 | DO iq=1,nq |
|---|
| 1068 | DO l=1,nlayer |
|---|
| 1069 | DO ig=1,ngrid |
|---|
| 1070 | pdq(ig,l,iq)=pdq(ig,l,iq)+pdq_th(ig,l,iq) |
|---|
| 1071 | ENDDO |
|---|
| 1072 | ENDDO |
|---|
| 1073 | ENDDO |
|---|
| 1074 | endif |
|---|
| 1075 | |
|---|
| 1076 | lmax_th_out(:)=real(lmax_th(:)) |
|---|
| 1077 | |
|---|
| 1078 | else !of if calltherm |
|---|
| 1079 | lmax_th(:)=0 |
|---|
| 1080 | wstar(:)=0. |
|---|
| 1081 | hfmax_th(:)=0. |
|---|
| 1082 | lmax_th_out(:)=0. |
|---|
| 1083 | end if |
|---|
| 1084 | |
|---|
| 1085 | c----------------------------------------------------------------------- |
|---|
| 1086 | c 5. Dry convective adjustment: |
|---|
| 1087 | c ----------------------------- |
|---|
| 1088 | |
|---|
| 1089 | IF(calladj) THEN |
|---|
| 1090 | |
|---|
| 1091 | DO l=1,nlayer |
|---|
| 1092 | DO ig=1,ngrid |
|---|
| 1093 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
|---|
| 1094 | ENDDO |
|---|
| 1095 | ENDDO |
|---|
| 1096 | zduadj(:,:)=0 |
|---|
| 1097 | zdvadj(:,:)=0 |
|---|
| 1098 | zdhadj(:,:)=0 |
|---|
| 1099 | |
|---|
| 1100 | CALL convadj(ngrid,nlayer,nq,ptimestep, |
|---|
| 1101 | $ zplay,zplev,zpopsk,lmax_th, |
|---|
| 1102 | $ pu,pv,zh,pq, |
|---|
| 1103 | $ pdu,pdv,zdh,pdq, |
|---|
| 1104 | $ zduadj,zdvadj,zdhadj, |
|---|
| 1105 | $ zdqadj) |
|---|
| 1106 | |
|---|
| 1107 | |
|---|
| 1108 | DO l=1,nlayer |
|---|
| 1109 | DO ig=1,ngrid |
|---|
| 1110 | pdu(ig,l)=pdu(ig,l)+zduadj(ig,l) |
|---|
| 1111 | pdv(ig,l)=pdv(ig,l)+zdvadj(ig,l) |
|---|
| 1112 | pdt(ig,l)=pdt(ig,l)+zdhadj(ig,l)*zpopsk(ig,l) |
|---|
| 1113 | |
|---|
| 1114 | zdtadj(ig,l)=zdhadj(ig,l)*zpopsk(ig,l) ! for diagnostic only |
|---|
| 1115 | ENDDO |
|---|
| 1116 | ENDDO |
|---|
| 1117 | |
|---|
| 1118 | if(tracer) then |
|---|
| 1119 | DO iq=1, nq |
|---|
| 1120 | DO l=1,nlayer |
|---|
| 1121 | DO ig=1,ngrid |
|---|
| 1122 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqadj(ig,l,iq) |
|---|
| 1123 | ENDDO |
|---|
| 1124 | ENDDO |
|---|
| 1125 | ENDDO |
|---|
| 1126 | end if |
|---|
| 1127 | ENDIF ! of IF(calladj) |
|---|
| 1128 | |
|---|
| 1129 | |
|---|
| 1130 | |
|---|
| 1131 | c----------------------------------------------------------------------- |
|---|
| 1132 | c 6. Specific parameterizations for tracers |
|---|
| 1133 | c: ----------------------------------------- |
|---|
| 1134 | |
|---|
| 1135 | if (tracer) then |
|---|
| 1136 | |
|---|
| 1137 | c 6a. Water and ice |
|---|
| 1138 | c --------------- |
|---|
| 1139 | |
|---|
| 1140 | c --------------------------------------- |
|---|
| 1141 | c Water ice condensation in the atmosphere |
|---|
| 1142 | c ---------------------------------------- |
|---|
| 1143 | IF (water) THEN |
|---|
| 1144 | |
|---|
| 1145 | call watercloud(ngrid,nlayer,ptimestep, |
|---|
| 1146 | & zplev,zplay,pdpsrf,zzlay, pt,pdt, |
|---|
| 1147 | & pq,pdq,zdqcloud,zdtcloud, |
|---|
| 1148 | & nq,tau,tauscaling,rdust,rice,nuice, |
|---|
| 1149 | & rsedcloud,rhocloud,totcloudfrac) |
|---|
| 1150 | |
|---|
| 1151 | c Temperature variation due to latent heat release |
|---|
| 1152 | if (activice) then |
|---|
| 1153 | pdt(1:ngrid,1:nlayer) = |
|---|
| 1154 | & pdt(1:ngrid,1:nlayer) + |
|---|
| 1155 | & zdtcloud(1:ngrid,1:nlayer) |
|---|
| 1156 | endif |
|---|
| 1157 | |
|---|
| 1158 | ! increment water vapour and ice atmospheric tracers tendencies |
|---|
| 1159 | pdq(1:ngrid,1:nlayer,igcm_h2o_vap) = |
|---|
| 1160 | & pdq(1:ngrid,1:nlayer,igcm_h2o_vap) + |
|---|
| 1161 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_vap) |
|---|
| 1162 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = |
|---|
| 1163 | & pdq(1:ngrid,1:nlayer,igcm_h2o_ice) + |
|---|
| 1164 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 1165 | |
|---|
| 1166 | ! increment dust and ccn masses and numbers |
|---|
| 1167 | ! We need to check that we have Nccn & Ndust > 0 |
|---|
| 1168 | ! This is due to single precision rounding problems |
|---|
| 1169 | if (microphys) then |
|---|
| 1170 | pdq(1:ngrid,1:nlayer,igcm_ccn_mass) = |
|---|
| 1171 | & pdq(1:ngrid,1:nlayer,igcm_ccn_mass) + |
|---|
| 1172 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_mass) |
|---|
| 1173 | pdq(1:ngrid,1:nlayer,igcm_ccn_number) = |
|---|
| 1174 | & pdq(1:ngrid,1:nlayer,igcm_ccn_number) + |
|---|
| 1175 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_number) |
|---|
| 1176 | where (pq(:,:,igcm_ccn_mass) + |
|---|
| 1177 | & ptimestep*pdq(:,:,igcm_ccn_mass) < 0.) |
|---|
| 1178 | pdq(:,:,igcm_ccn_mass) = |
|---|
| 1179 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
|---|
| 1180 | pdq(:,:,igcm_ccn_number) = |
|---|
| 1181 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
|---|
| 1182 | end where |
|---|
| 1183 | where (pq(:,:,igcm_ccn_number) + |
|---|
| 1184 | & ptimestep*pdq(:,:,igcm_ccn_number) < 0.) |
|---|
| 1185 | pdq(:,:,igcm_ccn_mass) = |
|---|
| 1186 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
|---|
| 1187 | pdq(:,:,igcm_ccn_number) = |
|---|
| 1188 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
|---|
| 1189 | end where |
|---|
| 1190 | endif |
|---|
| 1191 | |
|---|
| 1192 | if (scavenging) then |
|---|
| 1193 | pdq(1:ngrid,1:nlayer,igcm_dust_mass) = |
|---|
| 1194 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) + |
|---|
| 1195 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_mass) |
|---|
| 1196 | pdq(1:ngrid,1:nlayer,igcm_dust_number) = |
|---|
| 1197 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) + |
|---|
| 1198 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_number) |
|---|
| 1199 | where (pq(:,:,igcm_dust_mass) + |
|---|
| 1200 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
|---|
| 1201 | pdq(:,:,igcm_dust_mass) = |
|---|
| 1202 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 1203 | pdq(:,:,igcm_dust_number) = |
|---|
| 1204 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 1205 | end where |
|---|
| 1206 | where (pq(:,:,igcm_dust_number) + |
|---|
| 1207 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
|---|
| 1208 | pdq(:,:,igcm_dust_mass) = |
|---|
| 1209 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 1210 | pdq(:,:,igcm_dust_number) = |
|---|
| 1211 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 1212 | end where |
|---|
| 1213 | endif ! of if scavenging |
|---|
| 1214 | |
|---|
| 1215 | |
|---|
| 1216 | END IF ! of IF (water) |
|---|
| 1217 | |
|---|
| 1218 | c 6a bis. CO2 clouds (CL & JA) |
|---|
| 1219 | c --------------------------------------- |
|---|
| 1220 | c CO2 ice cloud condensation in the atmosphere |
|---|
| 1221 | c ---------------------------------------- |
|---|
| 1222 | c flag needed in callphys.def: |
|---|
| 1223 | c co2clouds=.true. is mandatory (default is .false.) |
|---|
| 1224 | c co2useh2o=.true. if you want to allow co2 condensation |
|---|
| 1225 | c on water ice particles |
|---|
| 1226 | c meteo_flux=.true. if you want to add a meteoritic |
|---|
| 1227 | c supply of CCN |
|---|
| 1228 | c CLFvaryingCO2=.true. if you want to have a sub-grid |
|---|
| 1229 | c temperature distribution |
|---|
| 1230 | c spantCO2=integer (i.e. 3) amplitude of the sub-grid T disti |
|---|
| 1231 | c nuiceco2_sed=0.2 variance of the size distribution for the |
|---|
| 1232 | c sedimentation |
|---|
| 1233 | c nuiceco2_ref=0.2 variance of the size distribution for the |
|---|
| 1234 | c nucleation |
|---|
| 1235 | c imicroco2=50 micro-timestep is 1/50 of physical timestep |
|---|
| 1236 | |
|---|
| 1237 | IF (co2clouds ) THEN |
|---|
| 1238 | |
|---|
| 1239 | |
|---|
| 1240 | call co2cloud(ngrid,nlayer,ptimestep, |
|---|
| 1241 | & zplev,zplay,pdpsrf,zzlay,pt,pdt, |
|---|
| 1242 | & pq,pdq,zdqcloudco2,zdtcloudco2, |
|---|
| 1243 | & nq,tau,tauscaling,rdust,rice,riceco2,nuice, |
|---|
| 1244 | & rsedcloudco2,rhocloudco2, |
|---|
| 1245 | & rsedcloud,rhocloud,zzlev,zdqssed_co2, |
|---|
| 1246 | & pdu,pu) |
|---|
| 1247 | |
|---|
| 1248 | |
|---|
| 1249 | c Temperature variation due to latent heat release |
|---|
| 1250 | c if (activice) then !Maybe create activice_co2 ? |
|---|
| 1251 | pdt(1:ngrid,1:nlayer) = |
|---|
| 1252 | & pdt(1:ngrid,1:nlayer) + |
|---|
| 1253 | & zdtcloudco2(1:ngrid,1:nlayer)! --> in newcondens |
|---|
| 1254 | c endif |
|---|
| 1255 | |
|---|
| 1256 | |
|---|
| 1257 | ! increment dust and ccn masses and numbers |
|---|
| 1258 | ! We need to check that we have Nccn & Ndust > 0 |
|---|
| 1259 | ! This is due to single precision rounding problems |
|---|
| 1260 | |
|---|
| 1261 | ! increment dust tracers tendancies |
|---|
| 1262 | pdq(1:ngrid,1:nlayer,igcm_dust_mass) = |
|---|
| 1263 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) + |
|---|
| 1264 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_dust_mass) |
|---|
| 1265 | pdq(1:ngrid,1:nlayer,igcm_dust_number) = |
|---|
| 1266 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) + |
|---|
| 1267 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_dust_number) |
|---|
| 1268 | pdq(1:ngrid,1:nlayer,igcm_co2) = |
|---|
| 1269 | & pdq(1:ngrid,1:nlayer,igcm_co2) + |
|---|
| 1270 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_co2) |
|---|
| 1271 | pdq(1:ngrid,1:nlayer,igcm_co2_ice) = |
|---|
| 1272 | & pdq(1:ngrid,1:nlayer,igcm_co2_ice) + |
|---|
| 1273 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_co2_ice) |
|---|
| 1274 | pdq(1:ngrid,1:nlayer,igcm_ccnco2_mass) = |
|---|
| 1275 | & pdq(1:ngrid,1:nlayer,igcm_ccnco2_mass) + |
|---|
| 1276 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccnco2_mass) |
|---|
| 1277 | pdq(1:ngrid,1:nlayer,igcm_ccnco2_number) = |
|---|
| 1278 | & pdq(1:ngrid,1:nlayer,igcm_ccnco2_number) + |
|---|
| 1279 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccnco2_number) |
|---|
| 1280 | !Update water ice clouds values as well |
|---|
| 1281 | if (co2useh2o) then |
|---|
| 1282 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = |
|---|
| 1283 | & pdq(1:ngrid,1:nlayer,igcm_h2o_ice) + |
|---|
| 1284 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 1285 | pdq(1:ngrid,1:nlayer,igcm_ccn_mass) = |
|---|
| 1286 | & pdq(1:ngrid,1:nlayer,igcm_ccn_mass) + |
|---|
| 1287 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccn_mass) |
|---|
| 1288 | pdq(1:ngrid,1:nlayer,igcm_ccn_number) = |
|---|
| 1289 | & pdq(1:ngrid,1:nlayer,igcm_ccn_number) + |
|---|
| 1290 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccn_number) |
|---|
| 1291 | where (pq(:,:,igcm_ccn_mass) + |
|---|
| 1292 | & ptimestep*pdq(:,:,igcm_ccn_mass) < 0.) |
|---|
| 1293 | pdq(:,:,igcm_ccn_mass) = |
|---|
| 1294 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
|---|
| 1295 | pdq(:,:,igcm_ccn_number) = |
|---|
| 1296 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
|---|
| 1297 | end where |
|---|
| 1298 | where (pq(:,:,igcm_ccn_number) + |
|---|
| 1299 | & ptimestep*pdq(:,:,igcm_ccn_number) < 0.) |
|---|
| 1300 | pdq(:,:,igcm_ccn_mass) = |
|---|
| 1301 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
|---|
| 1302 | pdq(:,:,igcm_ccn_number) = |
|---|
| 1303 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
|---|
| 1304 | end where |
|---|
| 1305 | endif ! of if (co2useh2o) |
|---|
| 1306 | c Negative values? |
|---|
| 1307 | where (pq(:,:,igcm_ccnco2_mass) + |
|---|
| 1308 | & ptimestep*pdq(:,:,igcm_ccnco2_mass) < 0.) |
|---|
| 1309 | pdq(:,:,igcm_ccnco2_mass) = |
|---|
| 1310 | & - pq(:,:,igcm_ccnco2_mass)/ptimestep + 1.e-30 |
|---|
| 1311 | pdq(:,:,igcm_ccnco2_number) = |
|---|
| 1312 | & - pq(:,:,igcm_ccnco2_number)/ptimestep + 1.e-30 |
|---|
| 1313 | end where |
|---|
| 1314 | where (pq(:,:,igcm_ccnco2_number) + |
|---|
| 1315 | & ptimestep*pdq(:,:,igcm_ccnco2_number) < 0.) |
|---|
| 1316 | pdq(:,:,igcm_ccnco2_mass) = |
|---|
| 1317 | & - pq(:,:,igcm_ccnco2_mass)/ptimestep + 1.e-30 |
|---|
| 1318 | pdq(:,:,igcm_ccnco2_number) = |
|---|
| 1319 | & - pq(:,:,igcm_ccnco2_number)/ptimestep + 1.e-30 |
|---|
| 1320 | end where |
|---|
| 1321 | |
|---|
| 1322 | c Negative values? |
|---|
| 1323 | where (pq(:,:,igcm_dust_mass) + |
|---|
| 1324 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
|---|
| 1325 | pdq(:,:,igcm_dust_mass) = |
|---|
| 1326 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 1327 | pdq(:,:,igcm_dust_number) = |
|---|
| 1328 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 1329 | end where |
|---|
| 1330 | where (pq(:,:,igcm_dust_number) + |
|---|
| 1331 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
|---|
| 1332 | pdq(:,:,igcm_dust_mass) = |
|---|
| 1333 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
|---|
| 1334 | pdq(:,:,igcm_dust_number) = |
|---|
| 1335 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
|---|
| 1336 | end where |
|---|
| 1337 | |
|---|
| 1338 | END IF ! of IF (co2clouds) |
|---|
| 1339 | |
|---|
| 1340 | |
|---|
| 1341 | c 6b. Aerosol particles |
|---|
| 1342 | c ------------------- |
|---|
| 1343 | |
|---|
| 1344 | c ---------- |
|---|
| 1345 | c Dust devil : |
|---|
| 1346 | c ---------- |
|---|
| 1347 | IF(callddevil) then |
|---|
| 1348 | call dustdevil(ngrid,nlayer,nq, zplev,pu,pv,pt, tsurf,q2, |
|---|
| 1349 | & zdqdev,zdqsdev) |
|---|
| 1350 | |
|---|
| 1351 | if (dustbin.ge.1) then |
|---|
| 1352 | do iq=1,nq |
|---|
| 1353 | DO l=1,nlayer |
|---|
| 1354 | DO ig=1,ngrid |
|---|
| 1355 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdev(ig,l,iq) |
|---|
| 1356 | ENDDO |
|---|
| 1357 | ENDDO |
|---|
| 1358 | enddo |
|---|
| 1359 | do iq=1,nq |
|---|
| 1360 | DO ig=1,ngrid |
|---|
| 1361 | dqsurf(ig,iq)= dqsurf(ig,iq) + zdqsdev(ig,iq) |
|---|
| 1362 | ENDDO |
|---|
| 1363 | enddo |
|---|
| 1364 | endif ! of if (dustbin.ge.1) |
|---|
| 1365 | |
|---|
| 1366 | END IF ! of IF (callddevil) |
|---|
| 1367 | |
|---|
| 1368 | c ------------- |
|---|
| 1369 | c Sedimentation : acts also on water ice |
|---|
| 1370 | c ------------- |
|---|
| 1371 | IF (sedimentation) THEN |
|---|
| 1372 | zdqsed(1:ngrid,1:nlayer,1:nq)=0 |
|---|
| 1373 | zdqssed(1:ngrid,1:nq)=0 |
|---|
| 1374 | |
|---|
| 1375 | c Sedimentation for co2 clouds tracers are inside co2cloud microtimestep |
|---|
| 1376 | c Zdqssed isn't |
|---|
| 1377 | call callsedim(ngrid,nlayer, ptimestep, |
|---|
| 1378 | & zplev,zzlev, zzlay, pt, pdt, rdust, rice, |
|---|
| 1379 | & rsedcloud,rhocloud, |
|---|
| 1380 | & pq, pdq, zdqsed, zdqssed,nq, |
|---|
| 1381 | & tau,tauscaling) |
|---|
| 1382 | c Flux at the surface of co2 ice computed in co2cloud microtimestep |
|---|
| 1383 | IF (co2clouds) THEN |
|---|
| 1384 | zdqssed(1:ngrid,igcm_co2_ice)=zdqssed_co2(1:ngrid) |
|---|
| 1385 | ENDIF |
|---|
| 1386 | |
|---|
| 1387 | DO iq=1, nq |
|---|
| 1388 | DO l=1,nlayer |
|---|
| 1389 | DO ig=1,ngrid |
|---|
| 1390 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqsed(ig,l,iq) |
|---|
| 1391 | ENDDO |
|---|
| 1392 | ENDDO |
|---|
| 1393 | ENDDO |
|---|
| 1394 | DO iq=1, nq |
|---|
| 1395 | DO ig=1,ngrid |
|---|
| 1396 | dqsurf(ig,iq)= dqsurf(ig,iq) + zdqssed(ig,iq) |
|---|
| 1397 | ENDDO |
|---|
| 1398 | ENDDO |
|---|
| 1399 | END IF ! of IF (sedimentation) |
|---|
| 1400 | |
|---|
| 1401 | c Add lifted dust to tendancies after sedimentation in the LES (AC) |
|---|
| 1402 | IF (turb_resolved) THEN |
|---|
| 1403 | DO iq=1, nq |
|---|
| 1404 | DO l=1,nlayer |
|---|
| 1405 | DO ig=1,ngrid |
|---|
| 1406 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
|---|
| 1407 | ENDDO |
|---|
| 1408 | ENDDO |
|---|
| 1409 | ENDDO |
|---|
| 1410 | DO iq=1, nq |
|---|
| 1411 | DO ig=1,ngrid |
|---|
| 1412 | dqsurf(ig,iq)=dqsurf(ig,iq) + zdqsdif(ig,iq) |
|---|
| 1413 | ENDDO |
|---|
| 1414 | ENDDO |
|---|
| 1415 | ENDIF |
|---|
| 1416 | |
|---|
| 1417 | c |
|---|
| 1418 | c 6c. Chemical species |
|---|
| 1419 | c ------------------ |
|---|
| 1420 | |
|---|
| 1421 | #ifndef MESOSCALE |
|---|
| 1422 | c -------------- |
|---|
| 1423 | c photochemistry : |
|---|
| 1424 | c -------------- |
|---|
| 1425 | IF (photochem .or. thermochem) then |
|---|
| 1426 | |
|---|
| 1427 | ! dust and ice surface area |
|---|
| 1428 | call surfacearea(ngrid, nlayer, naerkind, |
|---|
| 1429 | $ ptimestep, zplay, zzlay, |
|---|
| 1430 | $ pt, pq, pdq, nq, |
|---|
| 1431 | $ rdust, rice, tau, tauscaling, |
|---|
| 1432 | $ surfdust, surfice) |
|---|
| 1433 | ! call photochemistry |
|---|
| 1434 | ! asis = .false. euler-backward scheme |
|---|
| 1435 | ! asis = .true. asis scheme |
|---|
| 1436 | |
|---|
| 1437 | asis = .true. |
|---|
| 1438 | |
|---|
| 1439 | if (asis) then |
|---|
| 1440 | call calchim_asis(ngrid,nlayer,nq, |
|---|
| 1441 | & ptimestep,zplay,zplev,pt,pdt,dist_sol,mu0, |
|---|
| 1442 | $ zzlev,zzlay,zday,pq,pdq,zdqchim,zdqschim, |
|---|
| 1443 | $ zdqcloud,zdqscloud,tauref,co2ice, |
|---|
| 1444 | $ pu,pdu,pv,pdv,surfdust,surfice) |
|---|
| 1445 | else |
|---|
| 1446 | call calchim(ngrid,nlayer,nq, |
|---|
| 1447 | & ptimestep,zplay,zplev,pt,pdt,dist_sol,mu0, |
|---|
| 1448 | $ zzlev,zzlay,zday,pq,pdq,zdqchim,zdqschim, |
|---|
| 1449 | $ zdqcloud,zdqscloud,tauref,co2ice, |
|---|
| 1450 | $ pu,pdu,pv,pdv,surfdust,surfice) |
|---|
| 1451 | end if |
|---|
| 1452 | |
|---|
| 1453 | ! increment values of tracers: |
|---|
| 1454 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
|---|
| 1455 | ! tracers is zero anyways |
|---|
| 1456 | DO l=1,nlayer |
|---|
| 1457 | DO ig=1,ngrid |
|---|
| 1458 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqchim(ig,l,iq) |
|---|
| 1459 | ENDDO |
|---|
| 1460 | ENDDO |
|---|
| 1461 | ENDDO ! of DO iq=1,nq |
|---|
| 1462 | |
|---|
| 1463 | ! add condensation tendency for H2O2 |
|---|
| 1464 | if (igcm_h2o2.ne.0) then |
|---|
| 1465 | DO l=1,nlayer |
|---|
| 1466 | DO ig=1,ngrid |
|---|
| 1467 | pdq(ig,l,igcm_h2o2)=pdq(ig,l,igcm_h2o2) |
|---|
| 1468 | & +zdqcloud(ig,l,igcm_h2o2) |
|---|
| 1469 | ENDDO |
|---|
| 1470 | ENDDO |
|---|
| 1471 | endif |
|---|
| 1472 | |
|---|
| 1473 | ! increment surface values of tracers: |
|---|
| 1474 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
|---|
| 1475 | ! tracers is zero anyways |
|---|
| 1476 | DO ig=1,ngrid |
|---|
| 1477 | dqsurf(ig,iq)=dqsurf(ig,iq)+zdqschim(ig,iq) |
|---|
| 1478 | ENDDO |
|---|
| 1479 | ENDDO ! of DO iq=1,nq |
|---|
| 1480 | |
|---|
| 1481 | ! add condensation tendency for H2O2 |
|---|
| 1482 | if (igcm_h2o2.ne.0) then |
|---|
| 1483 | DO ig=1,ngrid |
|---|
| 1484 | dqsurf(ig,igcm_h2o2)=dqsurf(ig,igcm_h2o2) |
|---|
| 1485 | & +zdqscloud(ig,igcm_h2o2) |
|---|
| 1486 | ENDDO |
|---|
| 1487 | endif |
|---|
| 1488 | |
|---|
| 1489 | END IF ! of IF (photochem.or.thermochem) |
|---|
| 1490 | #endif |
|---|
| 1491 | |
|---|
| 1492 | c 6d. Updates |
|---|
| 1493 | c --------- |
|---|
| 1494 | |
|---|
| 1495 | DO iq=1, nq |
|---|
| 1496 | DO ig=1,ngrid |
|---|
| 1497 | |
|---|
| 1498 | c --------------------------------- |
|---|
| 1499 | c Updating tracer budget on surface |
|---|
| 1500 | c --------------------------------- |
|---|
| 1501 | qsurf(ig,iq)=qsurf(ig,iq)+ptimestep*dqsurf(ig,iq) |
|---|
| 1502 | |
|---|
| 1503 | ENDDO ! (ig) |
|---|
| 1504 | ENDDO ! (iq) |
|---|
| 1505 | |
|---|
| 1506 | endif ! of if (tracer) |
|---|
| 1507 | |
|---|
| 1508 | #ifndef MESOSCALE |
|---|
| 1509 | c----------------------------------------------------------------------- |
|---|
| 1510 | c 7. THERMOSPHERE CALCULATION |
|---|
| 1511 | c----------------------------------------------------------------------- |
|---|
| 1512 | |
|---|
| 1513 | if (callthermos) then |
|---|
| 1514 | call thermosphere(ngrid,nlayer,nq,zplev,zplay,dist_sol, |
|---|
| 1515 | $ mu0,ptimestep,ptime,zday,tsurf,zzlev,zzlay, |
|---|
| 1516 | & pt,pq,pu,pv,pdt,pdq, |
|---|
| 1517 | $ zdteuv,zdtconduc,zdumolvis,zdvmolvis,zdqmoldiff) |
|---|
| 1518 | |
|---|
| 1519 | DO l=1,nlayer |
|---|
| 1520 | DO ig=1,ngrid |
|---|
| 1521 | dtrad(ig,l)=dtrad(ig,l)+zdteuv(ig,l) |
|---|
| 1522 | pdt(ig,l)=pdt(ig,l)+zdtconduc(ig,l) |
|---|
| 1523 | & +zdteuv(ig,l) |
|---|
| 1524 | pdv(ig,l)=pdv(ig,l)+zdvmolvis(ig,l) |
|---|
| 1525 | pdu(ig,l)=pdu(ig,l)+zdumolvis(ig,l) |
|---|
| 1526 | DO iq=1, nq |
|---|
| 1527 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqmoldiff(ig,l,iq) |
|---|
| 1528 | ENDDO |
|---|
| 1529 | ENDDO |
|---|
| 1530 | ENDDO |
|---|
| 1531 | |
|---|
| 1532 | endif ! of if (callthermos) |
|---|
| 1533 | #endif |
|---|
| 1534 | |
|---|
| 1535 | c----------------------------------------------------------------------- |
|---|
| 1536 | c 8. Carbon dioxide condensation-sublimation: |
|---|
| 1537 | c (should be the last atmospherical physical process to be computed) |
|---|
| 1538 | c ------------------------------------------- |
|---|
| 1539 | |
|---|
| 1540 | IF (tituscap) THEN |
|---|
| 1541 | !!! get the actual co2 seasonal cap from Titus observations |
|---|
| 1542 | CALL geticecover( ngrid, 180.*zls/pi, |
|---|
| 1543 | . 180.*longitude/pi, 180.*latitude/pi, co2ice ) |
|---|
| 1544 | co2ice = co2ice * 10000. |
|---|
| 1545 | ENDIF |
|---|
| 1546 | |
|---|
| 1547 | |
|---|
| 1548 | pdpsrf(:) = 0 |
|---|
| 1549 | |
|---|
| 1550 | IF (callcond) THEN |
|---|
| 1551 | CALL newcondens(ngrid,nlayer,nq,ptimestep, |
|---|
| 1552 | $ capcal,zplay,zplev,tsurf,pt, |
|---|
| 1553 | $ pphi,pdt,pdu,pdv,zdtsurf,pu,pv,pq,pdq, |
|---|
| 1554 | $ co2ice,albedo,emis, |
|---|
| 1555 | $ zdtc,zdtsurfc,pdpsrf,zduc,zdvc,zdqc, |
|---|
| 1556 | $ fluxsurf_sw,zls)!, |
|---|
| 1557 | c & zzlev,zdqssed_co2,zdqcloudco2, |
|---|
| 1558 | c & zdtcloudco2) |
|---|
| 1559 | |
|---|
| 1560 | DO l=1,nlayer |
|---|
| 1561 | DO ig=1,ngrid |
|---|
| 1562 | pdt(ig,l)=pdt(ig,l)+zdtc(ig,l) |
|---|
| 1563 | pdv(ig,l)=pdv(ig,l)+zdvc(ig,l) |
|---|
| 1564 | pdu(ig,l)=pdu(ig,l)+zduc(ig,l) |
|---|
| 1565 | ENDDO |
|---|
| 1566 | ENDDO |
|---|
| 1567 | DO ig=1,ngrid |
|---|
| 1568 | zdtsurf(ig) = zdtsurf(ig) + zdtsurfc(ig) |
|---|
| 1569 | ENDDO |
|---|
| 1570 | |
|---|
| 1571 | IF (tracer) THEN |
|---|
| 1572 | DO iq=1, nq |
|---|
| 1573 | DO l=1,nlayer |
|---|
| 1574 | DO ig=1,ngrid |
|---|
| 1575 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqc(ig,l,iq) |
|---|
| 1576 | ENDDO |
|---|
| 1577 | ENDDO |
|---|
| 1578 | ENDDO |
|---|
| 1579 | ENDIF ! of IF (tracer) |
|---|
| 1580 | |
|---|
| 1581 | #ifndef MESOSCALE |
|---|
| 1582 | ! update surface pressure |
|---|
| 1583 | DO ig=1,ngrid |
|---|
| 1584 | ps(ig) = zplev(ig,1) + pdpsrf(ig)*ptimestep |
|---|
| 1585 | ENDDO |
|---|
| 1586 | |
|---|
| 1587 | ! update pressure levels |
|---|
| 1588 | DO l=1,nlayer |
|---|
| 1589 | DO ig=1,ngrid |
|---|
| 1590 | zplay(ig,l) = aps(l) + bps(l)*ps(ig) |
|---|
| 1591 | zplev(ig,l) = ap(l) + bp(l)*ps(ig) |
|---|
| 1592 | ENDDO |
|---|
| 1593 | ENDDO |
|---|
| 1594 | zplev(:,nlayer+1) = 0. |
|---|
| 1595 | |
|---|
| 1596 | ! update layers altitude |
|---|
| 1597 | DO l=2,nlayer |
|---|
| 1598 | DO ig=1,ngrid |
|---|
| 1599 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
|---|
| 1600 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
|---|
| 1601 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
|---|
| 1602 | ENDDO |
|---|
| 1603 | ENDDO |
|---|
| 1604 | #endif |
|---|
| 1605 | |
|---|
| 1606 | ENDIF ! of IF (callcond) |
|---|
| 1607 | |
|---|
| 1608 | |
|---|
| 1609 | c----------------------------------------------------------------------- |
|---|
| 1610 | c 9. Surface and sub-surface soil temperature |
|---|
| 1611 | c----------------------------------------------------------------------- |
|---|
| 1612 | c |
|---|
| 1613 | c |
|---|
| 1614 | c 9.1 Increment Surface temperature: |
|---|
| 1615 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1616 | |
|---|
| 1617 | DO ig=1,ngrid |
|---|
| 1618 | tsurf(ig)=tsurf(ig)+ptimestep*zdtsurf(ig) |
|---|
| 1619 | ENDDO |
|---|
| 1620 | |
|---|
| 1621 | c Prescribe a cold trap at south pole (except at high obliquity !!) |
|---|
| 1622 | c Temperature at the surface is set there to be the temperature |
|---|
| 1623 | c corresponding to equilibrium temperature between phases of CO2 |
|---|
| 1624 | |
|---|
| 1625 | |
|---|
| 1626 | IF (tracer.AND.water.AND.(ngrid.NE.1)) THEN |
|---|
| 1627 | !#ifndef MESOSCALE |
|---|
| 1628 | ! if (caps.and.(obliquit.lt.27.)) then => now done in newcondens |
|---|
| 1629 | ! NB: Updated surface pressure, at grid point 'ngrid', is |
|---|
| 1630 | ! ps(ngrid)=zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep |
|---|
| 1631 | ! tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095* |
|---|
| 1632 | ! & (zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep))) |
|---|
| 1633 | ! tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095*ps(ngrid))) |
|---|
| 1634 | ! endif |
|---|
| 1635 | !#endif |
|---|
| 1636 | c ------------------------------------------------------------- |
|---|
| 1637 | c Change of surface albedo in case of ground frost |
|---|
| 1638 | c everywhere except on the north permanent cap and in regions |
|---|
| 1639 | c covered by dry ice. |
|---|
| 1640 | c ALWAYS PLACE these lines after newcondens !!! |
|---|
| 1641 | c ------------------------------------------------------------- |
|---|
| 1642 | do ig=1,ngrid |
|---|
| 1643 | if ((co2ice(ig).eq.0).and. |
|---|
| 1644 | & (qsurf(ig,igcm_h2o_ice).gt.frost_albedo_threshold)) then |
|---|
| 1645 | albedo(ig,1) = albedo_h2o_ice |
|---|
| 1646 | albedo(ig,2) = albedo_h2o_ice |
|---|
| 1647 | c write(*,*) "frost thickness", qsurf(ig,igcm_h2o_ice) |
|---|
| 1648 | c write(*,*) "physiq.F frost :" |
|---|
| 1649 | c & ,latitude(ig)*180./pi, longitude(ig)*180./pi |
|---|
| 1650 | endif |
|---|
| 1651 | enddo ! of do ig=1,ngrid |
|---|
| 1652 | ENDIF ! of IF (tracer.AND.water.AND.(ngrid.NE.1)) |
|---|
| 1653 | |
|---|
| 1654 | c |
|---|
| 1655 | c 9.2 Compute soil temperatures and subsurface heat flux: |
|---|
| 1656 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 1657 | IF (callsoil) THEN |
|---|
| 1658 | c Thermal inertia feedback |
|---|
| 1659 | IF (tifeedback) THEN |
|---|
| 1660 | CALL soil_tifeedback(ngrid,nsoilmx,qsurf,inertiesoil) |
|---|
| 1661 | CALL soil(ngrid,nsoilmx,.false.,inertiesoil, |
|---|
| 1662 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
|---|
| 1663 | ELSE |
|---|
| 1664 | CALL soil(ngrid,nsoilmx,.false.,inertiedat, |
|---|
| 1665 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
|---|
| 1666 | ENDIF |
|---|
| 1667 | ENDIF |
|---|
| 1668 | |
|---|
| 1669 | |
|---|
| 1670 | c----------------------------------------------------------------------- |
|---|
| 1671 | c 10. Write output files |
|---|
| 1672 | c ---------------------- |
|---|
| 1673 | |
|---|
| 1674 | c ------------------------------- |
|---|
| 1675 | c Dynamical fields incrementation |
|---|
| 1676 | c ------------------------------- |
|---|
| 1677 | c (FOR OUTPUT ONLY : the actual model integration is performed in the dynamics) |
|---|
| 1678 | ! temperature, zonal and meridional wind |
|---|
| 1679 | DO l=1,nlayer |
|---|
| 1680 | DO ig=1,ngrid |
|---|
| 1681 | zt(ig,l)=pt(ig,l) + pdt(ig,l)*ptimestep |
|---|
| 1682 | zu(ig,l)=pu(ig,l) + pdu(ig,l)*ptimestep |
|---|
| 1683 | zv(ig,l)=pv(ig,l) + pdv(ig,l)*ptimestep |
|---|
| 1684 | ENDDO |
|---|
| 1685 | ENDDO |
|---|
| 1686 | |
|---|
| 1687 | ! tracers |
|---|
| 1688 | DO iq=1, nq |
|---|
| 1689 | DO l=1,nlayer |
|---|
| 1690 | DO ig=1,ngrid |
|---|
| 1691 | zq(ig,l,iq)=pq(ig,l,iq) +pdq(ig,l,iq)*ptimestep |
|---|
| 1692 | ENDDO |
|---|
| 1693 | ENDDO |
|---|
| 1694 | ENDDO |
|---|
| 1695 | |
|---|
| 1696 | ! Density |
|---|
| 1697 | DO l=1,nlayer |
|---|
| 1698 | DO ig=1,ngrid |
|---|
| 1699 | rho(ig,l) = zplay(ig,l)/(rnew(ig,l)*zt(ig,l)) |
|---|
| 1700 | ENDDO |
|---|
| 1701 | ENDDO |
|---|
| 1702 | |
|---|
| 1703 | ! Potential Temperature |
|---|
| 1704 | |
|---|
| 1705 | DO ig=1,ngrid |
|---|
| 1706 | DO l=1,nlayer |
|---|
| 1707 | zh(ig,l) = zt(ig,l)*(zplev(ig,1)/zplay(ig,l))**rcp |
|---|
| 1708 | ENDDO |
|---|
| 1709 | ENDDO |
|---|
| 1710 | |
|---|
| 1711 | |
|---|
| 1712 | c Compute surface stress : (NB: z0 is a common in surfdat.h) |
|---|
| 1713 | c DO ig=1,ngrid |
|---|
| 1714 | c cd = (0.4/log(zzlay(ig,1)/z0(ig)))**2 |
|---|
| 1715 | c zstress(ig) = rho(ig,1)*cd*(zu(ig,1)**2 + zv(ig,1)**2) |
|---|
| 1716 | c ENDDO |
|---|
| 1717 | |
|---|
| 1718 | c Sum of fluxes in solar spectral bands (for output only) |
|---|
| 1719 | DO ig=1,ngrid |
|---|
| 1720 | fluxtop_sw_tot(ig)=fluxtop_sw(ig,1) + fluxtop_sw(ig,2) |
|---|
| 1721 | fluxsurf_sw_tot(ig)=fluxsurf_sw(ig,1) + fluxsurf_sw(ig,2) |
|---|
| 1722 | ENDDO |
|---|
| 1723 | c ******* TEST ****************************************************** |
|---|
| 1724 | ztim1 = 999 |
|---|
| 1725 | DO l=1,nlayer |
|---|
| 1726 | DO ig=1,ngrid |
|---|
| 1727 | if (pt(ig,l).lt.ztim1) then |
|---|
| 1728 | ztim1 = pt(ig,l) |
|---|
| 1729 | igmin = ig |
|---|
| 1730 | lmin = l |
|---|
| 1731 | end if |
|---|
| 1732 | ENDDO |
|---|
| 1733 | ENDDO |
|---|
| 1734 | if(min(pt(igmin,lmin),zt(igmin,lmin)).lt.70.) then |
|---|
| 1735 | write(*,*) 'PHYSIQ: stability WARNING :' |
|---|
| 1736 | write(*,*) 'pt, zt Tmin = ', pt(igmin,lmin), zt(igmin,lmin), |
|---|
| 1737 | & 'ig l =', igmin, lmin |
|---|
| 1738 | end if |
|---|
| 1739 | c ******************************************************************* |
|---|
| 1740 | |
|---|
| 1741 | c --------------------- |
|---|
| 1742 | c Outputs to the screen |
|---|
| 1743 | c --------------------- |
|---|
| 1744 | |
|---|
| 1745 | IF (lwrite) THEN |
|---|
| 1746 | PRINT*,'Global diagnostics for the physics' |
|---|
| 1747 | PRINT*,'Variables and their increments x and dx/dt * dt' |
|---|
| 1748 | WRITE(*,'(a6,a10,2a15)') 'Ts','dTs','ps','dps' |
|---|
| 1749 | WRITE(*,'(2f10.5,2f15.5)') |
|---|
| 1750 | s tsurf(igout),zdtsurf(igout)*ptimestep, |
|---|
| 1751 | s zplev(igout,1),pdpsrf(igout)*ptimestep |
|---|
| 1752 | WRITE(*,'(a4,a6,5a10)') 'l','u','du','v','dv','T','dT' |
|---|
| 1753 | WRITE(*,'(i4,6f10.5)') (l, |
|---|
| 1754 | s pu(igout,l),pdu(igout,l)*ptimestep, |
|---|
| 1755 | s pv(igout,l),pdv(igout,l)*ptimestep, |
|---|
| 1756 | s pt(igout,l),pdt(igout,l)*ptimestep, |
|---|
| 1757 | s l=1,nlayer) |
|---|
| 1758 | ENDIF ! of IF (lwrite) |
|---|
| 1759 | |
|---|
| 1760 | c ---------------------------------------------------------- |
|---|
| 1761 | c ---------------------------------------------------------- |
|---|
| 1762 | c INTERPOLATIONS IN THE SURFACE-LAYER |
|---|
| 1763 | c ---------------------------------------------------------- |
|---|
| 1764 | c ---------------------------------------------------------- |
|---|
| 1765 | |
|---|
| 1766 | n_out=0 ! number of elements in the z_out array. |
|---|
| 1767 | ! for z_out=[3.,2.,1.,0.5,0.1], n_out must be set |
|---|
| 1768 | ! to 5 |
|---|
| 1769 | IF (n_out .ne. 0) THEN |
|---|
| 1770 | |
|---|
| 1771 | IF(.NOT. ALLOCATED(z_out)) ALLOCATE(z_out(n_out)) |
|---|
| 1772 | IF(.NOT. ALLOCATED(T_out)) ALLOCATE(T_out(ngrid,n_out)) |
|---|
| 1773 | IF(.NOT. ALLOCATED(u_out)) ALLOCATE(u_out(ngrid,n_out)) |
|---|
| 1774 | |
|---|
| 1775 | z_out(:)=[3.,2.,1.,0.5,0.1] |
|---|
| 1776 | u_out(:,:)=0. |
|---|
| 1777 | T_out(:,:)=0. |
|---|
| 1778 | |
|---|
| 1779 | call pbl_parameters(ngrid,nlayer,ps,zplay,z0, |
|---|
| 1780 | & g,zzlay,zzlev,zu,zv,wstar,hfmax_th,zmax_th,tsurf,zh,z_out,n_out, |
|---|
| 1781 | & T_out,u_out,ustar,tstar,L_mo,vhf,vvv) |
|---|
| 1782 | ! pourquoi ustar recalcule ici? fait dans vdifc. |
|---|
| 1783 | |
|---|
| 1784 | #ifndef MESOSCALE |
|---|
| 1785 | IF (ngrid .eq. 1) THEN |
|---|
| 1786 | dimout=0 |
|---|
| 1787 | ELSE |
|---|
| 1788 | dimout=2 |
|---|
| 1789 | ENDIF |
|---|
| 1790 | DO n=1,n_out |
|---|
| 1791 | write(zstring, '(F8.6)') z_out(n) |
|---|
| 1792 | call WRITEDIAGFI(ngrid,'T_out_'//trim(zstring), |
|---|
| 1793 | & 'potential temperature at z_out','K',dimout,T_out(:,n)) |
|---|
| 1794 | call WRITEDIAGFI(ngrid,'u_out_'//trim(zstring), |
|---|
| 1795 | & 'horizontal velocity norm at z_out','m/s',dimout,u_out(:,n)) |
|---|
| 1796 | ENDDO |
|---|
| 1797 | call WRITEDIAGFI(ngrid,'u_star', |
|---|
| 1798 | & 'friction velocity','m/s',dimout,ustar) |
|---|
| 1799 | call WRITEDIAGFI(ngrid,'teta_star', |
|---|
| 1800 | & 'friction potential temperature','K',dimout,tstar) |
|---|
| 1801 | ! call WRITEDIAGFI(ngrid,'L', |
|---|
| 1802 | ! & 'Monin Obukhov length','m',dimout,L_mo) |
|---|
| 1803 | call WRITEDIAGFI(ngrid,'vvv', |
|---|
| 1804 | & 'Vertical velocity variance at zout','m',dimout,vvv) |
|---|
| 1805 | call WRITEDIAGFI(ngrid,'vhf', |
|---|
| 1806 | & 'Vertical heat flux at zout','m',dimout,vhf) |
|---|
| 1807 | #else |
|---|
| 1808 | T_out1(:)=T_out(:,1) |
|---|
| 1809 | u_out1(:)=u_out(:,1) |
|---|
| 1810 | #endif |
|---|
| 1811 | |
|---|
| 1812 | ENDIF |
|---|
| 1813 | |
|---|
| 1814 | c ---------------------------------------------------------- |
|---|
| 1815 | c ---------------------------------------------------------- |
|---|
| 1816 | c END OF SURFACE LAYER INTERPOLATIONS |
|---|
| 1817 | c ---------------------------------------------------------- |
|---|
| 1818 | c ---------------------------------------------------------- |
|---|
| 1819 | |
|---|
| 1820 | IF (ngrid.NE.1) THEN |
|---|
| 1821 | |
|---|
| 1822 | #ifndef MESOSCALE |
|---|
| 1823 | c ------------------------------------------------------------------- |
|---|
| 1824 | c Writing NetCDF file "RESTARTFI" at the end of the run |
|---|
| 1825 | c ------------------------------------------------------------------- |
|---|
| 1826 | c Note: 'restartfi' is stored just before dynamics are stored |
|---|
| 1827 | c in 'restart'. Between now and the writting of 'restart', |
|---|
| 1828 | c there will have been the itau=itau+1 instruction and |
|---|
| 1829 | c a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
|---|
| 1830 | c thus we store for time=time+dtvr |
|---|
| 1831 | |
|---|
| 1832 | IF( ((ecritstart.GT.0) .and. |
|---|
| 1833 | . (MOD(icount*iphysiq,ecritstart).EQ.0)) |
|---|
| 1834 | . .or. lastcall ) THEN |
|---|
| 1835 | |
|---|
| 1836 | ztime_fin = pday + ptime + ptimestep/(float(iphysiq)*daysec) |
|---|
| 1837 | . - day_ini - time_phys |
|---|
| 1838 | print*, pday,ptime,day_ini, time_phys |
|---|
| 1839 | write(*,'(A,I7,A,F12.5)') |
|---|
| 1840 | . 'PHYSIQ: Ecriture du fichier restartfi ; icount=', |
|---|
| 1841 | . icount,' date=',ztime_fin |
|---|
| 1842 | |
|---|
| 1843 | |
|---|
| 1844 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq, |
|---|
| 1845 | . ptimestep,ztime_fin, |
|---|
| 1846 | . tsurf,tsoil,co2ice,emis,q2,qsurf,tauscaling, |
|---|
| 1847 | . totcloudfrac,mem_Mccn_co2,mem_Nccn_co2, |
|---|
| 1848 | . mem_Mh2o_co2) |
|---|
| 1849 | |
|---|
| 1850 | ENDIF |
|---|
| 1851 | #endif |
|---|
| 1852 | |
|---|
| 1853 | c ------------------------------------------------------------------- |
|---|
| 1854 | c Calculation of diagnostic variables written in both stats and |
|---|
| 1855 | c diagfi files |
|---|
| 1856 | c ------------------------------------------------------------------- |
|---|
| 1857 | |
|---|
| 1858 | if (tracer) then |
|---|
| 1859 | |
|---|
| 1860 | if(doubleq) then |
|---|
| 1861 | do ig=1,ngrid |
|---|
| 1862 | dqdustsurf(ig) = |
|---|
| 1863 | & zdqssed(ig,igcm_dust_mass)*tauscaling(ig) |
|---|
| 1864 | dndustsurf(ig) = |
|---|
| 1865 | & zdqssed(ig,igcm_dust_number)*tauscaling(ig) |
|---|
| 1866 | ndust(ig,:) = |
|---|
| 1867 | & zq(ig,:,igcm_dust_number)*tauscaling(ig) |
|---|
| 1868 | qdust(ig,:) = |
|---|
| 1869 | & zq(ig,:,igcm_dust_mass)*tauscaling(ig) |
|---|
| 1870 | enddo |
|---|
| 1871 | if (scavenging) then |
|---|
| 1872 | do ig=1,ngrid |
|---|
| 1873 | dqdustsurf(ig) = dqdustsurf(ig) + |
|---|
| 1874 | & zdqssed(ig,igcm_ccn_mass)*tauscaling(ig) |
|---|
| 1875 | dndustsurf(ig) = dndustsurf(ig) + |
|---|
| 1876 | & zdqssed(ig,igcm_ccn_number)*tauscaling(ig) |
|---|
| 1877 | nccn(ig,:) = |
|---|
| 1878 | & zq(ig,:,igcm_ccn_number)*tauscaling(ig) |
|---|
| 1879 | qccn(ig,:) = |
|---|
| 1880 | & zq(ig,:,igcm_ccn_mass)*tauscaling(ig) |
|---|
| 1881 | enddo |
|---|
| 1882 | endif |
|---|
| 1883 | endif ! of (doubleq) |
|---|
| 1884 | if (co2clouds) then |
|---|
| 1885 | do ig=1,ngrid |
|---|
| 1886 | nccnco2(ig,:) = |
|---|
| 1887 | & zq(ig,:,igcm_ccnco2_number)*tauscaling(ig) |
|---|
| 1888 | qccnco2(ig,:) = |
|---|
| 1889 | & zq(ig,:,igcm_ccnco2_mass)*tauscaling(ig) |
|---|
| 1890 | enddo |
|---|
| 1891 | c D. BARDET compute integrated CO2 vapor and ice content |
|---|
| 1892 | mtotco2(:)=0 |
|---|
| 1893 | icetotco2(:)=0 |
|---|
| 1894 | do ig=1,ngrid |
|---|
| 1895 | do l=1,nlayer |
|---|
| 1896 | mtotco2(ig) = mtotco2(ig) + |
|---|
| 1897 | & zq(ig,l,igcm_co2) * |
|---|
| 1898 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 1899 | icetotco2(ig) = icetotco2(ig) + |
|---|
| 1900 | & zq(ig,l,igcm_co2_ice) * |
|---|
| 1901 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 1902 | enddo |
|---|
| 1903 | enddo |
|---|
| 1904 | endif ! of if (co2clouds) |
|---|
| 1905 | |
|---|
| 1906 | |
|---|
| 1907 | if (water) then |
|---|
| 1908 | mtot(:)=0 |
|---|
| 1909 | icetot(:)=0 |
|---|
| 1910 | rave(:)=0 |
|---|
| 1911 | tauTES(:)=0 |
|---|
| 1912 | do ig=1,ngrid |
|---|
| 1913 | do l=1,nlayer |
|---|
| 1914 | mtot(ig) = mtot(ig) + |
|---|
| 1915 | & zq(ig,l,igcm_h2o_vap) * |
|---|
| 1916 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 1917 | icetot(ig) = icetot(ig) + |
|---|
| 1918 | & zq(ig,l,igcm_h2o_ice) * |
|---|
| 1919 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 1920 | c Computing abs optical depth at 825 cm-1 in each |
|---|
| 1921 | c layer to simulate NEW TES retrieval |
|---|
| 1922 | Qabsice = min( |
|---|
| 1923 | & max(0.4e6*rice(ig,l)*(1.+nuice_ref)-0.05 ,0.),1.2 |
|---|
| 1924 | & ) |
|---|
| 1925 | opTES(ig,l)= 0.75 * Qabsice * |
|---|
| 1926 | & zq(ig,l,igcm_h2o_ice) * |
|---|
| 1927 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 1928 | & / (rho_ice * rice(ig,l) * (1.+nuice_ref)) |
|---|
| 1929 | tauTES(ig)=tauTES(ig)+ opTES(ig,l) |
|---|
| 1930 | enddo |
|---|
| 1931 | c rave(ig)=rave(ig)/max(icetot(ig),1.e-30) ! mass weight |
|---|
| 1932 | c if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
|---|
| 1933 | enddo |
|---|
| 1934 | call watersat(ngrid*nlayer,zt,zplay,zqsat) |
|---|
| 1935 | satu(:,:) = zq(:,:,igcm_h2o_vap)/zqsat(:,:) |
|---|
| 1936 | |
|---|
| 1937 | if (scavenging) then |
|---|
| 1938 | Nccntot(:)= 0 |
|---|
| 1939 | Mccntot(:)= 0 |
|---|
| 1940 | rave(:)=0 |
|---|
| 1941 | do ig=1,ngrid |
|---|
| 1942 | do l=1,nlayer |
|---|
| 1943 | Nccntot(ig) = Nccntot(ig) + |
|---|
| 1944 | & zq(ig,l,igcm_ccn_number)*tauscaling(ig) |
|---|
| 1945 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 1946 | Mccntot(ig) = Mccntot(ig) + |
|---|
| 1947 | & zq(ig,l,igcm_ccn_mass)*tauscaling(ig) |
|---|
| 1948 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
|---|
| 1949 | cccc Column integrated effective ice radius |
|---|
| 1950 | cccc is weighted by total ice surface area (BETTER than total ice mass) |
|---|
| 1951 | rave(ig) = rave(ig) + |
|---|
| 1952 | & tauscaling(ig) * |
|---|
| 1953 | & zq(ig,l,igcm_ccn_number) * |
|---|
| 1954 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
|---|
| 1955 | & rice(ig,l) * rice(ig,l)* (1.+nuice_ref) |
|---|
| 1956 | enddo |
|---|
| 1957 | rave(ig)=(icetot(ig)/rho_ice+Mccntot(ig)/rho_dust)*0.75 |
|---|
| 1958 | & /max(pi*rave(ig),1.e-30) ! surface weight |
|---|
| 1959 | if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
|---|
| 1960 | enddo |
|---|
| 1961 | else ! of if (scavenging) |
|---|
| 1962 | rave(:)=0 |
|---|
| 1963 | do ig=1,ngrid |
|---|
| 1964 | do l=1,nlayer |
|---|
| 1965 | rave(ig) = rave(ig) + |
|---|
| 1966 | & zq(ig,l,igcm_h2o_ice) * |
|---|
| 1967 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
|---|
| 1968 | & rice(ig,l) * (1.+nuice_ref) |
|---|
| 1969 | enddo |
|---|
| 1970 | rave(ig) = max(rave(ig) / |
|---|
| 1971 | & max(icetot(ig),1.e-30),1.e-30) ! mass weight |
|---|
| 1972 | enddo |
|---|
| 1973 | endif ! of if (scavenging) |
|---|
| 1974 | |
|---|
| 1975 | !Alternative A. Pottier weighting |
|---|
| 1976 | rave2(:) = 0. |
|---|
| 1977 | totrave2(:) = 0. |
|---|
| 1978 | do ig=1,ngrid |
|---|
| 1979 | do l=1,nlayer |
|---|
| 1980 | rave2(ig) =rave2(ig)+ zq(ig,l,igcm_h2o_ice)*rice(ig,l) |
|---|
| 1981 | totrave2(ig) = totrave2(ig) + zq(ig,l,igcm_h2o_ice) |
|---|
| 1982 | end do |
|---|
| 1983 | rave2(ig)=max(rave2(ig)/max(totrave2(ig),1.e-30),1.e-30) |
|---|
| 1984 | end do |
|---|
| 1985 | |
|---|
| 1986 | endif ! of if (water) |
|---|
| 1987 | |
|---|
| 1988 | |
|---|
| 1989 | endif ! of if (tracer) |
|---|
| 1990 | |
|---|
| 1991 | #ifndef MESOSCALE |
|---|
| 1992 | c ----------------------------------------------------------------- |
|---|
| 1993 | c WSTATS: Saving statistics |
|---|
| 1994 | c ----------------------------------------------------------------- |
|---|
| 1995 | c ("stats" stores and accumulates 8 key variables in file "stats.nc" |
|---|
| 1996 | c which can later be used to make the statistic files of the run: |
|---|
| 1997 | c "stats") only possible in 3D runs ! |
|---|
| 1998 | |
|---|
| 1999 | IF (callstats) THEN |
|---|
| 2000 | |
|---|
| 2001 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
|---|
| 2002 | call wstats(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
|---|
| 2003 | call wstats(ngrid,"co2ice","CO2 ice cover", |
|---|
| 2004 | & "kg.m-2",2,co2ice) |
|---|
| 2005 | call wstats(ngrid,"tauref","reference dod at 610 Pa","NU", |
|---|
| 2006 | & 2,tauref) |
|---|
| 2007 | call wstats(ngrid,"fluxsurf_lw", |
|---|
| 2008 | & "Thermal IR radiative flux to surface","W.m-2",2, |
|---|
| 2009 | & fluxsurf_lw) |
|---|
| 2010 | call wstats(ngrid,"fluxsurf_sw", |
|---|
| 2011 | & "Solar radiative flux to surface","W.m-2",2, |
|---|
| 2012 | & fluxsurf_sw_tot) |
|---|
| 2013 | call wstats(ngrid,"fluxtop_lw", |
|---|
| 2014 | & "Thermal IR radiative flux to space","W.m-2",2, |
|---|
| 2015 | & fluxtop_lw) |
|---|
| 2016 | call wstats(ngrid,"fluxtop_sw", |
|---|
| 2017 | & "Solar radiative flux to space","W.m-2",2, |
|---|
| 2018 | & fluxtop_sw_tot) |
|---|
| 2019 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
|---|
| 2020 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
|---|
| 2021 | call wstats(ngrid,"v","Meridional (North-South) wind", |
|---|
| 2022 | & "m.s-1",3,zv) |
|---|
| 2023 | call wstats(ngrid,"w","Vertical (down-up) wind", |
|---|
| 2024 | & "m.s-1",3,pw) |
|---|
| 2025 | call wstats(ngrid,"rho","Atmospheric density","kg/m3",3,rho) |
|---|
| 2026 | call wstats(ngrid,"pressure","Pressure","Pa",3,zplay) |
|---|
| 2027 | call wstats(ngrid,"q2", |
|---|
| 2028 | & "Boundary layer eddy kinetic energy", |
|---|
| 2029 | & "m2.s-2",3,q2) |
|---|
| 2030 | call wstats(ngrid,"emis","Surface emissivity","w.m-1",2, |
|---|
| 2031 | & emis) |
|---|
| 2032 | c call wstats(ngrid,"ssurf","Surface stress","N.m-2", |
|---|
| 2033 | c & 2,zstress) |
|---|
| 2034 | c call wstats(ngrid,"sw_htrt","sw heat.rate", |
|---|
| 2035 | c & "W.m-2",3,zdtsw) |
|---|
| 2036 | c call wstats(ngrid,"lw_htrt","lw heat.rate", |
|---|
| 2037 | c & "W.m-2",3,zdtlw) |
|---|
| 2038 | |
|---|
| 2039 | if (calltherm) then |
|---|
| 2040 | call wstats(ngrid,"zmax_th","Height of thermals", |
|---|
| 2041 | & "m",2,zmax_th) |
|---|
| 2042 | call wstats(ngrid,"hfmax_th","Max thermals heat flux", |
|---|
| 2043 | & "K.m/s",2,hfmax_th) |
|---|
| 2044 | call wstats(ngrid,"wstar", |
|---|
| 2045 | & "Max vertical velocity in thermals", |
|---|
| 2046 | & "m/s",2,wstar) |
|---|
| 2047 | endif |
|---|
| 2048 | |
|---|
| 2049 | if (tracer) then |
|---|
| 2050 | if (water) then |
|---|
| 2051 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
|---|
| 2052 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
|---|
| 2053 | call wstats(ngrid,"vmr_h2ovap", |
|---|
| 2054 | & "H2O vapor volume mixing ratio","mol/mol", |
|---|
| 2055 | & 3,vmr) |
|---|
| 2056 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 2057 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
|---|
| 2058 | call wstats(ngrid,"vmr_h2oice", |
|---|
| 2059 | & "H2O ice volume mixing ratio","mol/mol", |
|---|
| 2060 | & 3,vmr) |
|---|
| 2061 | ! also store vmr_ice*rice for better diagnostics of rice |
|---|
| 2062 | vmr(1:ngrid,1:nlayer)=vmr(1:ngrid,1:nlayer)* |
|---|
| 2063 | & rice(1:ngrid,1:nlayer) |
|---|
| 2064 | call wstats(ngrid,"vmr_h2oice_rice", |
|---|
| 2065 | & "H2O ice mixing ratio times ice particule size", |
|---|
| 2066 | & "(mol/mol)*m", |
|---|
| 2067 | & 3,vmr) |
|---|
| 2068 | vmr=zqsat(1:ngrid,1:nlayer) |
|---|
| 2069 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
|---|
| 2070 | call wstats(ngrid,"vmr_h2osat", |
|---|
| 2071 | & "saturation volume mixing ratio","mol/mol", |
|---|
| 2072 | & 3,vmr) |
|---|
| 2073 | call wstats(ngrid,"h2o_ice_s", |
|---|
| 2074 | & "surface h2o_ice","kg/m2", |
|---|
| 2075 | & 2,qsurf(1,igcm_h2o_ice)) |
|---|
| 2076 | call wstats(ngrid,'albedo', |
|---|
| 2077 | & 'albedo', |
|---|
| 2078 | & '',2,albedo(1,1)) |
|---|
| 2079 | call wstats(ngrid,"mtot", |
|---|
| 2080 | & "total mass of water vapor","kg/m2", |
|---|
| 2081 | & 2,mtot) |
|---|
| 2082 | call wstats(ngrid,"icetot", |
|---|
| 2083 | & "total mass of water ice","kg/m2", |
|---|
| 2084 | & 2,icetot) |
|---|
| 2085 | call wstats(ngrid,"reffice", |
|---|
| 2086 | & "Mean reff","m", |
|---|
| 2087 | & 2,rave) |
|---|
| 2088 | call wstats(ngrid,"Nccntot", |
|---|
| 2089 | & "condensation nuclei","Nbr/m2", |
|---|
| 2090 | & 2,Nccntot) |
|---|
| 2091 | call wstats(ngrid,"Mccntot", |
|---|
| 2092 | & "condensation nuclei mass","kg/m2", |
|---|
| 2093 | & 2,Mccntot) |
|---|
| 2094 | call wstats(ngrid,"rice", |
|---|
| 2095 | & "Ice particle size","m", |
|---|
| 2096 | & 3,rice) |
|---|
| 2097 | if (.not.activice) then |
|---|
| 2098 | call wstats(ngrid,"tauTESap", |
|---|
| 2099 | & "tau abs 825 cm-1","", |
|---|
| 2100 | & 2,tauTES) |
|---|
| 2101 | else |
|---|
| 2102 | call wstats(ngrid,'tauTES', |
|---|
| 2103 | & 'tau abs 825 cm-1', |
|---|
| 2104 | & '',2,taucloudtes) |
|---|
| 2105 | endif |
|---|
| 2106 | |
|---|
| 2107 | endif ! of if (water) |
|---|
| 2108 | |
|---|
| 2109 | |
|---|
| 2110 | if (dustbin.ne.0) then |
|---|
| 2111 | |
|---|
| 2112 | call wstats(ngrid,'tau','taudust','SI',2,tau(1,1)) |
|---|
| 2113 | |
|---|
| 2114 | if (doubleq) then |
|---|
| 2115 | c call wstats(ngrid,'qsurf','qsurf', |
|---|
| 2116 | c & 'kg.m-2',2,qsurf(1,igcm_dust_mass)) |
|---|
| 2117 | c call wstats(ngrid,'Nsurf','N particles', |
|---|
| 2118 | c & 'N.m-2',2,qsurf(1,igcm_dust_number)) |
|---|
| 2119 | c call wstats(ngrid,'dqsdev','ddevil lift', |
|---|
| 2120 | c & 'kg.m-2.s-1',2,zdqsdev(1,1)) |
|---|
| 2121 | c call wstats(ngrid,'dqssed','sedimentation', |
|---|
| 2122 | c & 'kg.m-2.s-1',2,zdqssed(1,1)) |
|---|
| 2123 | c call wstats(ngrid,'dqsdif','diffusion', |
|---|
| 2124 | c & 'kg.m-2.s-1',2,zdqsdif(1,1)) |
|---|
| 2125 | call wstats(ngrid,'dqsdust', |
|---|
| 2126 | & 'deposited surface dust mass', |
|---|
| 2127 | & 'kg.m-2.s-1',2,dqdustsurf) |
|---|
| 2128 | call wstats(ngrid,'dqndust', |
|---|
| 2129 | & 'deposited surface dust number', |
|---|
| 2130 | & 'number.m-2.s-1',2,dndustsurf) |
|---|
| 2131 | call wstats(ngrid,'reffdust','reffdust', |
|---|
| 2132 | & 'm',3,rdust*ref_r0) |
|---|
| 2133 | call wstats(ngrid,'dustq','Dust mass mr', |
|---|
| 2134 | & 'kg/kg',3,qdust) |
|---|
| 2135 | call wstats(ngrid,'dustN','Dust number', |
|---|
| 2136 | & 'part/kg',3,ndust) |
|---|
| 2137 | else |
|---|
| 2138 | do iq=1,dustbin |
|---|
| 2139 | write(str2(1:2),'(i2.2)') iq |
|---|
| 2140 | call wstats(ngrid,'q'//str2,'mix. ratio', |
|---|
| 2141 | & 'kg/kg',3,zq(1,1,iq)) |
|---|
| 2142 | call wstats(ngrid,'qsurf'//str2,'qsurf', |
|---|
| 2143 | & 'kg.m-2',2,qsurf(1,iq)) |
|---|
| 2144 | end do |
|---|
| 2145 | endif ! (doubleq) |
|---|
| 2146 | |
|---|
| 2147 | if (scavenging) then |
|---|
| 2148 | call wstats(ngrid,'ccnq','CCN mass mr', |
|---|
| 2149 | & 'kg/kg',3,qccn) |
|---|
| 2150 | call wstats(ngrid,'ccnN','CCN number', |
|---|
| 2151 | & 'part/kg',3,nccn) |
|---|
| 2152 | endif ! (scavenging) |
|---|
| 2153 | |
|---|
| 2154 | endif ! (dustbin.ne.0) |
|---|
| 2155 | |
|---|
| 2156 | if (thermochem .or. photochem) then |
|---|
| 2157 | do iq=1,nq |
|---|
| 2158 | if (noms(iq) .ne. "dust_mass" .and. |
|---|
| 2159 | $ noms(iq) .ne. "dust_number" .and. |
|---|
| 2160 | $ noms(iq) .ne. "ccn_mass" .and. |
|---|
| 2161 | $ noms(iq) .ne. "ccn_number" .and. |
|---|
| 2162 | $ noms(iq) .ne. "ccnco2_mass" .and. |
|---|
| 2163 | $ noms(iq) .ne. "ccnco2_number") then |
|---|
| 2164 | |
|---|
| 2165 | ! volume mixing ratio |
|---|
| 2166 | |
|---|
| 2167 | vmr(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
|---|
| 2168 | & *mmean(1:ngrid,1:nlayer)/mmol(iq) |
|---|
| 2169 | |
|---|
| 2170 | call wstats(ngrid,"vmr_"//trim(noms(iq)), |
|---|
| 2171 | $ "Volume mixing ratio","mol/mol",3,vmr) |
|---|
| 2172 | if ((noms(iq).eq."o") |
|---|
| 2173 | $ .or. (noms(iq).eq."co2") |
|---|
| 2174 | $ .or. (noms(iq).eq."o3") |
|---|
| 2175 | $ .or. (noms(iq).eq."ar") |
|---|
| 2176 | $ .or. (noms(iq).eq."o2") |
|---|
| 2177 | $ .or. (noms(iq).eq."h2o_vap") ) then |
|---|
| 2178 | call writediagfi(ngrid,"vmr_"//trim(noms(iq)), |
|---|
| 2179 | $ "Volume mixing ratio","mol/mol",3,vmr) |
|---|
| 2180 | end if |
|---|
| 2181 | |
|---|
| 2182 | ! number density (molecule.cm-3) |
|---|
| 2183 | |
|---|
| 2184 | rhopart(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
|---|
| 2185 | & *rho(1:ngrid,1:nlayer)*n_avog/ |
|---|
| 2186 | & (1000*mmol(iq)) |
|---|
| 2187 | |
|---|
| 2188 | ! call wstats(ngrid,"rho_"//trim(noms(iq)), |
|---|
| 2189 | ! $ "Number density","cm-3",3,rhopart) |
|---|
| 2190 | ! call writediagfi(ngrid,"rho_"//trim(noms(iq)), |
|---|
| 2191 | ! $ "Number density","cm-3",3,rhopart) |
|---|
| 2192 | |
|---|
| 2193 | ! vertical column (molecule.cm-2) |
|---|
| 2194 | |
|---|
| 2195 | do ig = 1,ngrid |
|---|
| 2196 | colden(ig,iq) = 0. |
|---|
| 2197 | end do |
|---|
| 2198 | do l=1,nlayer |
|---|
| 2199 | do ig=1,ngrid |
|---|
| 2200 | colden(ig,iq) = colden(ig,iq) + zq(ig,l,iq) |
|---|
| 2201 | $ *(zplev(ig,l)-zplev(ig,l+1)) |
|---|
| 2202 | $ *6.022e22/(mmol(iq)*g) |
|---|
| 2203 | end do |
|---|
| 2204 | end do |
|---|
| 2205 | |
|---|
| 2206 | call wstats(ngrid,"c_"//trim(noms(iq)), |
|---|
| 2207 | $ "column","mol cm-2",2,colden(1,iq)) |
|---|
| 2208 | call writediagfi(ngrid,"c_"//trim(noms(iq)), |
|---|
| 2209 | $ "column","mol cm-2",2,colden(1,iq)) |
|---|
| 2210 | |
|---|
| 2211 | ! global mass (g) |
|---|
| 2212 | |
|---|
| 2213 | call planetwide_sumval(colden(:,iq)/6.022e23 |
|---|
| 2214 | $ *mmol(iq)*1.e4*cell_area(:),mass(iq)) |
|---|
| 2215 | |
|---|
| 2216 | call writediagfi(ngrid,"mass_"//trim(noms(iq)), |
|---|
| 2217 | $ "global mass","g",0,mass(iq)) |
|---|
| 2218 | |
|---|
| 2219 | end if ! of if (noms(iq) .ne. "dust_mass" ...) |
|---|
| 2220 | end do ! of do iq=1,nq |
|---|
| 2221 | end if ! of if (thermochem .or. photochem) |
|---|
| 2222 | |
|---|
| 2223 | end if ! of if (tracer) |
|---|
| 2224 | |
|---|
| 2225 | IF(lastcall) THEN |
|---|
| 2226 | write (*,*) "Writing stats..." |
|---|
| 2227 | call mkstats(ierr) |
|---|
| 2228 | ENDIF |
|---|
| 2229 | |
|---|
| 2230 | ENDIF !if callstats |
|---|
| 2231 | |
|---|
| 2232 | c (Store EOF for Mars Climate database software) |
|---|
| 2233 | IF (calleofdump) THEN |
|---|
| 2234 | CALL eofdump(ngrid, nlayer, zu, zv, zt, rho, ps) |
|---|
| 2235 | ENDIF |
|---|
| 2236 | #endif |
|---|
| 2237 | !endif of ifndef MESOSCALE |
|---|
| 2238 | |
|---|
| 2239 | #ifdef MESOSCALE |
|---|
| 2240 | |
|---|
| 2241 | !! see comm_wrf. |
|---|
| 2242 | !! not needed when an array is already in a shared module. |
|---|
| 2243 | !! --> example : hfmax_th, zmax_th |
|---|
| 2244 | |
|---|
| 2245 | CALL allocate_comm_wrf(ngrid,nlayer) |
|---|
| 2246 | |
|---|
| 2247 | !state real HR_SW ikj misc 1 - h "HR_SW" "HEATING RATE SW" "K/s" |
|---|
| 2248 | comm_HR_SW(1:ngrid,1:nlayer) = zdtsw(1:ngrid,1:nlayer) |
|---|
| 2249 | !state real HR_LW ikj misc 1 - h "HR_LW" "HEATING RATE LW" "K/s" |
|---|
| 2250 | comm_HR_LW(1:ngrid,1:nlayer) = zdtlw(1:ngrid,1:nlayer) |
|---|
| 2251 | !state real SWDOWNZ ij misc 1 - h "SWDOWNZ" "DOWNWARD SW FLUX AT SURFACE" "W m-2" |
|---|
| 2252 | comm_SWDOWNZ(1:ngrid) = fluxsurf_sw_tot(1:ngrid) |
|---|
| 2253 | !state real TAU_DUST ij misc 1 - h "TAU_DUST" "REFERENCE VISIBLE DUST OPACITY" "" |
|---|
| 2254 | comm_TAU_DUST(1:ngrid) = tauref(1:ngrid) |
|---|
| 2255 | !state real RDUST ikj misc 1 - h "RDUST" "DUST RADIUS" "m" |
|---|
| 2256 | comm_RDUST(1:ngrid,1:nlayer) = rdust(1:ngrid,1:nlayer) |
|---|
| 2257 | !state real QSURFDUST ij misc 1 - h "QSURFDUST" "DUST MASS AT SURFACE" "kg m-2" |
|---|
| 2258 | IF (igcm_dust_mass .ne. 0) THEN |
|---|
| 2259 | comm_QSURFDUST(1:ngrid) = qsurf(1:ngrid,igcm_dust_mass) |
|---|
| 2260 | ELSE |
|---|
| 2261 | comm_QSURFDUST(1:ngrid) = 0. |
|---|
| 2262 | ENDIF |
|---|
| 2263 | !state real MTOT ij misc 1 - h "MTOT" "TOTAL MASS WATER VAPOR in pmic" "pmic" |
|---|
| 2264 | comm_MTOT(1:ngrid) = mtot(1:ngrid) * 1.e6 / rho_ice |
|---|
| 2265 | !state real ICETOT ij misc 1 - h "ICETOT" "TOTAL MASS WATER ICE" "kg m-2" |
|---|
| 2266 | comm_ICETOT(1:ngrid) = icetot(1:ngrid) * 1.e6 / rho_ice |
|---|
| 2267 | !state real VMR_ICE ikj misc 1 - h "VMR_ICE" "VOL. MIXING RATIO ICE" "ppm" |
|---|
| 2268 | IF (igcm_h2o_ice .ne. 0) THEN |
|---|
| 2269 | comm_VMR_ICE(1:ngrid,1:nlayer) = 1.e6 |
|---|
| 2270 | . * zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 2271 | . * mmean(1:ngrid,1:nlayer) / mmol(igcm_h2o_ice) |
|---|
| 2272 | ELSE |
|---|
| 2273 | comm_VMR_ICE(1:ngrid,1:nlayer) = 0. |
|---|
| 2274 | ENDIF |
|---|
| 2275 | !state real TAU_ICE ij misc 1 - h "TAU_ICE" "CLOUD OD at 825 cm-1 TES" "" |
|---|
| 2276 | if (activice) then |
|---|
| 2277 | comm_TAU_ICE(1:ngrid) = taucloudtes(1:ngrid) |
|---|
| 2278 | else |
|---|
| 2279 | comm_TAU_ICE(1:ngrid) = tauTES(1:ngrid) |
|---|
| 2280 | endif |
|---|
| 2281 | !state real RICE ikj misc 1 - h "RICE" "ICE RADIUS" "m" |
|---|
| 2282 | comm_RICE(1:ngrid,1:nlayer) = rice(1:ngrid,1:nlayer) |
|---|
| 2283 | |
|---|
| 2284 | !! calculate sensible heat flux in W/m2 for outputs |
|---|
| 2285 | !! -- the one computed in vdifc is not the real one |
|---|
| 2286 | !! -- vdifc must have been called |
|---|
| 2287 | if (.not.callrichsl) then |
|---|
| 2288 | sensibFlux(1:ngrid) = zflubid(1:ngrid) |
|---|
| 2289 | . - capcal(1:ngrid)*zdtsdif(1:ngrid) |
|---|
| 2290 | else |
|---|
| 2291 | sensibFlux(1:ngrid) = |
|---|
| 2292 | & (pplay(1:ngrid,1)/(r*pt(1:ngrid,1)))*cpp |
|---|
| 2293 | & *sqrt(pu(1:ngrid,1)*pu(1:ngrid,1)+pv(1:ngrid,1)*pv(1:ngrid,1) |
|---|
| 2294 | & +(log(1.+0.7*wstar(1:ngrid) + 2.3*wstar(1:ngrid)**2))**2) |
|---|
| 2295 | & *zcdh(1:ngrid)*(tsurf(1:ngrid)-zh(1:ngrid,1)) |
|---|
| 2296 | endif |
|---|
| 2297 | |
|---|
| 2298 | #else |
|---|
| 2299 | #ifndef MESOINI |
|---|
| 2300 | |
|---|
| 2301 | c ========================================================== |
|---|
| 2302 | c WRITEDIAGFI: Outputs in netcdf file "DIAGFI", containing |
|---|
| 2303 | c any variable for diagnostic (output with period |
|---|
| 2304 | c "ecritphy", set in "run.def") |
|---|
| 2305 | c ========================================================== |
|---|
| 2306 | c WRITEDIAGFI can ALSO be called from any other subroutines |
|---|
| 2307 | c for any variables !! |
|---|
| 2308 | c call WRITEDIAGFI(ngrid,"emis","Surface emissivity","w.m-1",2, |
|---|
| 2309 | c & emis) |
|---|
| 2310 | c call WRITEDIAGFI(ngrid,"pplay","Pressure","Pa",3,zplay) |
|---|
| 2311 | c call WRITEDIAGFI(ngrid,"pplev","Pressure","Pa",3,zplev) |
|---|
| 2312 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",2, |
|---|
| 2313 | & tsurf) |
|---|
| 2314 | call WRITEDIAGFI(ngrid,"ps","surface pressure","Pa",2,ps) |
|---|
| 2315 | call WRITEDIAGFI(ngrid,"co2ice","co2 ice thickness" |
|---|
| 2316 | & ,"kg.m-2",2,co2ice) |
|---|
| 2317 | |
|---|
| 2318 | call WRITEDIAGFI(ngrid,"temp7","temperature in layer 7", |
|---|
| 2319 | & "K",2,zt(1,7)) |
|---|
| 2320 | call WRITEDIAGFI(ngrid,"fluxsurf_lw","fluxsurf_lw","W.m-2",2, |
|---|
| 2321 | & fluxsurf_lw) |
|---|
| 2322 | call WRITEDIAGFI(ngrid,"fluxsurf_sw","fluxsurf_sw","W.m-2",2, |
|---|
| 2323 | & fluxsurf_sw_tot) |
|---|
| 2324 | call WRITEDIAGFI(ngrid,"fluxtop_lw","fluxtop_lw","W.m-2",2, |
|---|
| 2325 | & fluxtop_lw) |
|---|
| 2326 | call WRITEDIAGFI(ngrid,"fluxtop_sw","fluxtop_sw","W.m-2",2, |
|---|
| 2327 | & fluxtop_sw_tot) |
|---|
| 2328 | call WRITEDIAGFI(ngrid,"temp","temperature","K",3,zt) |
|---|
| 2329 | call WRITEDIAGFI(ngrid,"Time","Time","sols",0,zday) |
|---|
| 2330 | |
|---|
| 2331 | call WRITEDIAGFI(ngrid,"u","Zonal wind","m.s-1",3,zu) |
|---|
| 2332 | call WRITEDIAGFI(ngrid,"v","Meridional wind","m.s-1",3,zv) |
|---|
| 2333 | call WRITEDIAGFI(ngrid,"w","Vertical wind","m.s-1",3,pw) |
|---|
| 2334 | call WRITEDIAGFI(ngrid,"rho","density","none",3,rho) |
|---|
| 2335 | c call WRITEDIAGFI(ngrid,"q2","q2","kg.m-3",3,q2) |
|---|
| 2336 | c call WRITEDIAGFI(ngrid,'Teta','T potentielle','K',3,zh) |
|---|
| 2337 | call WRITEDIAGFI(ngrid,"pressure","Pressure","Pa",3,zplay) |
|---|
| 2338 | c call WRITEDIAGFI(ngrid,"ssurf","Surface stress","N.m-2",2, |
|---|
| 2339 | c & zstress) |
|---|
| 2340 | c call WRITEDIAGFI(ngrid,'sw_htrt','sw heat. rate', |
|---|
| 2341 | c & 'w.m-2',3,zdtsw) |
|---|
| 2342 | c call WRITEDIAGFI(ngrid,'lw_htrt','lw heat. rate', |
|---|
| 2343 | c & 'w.m-2',3,zdtlw) |
|---|
| 2344 | |
|---|
| 2345 | if (.not.activice) then |
|---|
| 2346 | CALL WRITEDIAGFI(ngrid,'tauTESap', |
|---|
| 2347 | & 'tau abs 825 cm-1', |
|---|
| 2348 | & '',2,tauTES) |
|---|
| 2349 | else |
|---|
| 2350 | CALL WRITEDIAGFI(ngrid,'tauTES', |
|---|
| 2351 | & 'tau abs 825 cm-1', |
|---|
| 2352 | & '',2,taucloudtes) |
|---|
| 2353 | endif |
|---|
| 2354 | |
|---|
| 2355 | #else |
|---|
| 2356 | !!! this is to ensure correct initialisation of mesoscale model |
|---|
| 2357 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",2, |
|---|
| 2358 | & tsurf) |
|---|
| 2359 | call WRITEDIAGFI(ngrid,"ps","surface pressure","Pa",2,ps) |
|---|
| 2360 | call WRITEDIAGFI(ngrid,"co2ice","co2 ice thickness","kg.m-2",2, |
|---|
| 2361 | & co2ice) |
|---|
| 2362 | call WRITEDIAGFI(ngrid,"temp","temperature","K",3,zt) |
|---|
| 2363 | call WRITEDIAGFI(ngrid,"u","Zonal wind","m.s-1",3,zu) |
|---|
| 2364 | call WRITEDIAGFI(ngrid,"v","Meridional wind","m.s-1",3,zv) |
|---|
| 2365 | call WRITEDIAGFI(ngrid,"emis","Surface emissivity","w.m-1",2, |
|---|
| 2366 | & emis) |
|---|
| 2367 | call WRITEDIAGFI(ngrid,"tsoil","Soil temperature", |
|---|
| 2368 | & "K",3,tsoil) |
|---|
| 2369 | call WRITEDIAGFI(ngrid,"inertiedat","Soil inertia", |
|---|
| 2370 | & "K",3,inertiedat) |
|---|
| 2371 | #endif |
|---|
| 2372 | |
|---|
| 2373 | |
|---|
| 2374 | c ---------------------------------------------------------- |
|---|
| 2375 | c Outputs of the CO2 cycle |
|---|
| 2376 | c ---------------------------------------------------------- |
|---|
| 2377 | |
|---|
| 2378 | if (tracer.and.(igcm_co2.ne.0)) then |
|---|
| 2379 | ! call WRITEDIAGFI(ngrid,"co2_l1","co2 mix. ratio in 1st layer", |
|---|
| 2380 | ! & "kg/kg",2,zq(1,1,igcm_co2)) |
|---|
| 2381 | call WRITEDIAGFI(ngrid,"co2","co2 mass mixing ratio", |
|---|
| 2382 | & "kg/kg",3,zq(1,1,igcm_co2)) |
|---|
| 2383 | if (co2clouds) then |
|---|
| 2384 | CALL WRITEDIAGFI(ngrid,'mtotco2', |
|---|
| 2385 | & 'total mass of CO2 vapor', |
|---|
| 2386 | & 'kg/m2',2,mtotco2) |
|---|
| 2387 | CALL WRITEDIAGFI(ngrid,'zdtcloudco2', |
|---|
| 2388 | & 'temperature variation of CO2 latent heat', |
|---|
| 2389 | & 'K/s',3,zdtcloudco2) |
|---|
| 2390 | |
|---|
| 2391 | CALL WRITEDIAGFI(ngrid,'icetotco2', |
|---|
| 2392 | & 'total mass of CO2 ice', |
|---|
| 2393 | & 'kg/m2',2,icetotco2) |
|---|
| 2394 | |
|---|
| 2395 | call WRITEDIAGFI(ngrid,'ccnqco2','CCNco2 mass mr', |
|---|
| 2396 | & 'kg/kg',3,qccnco2) |
|---|
| 2397 | call WRITEDIAGFI(ngrid,'ccnNco2','CCNco2 number', |
|---|
| 2398 | & 'part/kg',3,nccnco2) |
|---|
| 2399 | call WRITEDIAGFI(ngrid,'co2_ice','co2_ice','kg/kg', |
|---|
| 2400 | & 3,zq(:,:,igcm_co2_ice)) |
|---|
| 2401 | endif ! of if (co2clouds) |
|---|
| 2402 | endif ! of if (tracer.and.(igcm_co2.ne.0)) |
|---|
| 2403 | ! Output He tracer, if there is one |
|---|
| 2404 | if (tracer.and.(igcm_he.ne.0)) then |
|---|
| 2405 | call WRITEDIAGFI(ngrid,"he","helium mass mixing ratio", |
|---|
| 2406 | & "kg/kg",3,zq(1,1,igcm_he)) |
|---|
| 2407 | vmr=zq(1:ngrid,1:nlayer,igcm_he) |
|---|
| 2408 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_he) |
|---|
| 2409 | call WRITEDIAGFI(ngrid,'vmr_he','helium vol. mixing ratio', |
|---|
| 2410 | & 'mol/mol',3,vmr) |
|---|
| 2411 | endif |
|---|
| 2412 | |
|---|
| 2413 | c ---------------------------------------------------------- |
|---|
| 2414 | c Outputs of the water cycle |
|---|
| 2415 | c ---------------------------------------------------------- |
|---|
| 2416 | if (tracer) then |
|---|
| 2417 | if (water) then |
|---|
| 2418 | |
|---|
| 2419 | #ifdef MESOINI |
|---|
| 2420 | !!!! waterice = q01, voir readmeteo.F90 |
|---|
| 2421 | call WRITEDIAGFI(ngrid,'q01',noms(igcm_h2o_ice), |
|---|
| 2422 | & 'kg/kg',3, |
|---|
| 2423 | & zq(1:ngrid,1:nlayer,igcm_h2o_ice)) |
|---|
| 2424 | !!!! watervapor = q02, voir readmeteo.F90 |
|---|
| 2425 | call WRITEDIAGFI(ngrid,'q02',noms(igcm_h2o_vap), |
|---|
| 2426 | & 'kg/kg',3, |
|---|
| 2427 | & zq(1:ngrid,1:nlayer,igcm_h2o_vap)) |
|---|
| 2428 | !!!! surface waterice qsurf02 (voir readmeteo) |
|---|
| 2429 | call WRITEDIAGFI(ngrid,'qsurf02','surface tracer', |
|---|
| 2430 | & 'kg.m-2',2, |
|---|
| 2431 | & qsurf(1:ngrid,igcm_h2o_ice)) |
|---|
| 2432 | #endif |
|---|
| 2433 | |
|---|
| 2434 | CALL WRITEDIAGFI(ngrid,'mtot', |
|---|
| 2435 | & 'total mass of water vapor', |
|---|
| 2436 | & 'kg/m2',2,mtot) |
|---|
| 2437 | CALL WRITEDIAGFI(ngrid,'icetot', |
|---|
| 2438 | & 'total mass of water ice', |
|---|
| 2439 | & 'kg/m2',2,icetot) |
|---|
| 2440 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
|---|
| 2441 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
|---|
| 2442 | call WRITEDIAGFI(ngrid,'vmr_h2oice','h2o ice vmr', |
|---|
| 2443 | & 'mol/mol',3,vmr) |
|---|
| 2444 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
|---|
| 2445 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
|---|
| 2446 | call WRITEDIAGFI(ngrid,'vmr_h2ovap','h2o vap vmr', |
|---|
| 2447 | & 'mol/mol',3,vmr) |
|---|
| 2448 | CALL WRITEDIAGFI(ngrid,'reffice', |
|---|
| 2449 | & 'Mean reff', |
|---|
| 2450 | & 'm',2,rave) |
|---|
| 2451 | |
|---|
| 2452 | call WRITEDIAGFI(ngrid,'h2o_ice','h2o_ice','kg/kg', |
|---|
| 2453 | & 3,zq(:,:,igcm_h2o_ice)) |
|---|
| 2454 | call WRITEDIAGFI(ngrid,'h2o_vap','h2o_vap','kg/kg', |
|---|
| 2455 | & 3,zq(:,:,igcm_h2o_vap)) |
|---|
| 2456 | |
|---|
| 2457 | |
|---|
| 2458 | !A. Pottier |
|---|
| 2459 | CALL WRITEDIAGFI(ngrid,'rmoym', |
|---|
| 2460 | & 'alternative reffice', |
|---|
| 2461 | & 'm',2,rave2) |
|---|
| 2462 | call WRITEDIAGFI(ngrid,'saturation', |
|---|
| 2463 | & 'h2o vap saturation ratio','dimless',3,satu) |
|---|
| 2464 | if (scavenging) then |
|---|
| 2465 | CALL WRITEDIAGFI(ngrid,"Nccntot", |
|---|
| 2466 | & "condensation nuclei","Nbr/m2", |
|---|
| 2467 | & 2,Nccntot) |
|---|
| 2468 | CALL WRITEDIAGFI(ngrid,"Mccntot", |
|---|
| 2469 | & "mass condensation nuclei","kg/m2", |
|---|
| 2470 | & 2,Mccntot) |
|---|
| 2471 | endif |
|---|
| 2472 | call WRITEDIAGFI(ngrid,'rice','Ice particle size', |
|---|
| 2473 | & 'm',3,rice) |
|---|
| 2474 | call WRITEDIAGFI(ngrid,'h2o_ice_s', |
|---|
| 2475 | & 'surface h2o_ice', |
|---|
| 2476 | & 'kg.m-2',2,qsurf(1,igcm_h2o_ice)) |
|---|
| 2477 | CALL WRITEDIAGFI(ngrid,'albedo', |
|---|
| 2478 | & 'albedo', |
|---|
| 2479 | & '',2,albedo(1,1)) |
|---|
| 2480 | if (tifeedback) then |
|---|
| 2481 | call WRITEDIAGSOIL(ngrid,"soiltemp", |
|---|
| 2482 | & "Soil temperature","K", |
|---|
| 2483 | & 3,tsoil) |
|---|
| 2484 | call WRITEDIAGSOIL(ngrid,'soilti', |
|---|
| 2485 | & 'Soil Thermal Inertia', |
|---|
| 2486 | & 'J.s-1/2.m-2.K-1',3,inertiesoil) |
|---|
| 2487 | endif |
|---|
| 2488 | !A. Pottier |
|---|
| 2489 | if (CLFvarying) then !AP14 nebulosity |
|---|
| 2490 | call WRITEDIAGFI(ngrid,'totcloudfrac', |
|---|
| 2491 | & 'Total cloud fraction', |
|---|
| 2492 | & ' ',2,totcloudfrac) |
|---|
| 2493 | endif !clf varying |
|---|
| 2494 | |
|---|
| 2495 | endif !(water) |
|---|
| 2496 | |
|---|
| 2497 | |
|---|
| 2498 | if (water.and..not.photochem) then |
|---|
| 2499 | iq=nq |
|---|
| 2500 | c write(str2(1:2),'(i2.2)') iq |
|---|
| 2501 | c call WRITEDIAGFI(ngrid,'dqs'//str2,'dqscloud', |
|---|
| 2502 | c & 'kg.m-2',2,zdqscloud(1,iq)) |
|---|
| 2503 | c call WRITEDIAGFI(ngrid,'dqch'//str2,'var chim', |
|---|
| 2504 | c & 'kg/kg',3,zdqchim(1,1,iq)) |
|---|
| 2505 | c call WRITEDIAGFI(ngrid,'dqd'//str2,'var dif', |
|---|
| 2506 | c & 'kg/kg',3,zdqdif(1,1,iq)) |
|---|
| 2507 | c call WRITEDIAGFI(ngrid,'dqa'//str2,'var adj', |
|---|
| 2508 | c & 'kg/kg',3,zdqadj(1,1,iq)) |
|---|
| 2509 | c call WRITEDIAGFI(ngrid,'dqc'//str2,'var c', |
|---|
| 2510 | c & 'kg/kg',3,zdqc(1,1,iq)) |
|---|
| 2511 | endif !(water.and..not.photochem) |
|---|
| 2512 | endif |
|---|
| 2513 | |
|---|
| 2514 | c ---------------------------------------------------------- |
|---|
| 2515 | c Outputs of the dust cycle |
|---|
| 2516 | c ---------------------------------------------------------- |
|---|
| 2517 | |
|---|
| 2518 | call WRITEDIAGFI(ngrid,'tauref', |
|---|
| 2519 | & 'Dust ref opt depth','NU',2,tauref) |
|---|
| 2520 | |
|---|
| 2521 | if (tracer.and.(dustbin.ne.0)) then |
|---|
| 2522 | |
|---|
| 2523 | call WRITEDIAGFI(ngrid,'tau','taudust','SI',2,tau(1,1)) |
|---|
| 2524 | |
|---|
| 2525 | #ifndef MESOINI |
|---|
| 2526 | if (doubleq) then |
|---|
| 2527 | c call WRITEDIAGFI(ngrid,'qsurf','qsurf', |
|---|
| 2528 | c & 'kg.m-2',2,qsurf(1,igcm_dust_mass)) |
|---|
| 2529 | c call WRITEDIAGFI(ngrid,'Nsurf','N particles', |
|---|
| 2530 | c & 'N.m-2',2,qsurf(1,igcm_dust_number)) |
|---|
| 2531 | c call WRITEDIAGFI(ngrid,'dqsdev','ddevil lift', |
|---|
| 2532 | c & 'kg.m-2.s-1',2,zdqsdev(1,1)) |
|---|
| 2533 | c call WRITEDIAGFI(ngrid,'dqssed','sedimentation', |
|---|
| 2534 | c & 'kg.m-2.s-1',2,zdqssed(1,1)) |
|---|
| 2535 | c call WRITEDIAGFI(ngrid,'dqsdif','diffusion', |
|---|
| 2536 | c & 'kg.m-2.s-1',2,zdqsdif(1,1)) |
|---|
| 2537 | c call WRITEDIAGFI(ngrid,'sedice','sedimented ice', |
|---|
| 2538 | c & 'kg.m-2.s-1',2,zdqssed(:,igcm_h2o_ice)) |
|---|
| 2539 | c call WRITEDIAGFI(ngrid,'subice','sublimated ice', |
|---|
| 2540 | c & 'kg.m-2.s-1',2,zdqsdif(:,igcm_h2o_ice)) |
|---|
| 2541 | call WRITEDIAGFI(ngrid,'dqsdust', |
|---|
| 2542 | & 'deposited surface dust mass', |
|---|
| 2543 | & 'kg.m-2.s-1',2,dqdustsurf) |
|---|
| 2544 | call WRITEDIAGFI(ngrid,'dqndust', |
|---|
| 2545 | & 'deposited surface dust number', |
|---|
| 2546 | & 'number.m-2.s-1',2,dndustsurf) |
|---|
| 2547 | call WRITEDIAGFI(ngrid,'reffdust','reffdust', |
|---|
| 2548 | & 'm',3,rdust*ref_r0) |
|---|
| 2549 | call WRITEDIAGFI(ngrid,'dustq','Dust mass mr', |
|---|
| 2550 | & 'kg/kg',3,qdust) |
|---|
| 2551 | call WRITEDIAGFI(ngrid,'dustN','Dust number', |
|---|
| 2552 | & 'part/kg',3,ndust) |
|---|
| 2553 | call WRITEDIAGFI(ngrid,'dsodust', |
|---|
| 2554 | & 'dust density scaled opacity', |
|---|
| 2555 | & 'm2.kg-1',3,dsodust) |
|---|
| 2556 | c call WRITEDIAGFI(ngrid,"tauscaling", |
|---|
| 2557 | c & "dust conversion factor"," ",2,tauscaling) |
|---|
| 2558 | else |
|---|
| 2559 | do iq=1,dustbin |
|---|
| 2560 | write(str2(1:2),'(i2.2)') iq |
|---|
| 2561 | call WRITEDIAGFI(ngrid,'q'//str2,'mix. ratio', |
|---|
| 2562 | & 'kg/kg',3,zq(1,1,iq)) |
|---|
| 2563 | call WRITEDIAGFI(ngrid,'qsurf'//str2,'qsurf', |
|---|
| 2564 | & 'kg.m-2',2,qsurf(1,iq)) |
|---|
| 2565 | end do |
|---|
| 2566 | endif ! (doubleq) |
|---|
| 2567 | |
|---|
| 2568 | if (scavenging) then |
|---|
| 2569 | call WRITEDIAGFI(ngrid,'ccnq','CCN mass mr', |
|---|
| 2570 | & 'kg/kg',3,qccn) |
|---|
| 2571 | call WRITEDIAGFI(ngrid,'ccnN','CCN number', |
|---|
| 2572 | & 'part/kg',3,nccn) |
|---|
| 2573 | endif ! (scavenging) |
|---|
| 2574 | |
|---|
| 2575 | c if (submicron) then |
|---|
| 2576 | c call WRITEDIAGFI(ngrid,'dustsubm','subm mass mr', |
|---|
| 2577 | c & 'kg/kg',3,pq(1,1,igcm_dust_submicron)) |
|---|
| 2578 | c endif ! (submicron) |
|---|
| 2579 | |
|---|
| 2580 | #else |
|---|
| 2581 | ! !!! to initialize mesoscale we need scaled variables |
|---|
| 2582 | ! !!! because this must correspond to starting point for tracers |
|---|
| 2583 | ! call WRITEDIAGFI(ngrid,'dustq','Dust mass mr', |
|---|
| 2584 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_mass)) |
|---|
| 2585 | ! call WRITEDIAGFI(ngrid,'dustN','Dust number', |
|---|
| 2586 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_number)) |
|---|
| 2587 | ! call WRITEDIAGFI(ngrid,'ccn','Nuclei mass mr', |
|---|
| 2588 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_mass)) |
|---|
| 2589 | ! call WRITEDIAGFI(ngrid,'ccnN','Nuclei number', |
|---|
| 2590 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_number)) |
|---|
| 2591 | if (freedust) then |
|---|
| 2592 | call WRITEDIAGFI(ngrid,'dustq','Dust mass mr', |
|---|
| 2593 | & 'kg/kg',3,qdust) |
|---|
| 2594 | call WRITEDIAGFI(ngrid,'dustN','Dust number', |
|---|
| 2595 | & 'part/kg',3,ndust) |
|---|
| 2596 | call WRITEDIAGFI(ngrid,'ccn','CCN mass mr', |
|---|
| 2597 | & 'kg/kg',3,qccn) |
|---|
| 2598 | call WRITEDIAGFI(ngrid,'ccnN','CCN number', |
|---|
| 2599 | & 'part/kg',3,nccn) |
|---|
| 2600 | else |
|---|
| 2601 | call WRITEDIAGFI(ngrid,'dustq','Dust mass mr', |
|---|
| 2602 | & 'kg/kg',3,pq(1,1,igcm_dust_mass)) |
|---|
| 2603 | call WRITEDIAGFI(ngrid,'dustN','Dust number', |
|---|
| 2604 | & 'part/kg',3,pq(1,1,igcm_dust_number)) |
|---|
| 2605 | call WRITEDIAGFI(ngrid,'ccn','Nuclei mass mr', |
|---|
| 2606 | & 'kg/kg',3,pq(1,1,igcm_ccn_mass)) |
|---|
| 2607 | call WRITEDIAGFI(ngrid,'ccnN','Nuclei number', |
|---|
| 2608 | & 'part/kg',3,pq(1,1,igcm_ccn_number)) |
|---|
| 2609 | endif |
|---|
| 2610 | #endif |
|---|
| 2611 | |
|---|
| 2612 | end if ! (tracer.and.(dustbin.ne.0)) |
|---|
| 2613 | |
|---|
| 2614 | |
|---|
| 2615 | c ---------------------------------------------------------- |
|---|
| 2616 | c Thermospheric outputs |
|---|
| 2617 | c ---------------------------------------------------------- |
|---|
| 2618 | |
|---|
| 2619 | if(callthermos) then |
|---|
| 2620 | |
|---|
| 2621 | call WRITEDIAGFI(ngrid,"q15um","15 um cooling","K/s", |
|---|
| 2622 | $ 3,zdtnlte) |
|---|
| 2623 | call WRITEDIAGFI(ngrid,"quv","UV heating","K/s", |
|---|
| 2624 | $ 3,zdteuv) |
|---|
| 2625 | call WRITEDIAGFI(ngrid,"cond","Thermal conduction","K/s", |
|---|
| 2626 | $ 3,zdtconduc) |
|---|
| 2627 | call WRITEDIAGFI(ngrid,"qnir","NIR heating","K/s", |
|---|
| 2628 | $ 3,zdtnirco2) |
|---|
| 2629 | |
|---|
| 2630 | endif !(callthermos) |
|---|
| 2631 | |
|---|
| 2632 | c ---------------------------------------------------------- |
|---|
| 2633 | c ---------------------------------------------------------- |
|---|
| 2634 | c PBL OUTPUS |
|---|
| 2635 | c ---------------------------------------------------------- |
|---|
| 2636 | c ---------------------------------------------------------- |
|---|
| 2637 | |
|---|
| 2638 | c ---------------------------------------------------------- |
|---|
| 2639 | c Outputs of thermals |
|---|
| 2640 | c ---------------------------------------------------------- |
|---|
| 2641 | if (calltherm) then |
|---|
| 2642 | |
|---|
| 2643 | ! call WRITEDIAGFI(ngrid,'dtke', |
|---|
| 2644 | ! & 'tendance tke thermiques','m**2/s**2', |
|---|
| 2645 | ! & 3,dtke_th) |
|---|
| 2646 | ! call WRITEDIAGFI(ngrid,'d_u_ajs', |
|---|
| 2647 | ! & 'tendance u thermiques','m/s', |
|---|
| 2648 | ! & 3,pdu_th*ptimestep) |
|---|
| 2649 | ! call WRITEDIAGFI(ngrid,'d_v_ajs', |
|---|
| 2650 | ! & 'tendance v thermiques','m/s', |
|---|
| 2651 | ! & 3,pdv_th*ptimestep) |
|---|
| 2652 | ! if (tracer) then |
|---|
| 2653 | ! if (nq .eq. 2) then |
|---|
| 2654 | ! call WRITEDIAGFI(ngrid,'deltaq_th', |
|---|
| 2655 | ! & 'delta q thermiques','kg/kg', |
|---|
| 2656 | ! & 3,ptimestep*pdq_th(:,:,2)) |
|---|
| 2657 | ! endif |
|---|
| 2658 | ! endif |
|---|
| 2659 | |
|---|
| 2660 | call WRITEDIAGFI(ngrid,'zmax_th', |
|---|
| 2661 | & 'hauteur du thermique','m', |
|---|
| 2662 | & 2,zmax_th) |
|---|
| 2663 | call WRITEDIAGFI(ngrid,'hfmax_th', |
|---|
| 2664 | & 'maximum TH heat flux','K.m/s', |
|---|
| 2665 | & 2,hfmax_th) |
|---|
| 2666 | call WRITEDIAGFI(ngrid,'wstar', |
|---|
| 2667 | & 'maximum TH vertical velocity','m/s', |
|---|
| 2668 | & 2,wstar) |
|---|
| 2669 | |
|---|
| 2670 | endif |
|---|
| 2671 | |
|---|
| 2672 | c ---------------------------------------------------------- |
|---|
| 2673 | c ---------------------------------------------------------- |
|---|
| 2674 | c END OF PBL OUTPUS |
|---|
| 2675 | c ---------------------------------------------------------- |
|---|
| 2676 | c ---------------------------------------------------------- |
|---|
| 2677 | |
|---|
| 2678 | |
|---|
| 2679 | c ---------------------------------------------------------- |
|---|
| 2680 | c Output in netcdf file "diagsoil.nc" for subterranean |
|---|
| 2681 | c variables (output every "ecritphy", as for writediagfi) |
|---|
| 2682 | c ---------------------------------------------------------- |
|---|
| 2683 | |
|---|
| 2684 | ! Write soil temperature |
|---|
| 2685 | ! call writediagsoil(ngrid,"soiltemp","Soil temperature","K", |
|---|
| 2686 | ! & 3,tsoil) |
|---|
| 2687 | ! Write surface temperature |
|---|
| 2688 | ! call writediagsoil(ngrid,"tsurf","Surface temperature","K", |
|---|
| 2689 | ! & 2,tsurf) |
|---|
| 2690 | |
|---|
| 2691 | c ========================================================== |
|---|
| 2692 | c END OF WRITEDIAGFI |
|---|
| 2693 | c ========================================================== |
|---|
| 2694 | #endif |
|---|
| 2695 | ! of ifdef MESOSCALE |
|---|
| 2696 | |
|---|
| 2697 | ELSE ! if(ngrid.eq.1) |
|---|
| 2698 | |
|---|
| 2699 | #ifndef MESOSCALE |
|---|
| 2700 | write(*,'("Ls =",f11.6," tauref(",f4.0," Pa) =",f9.6)') |
|---|
| 2701 | & zls*180./pi,odpref,tauref |
|---|
| 2702 | c ---------------------------------------------------------------------- |
|---|
| 2703 | c Output in grads file "g1d" (ONLY when using testphys1d) |
|---|
| 2704 | c (output at every X physical timestep) |
|---|
| 2705 | c ---------------------------------------------------------------------- |
|---|
| 2706 | c |
|---|
| 2707 | c CALL writeg1d(ngrid,1,fluxsurf_lw,'Fs_ir','W.m-2') |
|---|
| 2708 | c CALL writeg1d(ngrid,1,tsurf,'tsurf','K') |
|---|
| 2709 | c CALL writeg1d(ngrid,1,ps,'ps','Pa') |
|---|
| 2710 | |
|---|
| 2711 | c CALL writeg1d(ngrid,nlayer,zt,'T','K') |
|---|
| 2712 | c CALL writeg1d(ngrid,nlayer,pu,'u','m.s-1') |
|---|
| 2713 | c CALL writeg1d(ngrid,nlayer,pv,'v','m.s-1') |
|---|
| 2714 | c CALL writeg1d(ngrid,nlayer,pw,'w','m.s-1') |
|---|
| 2715 | |
|---|
| 2716 | ! THERMALS STUFF 1D |
|---|
| 2717 | if(calltherm) then |
|---|
| 2718 | |
|---|
| 2719 | call WRITEDIAGFI(ngrid,'lmax_th', |
|---|
| 2720 | & 'hauteur du thermique','point', |
|---|
| 2721 | & 0,lmax_th_out) |
|---|
| 2722 | call WRITEDIAGFI(ngrid,'zmax_th', |
|---|
| 2723 | & 'hauteur du thermique','m', |
|---|
| 2724 | & 0,zmax_th) |
|---|
| 2725 | call WRITEDIAGFI(ngrid,'hfmax_th', |
|---|
| 2726 | & 'maximum TH heat flux','K.m/s', |
|---|
| 2727 | & 0,hfmax_th) |
|---|
| 2728 | call WRITEDIAGFI(ngrid,'wstar', |
|---|
| 2729 | & 'maximum TH vertical velocity','m/s', |
|---|
| 2730 | & 0,wstar) |
|---|
| 2731 | |
|---|
| 2732 | co2col(:)=0. |
|---|
| 2733 | if (tracer) then |
|---|
| 2734 | do l=1,nlayer |
|---|
| 2735 | do ig=1,ngrid |
|---|
| 2736 | co2col(ig)=co2col(ig)+ |
|---|
| 2737 | & zq(ig,l,1)*(zplev(ig,l)-zplev(ig,l+1))/g |
|---|
| 2738 | enddo |
|---|
| 2739 | enddo |
|---|
| 2740 | |
|---|
| 2741 | end if |
|---|
| 2742 | call WRITEDIAGFI(ngrid,'co2col','integrated co2 mass' & |
|---|
| 2743 | & ,'kg/m-2',0,co2col) |
|---|
| 2744 | endif ! of if (calltherm) |
|---|
| 2745 | |
|---|
| 2746 | call WRITEDIAGFI(ngrid,'w','vertical velocity' & |
|---|
| 2747 | & ,'m/s',1,pw) |
|---|
| 2748 | call WRITEDIAGFI(ngrid,"q2","q2","kg.m-3",1,q2) |
|---|
| 2749 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",0, |
|---|
| 2750 | & tsurf) |
|---|
| 2751 | call WRITEDIAGFI(ngrid,"u","u wind","m/s",1,zu) |
|---|
| 2752 | call WRITEDIAGFI(ngrid,"v","v wind","m/s",1,zv) |
|---|
| 2753 | |
|---|
| 2754 | call WRITEDIAGFI(ngrid,"pplay","Pressure","Pa",1,zplay) |
|---|
| 2755 | call WRITEDIAGFI(ngrid,"pplev","Pressure","Pa",1,zplev) |
|---|
| 2756 | call WRITEDIAGFI(ngrid,"rho","rho","kg.m-3",1,rho) |
|---|
| 2757 | call WRITEDIAGFI(ngrid,"dtrad","rad. heat. rate", & |
|---|
| 2758 | & "K.s-1",1,dtrad) |
|---|
| 2759 | call WRITEDIAGFI(ngrid,'sw_htrt','sw heat. rate', |
|---|
| 2760 | & 'w.m-2',1,zdtsw) |
|---|
| 2761 | call WRITEDIAGFI(ngrid,'lw_htrt','lw heat. rate', |
|---|
| 2762 | & 'w.m-2',1,zdtlw) |
|---|
| 2763 | call WRITEDIAGFI(ngrid,"co2ice","co2 ice thickness" |
|---|
| 2764 | & ,"kg.m-2",0,co2ice) |
|---|
| 2765 | |
|---|
| 2766 | call co2sat(ngrid*nlayer,zt,zplay,zqsatco2) |
|---|
| 2767 | do ig=1,ngrid |
|---|
| 2768 | do l=1,nlayer |
|---|
| 2769 | satuco2(ig,l) = zq(ig,l,igcm_co2)* |
|---|
| 2770 | & (mmean(ig,l)/44.01)*zplay(ig,l)/zqsatco2(ig,l) |
|---|
| 2771 | |
|---|
| 2772 | c write(*,*) "In PHYSIQMOD, pt,zt,time ",pt(ig,l) |
|---|
| 2773 | c & ,zt(ig,l),ptime |
|---|
| 2774 | enddo |
|---|
| 2775 | enddo |
|---|
| 2776 | |
|---|
| 2777 | c CALL writeg1d(ngrid,nlayer,zt,'temp','K') |
|---|
| 2778 | c CALL writeg1d(ngrid,nlayer,riceco2,'riceco2','m') |
|---|
| 2779 | c CALL writeg1d(ngrid,nlayer,satuco2,'satuco2','satu') |
|---|
| 2780 | |
|---|
| 2781 | |
|---|
| 2782 | c call WRITEDIAGFI(ngrid,"satuco2","vap in satu","kg/kg",1, |
|---|
| 2783 | c & satuco2) |
|---|
| 2784 | c call WRITEdiagfi(ngrid,"riceco2","ice radius","m" |
|---|
| 2785 | c & ,1,riceco2) |
|---|
| 2786 | ! or output in diagfi.nc (for testphys1d) |
|---|
| 2787 | call WRITEDIAGFI(ngrid,'ps','Surface pressure','Pa',0,ps) |
|---|
| 2788 | call WRITEDIAGFI(ngrid,'temp','Temperature ', |
|---|
| 2789 | & 'K JA',1,zt) |
|---|
| 2790 | c call WRITEDIAGFI(ngrid,'temp2','Temperature ', |
|---|
| 2791 | c & 'K JA2',1,pt) |
|---|
| 2792 | |
|---|
| 2793 | if(tracer) then |
|---|
| 2794 | c CALL writeg1d(ngrid,1,tau,'tau','SI') |
|---|
| 2795 | do iq=1,nq |
|---|
| 2796 | c CALL writeg1d(ngrid,nlayer,zq(1,1,iq),noms(iq),'kg/kg') |
|---|
| 2797 | call WRITEDIAGFI(ngrid,trim(noms(iq)), |
|---|
| 2798 | & trim(noms(iq)),'kg/kg',1,zq(1,1,iq)) |
|---|
| 2799 | end do |
|---|
| 2800 | if (doubleq) then |
|---|
| 2801 | call WRITEDIAGFI(ngrid,'rdust','rdust', |
|---|
| 2802 | & 'm',1,rdust) |
|---|
| 2803 | endif |
|---|
| 2804 | if (water.AND.tifeedback) then |
|---|
| 2805 | call WRITEDIAGFI(ngrid,"soiltemp", |
|---|
| 2806 | & "Soil temperature","K", |
|---|
| 2807 | & 1,tsoil) |
|---|
| 2808 | call WRITEDIAGFI(ngrid,'soilti', |
|---|
| 2809 | & 'Soil Thermal Inertia', |
|---|
| 2810 | & 'J.s-1/2.m-2.K-1',1,inertiesoil) |
|---|
| 2811 | endif |
|---|
| 2812 | end if |
|---|
| 2813 | |
|---|
| 2814 | cccccccccccccccccc scavenging & water outputs 1D TN ccccccccccccccc |
|---|
| 2815 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 2816 | IF (water) THEN |
|---|
| 2817 | |
|---|
| 2818 | if (.not.activice) then |
|---|
| 2819 | |
|---|
| 2820 | tauTES=0 |
|---|
| 2821 | do l=1,nlayer |
|---|
| 2822 | Qabsice = min( |
|---|
| 2823 | & max(0.4e6*rice(1,l)*(1.+nuice_ref)-0.05 ,0.),1.2 |
|---|
| 2824 | & ) |
|---|
| 2825 | opTES(1,l)= 0.75 * Qabsice * |
|---|
| 2826 | & zq(1,l,igcm_h2o_ice) * |
|---|
| 2827 | & (zplev(1,l) - zplev(1,l+1)) / g |
|---|
| 2828 | & / (rho_ice * rice(1,l) * (1.+nuice_ref)) |
|---|
| 2829 | tauTES=tauTES+ opTES(1,l) |
|---|
| 2830 | enddo |
|---|
| 2831 | CALL WRITEDIAGFI(ngrid,'tauTESap', |
|---|
| 2832 | & 'tau abs 825 cm-1', |
|---|
| 2833 | & '',0,tauTES) |
|---|
| 2834 | else |
|---|
| 2835 | |
|---|
| 2836 | CALL WRITEDIAGFI(ngrid,'tauTES', |
|---|
| 2837 | & 'tau abs 825 cm-1', |
|---|
| 2838 | & '',0,taucloudtes) |
|---|
| 2839 | endif |
|---|
| 2840 | |
|---|
| 2841 | mtot = 0 |
|---|
| 2842 | icetot = 0 |
|---|
| 2843 | h2otot = qsurf(1,igcm_h2o_ice) |
|---|
| 2844 | |
|---|
| 2845 | do l=1,nlayer |
|---|
| 2846 | mtot = mtot + zq(1,l,igcm_h2o_vap) |
|---|
| 2847 | & * (zplev(1,l) - zplev(1,l+1)) / g |
|---|
| 2848 | icetot = icetot + zq(1,l,igcm_h2o_ice) |
|---|
| 2849 | & * (zplev(1,l) - zplev(1,l+1)) / g |
|---|
| 2850 | end do |
|---|
| 2851 | h2otot = h2otot+mtot+icetot |
|---|
| 2852 | |
|---|
| 2853 | CALL WRITEDIAGFI(ngrid,'h2otot', |
|---|
| 2854 | & 'h2otot', |
|---|
| 2855 | & 'kg/m2',0,h2otot) |
|---|
| 2856 | CALL WRITEDIAGFI(ngrid,'mtot', |
|---|
| 2857 | & 'mtot', |
|---|
| 2858 | & 'kg/m2',0,mtot) |
|---|
| 2859 | CALL WRITEDIAGFI(ngrid,'icetot', |
|---|
| 2860 | & 'icetot', |
|---|
| 2861 | & 'kg/m2',0,icetot) |
|---|
| 2862 | |
|---|
| 2863 | if (scavenging) then |
|---|
| 2864 | |
|---|
| 2865 | rave = 0 |
|---|
| 2866 | do l=1,nlayer |
|---|
| 2867 | cccc Column integrated effective ice radius |
|---|
| 2868 | cccc is weighted by total ice surface area (BETTER) |
|---|
| 2869 | rave = rave + tauscaling(1) * |
|---|
| 2870 | & zq(1,l,igcm_ccn_number) * |
|---|
| 2871 | & (zplev(1,l) - zplev(1,l+1)) / g * |
|---|
| 2872 | & rice(1,l) * rice(1,l)* (1.+nuice_ref) |
|---|
| 2873 | enddo |
|---|
| 2874 | rave=icetot*0.75/max(rave*pi*rho_ice,1.e-30) ! surface weight |
|---|
| 2875 | |
|---|
| 2876 | Nccntot= 0 |
|---|
| 2877 | call watersat(ngrid*nlayer,zt,zplay,zqsat) |
|---|
| 2878 | do l=1,nlayer |
|---|
| 2879 | Nccntot = Nccntot + |
|---|
| 2880 | & zq(1,l,igcm_ccn_number)*tauscaling(1) |
|---|
| 2881 | & *(zplev(1,l) - zplev(1,l+1)) / g |
|---|
| 2882 | satu(1,l) = zq(1,l,igcm_h2o_vap)/zqsat(1,l) |
|---|
| 2883 | satu(1,l) = (max(satu(1,l),float(1))-1) |
|---|
| 2884 | ! & * zq(1,l,igcm_h2o_vap) * |
|---|
| 2885 | ! & (zplev(1,l) - zplev(1,l+1)) / g |
|---|
| 2886 | enddo |
|---|
| 2887 | call WRITEDIAGFI(ngrid,"satu","vap in satu","kg/kg",1, |
|---|
| 2888 | & satu) |
|---|
| 2889 | CALL WRITEDIAGFI(ngrid,'Nccntot', |
|---|
| 2890 | & 'Nccntot', |
|---|
| 2891 | & 'nbr/m2',0,Nccntot) |
|---|
| 2892 | |
|---|
| 2893 | call WRITEDIAGFI(ngrid,'zdqsed_dustq' |
|---|
| 2894 | & ,'sedimentation q','kg.m-2.s-1',1,zdqsed(1,:,igcm_dust_mass)) |
|---|
| 2895 | call WRITEDIAGFI(ngrid,'zdqsed_dustN' |
|---|
| 2896 | &,'sedimentation N','Nbr.m-2.s-1',1, |
|---|
| 2897 | & zdqsed(1,:,igcm_dust_number)) |
|---|
| 2898 | |
|---|
| 2899 | else ! of if (scavenging) |
|---|
| 2900 | |
|---|
| 2901 | cccc Column integrated effective ice radius |
|---|
| 2902 | cccc is weighted by total ice mass (LESS GOOD) |
|---|
| 2903 | rave = 0 |
|---|
| 2904 | do l=1,nlayer |
|---|
| 2905 | rave = rave + zq(1,l,igcm_h2o_ice) |
|---|
| 2906 | & * (zplev(1,l) - zplev(1,l+1)) / g |
|---|
| 2907 | & * rice(1,l) * (1.+nuice_ref) |
|---|
| 2908 | enddo |
|---|
| 2909 | rave=max(rave/max(icetot,1.e-30),1.e-30) ! mass weight |
|---|
| 2910 | endif ! of if (scavenging) |
|---|
| 2911 | |
|---|
| 2912 | |
|---|
| 2913 | CALL WRITEDIAGFI(ngrid,'reffice', |
|---|
| 2914 | & 'reffice', |
|---|
| 2915 | & 'm',0,rave) |
|---|
| 2916 | |
|---|
| 2917 | !Alternative A. Pottier weighting |
|---|
| 2918 | rave2 = 0. |
|---|
| 2919 | totrave2 = 0. |
|---|
| 2920 | do l=1,nlayer |
|---|
| 2921 | rave2 =rave2+ zq(1,l,igcm_h2o_ice)*rice(1,l) |
|---|
| 2922 | totrave2 = totrave2 + zq(1,l,igcm_h2o_ice) |
|---|
| 2923 | end do |
|---|
| 2924 | rave2=max(rave2/max(totrave2,1.e-30),1.e-30) |
|---|
| 2925 | CALL WRITEDIAGFI(ngrid,'rmoym', |
|---|
| 2926 | & 'reffice', |
|---|
| 2927 | & 'm',0,rave2) |
|---|
| 2928 | |
|---|
| 2929 | do iq=1,nq |
|---|
| 2930 | call WRITEDIAGFI(ngrid,trim(noms(iq))//'_s', |
|---|
| 2931 | & trim(noms(iq))//'_s','kg/kg',0,qsurf(1,iq)) |
|---|
| 2932 | end do |
|---|
| 2933 | |
|---|
| 2934 | call WRITEDIAGFI(ngrid,'zdqcloud_ice','cloud ice', |
|---|
| 2935 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_h2o_ice)) |
|---|
| 2936 | call WRITEDIAGFI(ngrid,'zdqcloud_vap','cloud vap', |
|---|
| 2937 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_h2o_vap)) |
|---|
| 2938 | call WRITEDIAGFI(ngrid,'zdqcloud','cloud ice', |
|---|
| 2939 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_h2o_ice) |
|---|
| 2940 | & +zdqcloud(1,:,igcm_h2o_vap)) |
|---|
| 2941 | |
|---|
| 2942 | call WRITEDIAGFI(ngrid,"rice","ice radius","m",1, |
|---|
| 2943 | & rice) |
|---|
| 2944 | |
|---|
| 2945 | if (CLFvarying) then |
|---|
| 2946 | call WRITEDIAGFI(ngrid,'totcloudfrac', |
|---|
| 2947 | & 'Total cloud fraction', |
|---|
| 2948 | & ' ',0,totcloudfrac) |
|---|
| 2949 | endif !clfvarying |
|---|
| 2950 | |
|---|
| 2951 | ENDIF ! of IF (water) |
|---|
| 2952 | |
|---|
| 2953 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 2954 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 2955 | |
|---|
| 2956 | |
|---|
| 2957 | zlocal(1)=-log(zplay(1,1)/zplev(1,1))* Rnew(1,1)*zt(1,1)/g |
|---|
| 2958 | |
|---|
| 2959 | do l=2,nlayer-1 |
|---|
| 2960 | tmean=zt(1,l) |
|---|
| 2961 | if(zt(1,l).ne.zt(1,l-1)) |
|---|
| 2962 | & tmean=(zt(1,l)-zt(1,l-1))/log(zt(1,l)/zt(1,l-1)) |
|---|
| 2963 | zlocal(l)= zlocal(l-1) |
|---|
| 2964 | & -log(zplay(1,l)/zplay(1,l-1))*rnew(1,l)*tmean/g |
|---|
| 2965 | enddo |
|---|
| 2966 | zlocal(nlayer)= zlocal(nlayer-1)- |
|---|
| 2967 | & log(zplay(1,nlayer)/zplay(1,nlayer-1))* |
|---|
| 2968 | & rnew(1,nlayer)*tmean/g |
|---|
| 2969 | #endif |
|---|
| 2970 | |
|---|
| 2971 | END IF ! if(ngrid.ne.1) |
|---|
| 2972 | |
|---|
| 2973 | icount=icount+1 |
|---|
| 2974 | |
|---|
| 2975 | END SUBROUTINE physiq |
|---|
| 2976 | |
|---|
| 2977 | END MODULE physiq_mod |
|---|