[1549] | 1 | MODULE physiq_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[234] | 7 | SUBROUTINE physiq( |
---|
[226] | 8 | $ ngrid,nlayer,nq |
---|
| 9 | $ ,firstcall,lastcall |
---|
| 10 | $ ,pday,ptime,ptimestep |
---|
| 11 | $ ,pplev,pplay,pphi |
---|
| 12 | $ ,pu,pv,pt,pq |
---|
[1312] | 13 | $ ,flxw |
---|
[1576] | 14 | $ ,pdu,pdv,pdt,pdq,pdpsrf) |
---|
[42] | 15 | |
---|
[2162] | 16 | use watercloud_mod, only: watercloud, zdqcloud, zdqscloud |
---|
[2164] | 17 | use calchim_mod, only: calchim, ichemistry, zdqchim, zdqschim |
---|
[1996] | 18 | use watersat_mod, only: watersat |
---|
[3207] | 19 | use co2condens_mod, only: co2condens, CO2cond_ps |
---|
[2562] | 20 | use co2cloud_mod, only: co2cloud |
---|
[1974] | 21 | use callradite_mod, only: callradite |
---|
| 22 | use callsedim_mod, only: callsedim |
---|
| 23 | use rocketduststorm_mod, only: rocketduststorm, dustliftday |
---|
| 24 | use calcstormfract_mod, only: calcstormfract |
---|
[2628] | 25 | use topmons_mod, only: topmons,topmons_setup |
---|
[3012] | 26 | use nltecool_mod, only: nltecool |
---|
| 27 | use nlte_tcool_mod, only: nlte_tcool |
---|
[3016] | 28 | use blendrad_mod, only: blendrad |
---|
| 29 | use nlthermeq_mod, only: nlthermeq |
---|
[3015] | 30 | use thermosphere_mod, only: thermosphere |
---|
[3466] | 31 | use param_read_e107_mod, only: param_read_e107 |
---|
[1617] | 32 | use tracer_mod, only: noms, mmol, igcm_co2, igcm_n2, igcm_co2_ice, |
---|
[1036] | 33 | & igcm_co, igcm_o, igcm_h2o_vap, igcm_h2o_ice, |
---|
[2312] | 34 | & igcm_hdo_vap, igcm_hdo_ice, |
---|
[1036] | 35 | & igcm_ccn_mass, igcm_ccn_number, |
---|
[1617] | 36 | & igcm_ccnco2_mass, igcm_ccnco2_number, |
---|
[2562] | 37 | & igcm_ccnco2_h2o_mass_ice, |
---|
| 38 | & igcm_ccnco2_h2o_mass_ccn, |
---|
| 39 | & igcm_ccnco2_h2o_number, |
---|
[2589] | 40 | & igcm_ccnco2_meteor_mass, |
---|
| 41 | & igcm_ccnco2_meteor_number, |
---|
[1036] | 42 | & igcm_dust_mass, igcm_dust_number, igcm_h2o2, |
---|
[1660] | 43 | & nuice_ref, rho_ice, rho_dust, ref_r0, |
---|
[1974] | 44 | & igcm_he, igcm_stormdust_mass, |
---|
[2199] | 45 | & igcm_stormdust_number, igcm_topdust_mass, |
---|
[2324] | 46 | & igcm_topdust_number, |
---|
| 47 | & qperemin |
---|
[2942] | 48 | use comsoil_h, only: inertiedat, inertiesoil,! dat: soil thermal inertia for present climate, inertiesoil is the TI read in the start |
---|
[2285] | 49 | & tsoil, nsoilmx,!number of subsurface layers |
---|
[3113] | 50 | & mlayer,layer, ! soil mid layer depths |
---|
| 51 | & nqsoil,qsoil ! adsorption |
---|
[1974] | 52 | use geometry_mod, only: longitude, latitude, cell_area, |
---|
[3078] | 53 | & cell_area_for_lonlat_outputs,longitude_deg |
---|
[1541] | 54 | use comgeomfi_h, only: sinlon, coslon, sinlat, coslat |
---|
[3203] | 55 | use surfdat_h, only: phisfi, albedodat, z0, albedo_h2o_cap, |
---|
| 56 | & albedo_h2o_frost, frost_albedo_threshold, |
---|
| 57 | & frost_metam_threshold, tsurf, emis, capcal, |
---|
| 58 | & fluxgrd, qsurf, watercap, watercaptag, |
---|
[3130] | 59 | & perennial_co2ice |
---|
[3203] | 60 | use comsaison_h, only: dist_sol, declin, zls, |
---|
[2597] | 61 | & mu0, fract, local_time |
---|
[3094] | 62 | use solarlong_mod, only: solarlong |
---|
[3006] | 63 | use nirdata_mod, only: NIR_leedat |
---|
| 64 | use nirco2abs_mod, only: nirco2abs |
---|
[3466] | 65 | use surfacearea_mod, only: surfacearea |
---|
[3183] | 66 | use slope_mod, only: theta_sl, psi_sl, getslopes, param_slope |
---|
[3203] | 67 | use conc_mod, only: init_r_cp_mu, update_r_cp_mu_ak, rnew, |
---|
[3185] | 68 | & cpnew, mmean |
---|
[3369] | 69 | use time_phylmdz_mod, only: steps_per_sol |
---|
| 70 | use time_phylmdz_mod, only: iphysiq, ecritstart, daysec |
---|
[2409] | 71 | use dimradmars_mod, only: aerosol, totcloudfrac, |
---|
[1246] | 72 | & dtrad, fluxrad_sky, fluxrad, albedo, |
---|
[3203] | 73 | & naerkind, iaer_dust_doubleq, |
---|
[2678] | 74 | & iaer_stormdust_doubleq, iaer_h2o_ice, |
---|
| 75 | & flux_1AU |
---|
[2409] | 76 | use dust_param_mod, only: doubleq, lifting, callddevil, |
---|
[2417] | 77 | & tauscaling, odpref, dustbin, |
---|
[2442] | 78 | & dustscaling_mode, dust_rad_adjust, |
---|
[2643] | 79 | & freedust, reff_driven_IRtoVIS_scenario |
---|
[3292] | 80 | use dustdevil_mod, only: dustdevil |
---|
[3203] | 81 | use turb_mod, only: q2, wstar, ustar, sensibFlux, |
---|
[1236] | 82 | & zmax_th, hfmax_th, turb_resolved |
---|
[1229] | 83 | use planete_h, only: aphelie, periheli, year_day, peri_day, |
---|
| 84 | & obliquit |
---|
[3095] | 85 | use planete_h, only: iniorbit |
---|
[3203] | 86 | USE comcstfi_h, only: r, cpp, mugaz, g, rcp, pi, rad |
---|
[1912] | 87 | USE calldrag_noro_mod, ONLY: calldrag_noro |
---|
[3262] | 88 | USE vdifc_mod, ONLY: vdifc |
---|
[3203] | 89 | use param_v4_h, only: nreact,n_avog, |
---|
[1266] | 90 | & fill_data_thermos, allocate_param_thermos |
---|
| 91 | use iono_h, only: allocate_param_iono |
---|
[1974] | 92 | use compute_dtau_mod, only: compute_dtau |
---|
[2149] | 93 | use nonoro_gwd_ran_mod, only: nonoro_gwd_ran |
---|
[3144] | 94 | use nonoro_gwd_mix_mod, only: nonoro_gwd_mix, calljliu_gwimix |
---|
[2551] | 95 | use check_fields_mod, only: check_physics_fields |
---|
[3142] | 96 | use surfini_mod, only: surfini |
---|
[1112] | 97 | #ifdef MESOSCALE |
---|
| 98 | use comsoil_h, only: mlayer,layer |
---|
| 99 | use surfdat_h, only: z0_default |
---|
[1236] | 100 | use comm_wrf |
---|
[1212] | 101 | #else |
---|
[2223] | 102 | USE planetwide_mod, ONLY: planetwide_maxval, planetwide_minval, |
---|
| 103 | & planetwide_sumval |
---|
[1212] | 104 | use phyredem, only: physdem0, physdem1 |
---|
[2545] | 105 | use phyetat0_mod, only: phyetat0, tab_cntrl_mod |
---|
[2559] | 106 | use wstats_mod, only: callstats, wstats, mkstats |
---|
[1212] | 107 | use eofdump_mod, only: eofdump |
---|
[2223] | 108 | USE vertical_layers_mod, ONLY: ap,bp,aps,bps,presnivs,pseudoalt |
---|
| 109 | USE mod_phys_lmdz_omp_data, ONLY: is_omp_master |
---|
[2511] | 110 | USE time_phylmdz_mod, ONLY: day_end |
---|
[1112] | 111 | #endif |
---|
| 112 | |
---|
[3203] | 113 | #ifdef CPP_XIOS |
---|
[2223] | 114 | use xios_output_mod, only: initialize_xios_output, |
---|
| 115 | & update_xios_timestep, |
---|
| 116 | & send_xios_field |
---|
| 117 | use wxios, only: wxios_context_init, xios_context_finalize |
---|
| 118 | #endif |
---|
[3203] | 119 | USE mod_grid_phy_lmdz, ONLY: grid_type, unstructured, |
---|
[3078] | 120 | & regular_lonlat |
---|
[2551] | 121 | use ioipsl_getin_p_mod, only: getin_p |
---|
[2896] | 122 | use comslope_mod, ONLY: nslope,def_slope,def_slope_mean, |
---|
| 123 | & subslope_dist,iflat,sky_slope, |
---|
| 124 | & major_slope,compute_meshgridavg, |
---|
| 125 | & ini_comslope_h |
---|
[2932] | 126 | use write_output_mod, only: write_output |
---|
[3151] | 127 | use pbl_parameters_mod, only: pbl_parameters |
---|
[3167] | 128 | use lmdz_atke_turbulence_ini, only : atke_ini |
---|
[3230] | 129 | use waterice_tifeedback_mod, only : waterice_tifeedback |
---|
[3726] | 130 | use callkeys_mod, only: calladj, calltherm, callatke, calldifv |
---|
| 131 | use callkeys_mod, only: callrichsl, tke_heat_flux |
---|
| 132 | use callkeys_mod, only: calllott, calllott_nonoro, calleofdump |
---|
| 133 | use callkeys_mod, only: callrad, callnlte, callnirco2, nircorr |
---|
| 134 | use callkeys_mod, only: diurnal, season, iradia, nltemodel |
---|
| 135 | use callkeys_mod, only: water, activice, microphys, CLFvarying |
---|
| 136 | use callkeys_mod, only: hdo, co2clouds, co2useh2o, meteo_flux |
---|
| 137 | use callkeys_mod, only: callsoil, callslope, callcond |
---|
| 138 | use callkeys_mod, only: tituscap, surfaceice_tifeedback |
---|
| 139 | use callkeys_mod, only: refill_watercap, poreice_tifeedback |
---|
| 140 | use callkeys_mod, only: cst_cap_albedo |
---|
| 141 | use callkeys_mod, only: rdstorm, dustinjection |
---|
| 142 | use callkeys_mod, only: topflows, dustiropacity |
---|
| 143 | use callkeys_mod, only: sedimentation, scavenging |
---|
| 144 | use callkeys_mod, only: photochem, callthermos |
---|
| 145 | use callkeys_mod, only: startphy_file |
---|
| 146 | |
---|
[42] | 147 | IMPLICIT NONE |
---|
| 148 | c======================================================================= |
---|
| 149 | c |
---|
| 150 | c subject: |
---|
| 151 | c -------- |
---|
| 152 | c |
---|
[3203] | 153 | c Organisation of the physical parametrisations of the LMD |
---|
[42] | 154 | c martian atmospheric general circulation model. |
---|
| 155 | c |
---|
| 156 | c The GCM can be run without or with tracer transport |
---|
| 157 | c depending on the value of Logical "tracer" in file "callphys.def" |
---|
| 158 | c Tracers may be water vapor, ice OR chemical species OR dust particles |
---|
| 159 | c |
---|
| 160 | c SEE comments in initracer.F about numbering of tracer species... |
---|
| 161 | c |
---|
| 162 | c It includes: |
---|
| 163 | c |
---|
| 164 | c 1. Initialization: |
---|
| 165 | c 1.1 First call initializations |
---|
| 166 | c 1.2 Initialization for every call to physiq |
---|
| 167 | c 1.2.5 Compute mean mass and cp, R and thermal conduction coeff. |
---|
| 168 | c 2. Compute radiative transfer tendencies |
---|
| 169 | c (longwave and shortwave) for CO2 and aerosols. |
---|
| 170 | c 3. Gravity wave and subgrid scale topography drag : |
---|
| 171 | c 4. Vertical diffusion (turbulent mixing): |
---|
| 172 | c 5. Convective adjustment |
---|
| 173 | c 6. Condensation and sublimation of carbon dioxide. |
---|
| 174 | c 7. TRACERS : |
---|
[1617] | 175 | c 7a. water, water ice, co2 ice (clouds) |
---|
[42] | 176 | c 7b. call for photochemistry when tracers are chemical species |
---|
| 177 | c 7c. other scheme for tracer (dust) transport (lifting, sedimentation) |
---|
| 178 | c 7d. updates (CO2 pressure variations, surface budget) |
---|
| 179 | c 8. Contribution to tendencies due to thermosphere |
---|
| 180 | c 9. Surface and sub-surface temperature calculations |
---|
| 181 | c 10. Write outputs : |
---|
| 182 | c - "startfi", "histfi" (if it's time) |
---|
| 183 | c - Saving statistics (if "callstats = .true.") |
---|
| 184 | c - Dumping eof (if "calleofdump = .true.") |
---|
[3203] | 185 | c - Output any needed variables in "diagfi" |
---|
[42] | 186 | c 11. Diagnostic: mass conservation of tracers |
---|
[3203] | 187 | c |
---|
| 188 | c author: |
---|
| 189 | c ------- |
---|
| 190 | c Frederic Hourdin 15/10/93 |
---|
| 191 | c Francois Forget 1994 |
---|
| 192 | c Christophe Hourdin 02/1997 |
---|
[42] | 193 | c Subroutine completly rewritten by F.Forget (01/2000) |
---|
| 194 | c Introduction of the photochemical module: S. Lebonnois (11/2002) |
---|
| 195 | c Introduction of the thermosphere module: M. Angelats i Coll (2002) |
---|
| 196 | c Water ice clouds: Franck Montmessin (update 06/2003) |
---|
| 197 | c Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
---|
| 198 | c Nb: See callradite.F for more information. |
---|
[234] | 199 | c Mesoscale lines: Aymeric Spiga (2007 - 2011) -- check MESOSCALE flags |
---|
[414] | 200 | c jul 2011 malv+fgg: Modified calls to NIR heating routine and 15 um cooling parameterization |
---|
[1617] | 201 | c |
---|
| 202 | c 10/16 J. Audouard: modifications for CO2 clouds scheme |
---|
| 203 | |
---|
[42] | 204 | c arguments: |
---|
| 205 | c ---------- |
---|
| 206 | c |
---|
| 207 | c input: |
---|
| 208 | c ------ |
---|
| 209 | c ecri period (in dynamical timestep) to write output |
---|
| 210 | c ngrid Size of the horizontal grid. |
---|
| 211 | c All internal loops are performed on that grid. |
---|
| 212 | c nlayer Number of vertical layers. |
---|
| 213 | c nq Number of advected fields |
---|
| 214 | c firstcall True at the first call |
---|
| 215 | c lastcall True at the last call |
---|
| 216 | c pday Number of days counted from the North. Spring |
---|
| 217 | c equinoxe. |
---|
| 218 | c ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT |
---|
| 219 | c ptimestep timestep (s) |
---|
| 220 | c pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa) |
---|
| 221 | c pplev(ngrid,nlayer+1) intermediate pressure levels (pa) |
---|
| 222 | c pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2s-2) |
---|
| 223 | c pu(ngrid,nlayer) u component of the wind (ms-1) |
---|
| 224 | c pv(ngrid,nlayer) v component of the wind (ms-1) |
---|
| 225 | c pt(ngrid,nlayer) Temperature (K) |
---|
| 226 | c pq(ngrid,nlayer,nq) Advected fields |
---|
[3203] | 227 | c pudyn(ngrid,nlayer) | |
---|
[330] | 228 | c pvdyn(ngrid,nlayer) | Dynamical temporal derivative for the |
---|
| 229 | c ptdyn(ngrid,nlayer) | corresponding variables |
---|
| 230 | c pqdyn(ngrid,nlayer,nq) | |
---|
[1312] | 231 | c flxw(ngrid,nlayer) vertical mass flux (kg/s) at layer lower boundary |
---|
[42] | 232 | c |
---|
| 233 | c output: |
---|
| 234 | c ------- |
---|
| 235 | c |
---|
[1047] | 236 | c pdu(ngrid,nlayer) | |
---|
| 237 | c pdv(ngrid,nlayer) | Temporal derivative of the corresponding |
---|
| 238 | c pdt(ngrid,nlayer) | variables due to physical processes. |
---|
| 239 | c pdq(ngrid,nlayer,nq) | |
---|
| 240 | c pdpsrf(ngrid) | |
---|
[42] | 241 | |
---|
| 242 | c |
---|
| 243 | c======================================================================= |
---|
| 244 | c |
---|
| 245 | c 0. Declarations : |
---|
| 246 | c ------------------ |
---|
| 247 | |
---|
[1922] | 248 | include "netcdf.inc" |
---|
[42] | 249 | |
---|
| 250 | c Arguments : |
---|
| 251 | c ----------- |
---|
| 252 | |
---|
| 253 | c inputs: |
---|
| 254 | c ------- |
---|
[1312] | 255 | INTEGER,INTENT(in) :: ngrid ! number of atmospheric columns |
---|
| 256 | INTEGER,INTENT(in) :: nlayer ! number of atmospheric layers |
---|
| 257 | INTEGER,INTENT(in) :: nq ! number of tracers |
---|
| 258 | LOGICAL,INTENT(in) :: firstcall ! signals first call to physics |
---|
| 259 | LOGICAL,INTENT(in) :: lastcall ! signals last call to physics |
---|
| 260 | REAL,INTENT(in) :: pday ! number of elapsed sols since reference Ls=0 |
---|
| 261 | REAL,INTENT(in) :: ptime ! "universal time", given as fraction of sol (e.g.: 0.5 for noon) |
---|
| 262 | REAL,INTENT(in) :: ptimestep ! physics timestep (s) |
---|
| 263 | REAL,INTENT(in) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
---|
| 264 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! mid-layer pressure (Pa) |
---|
| 265 | REAL,INTENT(IN) :: pphi(ngrid,nlayer) ! geopotential at mid-layer (m2s-2) |
---|
| 266 | REAL,INTENT(in) :: pu(ngrid,nlayer) ! zonal wind component (m/s) |
---|
| 267 | REAL,INTENT(in) :: pv(ngrid,nlayer) ! meridional wind component (m/s) |
---|
| 268 | REAL,INTENT(in) :: pt(ngrid,nlayer) ! temperature (K) |
---|
| 269 | REAL,INTENT(in) :: pq(ngrid,nlayer,nq) ! tracers (.../kg_of_air) |
---|
[3203] | 270 | REAL,INTENT(in) :: flxw(ngrid,nlayer) ! vertical mass flux (ks/s) at lower boundary of layer |
---|
[226] | 271 | |
---|
[42] | 272 | c outputs: |
---|
| 273 | c -------- |
---|
| 274 | c physical tendencies |
---|
[1312] | 275 | REAL,INTENT(out) :: pdu(ngrid,nlayer) ! zonal wind tendency (m/s/s) |
---|
| 276 | REAL,INTENT(out) :: pdv(ngrid,nlayer) ! meridional wind tendency (m/s/s) |
---|
| 277 | REAL,INTENT(out) :: pdt(ngrid,nlayer) ! temperature tendency (K/s) |
---|
| 278 | REAL,INTENT(out) :: pdq(ngrid,nlayer,nq) ! tracer tendencies (../kg/s) |
---|
| 279 | REAL,INTENT(out) :: pdpsrf(ngrid) ! surface pressure tendency (Pa/s) |
---|
[42] | 280 | |
---|
| 281 | c Local saved variables: |
---|
| 282 | c ---------------------- |
---|
[1233] | 283 | INTEGER,SAVE :: day_ini ! Initial date of the run (sol since Ls=0) |
---|
[3042] | 284 | INTEGER,SAVE :: icount ! Counter of calls to physiq during the run. |
---|
[2578] | 285 | REAL,SAVE :: time_phys |
---|
[1974] | 286 | |
---|
[2578] | 287 | !$OMP THREADPRIVATE(day_ini,icount,time_phys) |
---|
| 288 | |
---|
[1375] | 289 | #ifdef DUSTSTORM |
---|
| 290 | REAL pq_tmp(ngrid, nlayer, 2) ! To compute tendencies due the dust bomb |
---|
| 291 | #endif |
---|
[3203] | 292 | |
---|
[42] | 293 | c Variables used by the water ice microphysical scheme: |
---|
[1047] | 294 | REAL rice(ngrid,nlayer) ! Water ice geometric mean radius (m) |
---|
| 295 | REAL nuice(ngrid,nlayer) ! Estimated effective variance |
---|
[42] | 296 | ! of the size distribution |
---|
[1047] | 297 | real rsedcloud(ngrid,nlayer) ! Cloud sedimentation radius |
---|
| 298 | real rhocloud(ngrid,nlayer) ! Cloud density (kg.m-3) |
---|
[2447] | 299 | real rsedcloudco2(ngrid,nlayer) ! CO2 Cloud sedimentation radius |
---|
| 300 | real rhocloudco2(ngrid,nlayer) ! CO2 Cloud density (kg.m-3) |
---|
[3203] | 301 | real nuiceco2(ngrid,nlayer) ! Estimated effective variance of the |
---|
[2447] | 302 | ! size distribution |
---|
[2942] | 303 | REAL inertiesoil_tifeedback(ngrid,nsoilmx,nslope) ! Time varying subsurface |
---|
[1047] | 304 | ! thermal inertia (J.s-1/2.m-2.K-1) |
---|
[3230] | 305 | ! (used only when tifeedback surface or pore =.true.) |
---|
[1617] | 306 | c Variables used by the CO2 clouds microphysical scheme: |
---|
[1934] | 307 | DOUBLE PRECISION riceco2(ngrid,nlayer) ! co2 ice geometric mean radius (m) |
---|
[1617] | 308 | real zdqssed_co2(ngrid) ! CO2 flux at the surface (kg.m-2.s-1) |
---|
[2562] | 309 | real zdqssed_ccn(ngrid,nq) ! CCN flux at the surface (kg.m-2.s-1) |
---|
[3203] | 310 | real, dimension(ngrid,nlayer) :: zcondicea_co2microp |
---|
[1495] | 311 | c Variables used by the photochemistry |
---|
| 312 | REAL surfdust(ngrid,nlayer) ! dust surface area (m2/m3, if photochemistry) |
---|
| 313 | REAL surfice(ngrid,nlayer) ! ice surface area (m2/m3, if photochemistry) |
---|
[234] | 314 | c Variables used by the slope model |
---|
[3203] | 315 | REAL sl_lct, sl_lat |
---|
[234] | 316 | REAL sl_tau, sl_alb, sl_the, sl_psi |
---|
| 317 | REAL sl_fl0, sl_flu |
---|
| 318 | REAL sl_ra, sl_di0 |
---|
| 319 | REAL sky |
---|
[2685] | 320 | REAL fluxsurf_dir_dn_sw(ngrid) ! Incident direct solar flux on Mars at surface (W.m-2) |
---|
[234] | 321 | |
---|
[1047] | 322 | REAL,PARAMETER :: stephan = 5.67e-08 ! Stephan Boltzman constant |
---|
[42] | 323 | |
---|
| 324 | c Local variables : |
---|
| 325 | c ----------------- |
---|
| 326 | REAL CBRT |
---|
| 327 | EXTERNAL CBRT |
---|
| 328 | |
---|
[3203] | 329 | ! CHARACTER*80 fichier |
---|
| 330 | INTEGER l,ig,ierr,igout,iq,isoil |
---|
[42] | 331 | |
---|
[2900] | 332 | REAL fluxsurf_lw(ngrid,nslope) !incident LW (IR) surface flux (W.m-2) |
---|
| 333 | REAL fluxsurf_dn_sw(ngrid,2,nslope) ! Incident SW (solar) surface flux (W.m-2) |
---|
[2685] | 334 | REAL fluxsurf_up_sw(ngrid,2) ! Reflected SW (solar) surface flux (W.m-2) |
---|
[1047] | 335 | REAL fluxtop_lw(ngrid) !Outgoing LW (IR) flux to space (W.m-2) |
---|
[2685] | 336 | REAL fluxtop_dn_sw(ngrid,2) ! Incoming SW (solar) flux from space (W.m-2) |
---|
| 337 | REAL fluxtop_up_sw(ngrid,2) ! Outgoing SW (solar) flux to space (W.m-2) |
---|
[2415] | 338 | REAL tau_pref_scenario(ngrid) ! prescribed dust column visible opacity |
---|
| 339 | ! at odpref |
---|
[2643] | 340 | REAL IRtoVIScoef(ngrid) ! conversion coefficient to apply on |
---|
| 341 | ! scenario absorption IR (9.3um) CDOD |
---|
| 342 | ! = tau_pref_gcm_VIS / tau_pref_gcm_IR |
---|
[2415] | 343 | REAL tau_pref_gcm(ngrid) ! dust column visible opacity at odpref in the GCM |
---|
[1974] | 344 | c rocket dust storm |
---|
| 345 | REAL totstormfract(ngrid) ! fraction of the mesh where the dust storm is contained |
---|
[3203] | 346 | logical clearatm ! clearatm used to calculate twice the radiative |
---|
| 347 | ! transfer when rdstorm is active : |
---|
[1974] | 348 | ! - in a mesh with stormdust and background dust (false) |
---|
| 349 | ! - in a mesh with background dust only (true) |
---|
[2628] | 350 | c entrainment by mountain top dust flows |
---|
[3203] | 351 | logical nohmons ! nohmons used to calculate twice the radiative |
---|
| 352 | ! transfer when topflows is active : |
---|
[2199] | 353 | ! - in a mesh with topdust and background dust (false) |
---|
| 354 | ! - in a mesh with background dust only (true) |
---|
[3203] | 355 | |
---|
[1047] | 356 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
[1246] | 357 | ! AS: TBD: this one should be in a module ! |
---|
[42] | 358 | REAL zday ! date (time since Ls=0, in martian days) |
---|
[1047] | 359 | REAL zzlay(ngrid,nlayer) ! altitude at the middle of the layers |
---|
| 360 | REAL zzlev(ngrid,nlayer+1) ! altitude at layer boundaries |
---|
[3157] | 361 | REAL gz(ngrid,nlayer) ! variation of g with altitude from aeroid surface |
---|
[1036] | 362 | ! REAL latvl1,lonvl1 ! Viking Lander 1 point (for diagnostic) |
---|
[42] | 363 | |
---|
| 364 | c Tendancies due to various processes: |
---|
[2900] | 365 | REAL dqsurf(ngrid,nq,nslope) ! tendency for tracers on surface (Kg/m2/s) |
---|
[1047] | 366 | REAL zdtlw(ngrid,nlayer) ! (K/s) |
---|
| 367 | REAL zdtsw(ngrid,nlayer) ! (K/s) |
---|
[1974] | 368 | REAL pdqrds(ngrid,nlayer,nq) ! tendency for dust after rocketduststorm |
---|
| 369 | |
---|
[1047] | 370 | REAL zdtnirco2(ngrid,nlayer) ! (K/s) |
---|
| 371 | REAL zdtnlte(ngrid,nlayer) ! (K/s) |
---|
[2900] | 372 | REAL zdtsurf(ngrid,nslope) ! (K/s) |
---|
[1617] | 373 | REAL zdtcloud(ngrid,nlayer),zdtcloudco2(ngrid,nlayer) |
---|
[1047] | 374 | REAL zdvdif(ngrid,nlayer),zdudif(ngrid,nlayer) ! (m.s-2) |
---|
[2900] | 375 | REAL zdhdif(ngrid,nlayer), zdtsdif(ngrid,nslope) ! (K/s) |
---|
[1047] | 376 | REAL zdvadj(ngrid,nlayer),zduadj(ngrid,nlayer) ! (m.s-2) |
---|
| 377 | REAL zdhadj(ngrid,nlayer) ! (K/s) |
---|
| 378 | REAL zdtgw(ngrid,nlayer) ! (K/s) |
---|
| 379 | REAL zdugw(ngrid,nlayer),zdvgw(ngrid,nlayer) ! (m.s-2) |
---|
[2900] | 380 | REAL zdtc(ngrid,nlayer),zdtsurfc(ngrid,nslope) |
---|
[1047] | 381 | REAL zdvc(ngrid,nlayer),zduc(ngrid,nlayer) |
---|
[42] | 382 | |
---|
[2900] | 383 | REAL zdqdif(ngrid,nlayer,nq), zdqsdif(ngrid,nq,nslope) |
---|
[1047] | 384 | REAL zdqsed(ngrid,nlayer,nq), zdqssed(ngrid,nq) |
---|
| 385 | REAL zdqdev(ngrid,nlayer,nq), zdqsdev(ngrid,nq) |
---|
| 386 | REAL zdqadj(ngrid,nlayer,nq) |
---|
| 387 | REAL zdqc(ngrid,nlayer,nq) |
---|
[2162] | 388 | REAL zdqcloudco2(ngrid,nlayer,nq) |
---|
[2900] | 389 | REAL zdqsc(ngrid,nq,nslope) |
---|
[42] | 390 | |
---|
[1047] | 391 | REAL zdteuv(ngrid,nlayer) ! (K/s) |
---|
| 392 | REAL zdtconduc(ngrid,nlayer) ! (K/s) |
---|
| 393 | REAL zdumolvis(ngrid,nlayer) |
---|
| 394 | REAL zdvmolvis(ngrid,nlayer) |
---|
| 395 | real zdqmoldiff(ngrid,nlayer,nq) |
---|
[2467] | 396 | real*8 PhiEscH,PhiEscH2,PhiEscD |
---|
[42] | 397 | |
---|
[2900] | 398 | REAL dwatercap(ngrid,nslope), dwatercap_dif(ngrid,nslope) ! (kg/m-2) |
---|
[2260] | 399 | |
---|
[42] | 400 | c Local variable for local intermediate calcul: |
---|
[2900] | 401 | REAL zflubid(ngrid,nslope) |
---|
[1047] | 402 | REAL zplanck(ngrid),zpopsk(ngrid,nlayer) |
---|
| 403 | REAL zdum1(ngrid,nlayer) |
---|
| 404 | REAL zdum2(ngrid,nlayer) |
---|
[42] | 405 | REAL ztim1,ztim2,ztim3, z1,z2 |
---|
| 406 | REAL ztime_fin |
---|
[1047] | 407 | REAL zdh(ngrid,nlayer) |
---|
[1313] | 408 | REAL zh(ngrid,nlayer) ! potential temperature (K) |
---|
[1312] | 409 | REAL pw(ngrid,nlayer) ! vertical velocity (m/s) (>0 when downwards) |
---|
[42] | 410 | INTEGER length |
---|
| 411 | PARAMETER (length=100) |
---|
[3157] | 412 | REAL tlaymean ! temporary value of mean layer temperature for zzlay |
---|
[42] | 413 | |
---|
[1974] | 414 | c Variables for the total dust for diagnostics |
---|
| 415 | REAL qdusttotal(ngrid,nlayer) !it equals to dust + stormdust |
---|
| 416 | |
---|
[42] | 417 | c local variables only used for diagnostic (output in file "diagfi" or "stats") |
---|
| 418 | c ----------------------------------------------------------------------------- |
---|
[1047] | 419 | REAL ps(ngrid), zt(ngrid,nlayer) |
---|
| 420 | REAL zu(ngrid,nlayer),zv(ngrid,nlayer) |
---|
| 421 | REAL zq(ngrid,nlayer,nq) |
---|
[1974] | 422 | |
---|
[2685] | 423 | REAL fluxtop_dn_sw_tot(ngrid), fluxtop_up_sw_tot(ngrid) |
---|
[2900] | 424 | REAL fluxsurf_dn_sw_tot(ngrid,nslope), fluxsurf_up_sw_tot(ngrid) |
---|
[42] | 425 | character*2 str2 |
---|
[1036] | 426 | ! character*5 str5 |
---|
[1047] | 427 | real zdtdif(ngrid,nlayer), zdtadj(ngrid,nlayer) |
---|
| 428 | real rdust(ngrid,nlayer) ! dust geometric mean radius (m) |
---|
[1974] | 429 | real rstormdust(ngrid,nlayer) ! stormdust geometric mean radius (m) |
---|
[2199] | 430 | real rtopdust(ngrid,nlayer) ! topdust geometric mean radius (m) |
---|
[42] | 431 | integer igmin, lmin |
---|
| 432 | |
---|
[883] | 433 | ! pplev and pplay are dynamical inputs and must not be modified in the physics. |
---|
| 434 | ! instead, use zplay and zplev : |
---|
[3203] | 435 | REAL zplev(ngrid,nlayer+1),zplay(ngrid,nlayer) |
---|
[1036] | 436 | ! REAL zstress(ngrid),cd |
---|
[1047] | 437 | real rho(ngrid,nlayer) ! density |
---|
| 438 | real vmr(ngrid,nlayer) ! volume mixing ratio |
---|
| 439 | real rhopart(ngrid,nlayer) ! number density of a given species |
---|
| 440 | real colden(ngrid,nq) ! vertical column of tracers |
---|
[1464] | 441 | real mass(nq) ! global mass of tracers (g) |
---|
[1047] | 442 | REAL mtot(ngrid) ! Total mass of water vapor (kg/m2) |
---|
[1974] | 443 | REAL mstormdtot(ngrid) ! Total mass of stormdust tracer (kg/m2) |
---|
[2362] | 444 | REAL mdusttot(ngrid) ! Total mass of dust tracer (kg/m2) |
---|
[1047] | 445 | REAL icetot(ngrid) ! Total mass of water ice (kg/m2) |
---|
[2551] | 446 | REAL mtotco2(ngrid) ! Total mass of co2, including ice at the surface (kg/m2) |
---|
| 447 | REAL vaptotco2(ngrid) ! Total mass of co2 vapor (kg/m2) |
---|
| 448 | REAL icetotco2(ngrid) ! Total mass of co2 ice (kg/m2) |
---|
[1047] | 449 | REAL Nccntot(ngrid) ! Total number of ccn (nbr/m2) |
---|
| 450 | REAL Mccntot(ngrid) ! Total mass of ccn (kg/m2) |
---|
| 451 | REAL rave(ngrid) ! Mean water ice effective radius (m) |
---|
| 452 | REAL opTES(ngrid,nlayer) ! abs optical depth at 825 cm-1 |
---|
| 453 | REAL tauTES(ngrid) ! column optical depth at 825 cm-1 |
---|
[42] | 454 | REAL Qabsice ! Water ice absorption coefficient |
---|
[1047] | 455 | REAL taucloudtes(ngrid) ! Cloud opacity at infrared |
---|
[520] | 456 | ! reference wavelength using |
---|
| 457 | ! Qabs instead of Qext |
---|
| 458 | ! (direct comparison with TES) |
---|
[2312] | 459 | REAL mtotD(ngrid) ! Total mass of HDO vapor (kg/m2) |
---|
| 460 | REAL icetotD(ngrid) ! Total mass of HDO ice (kg/m2) |
---|
| 461 | REAL DoH_vap(ngrid,nlayer) !D/H ratio |
---|
| 462 | REAL DoH_ice(ngrid,nlayer) !D/H ratio |
---|
| 463 | REAL DoH_surf(ngrid) !D/H ratio surface |
---|
[2362] | 464 | |
---|
[1047] | 465 | REAL dqdustsurf(ngrid) ! surface q dust flux (kg/m2/s) |
---|
| 466 | REAL dndustsurf(ngrid) ! surface n dust flux (number/m2/s) |
---|
| 467 | REAL ndust(ngrid,nlayer) ! true n dust (kg/kg) |
---|
| 468 | REAL qdust(ngrid,nlayer) ! true q dust (kg/kg) |
---|
| 469 | REAL nccn(ngrid,nlayer) ! true n ccn (kg/kg) |
---|
| 470 | REAL qccn(ngrid,nlayer) ! true q ccn (kg/kg) |
---|
[1974] | 471 | c definition tendancies of stormdust tracers |
---|
| 472 | REAL rdsdqdustsurf(ngrid) ! surface q stormdust flux (kg/m2/s) |
---|
| 473 | REAL rdsdndustsurf(ngrid) ! surface n stormdust flux (number/m2/s) |
---|
| 474 | REAL rdsndust(ngrid,nlayer) ! true n stormdust (kg/kg) |
---|
| 475 | REAL rdsqdust(ngrid,nlayer) ! true q stormdust (kg/kg) |
---|
[2414] | 476 | REAL wspeed(ngrid,nlayer+1) ! vertical velocity stormdust tracer |
---|
| 477 | REAL wtop(ngrid,nlayer+1) ! vertical velocity topdust tracer |
---|
[2413] | 478 | REAL dsodust(ngrid,nlayer) ! density scaled opacity for background dust |
---|
| 479 | REAL dsords(ngrid,nlayer) ! density scaled opacity for stormdust |
---|
| 480 | REAL dsotop(ngrid,nlayer) ! density scaled opacity for topdust |
---|
[1974] | 481 | |
---|
[411] | 482 | c Test 1d/3d scavenging |
---|
[1047] | 483 | REAL satu(ngrid,nlayer) ! satu ratio for output |
---|
| 484 | REAL zqsat(ngrid,nlayer) ! saturation |
---|
[42] | 485 | |
---|
[414] | 486 | ! Added for new NLTE scheme |
---|
[1047] | 487 | real co2vmr_gcm(ngrid,nlayer) |
---|
| 488 | real n2vmr_gcm(ngrid,nlayer) |
---|
| 489 | real ovmr_gcm(ngrid,nlayer) |
---|
| 490 | real covmr_gcm(ngrid,nlayer) |
---|
[1124] | 491 | integer ierr_nlte |
---|
| 492 | real*8 varerr |
---|
[414] | 493 | |
---|
[2149] | 494 | c Non-oro GW tendencies |
---|
| 495 | REAL d_u_hin(ngrid,nlayer), d_v_hin(ngrid,nlayer) |
---|
| 496 | REAL d_t_hin(ngrid,nlayer) |
---|
[3144] | 497 | REAL d_u_mix(ngrid,nlayer), d_v_mix(ngrid,nlayer) |
---|
| 498 | REAL d_t_mix(ngrid,nlayer), zdq_mix(ngrid,nlayer,nq) |
---|
| 499 | |
---|
[2149] | 500 | c Diagnostics 2D of gw_nonoro |
---|
| 501 | REAL zustrhi(ngrid), zvstrhi(ngrid) |
---|
[267] | 502 | c Variables for PBL |
---|
[1047] | 503 | REAL zz1(ngrid) |
---|
[1236] | 504 | REAL lmax_th_out(ngrid) |
---|
[1047] | 505 | REAL pdu_th(ngrid,nlayer),pdv_th(ngrid,nlayer) |
---|
| 506 | REAL pdt_th(ngrid,nlayer),pdq_th(ngrid,nlayer,nq) |
---|
[3203] | 507 | INTEGER lmax_th(ngrid),n_out,n |
---|
[566] | 508 | CHARACTER(50) zstring |
---|
[1047] | 509 | REAL dtke_th(ngrid,nlayer+1) |
---|
[636] | 510 | REAL, ALLOCATABLE, DIMENSION(:,:) :: T_out |
---|
[566] | 511 | REAL, ALLOCATABLE, DIMENSION(:,:) :: u_out ! Interpolated teta and u at z_out |
---|
[1047] | 512 | REAL u_out1(ngrid) |
---|
| 513 | REAL T_out1(ngrid) |
---|
[566] | 514 | REAL, ALLOCATABLE, DIMENSION(:) :: z_out ! height of interpolation between z0 and z1 [meters] |
---|
[1236] | 515 | REAL tstar(ngrid) ! friction velocity and friction potential temp |
---|
[3203] | 516 | REAL vhf(ngrid), vvv(ngrid) |
---|
[1974] | 517 | real qdustrds0(ngrid,nlayer),qdustrds1(ngrid,nlayer) |
---|
[3203] | 518 | real qstormrds0(ngrid,nlayer),qstormrds1(ngrid,nlayer) |
---|
[1974] | 519 | real qdusttotal0(ngrid),qdusttotal1(ngrid) |
---|
[790] | 520 | |
---|
[1711] | 521 | c sub-grid scale water ice clouds (A. Pottier 2013) |
---|
| 522 | logical clearsky |
---|
| 523 | ! flux for the part without clouds |
---|
[1972] | 524 | real zdtswclf(ngrid,nlayer) |
---|
| 525 | real zdtlwclf(ngrid,nlayer) |
---|
[3203] | 526 | real fluxsurf_lwclf(ngrid) |
---|
[2685] | 527 | real fluxsurf_dn_swclf(ngrid,2),fluxsurf_up_swclf(ngrid,2) |
---|
[1972] | 528 | real fluxtop_lwclf(ngrid) |
---|
[2685] | 529 | real fluxtop_dn_swclf(ngrid,2),fluxtop_up_swclf(ngrid,2) |
---|
[1972] | 530 | real taucloudtesclf(ngrid) |
---|
[1973] | 531 | real tf_clf, ntf_clf ! tf: fraction of clouds, ntf: fraction without clouds |
---|
[1972] | 532 | real rave2(ngrid), totrave2(ngrid) ! Mean water ice mean radius (m) |
---|
[2362] | 533 | C test de conservation de la masse de CO2 |
---|
| 534 | REAL co2totA |
---|
| 535 | REAL co2totB |
---|
[2660] | 536 | REAL co2conservation |
---|
[1711] | 537 | |
---|
[2628] | 538 | c entrainment by mountain top dust flows above sub-grid scale topography |
---|
[2199] | 539 | REAL pdqtop(ngrid,nlayer,nq) ! tendency for dust after topmons |
---|
| 540 | |
---|
[2285] | 541 | c when no startfi file is asked for init |
---|
| 542 | real alpha,lay1 ! coefficients for building layers |
---|
| 543 | integer iloop |
---|
| 544 | |
---|
[2551] | 545 | ! flags to trigger extra sanity checks |
---|
| 546 | logical,save :: check_physics_inputs=.false. |
---|
| 547 | logical,save :: check_physics_outputs=.false. |
---|
[2281] | 548 | |
---|
[3203] | 549 | !$OMP THREADPRIVATE(check_physics_inputs,check_physics_outputs) |
---|
| 550 | |
---|
[2896] | 551 | c Sub-grid scale slopes |
---|
[2900] | 552 | real :: tsurf_meshavg(ngrid) ! Surface temperature grid box averaged [K] |
---|
| 553 | real :: albedo_meshavg(ngrid,2) ! albedo temperature grid box averaged [1] |
---|
| 554 | real :: emis_meshavg(ngrid,2) ! emis temperature grid box averaged [1] |
---|
| 555 | real :: qsurf_meshavg(ngrid,nq) ! surface tracer mesh averaged [kg/m^2] |
---|
| 556 | real :: qsurf_tmp(ngrid,nq) ! temporary qsurf for chimie |
---|
[2896] | 557 | integer :: islope |
---|
[2900] | 558 | real :: zdqsdif_meshavg_tmp(ngrid,nq) ! temporary for dust lifting |
---|
[2896] | 559 | |
---|
[2646] | 560 | logical :: write_restart |
---|
[2616] | 561 | |
---|
[2963] | 562 | ! Variable for ice table |
---|
[3230] | 563 | REAL :: rhowater_surf(ngrid,nslope) ! Water density at the surface [kg/m^3] |
---|
| 564 | REAL :: rhowater_surf_sat(ngrid,nslope) ! Water density at the surface at saturation [kg/m^3] |
---|
| 565 | REAL :: rhowater_soil(ngrid,nsoilmx,nslope) ! Water density in soil layers [kg/m^3] |
---|
| 566 | REAL,PARAMETER :: alpha_clap_h2o = 28.9074 ! Coeff for Clapeyron law [/] |
---|
| 567 | REAL,PARAMETER :: beta_clap_h2o = -6143.7 ! Coeff for Clapeyron law [K] |
---|
| 568 | REAL :: pvap_surf(ngrid) ! Water vapor partial pressure in first layer [Pa] |
---|
| 569 | REAL,PARAMETER :: m_co2 = 44.01E-3 ! CO2 molecular mass [kg/mol] |
---|
| 570 | REAL,PARAMETER :: m_noco2 = 33.37E-3 ! Non condensible mol mass [kg/mol] |
---|
| 571 | REAL :: ztmp1,ztmp2 ! intermediate variables to compute the mean molar mass of the layer |
---|
| 572 | REAL :: pore_icefraction(ngrid,nsoilmx,nslope) ! ice filling fraction in the pores |
---|
[3167] | 573 | ! Variable for the computation of the TKE with parameterization from ATKE working group |
---|
| 574 | REAL :: viscom ! kinematic molecular viscosity for momentum |
---|
| 575 | REAL :: viscoh ! kinematic molecular viscosity for heat |
---|
| 576 | |
---|
[42] | 577 | c======================================================================= |
---|
[2362] | 578 | pdq(:,:,:) = 0. |
---|
[42] | 579 | |
---|
| 580 | c 1. Initialisation: |
---|
| 581 | c ----------------- |
---|
| 582 | c 1.1 Initialisation only at first call |
---|
| 583 | c --------------------------------------- |
---|
| 584 | IF (firstcall) THEN |
---|
| 585 | |
---|
[2551] | 586 | call getin_p("check_physics_inputs",check_physics_inputs) |
---|
| 587 | call getin_p("check_physics_outputs",check_physics_outputs) |
---|
| 588 | |
---|
[42] | 589 | c variables set to 0 |
---|
| 590 | c ~~~~~~~~~~~~~~~~~~ |
---|
[286] | 591 | aerosol(:,:,:)=0 |
---|
| 592 | dtrad(:,:)=0 |
---|
[674] | 593 | |
---|
| 594 | #ifndef MESOSCALE |
---|
[2900] | 595 | fluxrad(:,:)=0 |
---|
[528] | 596 | wstar(:)=0. |
---|
[674] | 597 | #endif |
---|
[268] | 598 | |
---|
[2223] | 599 | #ifdef CPP_XIOS |
---|
| 600 | ! Initialize XIOS context |
---|
| 601 | write(*,*) "physiq: call wxios_context_init" |
---|
| 602 | CALL wxios_context_init |
---|
| 603 | #endif |
---|
| 604 | |
---|
[3203] | 605 | c read startfi |
---|
[42] | 606 | c ~~~~~~~~~~~~ |
---|
[226] | 607 | #ifndef MESOSCALE |
---|
[2896] | 608 | |
---|
[1233] | 609 | ! GCM. Read netcdf initial physical parameters. |
---|
[226] | 610 | CALL phyetat0 ("startfi.nc",0,0, |
---|
[3113] | 611 | & nsoilmx,ngrid,nlayer,nq,nqsoil, |
---|
[226] | 612 | & day_ini,time_phys, |
---|
[1944] | 613 | & tsurf,tsoil,albedo,emis, |
---|
[3113] | 614 | & q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar, |
---|
[3130] | 615 | & watercap,perennial_co2ice, |
---|
[2999] | 616 | & def_slope,def_slope_mean,subslope_dist) |
---|
[185] | 617 | |
---|
[3203] | 618 | ! Sky view: |
---|
[2896] | 619 | DO islope=1,nslope |
---|
| 620 | sky_slope(islope) = (1.+cos(pi*def_slope_mean(islope)/180.))/2. |
---|
| 621 | END DO |
---|
| 622 | ! Determine the 'flatest' slopes |
---|
| 623 | iflat = 1 |
---|
| 624 | DO islope=2,nslope |
---|
| 625 | IF(abs(def_slope_mean(islope)).lt. |
---|
| 626 | & abs(def_slope_mean(iflat)))THEN |
---|
| 627 | iflat = islope |
---|
| 628 | ENDIF |
---|
| 629 | ENDDO |
---|
[3037] | 630 | write(*,*)'Flat slope for islope = ',iflat |
---|
| 631 | write(*,*)'corresponding criterium = ',def_slope_mean(iflat) |
---|
[2896] | 632 | |
---|
[1233] | 633 | #else |
---|
| 634 | ! MESOSCALE. Supposedly everything is already set in modules. |
---|
[1579] | 635 | ! So we just check. And we fill day_ini |
---|
[3037] | 636 | write(*,*)"check: --- in physiq.F" |
---|
| 637 | write(*,*)"check: rad,cpp,g,r,rcp,daysec" |
---|
| 638 | write(*,*)rad,cpp,g,r,rcp,daysec |
---|
| 639 | write(*,*)'check: tsurf ',tsurf(1,:),tsurf(ngrid,:) |
---|
| 640 | write(*,*)'check: tsoil ',tsoil(1,1,:),tsoil(ngrid,nsoilmx,:) |
---|
[3203] | 641 | write(*,*)'check: inert ',inertiedat(1,1),inertiedat(ngrid,nsoilmx) |
---|
[3037] | 642 | write(*,*)'check: midlayer,layer ', mlayer(:),layer(:) |
---|
| 643 | write(*,*)'check: tracernames ', noms |
---|
| 644 | write(*,*)'check: emis ',emis(1,:),emis(ngrid,:) |
---|
| 645 | write(*,*)'check: q2 ',q2(1,1),q2(ngrid,nlayer+1) |
---|
| 646 | write(*,*)'check: qsurf ',qsurf(1,1,:),qsurf(ngrid,nq,:) |
---|
| 647 | write(*,*)'check: co2ice ',qsurf(1,igcm_co2,:),qsurf(ngrid,igcm_co2,:) |
---|
[1579] | 648 | !!! |
---|
[1233] | 649 | day_ini = pday |
---|
[2491] | 650 | !!! a couple initializations (dummy for mesoscale) done in phyetat0 |
---|
| 651 | !!! --- maybe this should be done in update_inputs_physiq_mod |
---|
[2562] | 652 | |
---|
[2491] | 653 | tauscaling(:)=1.0 !! probably important |
---|
| 654 | totcloudfrac(:)=1.0 |
---|
[2942] | 655 | DO islope = 1,nslope |
---|
| 656 | albedo(:,1,islope)=albedodat(:) |
---|
| 657 | albedo(:,2,islope)=albedo(:,1,islope) |
---|
| 658 | inertiesoil(:,:,islope) = inertiedat(:,:) |
---|
| 659 | watercap(:,:)=0.0 |
---|
| 660 | ENDDO |
---|
[1233] | 661 | #endif |
---|
[2281] | 662 | #ifndef MESOSCALE |
---|
| 663 | if (.not.startphy_file) then |
---|
| 664 | ! starting without startfi.nc and with callsoil |
---|
| 665 | ! is not yet possible as soildepth default is not defined |
---|
[2362] | 666 | if (callsoil) then |
---|
[2285] | 667 | ! default mlayer distribution, following a power law: |
---|
| 668 | ! mlayer(k)=lay1*alpha**(k-1/2) |
---|
| 669 | lay1=2.e-4 |
---|
[3203] | 670 | alpha=2 |
---|
[2285] | 671 | do iloop=0,nsoilmx-1 |
---|
[3203] | 672 | mlayer(iloop)=lay1*(alpha**(iloop-0.5)) |
---|
| 673 | enddo |
---|
[2285] | 674 | lay1=sqrt(mlayer(0)*mlayer(1)) |
---|
| 675 | alpha=mlayer(1)/mlayer(0) |
---|
| 676 | do iloop=1,nsoilmx |
---|
| 677 | layer(iloop)=lay1*(alpha**(iloop-1)) |
---|
| 678 | enddo |
---|
[2281] | 679 | endif |
---|
| 680 | ! additionnal "academic" initialization of physics |
---|
[2900] | 681 | do islope = 1,nslope |
---|
| 682 | tsurf(:,islope)=pt(:,1) |
---|
| 683 | enddo |
---|
[2281] | 684 | write(*,*) "Physiq: initializing tsoil(:) to pt(:,1) !!" |
---|
| 685 | do isoil=1,nsoilmx |
---|
[2900] | 686 | tsoil(1:ngrid,isoil,:)=tsurf(1:ngrid,:) |
---|
[2281] | 687 | enddo |
---|
| 688 | write(*,*) "Physiq: initializing inertiedat !!" |
---|
| 689 | inertiedat(:,:)=400. |
---|
[2942] | 690 | inertiesoil(:,:,:)=400. |
---|
[2281] | 691 | write(*,*) "Physiq: initializing day_ini to pdat !" |
---|
| 692 | day_ini=pday |
---|
| 693 | endif |
---|
| 694 | #endif |
---|
| 695 | if (pday.ne.day_ini) then |
---|
| 696 | write(*,*) "PHYSIQ: ERROR: bad synchronization between ", |
---|
| 697 | & "physics and dynamics" |
---|
| 698 | write(*,*) "dynamics day [pday]: ",pday |
---|
| 699 | write(*,*) "physics day [day_ini]: ",day_ini |
---|
| 700 | call abort_physic("physiq","dynamics day /= physics day",1) |
---|
| 701 | endif |
---|
| 702 | |
---|
| 703 | write (*,*) 'In physiq day_ini =', day_ini |
---|
| 704 | |
---|
[286] | 705 | c initialize tracers |
---|
| 706 | c ~~~~~~~~~~~~~~~~~~ |
---|
[2823] | 707 | CALL initracer(ngrid,nq,qsurf) |
---|
[286] | 708 | |
---|
[42] | 709 | c Initialize albedo and orbital calculation |
---|
| 710 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[3013] | 711 | CALL surfini(ngrid,nslope,qsurf) |
---|
[42] | 712 | CALL iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
---|
[3203] | 713 | c initialize soil |
---|
[42] | 714 | c ~~~~~~~~~~~~~~~ |
---|
| 715 | IF (callsoil) THEN |
---|
[833] | 716 | c Thermal inertia feedback: |
---|
[3230] | 717 | IF (surfaceice_tifeedback.or.poreice_tifeedback) THEN |
---|
[2900] | 718 | DO islope = 1,nslope |
---|
[3230] | 719 | CALL waterice_tifeedback(ngrid,nsoilmx,nslope, |
---|
| 720 | s qsurf(:,igcm_h2o_ice,:),pore_icefraction, |
---|
| 721 | s inertiesoil_tifeedback) |
---|
[2900] | 722 | ENDDO |
---|
[2942] | 723 | CALL soil(ngrid,nsoilmx,firstcall, |
---|
| 724 | s inertiesoil_tifeedback, |
---|
[833] | 725 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 726 | ELSE |
---|
[2942] | 727 | CALL soil(ngrid,nsoilmx,firstcall,inertiesoil, |
---|
[833] | 728 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 729 | ENDIF ! of IF (tifeedback) |
---|
[42] | 730 | ELSE |
---|
[3037] | 731 | write(*,*) |
---|
[42] | 732 | & 'PHYSIQ WARNING! Thermal conduction in the soil turned off' |
---|
| 733 | DO ig=1,ngrid |
---|
[2900] | 734 | capcal(ig,:)=1.e5 |
---|
| 735 | fluxgrd(ig,:)=0. |
---|
[42] | 736 | ENDDO |
---|
| 737 | ENDIF |
---|
| 738 | icount=1 |
---|
| 739 | |
---|
[226] | 740 | #ifndef MESOSCALE |
---|
| 741 | c Initialize thermospheric parameters |
---|
| 742 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[42] | 743 | |
---|
[705] | 744 | if (callthermos) then |
---|
[1266] | 745 | call fill_data_thermos |
---|
| 746 | call allocate_param_thermos(nlayer) |
---|
| 747 | call allocate_param_iono(nlayer,nreact) |
---|
[1684] | 748 | call param_read_e107 |
---|
[705] | 749 | endif |
---|
[226] | 750 | #endif |
---|
[42] | 751 | |
---|
[3185] | 752 | c Initialize rnew cpnew and mmean as constant |
---|
| 753 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[3203] | 754 | call init_r_cp_mu(ngrid,nlayer) |
---|
[42] | 755 | |
---|
[2383] | 756 | if(callnlte.and.nltemodel.eq.2) call nlte_setup |
---|
| 757 | if(callnirco2.and.nircorr.eq.1) call NIR_leedat |
---|
[414] | 758 | |
---|
[2383] | 759 | |
---|
[2823] | 760 | IF (water.AND.(ngrid.NE.1)) THEN |
---|
[3203] | 761 | write(*,*)"physiq: water_param Surface water frost albedo:", |
---|
[2508] | 762 | . albedo_h2o_frost |
---|
[3203] | 763 | write(*,*)"physiq: water_param Surface watercap albedo:", |
---|
[2508] | 764 | . albedo_h2o_cap |
---|
[42] | 765 | ENDIF |
---|
[900] | 766 | |
---|
| 767 | #ifndef MESOSCALE |
---|
[3203] | 768 | ! no need to compute slopes when in 1D; it is an input |
---|
| 769 | if (ngrid /= 1 .and. callslope) call getslopes(ngrid,phisfi) |
---|
| 770 | if (ecritstart.GT.0) then |
---|
[2507] | 771 | call physdem0("restartfi.nc",longitude,latitude, |
---|
[2224] | 772 | & nsoilmx,ngrid,nlayer,nq, |
---|
[2544] | 773 | & ptimestep,pday,0.,cell_area, |
---|
[2896] | 774 | & albedodat,inertiedat,def_slope, |
---|
| 775 | & subslope_dist) |
---|
[3203] | 776 | else |
---|
[2507] | 777 | call physdem0("restartfi.nc",longitude,latitude, |
---|
| 778 | & nsoilmx,ngrid,nlayer,nq, |
---|
[2544] | 779 | & ptimestep,float(day_end),0.,cell_area, |
---|
[2896] | 780 | & albedodat,inertiedat,def_slope, |
---|
| 781 | & subslope_dist) |
---|
[3203] | 782 | endif |
---|
[2199] | 783 | |
---|
[2628] | 784 | c Initialize mountain mesh fraction for the entrainment by top flows param. |
---|
[2199] | 785 | c ~~~~~~~~~~~~~~~ |
---|
[2628] | 786 | if (topflows) call topmons_setup(ngrid) |
---|
[3203] | 787 | |
---|
[3167] | 788 | c Parameterization of the ATKE routine |
---|
| 789 | c ~~~~~~~~~~~~~~~ |
---|
| 790 | if (callatke) then |
---|
| 791 | viscom = 0.001 |
---|
| 792 | viscoh = 0.001 |
---|
| 793 | CALL atke_ini(g, r, pi, cpp, 0., viscom, viscoh) |
---|
| 794 | endif |
---|
[2212] | 795 | |
---|
| 796 | #endif |
---|
[3203] | 797 | |
---|
[2223] | 798 | #ifdef CPP_XIOS |
---|
| 799 | ! XIOS outputs |
---|
| 800 | write(*,*) "physiq firstcall: call initialize_xios_output" |
---|
| 801 | call initialize_xios_output(pday,ptime,ptimestep,daysec, |
---|
[2333] | 802 | & presnivs,pseudoalt,mlayer) |
---|
[2223] | 803 | #endif |
---|
[42] | 804 | ENDIF ! (end of "if firstcall") |
---|
| 805 | |
---|
[2551] | 806 | if (check_physics_inputs) then |
---|
| 807 | ! Check the validity of input fields coming from the dynamics |
---|
[2570] | 808 | call check_physics_fields("begin physiq:",pt,pu,pv,pplev,pq) |
---|
[2551] | 809 | endif |
---|
| 810 | |
---|
[42] | 811 | c --------------------------------------------------- |
---|
| 812 | c 1.2 Initializations done at every physical timestep: |
---|
| 813 | c --------------------------------------------------- |
---|
| 814 | c |
---|
[3203] | 815 | #ifdef CPP_XIOS |
---|
[2223] | 816 | ! update XIOS time/calendar |
---|
[3203] | 817 | call update_xios_timestep |
---|
| 818 | #endif |
---|
[2312] | 819 | |
---|
| 820 | c Initialize various variables |
---|
[42] | 821 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[286] | 822 | pdv(:,:)=0 |
---|
| 823 | pdu(:,:)=0 |
---|
| 824 | pdt(:,:)=0 |
---|
| 825 | pdq(:,:,:)=0 |
---|
| 826 | pdpsrf(:)=0 |
---|
[2900] | 827 | zflubid(:,:)=0 |
---|
| 828 | zdtsurf(:,:)=0 |
---|
| 829 | dqsurf(:,:,:)=0 |
---|
[2252] | 830 | dsodust(:,:)=0. |
---|
| 831 | dsords(:,:)=0. |
---|
| 832 | dsotop(:,:)=0. |
---|
[2900] | 833 | dwatercap(:,:)=0 |
---|
[2907] | 834 | |
---|
| 835 | call compute_meshgridavg(ngrid,nq,albedo,emis,tsurf,qsurf, |
---|
| 836 | & albedo_meshavg,emis_meshavg,tsurf_meshavg,qsurf_meshavg) |
---|
[3203] | 837 | |
---|
[2643] | 838 | ! Dust scenario conversion coefficient from IRabs to VISext |
---|
| 839 | IRtoVIScoef(1:ngrid)=2.6 ! initialized with former value from Montabone et al 2015 |
---|
| 840 | ! recomputed in aeropacity if reff_driven_IRtoVIS_scenario=.true. |
---|
[2362] | 841 | |
---|
[1377] | 842 | #ifdef DUSTSTORM |
---|
[1375] | 843 | pq_tmp(:,:,:)=0 |
---|
[1377] | 844 | #endif |
---|
[3203] | 845 | igout=ngrid/2+1 |
---|
[42] | 846 | |
---|
| 847 | |
---|
| 848 | zday=pday+ptime ! compute time, in sols (and fraction thereof) |
---|
[1974] | 849 | ! Compute local time at each grid point |
---|
| 850 | DO ig=1,ngrid |
---|
| 851 | local_time(ig)=modulo(1.+(zday-INT(zday)) |
---|
| 852 | & +(longitude_deg(ig)/15)/24,1.) |
---|
| 853 | ENDDO |
---|
[42] | 854 | c Compute Solar Longitude (Ls) : |
---|
| 855 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 856 | if (season) then |
---|
| 857 | call solarlong(zday,zls) |
---|
| 858 | else |
---|
| 859 | call solarlong(float(day_ini),zls) |
---|
| 860 | end if |
---|
| 861 | |
---|
[883] | 862 | c Initialize pressure levels |
---|
| 863 | c ~~~~~~~~~~~~~~~~~~ |
---|
| 864 | zplev(:,:) = pplev(:,:) |
---|
| 865 | zplay(:,:) = pplay(:,:) |
---|
| 866 | ps(:) = pplev(:,1) |
---|
| 867 | |
---|
[3157] | 868 | #ifndef MESOSCALE |
---|
| 869 | c----------------------------------------------------------------------- |
---|
| 870 | c 1.2.1 Compute mean mass, cp, and R |
---|
[3185] | 871 | c update_r_cp_mu_ak outputs rnew(ngrid,nlayer), cpnew(ngrid,nlayer) |
---|
[3203] | 872 | c , mmean(ngrid,nlayer) and Akknew(ngrid,nlayer) |
---|
[3157] | 873 | c -------------------------------- |
---|
| 874 | |
---|
| 875 | if(photochem.or.callthermos) then |
---|
[3185] | 876 | call update_r_cp_mu_ak(ngrid,nlayer,nq, |
---|
[3157] | 877 | & zplay,pt,pdt,pq,pdq,ptimestep) |
---|
| 878 | endif |
---|
| 879 | #endif |
---|
| 880 | |
---|
[42] | 881 | c Compute geopotential at interlayers |
---|
| 882 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 883 | c ponderation des altitudes au niveau des couches en dp/p |
---|
[3157] | 884 | cc ------------------------------------------ |
---|
[3203] | 885 | !Calculation zzlev & zzlay for first layer |
---|
[42] | 886 | DO ig=1,ngrid |
---|
[3203] | 887 | zzlay(ig,1)=-(log(pplay(ig,1)/ps(ig)))*rnew(ig,1)*pt(ig,1)/g |
---|
| 888 | zzlev(ig,1)=0 |
---|
[42] | 889 | zzlev(ig,nlayer+1)=1.e7 ! dummy top of last layer above 10000 km... |
---|
[3157] | 890 | gz(ig,1)=g |
---|
[3203] | 891 | |
---|
| 892 | DO l=2,nlayer |
---|
[3157] | 893 | ! compute "mean" temperature of the layer |
---|
| 894 | if(pt(ig,l) .eq. pt(ig,l-1)) then |
---|
| 895 | tlaymean=pt(ig,l) |
---|
| 896 | else |
---|
| 897 | tlaymean=(pt(ig,l)- pt(ig,l-1))/log(pt(ig,l)/pt(ig,l-1)) |
---|
| 898 | endif |
---|
[3203] | 899 | |
---|
[3157] | 900 | ! compute gravitational acceleration (at altitude zaeroid(nlayer-1)) |
---|
| 901 | gz(ig,l)=g*(rad**2)/(rad+zzlay(ig,l-1)+(phisfi(ig)/g))**2 |
---|
[3203] | 902 | |
---|
| 903 | zzlay(ig,l)=zzlay(ig,l-1)- |
---|
[3157] | 904 | & (log(pplay(ig,l)/pplay(ig,l-1))*rnew(ig,l)*tlaymean/gz(ig,l)) |
---|
[3203] | 905 | |
---|
[3157] | 906 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
---|
| 907 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
---|
| 908 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
| 909 | ENDDO |
---|
[42] | 910 | ENDDO |
---|
| 911 | |
---|
| 912 | ! Potential temperature calculation not the same in physiq and dynamic |
---|
| 913 | |
---|
| 914 | c Compute potential temperature |
---|
| 915 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 916 | DO l=1,nlayer |
---|
[3203] | 917 | DO ig=1,ngrid |
---|
[883] | 918 | zpopsk(ig,l)=(zplay(ig,l)/zplev(ig,1))**rcp |
---|
[42] | 919 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
---|
| 920 | ENDDO |
---|
| 921 | ENDDO |
---|
[2312] | 922 | |
---|
[42] | 923 | |
---|
[1313] | 924 | ! Compute vertical velocity (m/s) from vertical mass flux |
---|
[1346] | 925 | ! w = F / (rho*area) and rho = P/(r*T) |
---|
[1313] | 926 | ! but first linearly interpolate mass flux to mid-layers |
---|
| 927 | do l=1,nlayer-1 |
---|
[1312] | 928 | pw(1:ngrid,l)=0.5*(flxw(1:ngrid,l)+flxw(1:ngrid,l+1)) |
---|
[1313] | 929 | enddo |
---|
| 930 | pw(1:ngrid,nlayer)=0.5*flxw(1:ngrid,nlayer) ! since flxw(nlayer+1)=0 |
---|
| 931 | do l=1,nlayer |
---|
[3203] | 932 | pw(1:ngrid,l)=(pw(1:ngrid,l)*r*pt(1:ngrid,l)) / |
---|
[1541] | 933 | & (pplay(1:ngrid,l)*cell_area(1:ngrid)) |
---|
[1346] | 934 | ! NB: here we use r and not rnew since this diagnostic comes |
---|
[1312] | 935 | ! from the dynamics |
---|
[1313] | 936 | enddo |
---|
[1312] | 937 | |
---|
[2374] | 938 | ! test for co2 conservation with co2 microphysics |
---|
| 939 | if (igcm_co2_ice.ne.0) then |
---|
| 940 | ! calculates the amount of co2 at the beginning of physics |
---|
| 941 | co2totA = 0. |
---|
| 942 | do ig=1,ngrid |
---|
| 943 | do l=1,nlayer |
---|
| 944 | co2totA = co2totA + (zplev(ig,l)-zplev(ig,l+1))/g* |
---|
| 945 | & (pq(ig,l,igcm_co2)+pq(ig,l,igcm_co2_ice) |
---|
| 946 | & +(pdq(ig,l,igcm_co2)+pdq(ig,l,igcm_co2_ice))*ptimestep) |
---|
| 947 | end do |
---|
[2900] | 948 | do islope = 1,nslope |
---|
| 949 | co2totA = co2totA + qsurf(ig,igcm_co2,islope)* |
---|
| 950 | & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
---|
| 951 | enddo |
---|
[2362] | 952 | end do |
---|
[2599] | 953 | else |
---|
| 954 | co2totA = 0. |
---|
| 955 | do ig=1,ngrid |
---|
| 956 | do l=1,nlayer |
---|
| 957 | co2totA = co2totA + (zplev(ig,l)-zplev(ig,l+1))/g* |
---|
| 958 | & (pq(ig,l,igcm_co2) |
---|
| 959 | & +pdq(ig,l,igcm_co2)*ptimestep) |
---|
| 960 | end do |
---|
[2900] | 961 | do islope = 1,nslope |
---|
| 962 | co2totA = co2totA + qsurf(ig,igcm_co2,islope)* |
---|
| 963 | & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
---|
| 964 | enddo |
---|
[2599] | 965 | end do |
---|
[2374] | 966 | endif ! of if (igcm_co2_ice.ne.0) |
---|
[42] | 967 | c----------------------------------------------------------------------- |
---|
| 968 | c 2. Compute radiative tendencies : |
---|
| 969 | c------------------------------------ |
---|
| 970 | |
---|
| 971 | IF (callrad) THEN |
---|
| 972 | |
---|
[2162] | 973 | c Local Solar zenith angle |
---|
| 974 | c ~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2880] | 975 | |
---|
[2162] | 976 | CALL orbite(zls,dist_sol,declin) |
---|
[2880] | 977 | |
---|
[2162] | 978 | IF (diurnal) THEN |
---|
| 979 | ztim1=SIN(declin) |
---|
| 980 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
---|
| 981 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
---|
[42] | 982 | |
---|
[2162] | 983 | CALL solang(ngrid,sinlon,coslon,sinlat,coslat, |
---|
| 984 | & ztim1,ztim2,ztim3, mu0,fract) |
---|
[42] | 985 | |
---|
[2162] | 986 | ELSE |
---|
| 987 | CALL mucorr(ngrid,declin,latitude,mu0,fract,10000.,rad) |
---|
| 988 | ENDIF ! of IF (diurnal) |
---|
[2880] | 989 | |
---|
[2162] | 990 | IF( MOD(icount-1,iradia).EQ.0) THEN |
---|
| 991 | |
---|
[42] | 992 | c NLTE cooling from CO2 emission |
---|
| 993 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[414] | 994 | IF(callnlte) then |
---|
| 995 | if(nltemodel.eq.0.or.nltemodel.eq.1) then |
---|
[2447] | 996 | CALL nltecool(ngrid,nlayer,nq,zplay,pt,pq,zdtnlte) |
---|
[414] | 997 | else if(nltemodel.eq.2) then |
---|
[705] | 998 | co2vmr_gcm(1:ngrid,1:nlayer)= |
---|
| 999 | & pq(1:ngrid,1:nlayer,igcm_co2)* |
---|
| 1000 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co2) |
---|
| 1001 | n2vmr_gcm(1:ngrid,1:nlayer)= |
---|
| 1002 | & pq(1:ngrid,1:nlayer,igcm_n2)* |
---|
| 1003 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_n2) |
---|
| 1004 | covmr_gcm(1:ngrid,1:nlayer)= |
---|
| 1005 | & pq(1:ngrid,1:nlayer,igcm_co)* |
---|
| 1006 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co) |
---|
| 1007 | ovmr_gcm(1:ngrid,1:nlayer)= |
---|
| 1008 | & pq(1:ngrid,1:nlayer,igcm_o)* |
---|
| 1009 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_o) |
---|
[2362] | 1010 | |
---|
[883] | 1011 | CALL nlte_tcool(ngrid,nlayer,zplay*9.869e-6, |
---|
[3203] | 1012 | $ pt,zzlay,co2vmr_gcm, n2vmr_gcm, covmr_gcm, |
---|
[1124] | 1013 | $ ovmr_gcm, zdtnlte,ierr_nlte,varerr ) |
---|
| 1014 | if(ierr_nlte.gt.0) then |
---|
| 1015 | write(*,*) |
---|
| 1016 | $ 'WARNING: nlte_tcool output with error message', |
---|
| 1017 | $ 'ierr_nlte=',ierr_nlte,'varerr=',varerr |
---|
| 1018 | write(*,*)'I will continue anyway' |
---|
| 1019 | endif |
---|
[42] | 1020 | |
---|
[705] | 1021 | zdtnlte(1:ngrid,1:nlayer)= |
---|
| 1022 | & zdtnlte(1:ngrid,1:nlayer)/86400. |
---|
[414] | 1023 | endif |
---|
[1974] | 1024 | ELSE |
---|
[528] | 1025 | zdtnlte(:,:)=0. |
---|
[1974] | 1026 | ENDIF !end callnlte |
---|
[42] | 1027 | |
---|
[3369] | 1028 | ! Find number of layers for LTE radiation calculations |
---|
| 1029 | ! (done only once per sol) |
---|
| 1030 | IF(MOD((icount-1),steps_per_sol).EQ.0) |
---|
[883] | 1031 | & CALL nlthermeq(ngrid,nlayer,zplev,zplay) |
---|
[42] | 1032 | |
---|
[1974] | 1033 | c rocketstorm : compute dust storm mesh fraction |
---|
| 1034 | IF (rdstorm) THEN |
---|
| 1035 | CALL calcstormfract(ngrid,nlayer,nq,pq, |
---|
| 1036 | & totstormfract) |
---|
| 1037 | ENDIF |
---|
| 1038 | |
---|
[42] | 1039 | c Note: Dustopacity.F has been transferred to callradite.F |
---|
[1410] | 1040 | |
---|
| 1041 | #ifdef DUSTSTORM |
---|
| 1042 | !! specific case: save the quantity of dust before adding perturbation |
---|
[2616] | 1043 | |
---|
[1410] | 1044 | if (firstcall) then |
---|
| 1045 | pq_tmp(1:ngrid,1:nlayer,1)=pq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 1046 | pq_tmp(1:ngrid,1:nlayer,2)=pq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 1047 | endif |
---|
| 1048 | #endif |
---|
[3203] | 1049 | |
---|
[42] | 1050 | c Call main radiative transfer scheme |
---|
| 1051 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1052 | c Transfer through CO2 (except NIR CO2 absorption) |
---|
| 1053 | c and aerosols (dust and water ice) |
---|
[2628] | 1054 | ! callradite for background dust (out of the rdstorm fraction) |
---|
[1974] | 1055 | clearatm=.true. |
---|
[2628] | 1056 | !! callradite for background dust (out of the topflows fraction) |
---|
[2199] | 1057 | nohmons=.true. |
---|
[2312] | 1058 | |
---|
[42] | 1059 | c Radiative transfer |
---|
| 1060 | c ------------------ |
---|
[1711] | 1061 | ! callradite for the part with clouds |
---|
[2362] | 1062 | clearsky=.false. ! part with clouds for both cases CLFvarying true/false |
---|
[2900] | 1063 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq, |
---|
[2907] | 1064 | & albedo_meshavg,emis_meshavg, |
---|
[2908] | 1065 | & mu0,zplev,zplay,pt,tsurf_meshavg,fract,dist_sol,igout, |
---|
[2900] | 1066 | & zdtlw,zdtsw,fluxsurf_lw(:,iflat),fluxsurf_dn_sw(:,:,iflat), |
---|
| 1067 | & fluxsurf_up_sw, |
---|
[2685] | 1068 | & fluxtop_lw,fluxtop_dn_sw,fluxtop_up_sw, |
---|
| 1069 | & tau_pref_scenario,tau_pref_gcm, |
---|
[2643] | 1070 | & tau,aerosol,dsodust,tauscaling,dust_rad_adjust,IRtoVIScoef, |
---|
[2826] | 1071 | & taucloudtes,rdust,rice,nuice,riceco2,nuiceco2, |
---|
[2907] | 1072 | & qsurf_meshavg(:,igcm_co2),rstormdust,rtopdust,totstormfract, |
---|
[2826] | 1073 | & clearatm,dsords,dsotop,nohmons,clearsky,totcloudfrac) |
---|
[2616] | 1074 | |
---|
[2900] | 1075 | DO islope=1,nslope |
---|
| 1076 | fluxsurf_lw(:,islope) =fluxsurf_lw(:,iflat) |
---|
| 1077 | fluxsurf_dn_sw(:,:,islope) =fluxsurf_dn_sw(:,:,iflat) |
---|
| 1078 | ENDDO |
---|
| 1079 | |
---|
[1711] | 1080 | ! case of sub-grid water ice clouds: callradite for the clear case |
---|
| 1081 | IF (CLFvarying) THEN |
---|
[3203] | 1082 | ! ---> PROBLEMS WITH ALLOCATED ARRAYS |
---|
[1711] | 1083 | ! (temporary solution in callcorrk: do not deallocate |
---|
| 1084 | ! if |
---|
| 1085 | ! CLFvarying ...) ?? AP ?? |
---|
[3203] | 1086 | clearsky=.true. |
---|
[1711] | 1087 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq, |
---|
[2907] | 1088 | & albedo_meshavg,emis_meshavg,mu0,zplev,zplay,pt, |
---|
[2908] | 1089 | & tsurf_meshavg,fract, |
---|
[2685] | 1090 | & dist_sol,igout,zdtlwclf,zdtswclf, |
---|
| 1091 | & fluxsurf_lwclf,fluxsurf_dn_swclf,fluxsurf_up_swclf, |
---|
| 1092 | & fluxtop_lwclf,fluxtop_dn_swclf,fluxtop_up_swclf, |
---|
[2643] | 1093 | & tau_pref_scenario,tau_pref_gcm,tau,aerosol, |
---|
| 1094 | & dsodust,tauscaling,dust_rad_adjust,IRtoVIScoef, |
---|
[2417] | 1095 | & taucloudtesclf,rdust, |
---|
[2907] | 1096 | & rice,nuice,riceco2, nuiceco2, |
---|
| 1097 | & qsurf_meshavg(:,igcm_co2), |
---|
[2826] | 1098 | & rstormdust,rtopdust,totstormfract, |
---|
[2628] | 1099 | & clearatm,dsords,dsotop, |
---|
| 1100 | & nohmons,clearsky,totcloudfrac) |
---|
[1711] | 1101 | clearsky = .false. ! just in case. |
---|
| 1102 | ! Sum the fluxes and heating rates from cloudy/clear |
---|
| 1103 | ! cases |
---|
| 1104 | DO ig=1,ngrid |
---|
[1973] | 1105 | tf_clf=totcloudfrac(ig) |
---|
| 1106 | ntf_clf=1.-tf_clf |
---|
[2900] | 1107 | DO islope=1,nslope |
---|
[3203] | 1108 | fluxsurf_lw(ig,islope) = ntf_clf*fluxsurf_lwclf(ig) |
---|
[2900] | 1109 | & + tf_clf*fluxsurf_lw(ig,islope) |
---|
[3203] | 1110 | fluxsurf_dn_sw(ig,1:2,islope) = |
---|
| 1111 | & ntf_clf*fluxsurf_dn_swclf(ig,1:2) |
---|
[2900] | 1112 | & + tf_clf*fluxsurf_dn_sw(ig,1:2,islope) |
---|
| 1113 | ENDDO |
---|
[3203] | 1114 | fluxsurf_up_sw(ig,1:2) = |
---|
| 1115 | & ntf_clf*fluxsurf_up_swclf(ig,1:2) |
---|
[2685] | 1116 | & + tf_clf*fluxsurf_up_sw(ig,1:2) |
---|
[3203] | 1117 | fluxtop_lw(ig) = ntf_clf*fluxtop_lwclf(ig) |
---|
[1973] | 1118 | & + tf_clf*fluxtop_lw(ig) |
---|
[3203] | 1119 | fluxtop_dn_sw(ig,1:2)=ntf_clf*fluxtop_dn_swclf(ig,1:2) |
---|
[2685] | 1120 | & + tf_clf*fluxtop_dn_sw(ig,1:2) |
---|
[3203] | 1121 | fluxtop_up_sw(ig,1:2)=ntf_clf*fluxtop_up_swclf(ig,1:2) |
---|
[2685] | 1122 | & + tf_clf*fluxtop_up_sw(ig,1:2) |
---|
[3203] | 1123 | taucloudtes(ig) = ntf_clf*taucloudtesclf(ig) |
---|
[1973] | 1124 | & + tf_clf*taucloudtes(ig) |
---|
[3203] | 1125 | zdtlw(ig,1:nlayer) = ntf_clf*zdtlwclf(ig,1:nlayer) |
---|
[1973] | 1126 | & + tf_clf*zdtlw(ig,1:nlayer) |
---|
[3203] | 1127 | zdtsw(ig,1:nlayer) = ntf_clf*zdtswclf(ig,1:nlayer) |
---|
[1973] | 1128 | & + tf_clf*zdtsw(ig,1:nlayer) |
---|
[1711] | 1129 | ENDDO |
---|
[42] | 1130 | |
---|
[1711] | 1131 | ENDIF ! (CLFvarying) |
---|
[3203] | 1132 | |
---|
[2265] | 1133 | !============================================================================ |
---|
[3203] | 1134 | |
---|
[1375] | 1135 | #ifdef DUSTSTORM |
---|
[1410] | 1136 | !! specific case: compute the added quantity of dust for perturbation |
---|
| 1137 | if (firstcall) then |
---|
[3203] | 1138 | pdq(1:ngrid,1:nlayer,igcm_dust_mass)= |
---|
| 1139 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
[1410] | 1140 | & - pq_tmp(1:ngrid,1:nlayer,1) |
---|
| 1141 | & + pq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 1142 | pdq(1:ngrid,1:nlayer,igcm_dust_number)= |
---|
| 1143 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 1144 | & - pq_tmp(1:ngrid,1:nlayer,2) |
---|
| 1145 | & + pq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 1146 | endif |
---|
[1375] | 1147 | #endif |
---|
| 1148 | |
---|
[234] | 1149 | c Outputs for basic check (middle of domain) |
---|
| 1150 | c ------------------------------------------ |
---|
[627] | 1151 | write(*,'("Ls =",f11.6," check lat =",f10.6, |
---|
| 1152 | & " lon =",f11.6)') |
---|
[1541] | 1153 | & zls*180./pi,latitude(igout)*180/pi, |
---|
| 1154 | & longitude(igout)*180/pi |
---|
[2281] | 1155 | |
---|
[2415] | 1156 | write(*,'(" tau_pref_gcm(",f4.0," Pa) =",f9.6, |
---|
[627] | 1157 | & " tau(",f4.0," Pa) =",f9.6)') |
---|
[2415] | 1158 | & odpref,tau_pref_gcm(igout), |
---|
[883] | 1159 | & odpref,tau(igout,1)*odpref/zplev(igout,1) |
---|
[2616] | 1160 | |
---|
| 1161 | |
---|
[234] | 1162 | c --------------------------------------------------------- |
---|
| 1163 | c Call slope parameterization for direct and scattered flux |
---|
| 1164 | c --------------------------------------------------------- |
---|
| 1165 | IF(callslope) THEN |
---|
[2900] | 1166 | ! assume that in this case, nslope = 1 |
---|
| 1167 | if(nslope.ne.1) then |
---|
| 1168 | call abort_physic( |
---|
| 1169 | & "physiq","callslope=true but nslope.ne.1",1) |
---|
| 1170 | endif |
---|
[3203] | 1171 | write(*,*) 'Slope scheme is on and computing...' |
---|
| 1172 | DO ig=1,ngrid |
---|
[234] | 1173 | sl_the = theta_sl(ig) |
---|
| 1174 | IF (sl_the .ne. 0.) THEN |
---|
[2942] | 1175 | ztim1=fluxsurf_dn_sw(ig,1,iflat) |
---|
| 1176 | & +fluxsurf_dn_sw(ig,2,iflat) |
---|
[234] | 1177 | DO l=1,2 |
---|
[1541] | 1178 | sl_lct = ptime*24. + 180.*longitude(ig)/pi/15. |
---|
[234] | 1179 | sl_ra = pi*(1.0-sl_lct/12.) |
---|
[1541] | 1180 | sl_lat = 180.*latitude(ig)/pi |
---|
[577] | 1181 | sl_tau = tau(ig,1) !il faudrait iaerdust(iaer) |
---|
[2942] | 1182 | sl_alb = albedo(ig,l,iflat) |
---|
[234] | 1183 | sl_psi = psi_sl(ig) |
---|
[2942] | 1184 | sl_fl0 = fluxsurf_dn_sw(ig,l,iflat) |
---|
[234] | 1185 | sl_di0 = 0. |
---|
[2879] | 1186 | if ((mu0(ig) .gt. 0.).and.(ztim1.gt.0.)) then |
---|
[3203] | 1187 | sl_di0 = mu0(ig)*(exp(-sl_tau/mu0(ig))) |
---|
[2678] | 1188 | sl_di0 = sl_di0*flux_1AU/dist_sol/dist_sol |
---|
[234] | 1189 | sl_di0 = sl_di0/ztim1 |
---|
[2942] | 1190 | sl_di0 = fluxsurf_dn_sw(ig,l,iflat)*sl_di0 |
---|
[234] | 1191 | endif |
---|
| 1192 | ! you never know (roundup concern...) |
---|
| 1193 | if (sl_fl0 .lt. sl_di0) sl_di0=sl_fl0 |
---|
| 1194 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[3203] | 1195 | CALL param_slope( mu0(ig), declin, sl_ra, sl_lat, |
---|
[234] | 1196 | & sl_tau, sl_alb, sl_the, sl_psi, |
---|
| 1197 | & sl_di0, sl_fl0, sl_flu ) |
---|
| 1198 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[2900] | 1199 | fluxsurf_dn_sw(ig,l,1) = sl_flu |
---|
[234] | 1200 | ENDDO |
---|
| 1201 | !!! compute correction on IR flux as well |
---|
| 1202 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
---|
[2900] | 1203 | fluxsurf_lw(ig,:)= fluxsurf_lw(ig,:)*sky |
---|
[234] | 1204 | ENDIF |
---|
| 1205 | ENDDO |
---|
[2942] | 1206 | ELSE ! not calling subslope, nslope might be > 1 |
---|
| 1207 | DO islope = 1,nslope |
---|
[3203] | 1208 | sl_the=abs(def_slope_mean(islope)) |
---|
[2942] | 1209 | IF (sl_the .gt. 1e-6) THEN |
---|
[2953] | 1210 | IF(def_slope_mean(islope).ge.0.) THEN |
---|
| 1211 | psi_sl(:) = 0. !Northward slope |
---|
| 1212 | ELSE |
---|
| 1213 | psi_sl(:) = 180. !Southward slope |
---|
| 1214 | ENDIF |
---|
[3203] | 1215 | DO ig=1,ngrid |
---|
[2942] | 1216 | ztim1=fluxsurf_dn_sw(ig,1,islope) |
---|
| 1217 | s +fluxsurf_dn_sw(ig,2,islope) |
---|
| 1218 | DO l=1,2 |
---|
| 1219 | sl_lct = ptime*24. + 180.*longitude(ig)/pi/15. |
---|
| 1220 | sl_ra = pi*(1.0-sl_lct/12.) |
---|
| 1221 | sl_lat = 180.*latitude(ig)/pi |
---|
| 1222 | sl_tau = tau(ig,1) !il faudrait iaerdust(iaer) |
---|
| 1223 | sl_alb = albedo(ig,l,islope) |
---|
| 1224 | sl_psi = psi_sl(ig) |
---|
| 1225 | sl_fl0 = fluxsurf_dn_sw(ig,l,islope) |
---|
| 1226 | sl_di0 = 0. |
---|
| 1227 | if (mu0(ig) .gt. 0.) then |
---|
[3203] | 1228 | sl_di0 = mu0(ig)*(exp(-sl_tau/mu0(ig))) |
---|
[2942] | 1229 | sl_di0 = sl_di0*flux_1AU/dist_sol/dist_sol |
---|
| 1230 | sl_di0 = sl_di0/ztim1 |
---|
| 1231 | sl_di0 = fluxsurf_dn_sw(ig,l,islope)*sl_di0 |
---|
| 1232 | endif |
---|
| 1233 | ! you never know (roundup concern...) |
---|
| 1234 | if (sl_fl0 .lt. sl_di0) sl_di0=sl_fl0 |
---|
| 1235 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[3203] | 1236 | CALL param_slope( mu0(ig), declin, sl_ra, sl_lat, |
---|
[2942] | 1237 | & sl_tau, sl_alb, sl_the, sl_psi, |
---|
| 1238 | & sl_di0, sl_fl0, sl_flu ) |
---|
| 1239 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 1240 | fluxsurf_dn_sw(ig,l,islope) = sl_flu |
---|
| 1241 | ENDDO |
---|
| 1242 | !!! compute correction on IR flux as well |
---|
| 1243 | |
---|
| 1244 | fluxsurf_lw(ig,islope)= fluxsurf_lw(ig,islope) |
---|
| 1245 | & *sky_slope(islope) |
---|
| 1246 | ENDDO |
---|
| 1247 | ENDIF ! sub grid is not flat |
---|
| 1248 | ENDDO ! islope = 1,nslope |
---|
[2900] | 1249 | ENDIF ! callslope |
---|
[234] | 1250 | |
---|
[42] | 1251 | c CO2 near infrared absorption |
---|
| 1252 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[286] | 1253 | zdtnirco2(:,:)=0 |
---|
[42] | 1254 | if (callnirco2) then |
---|
[883] | 1255 | call nirco2abs (ngrid,nlayer,zplay,dist_sol,nq,pq, |
---|
[42] | 1256 | . mu0,fract,declin, zdtnirco2) |
---|
| 1257 | endif |
---|
| 1258 | |
---|
| 1259 | c Radiative flux from the sky absorbed by the surface (W.m-2) |
---|
| 1260 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1261 | DO ig=1,ngrid |
---|
[2900] | 1262 | DO islope = 1,nslope |
---|
| 1263 | fluxrad_sky(ig,islope) = |
---|
| 1264 | $ emis(ig,islope)*fluxsurf_lw(ig,islope) |
---|
[3203] | 1265 | $ +fluxsurf_dn_sw(ig,1,islope)*(1.-albedo(ig,1,islope)) |
---|
[2900] | 1266 | $ +fluxsurf_dn_sw(ig,2,islope)*(1.-albedo(ig,2,islope)) |
---|
| 1267 | ENDDO |
---|
[42] | 1268 | ENDDO |
---|
| 1269 | |
---|
| 1270 | c Net atmospheric radiative heating rate (K.s-1) |
---|
| 1271 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1272 | IF(callnlte) THEN |
---|
[883] | 1273 | CALL blendrad(ngrid, nlayer, zplay, |
---|
[42] | 1274 | & zdtsw, zdtlw, zdtnirco2, zdtnlte, dtrad) |
---|
| 1275 | ELSE |
---|
| 1276 | DO l=1,nlayer |
---|
| 1277 | DO ig=1,ngrid |
---|
| 1278 | dtrad(ig,l)=zdtsw(ig,l)+zdtlw(ig,l) |
---|
| 1279 | & +zdtnirco2(ig,l) |
---|
| 1280 | ENDDO |
---|
| 1281 | ENDDO |
---|
| 1282 | ENDIF |
---|
| 1283 | |
---|
| 1284 | ENDIF ! of if(mod(icount-1,iradia).eq.0) |
---|
| 1285 | |
---|
| 1286 | c Transformation of the radiative tendencies: |
---|
| 1287 | c ------------------------------------------- |
---|
| 1288 | |
---|
| 1289 | c Net radiative surface flux (W.m-2) |
---|
| 1290 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2953] | 1291 | |
---|
[42] | 1292 | c |
---|
| 1293 | DO ig=1,ngrid |
---|
[2900] | 1294 | DO islope = 1,nslope |
---|
| 1295 | zplanck(ig)=tsurf(ig,islope)*tsurf(ig,islope) |
---|
| 1296 | zplanck(ig)=emis(ig,islope)* |
---|
[42] | 1297 | $ stephan*zplanck(ig)*zplanck(ig) |
---|
[2900] | 1298 | fluxrad(ig,islope)=fluxrad_sky(ig,islope)-zplanck(ig) |
---|
[234] | 1299 | IF(callslope) THEN |
---|
| 1300 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
---|
[2900] | 1301 | fluxrad(ig,nslope)=fluxrad(ig,nslope)+ |
---|
| 1302 | $ (1.-sky)*zplanck(ig) |
---|
[3203] | 1303 | ELSE |
---|
[2900] | 1304 | fluxrad(ig,islope)=fluxrad(ig,islope) + |
---|
| 1305 | $ (1.-sky_slope(iflat))*emis(ig,iflat)* |
---|
[3203] | 1306 | $ stephan*tsurf(ig,iflat)**4 |
---|
[234] | 1307 | ENDIF |
---|
[42] | 1308 | ENDDO |
---|
[2900] | 1309 | ENDDO |
---|
[42] | 1310 | |
---|
| 1311 | DO l=1,nlayer |
---|
| 1312 | DO ig=1,ngrid |
---|
| 1313 | pdt(ig,l)=pdt(ig,l)+dtrad(ig,l) |
---|
| 1314 | ENDDO |
---|
| 1315 | ENDDO |
---|
| 1316 | |
---|
| 1317 | ENDIF ! of IF (callrad) |
---|
| 1318 | |
---|
[2199] | 1319 | c 3.1 Rocket dust storm |
---|
[1974] | 1320 | c ------------------------------------------- |
---|
| 1321 | IF (rdstorm) THEN |
---|
| 1322 | clearatm=.false. |
---|
| 1323 | pdqrds(:,:,:)=0. |
---|
| 1324 | qdusttotal0(:)=0. |
---|
| 1325 | qdusttotal1(:)=0. |
---|
| 1326 | do ig=1,ngrid |
---|
| 1327 | do l=1,nlayer |
---|
| 1328 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) ! updated potential |
---|
| 1329 | ! temperature tendency |
---|
| 1330 | ! for diagnostics |
---|
[2934] | 1331 | ! qdustrds0(ig,l)=pq(ig,l,igcm_dust_mass)+ |
---|
| 1332 | ! & pdq(ig,l,igcm_dust_mass)*ptimestep |
---|
| 1333 | ! qstormrds0(ig,l)=pq(ig,l,igcm_stormdust_mass)+ |
---|
| 1334 | ! & pdq(ig,l,igcm_stormdust_mass)*ptimestep |
---|
| 1335 | ! qdusttotal0(ig)=qdusttotal0(ig)+(qdustrds0(ig,l)+ |
---|
| 1336 | ! & qstormrds0(ig,l))*(zplev(ig,l)- |
---|
| 1337 | ! & zplev(ig,l+1))/g |
---|
[1974] | 1338 | enddo |
---|
| 1339 | enddo |
---|
[2934] | 1340 | ! call write_output('qdustrds0','qdust before rds', |
---|
| 1341 | ! & 'kg/kg ',qdustrds0(:,:)) |
---|
| 1342 | ! call write_output('qstormrds0','qstorm before rds', |
---|
| 1343 | ! & 'kg/kg ',qstormrds0(:,:)) |
---|
[1974] | 1344 | |
---|
| 1345 | CALL rocketduststorm(ngrid,nlayer,nq,ptime,ptimestep, |
---|
| 1346 | & pq,pdq,pt,pdt,zplev,zplay,zzlev, |
---|
| 1347 | & zzlay,zdtsw,zdtlw, |
---|
| 1348 | c for radiative transfer |
---|
| 1349 | & clearatm,icount,zday,zls, |
---|
[2953] | 1350 | & tsurf_meshavg,qsurf_meshavg(:,igcm_co2), |
---|
| 1351 | & igout,totstormfract,tauscaling, |
---|
[2826] | 1352 | & dust_rad_adjust,IRtoVIScoef, |
---|
[2953] | 1353 | & albedo_meshavg,emis_meshavg, |
---|
[1974] | 1354 | c input sub-grid scale cloud |
---|
| 1355 | & clearsky,totcloudfrac, |
---|
[2199] | 1356 | c input sub-grid scale topography |
---|
[2628] | 1357 | & nohmons, |
---|
[1974] | 1358 | c output |
---|
[2246] | 1359 | & pdqrds,wspeed,dsodust,dsords,dsotop, |
---|
[2415] | 1360 | & tau_pref_scenario,tau_pref_gcm) |
---|
[3203] | 1361 | |
---|
[1974] | 1362 | c update the tendencies of both dust after vertical transport |
---|
| 1363 | DO l=1,nlayer |
---|
| 1364 | DO ig=1,ngrid |
---|
| 1365 | pdq(ig,l,igcm_stormdust_mass)= |
---|
[3203] | 1366 | & pdq(ig,l,igcm_stormdust_mass)+ |
---|
[1974] | 1367 | & pdqrds(ig,l,igcm_stormdust_mass) |
---|
| 1368 | pdq(ig,l,igcm_stormdust_number)= |
---|
| 1369 | & pdq(ig,l,igcm_stormdust_number)+ |
---|
| 1370 | & pdqrds(ig,l,igcm_stormdust_number) |
---|
| 1371 | |
---|
| 1372 | pdq(ig,l,igcm_dust_mass)= |
---|
| 1373 | & pdq(ig,l,igcm_dust_mass)+ pdqrds(ig,l,igcm_dust_mass) |
---|
| 1374 | pdq(ig,l,igcm_dust_number)= |
---|
[3203] | 1375 | & pdq(ig,l,igcm_dust_number)+ |
---|
[1974] | 1376 | & pdqrds(ig,l,igcm_dust_number) |
---|
| 1377 | |
---|
| 1378 | ENDDO |
---|
| 1379 | ENDDO |
---|
| 1380 | do l=1,nlayer |
---|
| 1381 | do ig=1,ngrid |
---|
| 1382 | qdustrds1(ig,l)=pq(ig,l,igcm_dust_mass)+ |
---|
| 1383 | & pdq(ig,l,igcm_dust_mass)*ptimestep |
---|
| 1384 | qstormrds1(ig,l)=pq(ig,l,igcm_stormdust_mass)+ |
---|
| 1385 | & pdq(ig,l,igcm_stormdust_mass)*ptimestep |
---|
| 1386 | qdusttotal1(ig)=qdusttotal1(ig)+(qdustrds1(ig,l)+ |
---|
| 1387 | & qstormrds1(ig,l))*(zplev(ig,l)- |
---|
| 1388 | & zplev(ig,l+1))/g |
---|
| 1389 | enddo |
---|
| 1390 | enddo |
---|
| 1391 | |
---|
| 1392 | c for diagnostics |
---|
[2934] | 1393 | ! call write_output('qdustrds1','qdust after rds', |
---|
| 1394 | ! & 'kg/kg ',qdustrds1(:,:)) |
---|
| 1395 | ! call write_output('qstormrds1','qstorm after rds', |
---|
| 1396 | ! & 'kg/kg ',qstormrds1(:,:)) |
---|
[3203] | 1397 | ! |
---|
[2934] | 1398 | ! call write_output('qdusttotal0','q sum before rds', |
---|
| 1399 | ! & 'kg/m2 ',qdusttotal0(:)) |
---|
| 1400 | ! call write_output('qdusttotal1','q sum after rds', |
---|
| 1401 | ! & 'kg/m2 ',qdusttotal1(:)) |
---|
[1974] | 1402 | |
---|
| 1403 | ENDIF ! end of if(rdstorm) |
---|
| 1404 | |
---|
[2199] | 1405 | c 3.2 Dust entrained from the PBL up to the top of sub-grid scale topography |
---|
| 1406 | c ------------------------------------------- |
---|
[2628] | 1407 | IF (topflows) THEN |
---|
[2362] | 1408 | clearatm=.true. ! stormdust is not accounted in the extra heating on top of the mountains |
---|
[2199] | 1409 | nohmons=.false. |
---|
[2362] | 1410 | pdqtop(:,:,:)=0. |
---|
[2199] | 1411 | CALL topmons(ngrid,nlayer,nq,ptime,ptimestep, |
---|
| 1412 | & pq,pdq,pt,pdt,zplev,zplay,zzlev, |
---|
| 1413 | & zzlay,zdtsw,zdtlw, |
---|
[2900] | 1414 | & icount,zday,zls,tsurf(:,iflat), |
---|
[3203] | 1415 | & qsurf_meshavg(:,igcm_co2), |
---|
[2826] | 1416 | & igout,aerosol,tauscaling,dust_rad_adjust, |
---|
[2953] | 1417 | & IRtoVIScoef,albedo_meshavg,emis_meshavg, |
---|
| 1418 | & totstormfract,clearatm, |
---|
[2199] | 1419 | & clearsky,totcloudfrac, |
---|
[2628] | 1420 | & nohmons, |
---|
[2246] | 1421 | & pdqtop,wtop,dsodust,dsords,dsotop, |
---|
[2415] | 1422 | & tau_pref_scenario,tau_pref_gcm) |
---|
[3203] | 1423 | |
---|
[2199] | 1424 | c update the tendencies of both dust after vertical transport |
---|
| 1425 | DO l=1,nlayer |
---|
| 1426 | DO ig=1,ngrid |
---|
| 1427 | pdq(ig,l,igcm_topdust_mass)= |
---|
| 1428 | & pdq(ig,l,igcm_topdust_mass)+ |
---|
| 1429 | & pdqtop(ig,l,igcm_topdust_mass) |
---|
| 1430 | pdq(ig,l,igcm_topdust_number)= |
---|
| 1431 | & pdq(ig,l,igcm_topdust_number)+ |
---|
| 1432 | & pdqtop(ig,l,igcm_topdust_number) |
---|
| 1433 | pdq(ig,l,igcm_dust_mass)= |
---|
| 1434 | & pdq(ig,l,igcm_dust_mass)+ pdqtop(ig,l,igcm_dust_mass) |
---|
| 1435 | pdq(ig,l,igcm_dust_number)= |
---|
| 1436 | & pdq(ig,l,igcm_dust_number)+pdqtop(ig,l,igcm_dust_number) |
---|
| 1437 | |
---|
| 1438 | ENDDO |
---|
| 1439 | ENDDO |
---|
| 1440 | |
---|
[2628] | 1441 | ENDIF ! end of if (topflows) |
---|
[2199] | 1442 | |
---|
| 1443 | c 3.3 Dust injection from the surface |
---|
| 1444 | c ------------------------------------------- |
---|
| 1445 | if (dustinjection.gt.0) then |
---|
[2281] | 1446 | |
---|
[2199] | 1447 | CALL compute_dtau(ngrid,nlayer, |
---|
[3203] | 1448 | & zday,pplev,tau_pref_gcm, |
---|
| 1449 | & ptimestep,local_time,IRtoVIScoef, |
---|
[2643] | 1450 | & dustliftday) |
---|
[2199] | 1451 | endif ! end of if (dustinjection.gt.0) |
---|
| 1452 | |
---|
[226] | 1453 | c----------------------------------------------------------------------- |
---|
[1974] | 1454 | c 4. Gravity wave and subgrid scale topography drag : |
---|
[226] | 1455 | c ------------------------------------------------- |
---|
[42] | 1456 | |
---|
[226] | 1457 | |
---|
| 1458 | IF(calllott)THEN |
---|
| 1459 | CALL calldrag_noro(ngrid,nlayer,ptimestep, |
---|
[883] | 1460 | & zplay,zplev,pt,pu,pv,zdtgw,zdugw,zdvgw) |
---|
[2362] | 1461 | |
---|
[226] | 1462 | DO l=1,nlayer |
---|
| 1463 | DO ig=1,ngrid |
---|
| 1464 | pdv(ig,l)=pdv(ig,l)+zdvgw(ig,l) |
---|
| 1465 | pdu(ig,l)=pdu(ig,l)+zdugw(ig,l) |
---|
| 1466 | pdt(ig,l)=pdt(ig,l)+zdtgw(ig,l) |
---|
| 1467 | ENDDO |
---|
| 1468 | ENDDO |
---|
| 1469 | ENDIF |
---|
[234] | 1470 | |
---|
[42] | 1471 | c----------------------------------------------------------------------- |
---|
[1974] | 1472 | c 5. Vertical diffusion (turbulent mixing): |
---|
[42] | 1473 | c ----------------------------------------- |
---|
[226] | 1474 | |
---|
[42] | 1475 | IF (calldifv) THEN |
---|
| 1476 | DO ig=1,ngrid |
---|
[2900] | 1477 | DO islope = 1,nslope |
---|
| 1478 | zflubid(ig,islope)=fluxrad(ig,islope) |
---|
| 1479 | & +fluxgrd(ig,islope) |
---|
| 1480 | ENDDO |
---|
[42] | 1481 | ENDDO |
---|
[286] | 1482 | zdum1(:,:)=0 |
---|
| 1483 | zdum2(:,:)=0 |
---|
[42] | 1484 | do l=1,nlayer |
---|
| 1485 | do ig=1,ngrid |
---|
| 1486 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
---|
| 1487 | enddo |
---|
| 1488 | enddo |
---|
[226] | 1489 | |
---|
[288] | 1490 | c ---------------------- |
---|
[284] | 1491 | c Treatment of a special case : using new surface layer (Richardson based) |
---|
| 1492 | c without using the thermals in gcm and mesoscale can yield problems in |
---|
| 1493 | c weakly unstable situations when winds are near to 0. For those cases, we add |
---|
[3203] | 1494 | c a unit subgrid gustiness. Remember that thermals should be used we using the |
---|
[284] | 1495 | c Richardson based surface layer model. |
---|
[3203] | 1496 | IF ( .not.calltherm |
---|
| 1497 | . .and. callrichsl |
---|
[1236] | 1498 | . .and. .not.turb_resolved) THEN |
---|
[2616] | 1499 | |
---|
[1047] | 1500 | DO ig=1, ngrid |
---|
[2908] | 1501 | IF (zh(ig,1) .lt. tsurf_meshavg(ig)) THEN |
---|
[528] | 1502 | wstar(ig)=1. |
---|
| 1503 | hfmax_th(ig)=0.2 |
---|
| 1504 | ELSE |
---|
| 1505 | wstar(ig)=0. |
---|
| 1506 | hfmax_th(ig)=0. |
---|
[3203] | 1507 | ENDIF |
---|
[284] | 1508 | ENDDO |
---|
| 1509 | ENDIF |
---|
[2953] | 1510 | |
---|
[288] | 1511 | c ---------------------- |
---|
[284] | 1512 | |
---|
[544] | 1513 | IF (tke_heat_flux .ne. 0.) THEN |
---|
[2616] | 1514 | |
---|
[544] | 1515 | zz1(:)=(pt(:,1)+pdt(:,1)*ptimestep)*(r/g)* |
---|
[883] | 1516 | & (-alog(zplay(:,1)/zplev(:,1))) |
---|
[544] | 1517 | pdt(:,1)=pdt(:,1) + (tke_heat_flux/zz1(:))*zpopsk(:,1) |
---|
| 1518 | ENDIF |
---|
[2312] | 1519 | |
---|
[42] | 1520 | c Calling vdif (Martian version WITH CO2 condensation) |
---|
[2900] | 1521 | dwatercap_dif(:,:) = 0. |
---|
[3115] | 1522 | CALL vdifc(ngrid,nlayer,nsoilmx,nq,nqsoil,zpopsk, |
---|
[3468] | 1523 | $ ptimestep,capcal, |
---|
[883] | 1524 | $ zplay,zplev,zzlay,zzlev,z0, |
---|
[3230] | 1525 | $ pu,pv,zh,pq,tsurf,tsoil,emis,qsurf, |
---|
| 1526 | $ qsoil,pore_icefraction, |
---|
[42] | 1527 | $ zdum1,zdum2,zdh,pdq,zflubid, |
---|
| 1528 | $ zdudif,zdvdif,zdhdif,zdtsdif,q2, |
---|
[3203] | 1529 | & zdqdif,zdqsdif,wstar,hfmax_th, |
---|
[1996] | 1530 | & zcondicea_co2microp,sensibFlux, |
---|
[3115] | 1531 | & dustliftday,local_time,watercap,dwatercap_dif) |
---|
[2896] | 1532 | |
---|
[1236] | 1533 | DO ig=1,ngrid |
---|
[2900] | 1534 | zdtsurf(ig,:)=zdtsurf(ig,:)+zdtsdif(ig,:) |
---|
| 1535 | dwatercap(ig,:)=dwatercap(ig,:)+dwatercap_dif(ig,:) |
---|
[1236] | 1536 | ENDDO |
---|
[2963] | 1537 | |
---|
[2907] | 1538 | call compute_meshgridavg(ngrid,nq,albedo,emis,tsurf,zdqsdif, |
---|
| 1539 | & albedo_meshavg,emis_meshavg,tsurf_meshavg,zdqsdif_meshavg_tmp) |
---|
[1236] | 1540 | IF (.not.turb_resolved) THEN |
---|
| 1541 | DO l=1,nlayer |
---|
[42] | 1542 | DO ig=1,ngrid |
---|
| 1543 | pdv(ig,l)=pdv(ig,l)+zdvdif(ig,l) |
---|
| 1544 | pdu(ig,l)=pdu(ig,l)+zdudif(ig,l) |
---|
| 1545 | pdt(ig,l)=pdt(ig,l)+zdhdif(ig,l)*zpopsk(ig,l) |
---|
| 1546 | |
---|
| 1547 | zdtdif(ig,l)=zdhdif(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
| 1548 | ENDDO |
---|
[226] | 1549 | ENDDO |
---|
[2312] | 1550 | |
---|
[42] | 1551 | DO iq=1, nq |
---|
| 1552 | DO l=1,nlayer |
---|
| 1553 | DO ig=1,ngrid |
---|
[2362] | 1554 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
---|
[42] | 1555 | ENDDO |
---|
| 1556 | ENDDO |
---|
| 1557 | ENDDO |
---|
| 1558 | DO iq=1, nq |
---|
| 1559 | DO ig=1,ngrid |
---|
[2900] | 1560 | dqsurf(ig,iq,:)=dqsurf(ig,iq,:) + zdqsdif(ig,iq,:) |
---|
[42] | 1561 | ENDDO |
---|
| 1562 | ENDDO |
---|
[2823] | 1563 | |
---|
[1242] | 1564 | ELSE |
---|
| 1565 | write (*,*) '******************************************' |
---|
| 1566 | write (*,*) '** LES mode: the difv part is only used to' |
---|
| 1567 | write (*,*) '** - provide HFX and UST to the dynamics' |
---|
| 1568 | write (*,*) '** - update TSURF' |
---|
| 1569 | write (*,*) '******************************************' |
---|
| 1570 | !! Specific treatment for lifting in turbulent-resolving mode (AC) |
---|
| 1571 | IF (lifting .and. doubleq) THEN |
---|
[3203] | 1572 | !! lifted dust is injected in the first layer. |
---|
| 1573 | !! Sedimentation must be called after turbulent mixing, i.e. on next step, after WRF. |
---|
[1242] | 1574 | !! => lifted dust is not incremented before the sedimentation step. |
---|
| 1575 | zdqdif(1:ngrid,1,1:nq)=0. |
---|
[3203] | 1576 | zdqdif(1:ngrid,1,igcm_dust_number) = |
---|
[2907] | 1577 | . -zdqsdif_meshavg_tmp(1:ngrid,igcm_dust_number) |
---|
[3203] | 1578 | zdqdif(1:ngrid,1,igcm_dust_mass) = |
---|
[2907] | 1579 | . -zdqsdif_meshavg_tmp(1:ngrid,igcm_dust_mass) |
---|
[1266] | 1580 | zdqdif(1:ngrid,2:nlayer,1:nq) = 0. |
---|
[1242] | 1581 | DO iq=1, nq |
---|
[1974] | 1582 | IF ((iq .ne. igcm_dust_mass) |
---|
| 1583 | & .and. (iq .ne. igcm_dust_number)) THEN |
---|
[2900] | 1584 | zdqsdif(:,iq,:)=0. |
---|
[1974] | 1585 | ENDIF |
---|
[1242] | 1586 | ENDDO |
---|
| 1587 | ELSE |
---|
| 1588 | zdqdif(1:ngrid,1:nlayer,1:nq) = 0. |
---|
[2900] | 1589 | zdqsdif(1:ngrid,1:nq,1:nslope) = 0. |
---|
[1242] | 1590 | ENDIF |
---|
[790] | 1591 | ENDIF |
---|
[3203] | 1592 | ELSE |
---|
[42] | 1593 | DO ig=1,ngrid |
---|
[2900] | 1594 | DO islope=1,nslope |
---|
| 1595 | zdtsurf(ig,islope)=zdtsurf(ig,islope)+ |
---|
| 1596 | s (fluxrad(ig,islope)+fluxgrd(ig,islope))/capcal(ig,islope) |
---|
| 1597 | ENDDO |
---|
[42] | 1598 | ENDDO |
---|
[2963] | 1599 | |
---|
[1236] | 1600 | IF (turb_resolved) THEN |
---|
[3203] | 1601 | write(*,*) 'Turbulent-resolving mode !' |
---|
[42] | 1602 | write(*,*) 'Please set calldifv to T in callphys.def' |
---|
[2214] | 1603 | call abort_physic("physiq","turbulent-resolving mode",1) |
---|
[42] | 1604 | ENDIF |
---|
| 1605 | ENDIF ! of IF (calldifv) |
---|
| 1606 | |
---|
[162] | 1607 | c----------------------------------------------------------------------- |
---|
[1974] | 1608 | c 6. Thermals : |
---|
[162] | 1609 | c ----------------------------- |
---|
[566] | 1610 | |
---|
[1236] | 1611 | if(calltherm .and. .not.turb_resolved) then |
---|
[2362] | 1612 | |
---|
[2823] | 1613 | call calltherm_interface(ngrid,nlayer,nq,igcm_co2, |
---|
[652] | 1614 | $ zzlev,zzlay, |
---|
[162] | 1615 | $ ptimestep,pu,pv,pt,pq,pdu,pdv,pdt,pdq,q2, |
---|
[883] | 1616 | $ zplay,zplev,pphi,zpopsk, |
---|
[185] | 1617 | $ pdu_th,pdv_th,pdt_th,pdq_th,lmax_th,zmax_th, |
---|
[660] | 1618 | $ dtke_th,zdhdif,hfmax_th,wstar,sensibFlux) |
---|
[3203] | 1619 | |
---|
[162] | 1620 | DO l=1,nlayer |
---|
| 1621 | DO ig=1,ngrid |
---|
| 1622 | pdu(ig,l)=pdu(ig,l)+pdu_th(ig,l) |
---|
| 1623 | pdv(ig,l)=pdv(ig,l)+pdv_th(ig,l) |
---|
| 1624 | pdt(ig,l)=pdt(ig,l)+pdt_th(ig,l) |
---|
| 1625 | q2(ig,l)=q2(ig,l)+dtke_th(ig,l)*ptimestep |
---|
| 1626 | ENDDO |
---|
| 1627 | ENDDO |
---|
[2362] | 1628 | |
---|
[162] | 1629 | DO ig=1,ngrid |
---|
| 1630 | q2(ig,nlayer+1)=q2(ig,nlayer+1)+dtke_th(ig,nlayer+1)*ptimestep |
---|
[2362] | 1631 | ENDDO |
---|
[2312] | 1632 | |
---|
[162] | 1633 | DO iq=1,nq |
---|
| 1634 | DO l=1,nlayer |
---|
| 1635 | DO ig=1,ngrid |
---|
| 1636 | pdq(ig,l,iq)=pdq(ig,l,iq)+pdq_th(ig,l,iq) |
---|
| 1637 | ENDDO |
---|
| 1638 | ENDDO |
---|
| 1639 | ENDDO |
---|
[42] | 1640 | |
---|
[277] | 1641 | lmax_th_out(:)=real(lmax_th(:)) |
---|
| 1642 | |
---|
[1236] | 1643 | else !of if calltherm |
---|
[162] | 1644 | lmax_th(:)=0 |
---|
[528] | 1645 | wstar(:)=0. |
---|
| 1646 | hfmax_th(:)=0. |
---|
[277] | 1647 | lmax_th_out(:)=0. |
---|
[1236] | 1648 | end if |
---|
[2312] | 1649 | |
---|
[42] | 1650 | c----------------------------------------------------------------------- |
---|
[1974] | 1651 | c 7. Dry convective adjustment: |
---|
[42] | 1652 | c ----------------------------- |
---|
| 1653 | |
---|
| 1654 | IF(calladj) THEN |
---|
| 1655 | |
---|
| 1656 | DO l=1,nlayer |
---|
| 1657 | DO ig=1,ngrid |
---|
| 1658 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
---|
| 1659 | ENDDO |
---|
| 1660 | ENDDO |
---|
[286] | 1661 | zduadj(:,:)=0 |
---|
| 1662 | zdvadj(:,:)=0 |
---|
| 1663 | zdhadj(:,:)=0 |
---|
[42] | 1664 | |
---|
| 1665 | CALL convadj(ngrid,nlayer,nq,ptimestep, |
---|
[883] | 1666 | $ zplay,zplev,zpopsk,lmax_th, |
---|
[42] | 1667 | $ pu,pv,zh,pq, |
---|
| 1668 | $ pdu,pdv,zdh,pdq, |
---|
| 1669 | $ zduadj,zdvadj,zdhadj, |
---|
| 1670 | $ zdqadj) |
---|
| 1671 | |
---|
| 1672 | DO l=1,nlayer |
---|
| 1673 | DO ig=1,ngrid |
---|
| 1674 | pdu(ig,l)=pdu(ig,l)+zduadj(ig,l) |
---|
| 1675 | pdv(ig,l)=pdv(ig,l)+zdvadj(ig,l) |
---|
| 1676 | pdt(ig,l)=pdt(ig,l)+zdhadj(ig,l)*zpopsk(ig,l) |
---|
| 1677 | |
---|
| 1678 | zdtadj(ig,l)=zdhadj(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
| 1679 | ENDDO |
---|
| 1680 | ENDDO |
---|
| 1681 | |
---|
| 1682 | DO iq=1, nq |
---|
| 1683 | DO l=1,nlayer |
---|
| 1684 | DO ig=1,ngrid |
---|
[3203] | 1685 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqadj(ig,l,iq) |
---|
[42] | 1686 | ENDDO |
---|
| 1687 | ENDDO |
---|
| 1688 | ENDDO |
---|
| 1689 | ENDIF ! of IF(calladj) |
---|
| 1690 | |
---|
[2149] | 1691 | c----------------------------------------------------- |
---|
| 1692 | c 8. Non orographic Gravity waves : |
---|
| 1693 | c ------------------------------------------------- |
---|
[42] | 1694 | |
---|
[2149] | 1695 | IF (calllott_nonoro) THEN |
---|
| 1696 | |
---|
[2594] | 1697 | CALL nonoro_gwd_ran(ngrid,nlayer,ptimestep, |
---|
| 1698 | & cpnew,rnew, |
---|
| 1699 | & zplay, |
---|
[2149] | 1700 | & zmax_th, ! max altitude reached by thermals (m) |
---|
| 1701 | & pt, pu, pv, |
---|
| 1702 | & pdt, pdu, pdv, |
---|
| 1703 | & zustrhi,zvstrhi, |
---|
[2225] | 1704 | & d_t_hin, d_u_hin, d_v_hin) |
---|
[3144] | 1705 | IF (calljliu_gwimix) THEN |
---|
| 1706 | CALL nonoro_gwd_mix(ngrid,nlayer,ptimestep, |
---|
[3203] | 1707 | & nq,cpnew, rnew, |
---|
| 1708 | & zplay, |
---|
| 1709 | & zmax_th, |
---|
[3393] | 1710 | & pt, pu, pv, pq, zh, |
---|
[3144] | 1711 | !loss, chemical reaction loss rates |
---|
[3393] | 1712 | & pdt, pdu, pdv, pdq, zdh, |
---|
[3144] | 1713 | ! zustrhi,zvstrhi, |
---|
| 1714 | & zdq_mix, d_t_mix, d_u_mix, d_v_mix) |
---|
| 1715 | ENDIF |
---|
[2149] | 1716 | |
---|
| 1717 | ! Update tendencies |
---|
| 1718 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer) |
---|
| 1719 | & +d_t_hin(1:ngrid,1:nlayer) |
---|
| 1720 | pdu(1:ngrid,1:nlayer)=pdu(1:ngrid,1:nlayer) |
---|
[3203] | 1721 | & +d_u_hin(1:ngrid,1:nlayer) |
---|
[2149] | 1722 | pdv(1:ngrid,1:nlayer)=pdv(1:ngrid,1:nlayer) |
---|
| 1723 | & +d_v_hin(1:ngrid,1:nlayer) |
---|
[3144] | 1724 | ! Update tendencies of gw mixing |
---|
| 1725 | IF (calljliu_gwimix) THEN |
---|
| 1726 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer) |
---|
| 1727 | & +d_t_mix(1:ngrid,1:nlayer) |
---|
| 1728 | pdu(1:ngrid,1:nlayer)=pdu(1:ngrid,1:nlayer) |
---|
[3203] | 1729 | & +d_u_mix(1:ngrid,1:nlayer) |
---|
[3144] | 1730 | pdv(1:ngrid,1:nlayer)=pdv(1:ngrid,1:nlayer) |
---|
| 1731 | & +d_v_mix(1:ngrid,1:nlayer) |
---|
| 1732 | pdq(1:ngrid,1:nlayer,1:nq)=pdq(1:ngrid,1:nlayer,1:nq) |
---|
| 1733 | & +zdq_mix(1:ngrid,1:nlayer,1:nq) |
---|
| 1734 | ENDIF |
---|
[2149] | 1735 | |
---|
[3144] | 1736 | |
---|
[2149] | 1737 | ENDIF ! of IF (calllott_nonoro) |
---|
| 1738 | |
---|
[42] | 1739 | c----------------------------------------------------------------------- |
---|
[3203] | 1740 | c 9. Specific parameterizations for tracers |
---|
[42] | 1741 | c: ----------------------------------------- |
---|
| 1742 | |
---|
| 1743 | |
---|
[2149] | 1744 | c 9a. Water and ice |
---|
[42] | 1745 | c --------------- |
---|
| 1746 | |
---|
| 1747 | c --------------------------------------- |
---|
| 1748 | c Water ice condensation in the atmosphere |
---|
| 1749 | c ---------------------------------------- |
---|
| 1750 | IF (water) THEN |
---|
| 1751 | |
---|
| 1752 | call watercloud(ngrid,nlayer,ptimestep, |
---|
[883] | 1753 | & zplev,zplay,pdpsrf,zzlay, pt,pdt, |
---|
[626] | 1754 | & pq,pdq,zdqcloud,zdtcloud, |
---|
[358] | 1755 | & nq,tau,tauscaling,rdust,rice,nuice, |
---|
[1711] | 1756 | & rsedcloud,rhocloud,totcloudfrac) |
---|
[633] | 1757 | c Temperature variation due to latent heat release |
---|
[42] | 1758 | if (activice) then |
---|
[2362] | 1759 | pdt(1:ngrid,1:nlayer) = |
---|
| 1760 | & pdt(1:ngrid,1:nlayer) + |
---|
[633] | 1761 | & zdtcloud(1:ngrid,1:nlayer) |
---|
[42] | 1762 | endif |
---|
[2312] | 1763 | |
---|
[42] | 1764 | ! increment water vapour and ice atmospheric tracers tendencies |
---|
[3203] | 1765 | pdq(1:ngrid,1:nlayer,igcm_h2o_vap) = |
---|
| 1766 | & pdq(1:ngrid,1:nlayer,igcm_h2o_vap) + |
---|
[706] | 1767 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_vap) |
---|
[3203] | 1768 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = |
---|
| 1769 | & pdq(1:ngrid,1:nlayer,igcm_h2o_ice) + |
---|
[706] | 1770 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 1771 | |
---|
[2312] | 1772 | if (hdo) then |
---|
| 1773 | ! increment HDO vapour and ice atmospheric tracers tendencies |
---|
[2362] | 1774 | pdq(1:ngrid,1:nlayer,igcm_hdo_vap) = |
---|
| 1775 | & pdq(1:ngrid,1:nlayer,igcm_hdo_vap) + |
---|
[2312] | 1776 | & zdqcloud(1:ngrid,1:nlayer,igcm_hdo_vap) |
---|
[2362] | 1777 | pdq(1:ngrid,1:nlayer,igcm_hdo_ice) = |
---|
| 1778 | & pdq(1:ngrid,1:nlayer,igcm_hdo_ice) + |
---|
[2312] | 1779 | & zdqcloud(1:ngrid,1:nlayer,igcm_hdo_ice) |
---|
| 1780 | endif !hdo |
---|
| 1781 | |
---|
[706] | 1782 | ! increment dust and ccn masses and numbers |
---|
[883] | 1783 | ! We need to check that we have Nccn & Ndust > 0 |
---|
| 1784 | ! This is due to single precision rounding problems |
---|
[706] | 1785 | if (microphys) then |
---|
[3203] | 1786 | pdq(1:ngrid,1:nlayer,igcm_ccn_mass) = |
---|
| 1787 | & pdq(1:ngrid,1:nlayer,igcm_ccn_mass) + |
---|
[706] | 1788 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_mass) |
---|
[3203] | 1789 | pdq(1:ngrid,1:nlayer,igcm_ccn_number) = |
---|
| 1790 | & pdq(1:ngrid,1:nlayer,igcm_ccn_number) + |
---|
[706] | 1791 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_number) |
---|
[3203] | 1792 | where (pq(:,:,igcm_ccn_mass) + |
---|
[883] | 1793 | & ptimestep*pdq(:,:,igcm_ccn_mass) < 0.) |
---|
[3203] | 1794 | pdq(:,:,igcm_ccn_mass) = |
---|
[883] | 1795 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1796 | pdq(:,:,igcm_ccn_number) = |
---|
[883] | 1797 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
| 1798 | end where |
---|
[3203] | 1799 | where (pq(:,:,igcm_ccn_number) + |
---|
[883] | 1800 | & ptimestep*pdq(:,:,igcm_ccn_number) < 0.) |
---|
[3203] | 1801 | pdq(:,:,igcm_ccn_mass) = |
---|
[883] | 1802 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1803 | pdq(:,:,igcm_ccn_number) = |
---|
[883] | 1804 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
| 1805 | end where |
---|
[706] | 1806 | endif |
---|
| 1807 | |
---|
[883] | 1808 | if (scavenging) then |
---|
[3203] | 1809 | pdq(1:ngrid,1:nlayer,igcm_dust_mass) = |
---|
| 1810 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) + |
---|
[883] | 1811 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
[3203] | 1812 | pdq(1:ngrid,1:nlayer,igcm_dust_number) = |
---|
| 1813 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) + |
---|
[883] | 1814 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_number) |
---|
[3203] | 1815 | where (pq(:,:,igcm_dust_mass) + |
---|
[883] | 1816 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
---|
[3203] | 1817 | pdq(:,:,igcm_dust_mass) = |
---|
[883] | 1818 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1819 | pdq(:,:,igcm_dust_number) = |
---|
[883] | 1820 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 1821 | end where |
---|
[3203] | 1822 | where (pq(:,:,igcm_dust_number) + |
---|
[883] | 1823 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
---|
[3203] | 1824 | pdq(:,:,igcm_dust_mass) = |
---|
[883] | 1825 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1826 | pdq(:,:,igcm_dust_number) = |
---|
[883] | 1827 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 1828 | end where |
---|
| 1829 | endif ! of if scavenging |
---|
[3203] | 1830 | |
---|
[42] | 1831 | END IF ! of IF (water) |
---|
| 1832 | |
---|
[2149] | 1833 | c 9a bis. CO2 clouds (CL & JA) |
---|
[1617] | 1834 | c --------------------------------------- |
---|
| 1835 | c CO2 ice cloud condensation in the atmosphere |
---|
| 1836 | c ---------------------------------------- |
---|
[1818] | 1837 | c flag needed in callphys.def: |
---|
| 1838 | c co2clouds=.true. is mandatory (default is .false.) |
---|
[3203] | 1839 | c co2useh2o=.true. if you want to allow co2 condensation |
---|
| 1840 | c on water ice particles |
---|
[1818] | 1841 | c meteo_flux=.true. if you want to add a meteoritic |
---|
| 1842 | c supply of CCN |
---|
| 1843 | c CLFvaryingCO2=.true. if you want to have a sub-grid |
---|
[3203] | 1844 | c temperature distribution |
---|
[1818] | 1845 | c spantCO2=integer (i.e. 3) amplitude of the sub-grid T disti |
---|
[3203] | 1846 | c nuiceco2_sed=0.2 variance of the size distribution for the |
---|
[1818] | 1847 | c sedimentation |
---|
[3203] | 1848 | c nuiceco2_ref=0.2 variance of the size distribution for the |
---|
[1818] | 1849 | c nucleation |
---|
| 1850 | c imicroco2=50 micro-timestep is 1/50 of physical timestep |
---|
[2362] | 1851 | zdqssed_co2(:) = 0. |
---|
[2562] | 1852 | zdqssed_ccn(:,:) = 0. |
---|
[1922] | 1853 | |
---|
[2362] | 1854 | IF (co2clouds) THEN |
---|
| 1855 | call co2cloud(ngrid,nlayer,ptimestep, |
---|
[1617] | 1856 | & zplev,zplay,pdpsrf,zzlay,pt,pdt, |
---|
| 1857 | & pq,pdq,zdqcloudco2,zdtcloudco2, |
---|
| 1858 | & nq,tau,tauscaling,rdust,rice,riceco2,nuice, |
---|
[2447] | 1859 | & rhocloud, rsedcloudco2,rhocloudco2,zzlev,zdqssed_co2, |
---|
[2826] | 1860 | & zdqssed_ccn,pdu,pu,zcondicea_co2microp) |
---|
[1617] | 1861 | |
---|
[2562] | 1862 | DO iq=1, nq |
---|
| 1863 | DO ig=1,ngrid |
---|
[2900] | 1864 | DO islope = 1,nslope |
---|
| 1865 | dqsurf(ig,iq,islope)=dqsurf(ig,iq,islope)+ |
---|
| 1866 | & zdqssed_ccn(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
---|
| 1867 | ENDDO !(islope) |
---|
[2562] | 1868 | ENDDO ! (ig) |
---|
[2900] | 1869 | ENDDO ! (iq)q) |
---|
[1617] | 1870 | c Temperature variation due to latent heat release |
---|
[2562] | 1871 | pdt(1:ngrid,1:nlayer) = |
---|
[3203] | 1872 | & pdt(1:ngrid,1:nlayer) + |
---|
[2551] | 1873 | & zdtcloudco2(1:ngrid,1:nlayer) |
---|
[1617] | 1874 | |
---|
| 1875 | ! increment dust and ccn masses and numbers |
---|
| 1876 | ! We need to check that we have Nccn & Ndust > 0 |
---|
| 1877 | ! This is due to single precision rounding problems |
---|
[1816] | 1878 | ! increment dust tracers tendancies |
---|
[2362] | 1879 | pdq(:,:,igcm_dust_mass) = pdq(:,:,igcm_dust_mass) |
---|
| 1880 | & + zdqcloudco2(:,:,igcm_dust_mass) |
---|
| 1881 | |
---|
| 1882 | pdq(:,:,igcm_dust_number) = pdq(:,:,igcm_dust_number) |
---|
| 1883 | & + zdqcloudco2(:,:,igcm_dust_number) |
---|
| 1884 | |
---|
| 1885 | pdq(:,:,igcm_co2) = pdq(:,:,igcm_co2) |
---|
| 1886 | & + zdqcloudco2(:,:,igcm_co2) |
---|
| 1887 | |
---|
| 1888 | pdq(:,:,igcm_co2_ice) = pdq(:,:,igcm_co2_ice) |
---|
| 1889 | & + zdqcloudco2(:,:,igcm_co2_ice) |
---|
| 1890 | |
---|
| 1891 | pdq(:,:,igcm_ccnco2_mass) = pdq(:,:,igcm_ccnco2_mass) |
---|
| 1892 | & + zdqcloudco2(:,:,igcm_ccnco2_mass) |
---|
| 1893 | |
---|
| 1894 | pdq(:,:,igcm_ccnco2_number) = pdq(:,:,igcm_ccnco2_number) |
---|
| 1895 | & + zdqcloudco2(:,:,igcm_ccnco2_number) |
---|
| 1896 | |
---|
[2589] | 1897 | if (meteo_flux) then |
---|
| 1898 | pdq(:,:,igcm_ccnco2_meteor_mass) = |
---|
| 1899 | & pdq(:,:,igcm_ccnco2_meteor_mass) + |
---|
| 1900 | & zdqcloudco2(:,:,igcm_ccnco2_meteor_mass) |
---|
| 1901 | |
---|
| 1902 | pdq(:,:,igcm_ccnco2_meteor_number) = |
---|
| 1903 | & pdq(:,:,igcm_ccnco2_meteor_number) |
---|
| 1904 | & + zdqcloudco2(:,:,igcm_ccnco2_meteor_number) |
---|
| 1905 | end if |
---|
[1816] | 1906 | !Update water ice clouds values as well |
---|
| 1907 | if (co2useh2o) then |
---|
[3203] | 1908 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = |
---|
| 1909 | & pdq(1:ngrid,1:nlayer,igcm_h2o_ice) + |
---|
[1816] | 1910 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
[3203] | 1911 | pdq(1:ngrid,1:nlayer,igcm_ccn_mass) = |
---|
| 1912 | & pdq(1:ngrid,1:nlayer,igcm_ccn_mass) + |
---|
[1816] | 1913 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccn_mass) |
---|
[3203] | 1914 | pdq(1:ngrid,1:nlayer,igcm_ccn_number) = |
---|
| 1915 | & pdq(1:ngrid,1:nlayer,igcm_ccn_number) + |
---|
[1816] | 1916 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccn_number) |
---|
[2362] | 1917 | |
---|
[2562] | 1918 | pdq(:,:,igcm_ccnco2_h2o_mass_ice) = |
---|
| 1919 | & pdq(:,:,igcm_ccnco2_h2o_mass_ice) + |
---|
| 1920 | & zdqcloudco2(:,:,igcm_ccnco2_h2o_mass_ice) |
---|
| 1921 | |
---|
| 1922 | pdq(:,:,igcm_ccnco2_h2o_mass_ccn) = |
---|
| 1923 | & pdq(:,:,igcm_ccnco2_h2o_mass_ccn) + |
---|
| 1924 | & zdqcloudco2(:,:,igcm_ccnco2_h2o_mass_ccn) |
---|
| 1925 | |
---|
| 1926 | pdq(:,:,igcm_ccnco2_h2o_number) = |
---|
| 1927 | & pdq(:,:,igcm_ccnco2_h2o_number) + |
---|
| 1928 | & zdqcloudco2(:,:,igcm_ccnco2_h2o_number) |
---|
| 1929 | |
---|
[2362] | 1930 | c Negative values? |
---|
| 1931 | where (pq(:,:,igcm_ccn_mass) + |
---|
[1921] | 1932 | & ptimestep*pdq(:,:,igcm_ccn_mass) < 0.) |
---|
[3203] | 1933 | pdq(:,:,igcm_ccn_mass) = |
---|
[1816] | 1934 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1935 | pdq(:,:,igcm_ccn_number) = |
---|
[1816] | 1936 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
[1921] | 1937 | end where |
---|
[2362] | 1938 | c Negative values? |
---|
| 1939 | where (pq(:,:,igcm_ccn_number) + |
---|
[1921] | 1940 | & ptimestep*pdq(:,:,igcm_ccn_number) < 0.) |
---|
[3203] | 1941 | pdq(:,:,igcm_ccn_mass) = |
---|
[1921] | 1942 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1943 | pdq(:,:,igcm_ccn_number) = |
---|
[1921] | 1944 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
| 1945 | end where |
---|
[2562] | 1946 | where (pq(:,:,igcm_ccnco2_h2o_mass_ice) + |
---|
| 1947 | & pq(:,:,igcm_ccnco2_h2o_mass_ccn) + |
---|
| 1948 | & (pdq(:,:,igcm_ccnco2_h2o_mass_ice) + |
---|
| 1949 | & pdq(:,:,igcm_ccnco2_h2o_mass_ccn) |
---|
| 1950 | & )*ptimestep < 0.) |
---|
| 1951 | pdq(:,:,igcm_ccnco2_h2o_mass_ice) = |
---|
| 1952 | & - pq(:,:,igcm_ccnco2_h2o_mass_ice) |
---|
| 1953 | & /ptimestep + 1.e-30 |
---|
| 1954 | pdq(:,:,igcm_ccnco2_h2o_mass_ccn) = |
---|
| 1955 | & - pq(:,:,igcm_ccnco2_h2o_mass_ccn) |
---|
| 1956 | & /ptimestep + 1.e-30 |
---|
| 1957 | pdq(:,:,igcm_ccnco2_h2o_number) = |
---|
| 1958 | & - pq(:,:,igcm_ccnco2_h2o_number) |
---|
| 1959 | & /ptimestep + 1.e-30 |
---|
| 1960 | end where |
---|
| 1961 | |
---|
| 1962 | where (pq(:,:,igcm_ccnco2_h2o_number) + |
---|
| 1963 | & (pdq(:,:,igcm_ccnco2_h2o_number) |
---|
| 1964 | & )*ptimestep < 0.) |
---|
| 1965 | pdq(:,:,igcm_ccnco2_h2o_mass_ice) = |
---|
| 1966 | & - pq(:,:,igcm_ccnco2_h2o_mass_ice) |
---|
| 1967 | & /ptimestep + 1.e-30 |
---|
| 1968 | pdq(:,:,igcm_ccnco2_h2o_mass_ccn) = |
---|
| 1969 | & - pq(:,:,igcm_ccnco2_h2o_mass_ccn) |
---|
| 1970 | & /ptimestep + 1.e-30 |
---|
| 1971 | pdq(:,:,igcm_ccnco2_h2o_number) = |
---|
| 1972 | & - pq(:,:,igcm_ccnco2_h2o_number) |
---|
| 1973 | & /ptimestep + 1.e-30 |
---|
| 1974 | end where |
---|
[1921] | 1975 | endif ! of if (co2useh2o) |
---|
[1720] | 1976 | c Negative values? |
---|
[3203] | 1977 | where (pq(:,:,igcm_ccnco2_mass) + |
---|
[1921] | 1978 | & ptimestep*pdq(:,:,igcm_ccnco2_mass) < 0.) |
---|
[3203] | 1979 | pdq(:,:,igcm_ccnco2_mass) = |
---|
[1617] | 1980 | & - pq(:,:,igcm_ccnco2_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1981 | pdq(:,:,igcm_ccnco2_number) = |
---|
[1617] | 1982 | & - pq(:,:,igcm_ccnco2_number)/ptimestep + 1.e-30 |
---|
[1720] | 1983 | end where |
---|
[3203] | 1984 | where (pq(:,:,igcm_ccnco2_number) + |
---|
[1921] | 1985 | & ptimestep*pdq(:,:,igcm_ccnco2_number) < 0.) |
---|
[3203] | 1986 | pdq(:,:,igcm_ccnco2_mass) = |
---|
[1720] | 1987 | & - pq(:,:,igcm_ccnco2_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1988 | pdq(:,:,igcm_ccnco2_number) = |
---|
[1720] | 1989 | & - pq(:,:,igcm_ccnco2_number)/ptimestep + 1.e-30 |
---|
[1921] | 1990 | end where |
---|
[3203] | 1991 | |
---|
[1617] | 1992 | c Negative values? |
---|
[3203] | 1993 | where (pq(:,:,igcm_dust_mass) + |
---|
[1921] | 1994 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
---|
[3203] | 1995 | pdq(:,:,igcm_dust_mass) = |
---|
[1922] | 1996 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1997 | pdq(:,:,igcm_dust_number) = |
---|
[1922] | 1998 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
[1921] | 1999 | end where |
---|
[3203] | 2000 | where (pq(:,:,igcm_dust_number) + |
---|
[1921] | 2001 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
---|
[3203] | 2002 | pdq(:,:,igcm_dust_mass) = |
---|
[1922] | 2003 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 2004 | pdq(:,:,igcm_dust_number) = |
---|
[1922] | 2005 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
[1921] | 2006 | end where |
---|
[2589] | 2007 | if (meteo_flux) then |
---|
| 2008 | where (pq(:,:,igcm_ccnco2_meteor_mass) + |
---|
| 2009 | & ptimestep*pdq(:,:,igcm_ccnco2_meteor_mass) < 0.) |
---|
| 2010 | pdq(:,:,igcm_ccnco2_meteor_mass) = |
---|
| 2011 | & - pq(:,:,igcm_ccnco2_meteor_mass)/ptimestep + 1.e-30 |
---|
| 2012 | pdq(:,:,igcm_ccnco2_meteor_number) = |
---|
| 2013 | & - pq(:,:,igcm_ccnco2_meteor_number)/ptimestep + 1.e-30 |
---|
| 2014 | end where |
---|
| 2015 | where (pq(:,:,igcm_ccnco2_meteor_number) + |
---|
| 2016 | & ptimestep*pdq(:,:,igcm_ccnco2_meteor_number) < 0.) |
---|
| 2017 | pdq(:,:,igcm_ccnco2_meteor_mass) = |
---|
| 2018 | & - pq(:,:,igcm_ccnco2_meteor_mass)/ptimestep + 1.e-30 |
---|
| 2019 | pdq(:,:,igcm_ccnco2_meteor_number) = |
---|
| 2020 | & - pq(:,:,igcm_ccnco2_meteor_number)/ptimestep + 1.e-30 |
---|
| 2021 | end where |
---|
| 2022 | end if |
---|
[2362] | 2023 | END IF ! of IF (co2clouds) |
---|
[1617] | 2024 | |
---|
[2149] | 2025 | c 9b. Aerosol particles |
---|
[42] | 2026 | c ------------------- |
---|
| 2027 | c ---------- |
---|
| 2028 | c Dust devil : |
---|
| 2029 | c ---------- |
---|
[3203] | 2030 | IF(callddevil) then |
---|
[883] | 2031 | call dustdevil(ngrid,nlayer,nq, zplev,pu,pv,pt, tsurf,q2, |
---|
[42] | 2032 | & zdqdev,zdqsdev) |
---|
[2896] | 2033 | |
---|
[42] | 2034 | if (dustbin.ge.1) then |
---|
| 2035 | do iq=1,nq |
---|
| 2036 | DO l=1,nlayer |
---|
| 2037 | DO ig=1,ngrid |
---|
| 2038 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdev(ig,l,iq) |
---|
| 2039 | ENDDO |
---|
| 2040 | ENDDO |
---|
| 2041 | enddo |
---|
| 2042 | do iq=1,nq |
---|
| 2043 | DO ig=1,ngrid |
---|
[2900] | 2044 | DO islope = 1,nslope |
---|
| 2045 | dqsurf(ig,iq,islope)= dqsurf(ig,iq,islope) + |
---|
| 2046 | & zdqsdev(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
---|
| 2047 | ENDDO |
---|
[42] | 2048 | ENDDO |
---|
| 2049 | enddo |
---|
| 2050 | endif ! of if (dustbin.ge.1) |
---|
| 2051 | |
---|
| 2052 | END IF ! of IF (callddevil) |
---|
| 2053 | |
---|
[3203] | 2054 | c ------------- |
---|
[42] | 2055 | c Sedimentation : acts also on water ice |
---|
[1974] | 2056 | c ------------- |
---|
[3203] | 2057 | IF (sedimentation) THEN |
---|
[42] | 2058 | zdqsed(1:ngrid,1:nlayer,1:nq)=0 |
---|
| 2059 | zdqssed(1:ngrid,1:nq)=0 |
---|
| 2060 | |
---|
[1921] | 2061 | c Sedimentation for co2 clouds tracers are inside co2cloud microtimestep |
---|
| 2062 | c Zdqssed isn't |
---|
[2953] | 2063 | |
---|
[1974] | 2064 | call callsedim(ngrid,nlayer,ptimestep, |
---|
[2199] | 2065 | & zplev,zzlev,zzlay,pt,pdt, |
---|
| 2066 | & rdust,rstormdust,rtopdust, |
---|
[1974] | 2067 | & rice,rsedcloud,rhocloud, |
---|
[3203] | 2068 | & pq,pdq,zdqsed,zdqssed,nq, |
---|
[411] | 2069 | & tau,tauscaling) |
---|
[2896] | 2070 | |
---|
[3157] | 2071 | |
---|
[1921] | 2072 | c Flux at the surface of co2 ice computed in co2cloud microtimestep |
---|
[1974] | 2073 | IF (rdstorm) THEN |
---|
| 2074 | c Storm dust cannot sediment to the surface |
---|
[3203] | 2075 | DO ig=1,ngrid |
---|
[1974] | 2076 | zdqsed(ig,1,igcm_stormdust_mass)= |
---|
| 2077 | & zdqsed(ig,1,igcm_stormdust_mass)+ |
---|
| 2078 | & zdqssed(ig,igcm_stormdust_mass) / |
---|
| 2079 | & ((pplev(ig,1)-pplev(ig,2))/g) |
---|
| 2080 | zdqsed(ig,1,igcm_stormdust_number)= |
---|
| 2081 | & zdqsed(ig,1,igcm_stormdust_number)+ |
---|
| 2082 | & zdqssed(ig,igcm_stormdust_number) / |
---|
[3203] | 2083 | & ((pplev(ig,1)-pplev(ig,2))/g) |
---|
[1974] | 2084 | zdqssed(ig,igcm_stormdust_mass)=0. |
---|
| 2085 | zdqssed(ig,igcm_stormdust_number)=0. |
---|
| 2086 | ENDDO |
---|
| 2087 | ENDIF !rdstorm |
---|
| 2088 | |
---|
[42] | 2089 | DO iq=1, nq |
---|
| 2090 | DO l=1,nlayer |
---|
| 2091 | DO ig=1,ngrid |
---|
| 2092 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqsed(ig,l,iq) |
---|
| 2093 | ENDDO |
---|
| 2094 | ENDDO |
---|
| 2095 | ENDDO |
---|
| 2096 | DO iq=1, nq |
---|
| 2097 | DO ig=1,ngrid |
---|
[2900] | 2098 | DO islope = 1,nslope |
---|
| 2099 | dqsurf(ig,iq,islope)= dqsurf(ig,iq,islope) + |
---|
| 2100 | & zdqssed(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
---|
| 2101 | ENDDO |
---|
[42] | 2102 | ENDDO |
---|
| 2103 | ENDDO |
---|
[1974] | 2104 | |
---|
[42] | 2105 | END IF ! of IF (sedimentation) |
---|
[1974] | 2106 | |
---|
[1236] | 2107 | c Add lifted dust to tendancies after sedimentation in the LES (AC) |
---|
| 2108 | IF (turb_resolved) THEN |
---|
| 2109 | DO iq=1, nq |
---|
| 2110 | DO l=1,nlayer |
---|
| 2111 | DO ig=1,ngrid |
---|
| 2112 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
---|
| 2113 | ENDDO |
---|
| 2114 | ENDDO |
---|
| 2115 | ENDDO |
---|
| 2116 | DO iq=1, nq |
---|
| 2117 | DO ig=1,ngrid |
---|
[2900] | 2118 | dqsurf(ig,iq,:)=dqsurf(ig,iq,:) + zdqsdif(ig,iq,:) |
---|
[1236] | 2119 | ENDDO |
---|
| 2120 | ENDDO |
---|
| 2121 | ENDIF |
---|
[556] | 2122 | c |
---|
[2149] | 2123 | c 9c. Chemical species |
---|
[556] | 2124 | c ------------------ |
---|
[42] | 2125 | |
---|
[556] | 2126 | #ifndef MESOSCALE |
---|
| 2127 | c -------------- |
---|
| 2128 | c photochemistry : |
---|
| 2129 | c -------------- |
---|
[2158] | 2130 | IF (photochem) then |
---|
[411] | 2131 | |
---|
[2164] | 2132 | if (modulo(icount-1,ichemistry).eq.0) then |
---|
| 2133 | ! compute chemistry every ichemistry physics step |
---|
| 2134 | |
---|
[556] | 2135 | ! dust and ice surface area |
---|
[1246] | 2136 | call surfacearea(ngrid, nlayer, naerkind, |
---|
[3203] | 2137 | $ ptimestep, zplay, zzlay, |
---|
| 2138 | $ pt, pq, pdq, nq, |
---|
| 2139 | $ rdust, rice, tau, tauscaling, |
---|
[556] | 2140 | $ surfdust, surfice) |
---|
| 2141 | ! call photochemistry |
---|
[2900] | 2142 | DO ig = 1,ngrid |
---|
| 2143 | qsurf_tmp(ig,:) = qsurf(ig,:,major_slope(ig)) |
---|
| 2144 | ENDDO |
---|
[1047] | 2145 | call calchim(ngrid,nlayer,nq, |
---|
[1036] | 2146 | & ptimestep,zplay,zplev,pt,pdt,dist_sol,mu0, |
---|
[556] | 2147 | $ zzlev,zzlay,zday,pq,pdq,zdqchim,zdqschim, |
---|
[2900] | 2148 | $ zdqcloud,zdqscloud,tau(:,1), |
---|
| 2149 | $ qsurf_tmp(:,igcm_co2), |
---|
[556] | 2150 | $ pu,pdu,pv,pdv,surfdust,surfice) |
---|
[2896] | 2151 | |
---|
[2164] | 2152 | endif ! of if (modulo(icount-1,ichemistry).eq.0) |
---|
| 2153 | |
---|
[556] | 2154 | ! increment values of tracers: |
---|
| 2155 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
---|
| 2156 | ! tracers is zero anyways |
---|
| 2157 | DO l=1,nlayer |
---|
| 2158 | DO ig=1,ngrid |
---|
| 2159 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqchim(ig,l,iq) |
---|
| 2160 | ENDDO |
---|
| 2161 | ENDDO |
---|
| 2162 | ENDDO ! of DO iq=1,nq |
---|
[3203] | 2163 | |
---|
[556] | 2164 | ! add condensation tendency for H2O2 |
---|
| 2165 | if (igcm_h2o2.ne.0) then |
---|
| 2166 | DO l=1,nlayer |
---|
| 2167 | DO ig=1,ngrid |
---|
| 2168 | pdq(ig,l,igcm_h2o2)=pdq(ig,l,igcm_h2o2) |
---|
| 2169 | & +zdqcloud(ig,l,igcm_h2o2) |
---|
| 2170 | ENDDO |
---|
| 2171 | ENDDO |
---|
| 2172 | endif |
---|
| 2173 | |
---|
| 2174 | ! increment surface values of tracers: |
---|
| 2175 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
---|
| 2176 | ! tracers is zero anyways |
---|
| 2177 | DO ig=1,ngrid |
---|
[2900] | 2178 | DO islope = 1,nslope |
---|
| 2179 | dqsurf(ig,iq,islope)=dqsurf(ig,iq,islope) + |
---|
| 2180 | & zdqschim(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
---|
| 2181 | ENDDO |
---|
[556] | 2182 | ENDDO |
---|
| 2183 | ENDDO ! of DO iq=1,nq |
---|
| 2184 | |
---|
| 2185 | ! add condensation tendency for H2O2 |
---|
| 2186 | if (igcm_h2o2.ne.0) then |
---|
| 2187 | DO ig=1,ngrid |
---|
[2900] | 2188 | DO islope = 1,nslope |
---|
| 2189 | dqsurf(ig,igcm_h2o2,islope)=dqsurf(ig,igcm_h2o2,islope)+ |
---|
| 2190 | & zdqscloud(ig,igcm_h2o2)*cos(pi*def_slope_mean(islope)/180.) |
---|
| 2191 | ENDDO |
---|
[556] | 2192 | ENDDO |
---|
| 2193 | endif |
---|
| 2194 | |
---|
[2158] | 2195 | END IF ! of IF (photochem) |
---|
[556] | 2196 | #endif |
---|
| 2197 | |
---|
[42] | 2198 | |
---|
[226] | 2199 | #ifndef MESOSCALE |
---|
| 2200 | c----------------------------------------------------------------------- |
---|
[2149] | 2201 | c 10. THERMOSPHERE CALCULATION |
---|
[226] | 2202 | c----------------------------------------------------------------------- |
---|
[42] | 2203 | |
---|
[226] | 2204 | if (callthermos) then |
---|
[1047] | 2205 | call thermosphere(ngrid,nlayer,nq,zplev,zplay,dist_sol, |
---|
[2908] | 2206 | $ mu0,ptimestep,ptime,zday,tsurf_meshavg,zzlev,zzlay, |
---|
[226] | 2207 | & pt,pq,pu,pv,pdt,pdq, |
---|
[2467] | 2208 | $ zdteuv,zdtconduc,zdumolvis,zdvmolvis,zdqmoldiff, |
---|
| 2209 | $ PhiEscH,PhiEscH2,PhiEscD) |
---|
[226] | 2210 | |
---|
| 2211 | DO l=1,nlayer |
---|
| 2212 | DO ig=1,ngrid |
---|
| 2213 | dtrad(ig,l)=dtrad(ig,l)+zdteuv(ig,l) |
---|
[2362] | 2214 | pdt(ig,l)=pdt(ig,l)+zdtconduc(ig,l)+zdteuv(ig,l) |
---|
[226] | 2215 | pdv(ig,l)=pdv(ig,l)+zdvmolvis(ig,l) |
---|
| 2216 | pdu(ig,l)=pdu(ig,l)+zdumolvis(ig,l) |
---|
| 2217 | DO iq=1, nq |
---|
| 2218 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqmoldiff(ig,l,iq) |
---|
| 2219 | ENDDO |
---|
| 2220 | ENDDO |
---|
| 2221 | ENDDO |
---|
| 2222 | |
---|
| 2223 | endif ! of if (callthermos) |
---|
| 2224 | #endif |
---|
[2963] | 2225 | |
---|
[42] | 2226 | c----------------------------------------------------------------------- |
---|
[2149] | 2227 | c 11. Carbon dioxide condensation-sublimation: |
---|
[1114] | 2228 | c (should be the last atmospherical physical process to be computed) |
---|
| 2229 | c ------------------------------------------- |
---|
| 2230 | IF (tituscap) THEN |
---|
| 2231 | !!! get the actual co2 seasonal cap from Titus observations |
---|
[2362] | 2232 | CALL geticecover(ngrid, 180.*zls/pi, |
---|
[2826] | 2233 | . 180.*longitude/pi, 180.*latitude/pi, |
---|
[2900] | 2234 | . qsurf_tmp(:,igcm_co2) ) |
---|
| 2235 | qsurf_tmp(:,igcm_co2) = qsurf_tmp(:,igcm_co2) * 10000. |
---|
[1114] | 2236 | ENDIF |
---|
| 2237 | |
---|
[3203] | 2238 | |
---|
[1114] | 2239 | IF (callcond) THEN |
---|
[2362] | 2240 | zdtc(:,:) = 0. |
---|
[2900] | 2241 | zdtsurfc(:,:) = 0. |
---|
[2362] | 2242 | zduc(:,:) = 0. |
---|
| 2243 | zdvc(:,:) = 0. |
---|
| 2244 | zdqc(:,:,:) = 0. |
---|
[2900] | 2245 | zdqsc(:,:,:) = 0. |
---|
[2953] | 2246 | CALL co2condens(ngrid,nlayer,nq,nslope,ptimestep, |
---|
[1114] | 2247 | $ capcal,zplay,zplev,tsurf,pt, |
---|
| 2248 | $ pphi,pdt,pdu,pdv,zdtsurf,pu,pv,pq,pdq, |
---|
[3130] | 2249 | $ qsurf(:,igcm_co2,:),perennial_co2ice, |
---|
[2999] | 2250 | $ albedo,emis,rdust, |
---|
[1114] | 2251 | $ zdtc,zdtsurfc,pdpsrf,zduc,zdvc,zdqc, |
---|
[2685] | 2252 | $ fluxsurf_dn_sw,zls, |
---|
[1996] | 2253 | $ zdqssed_co2,zcondicea_co2microp, |
---|
[2551] | 2254 | & zdqsc) |
---|
[2896] | 2255 | |
---|
[3207] | 2256 | if (ngrid == 1) then ! For the 1D model |
---|
| 2257 | ! CO2cond_ps is a coefficient to control the surface pressure change |
---|
| 2258 | pdpsrf = CO2cond_ps*pdpsrf |
---|
| 2259 | zduc = CO2cond_ps*zduc |
---|
| 2260 | zdvc = CO2cond_ps*zdvc |
---|
| 2261 | zdqc = CO2cond_ps*zdqc |
---|
| 2262 | endif |
---|
| 2263 | |
---|
[2566] | 2264 | DO iq=1, nq |
---|
[1114] | 2265 | DO ig=1,ngrid |
---|
[2900] | 2266 | dqsurf(ig,iq,:)=dqsurf(ig,iq,:)+zdqsc(ig,iq,:) |
---|
[2362] | 2267 | ENDDO ! (ig) |
---|
[2566] | 2268 | ENDDO ! (iq) |
---|
| 2269 | DO l=1,nlayer |
---|
[2362] | 2270 | DO ig=1,ngrid |
---|
[1114] | 2271 | pdt(ig,l)=pdt(ig,l)+zdtc(ig,l) |
---|
| 2272 | pdv(ig,l)=pdv(ig,l)+zdvc(ig,l) |
---|
| 2273 | pdu(ig,l)=pdu(ig,l)+zduc(ig,l) |
---|
| 2274 | ENDDO |
---|
[2566] | 2275 | ENDDO |
---|
| 2276 | DO ig=1,ngrid |
---|
[2900] | 2277 | zdtsurf(ig,:) = zdtsurf(ig,:) + zdtsurfc(ig,:) |
---|
[2566] | 2278 | ENDDO |
---|
[1114] | 2279 | |
---|
| 2280 | DO iq=1, nq |
---|
| 2281 | DO l=1,nlayer |
---|
| 2282 | DO ig=1,ngrid |
---|
[2362] | 2283 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqc(ig,l,iq) |
---|
[1114] | 2284 | ENDDO |
---|
| 2285 | ENDDO |
---|
| 2286 | ENDDO |
---|
| 2287 | |
---|
| 2288 | #ifndef MESOSCALE |
---|
| 2289 | ! update surface pressure |
---|
| 2290 | DO ig=1,ngrid |
---|
| 2291 | ps(ig) = zplev(ig,1) + pdpsrf(ig)*ptimestep |
---|
| 2292 | ENDDO |
---|
| 2293 | ! update pressure levels |
---|
| 2294 | DO l=1,nlayer |
---|
| 2295 | DO ig=1,ngrid |
---|
| 2296 | zplay(ig,l) = aps(l) + bps(l)*ps(ig) |
---|
| 2297 | zplev(ig,l) = ap(l) + bp(l)*ps(ig) |
---|
| 2298 | ENDDO |
---|
| 2299 | ENDDO |
---|
| 2300 | zplev(:,nlayer+1) = 0. |
---|
[3157] | 2301 | |
---|
[3203] | 2302 | ! Calculation of zzlay and zzlay with udpated pressure and temperature |
---|
| 2303 | DO ig=1,ngrid |
---|
| 2304 | zzlay(ig,1)=-(log(zplay(ig,1)/ps(ig)))*rnew(ig,1)* |
---|
| 2305 | & (pt(ig,1)+pdt(ig,1)*ptimestep) /g |
---|
| 2306 | |
---|
| 2307 | DO l=2,nlayer |
---|
| 2308 | |
---|
[3157] | 2309 | ! compute "mean" temperature of the layer |
---|
| 2310 | if((pt(ig,l)+pdt(ig,l)*ptimestep) .eq. |
---|
| 2311 | & (pt(ig,l-1)+pdt(ig,l-1)*ptimestep)) then |
---|
| 2312 | tlaymean= pt(ig,l)+pdt(ig,l)*ptimestep |
---|
| 2313 | else |
---|
[3203] | 2314 | tlaymean=((pt(ig,l)+pdt(ig,l)*ptimestep)- |
---|
| 2315 | & (pt(ig,l-1)+pdt(ig,l-1)*ptimestep))/ |
---|
| 2316 | & log((pt(ig,l)+pdt(ig,l)*ptimestep)/ |
---|
| 2317 | & (pt(ig,l-1)+pdt(ig,l-1)*ptimestep)) |
---|
[3157] | 2318 | endif |
---|
[3203] | 2319 | |
---|
[3157] | 2320 | ! compute gravitational acceleration (at altitude zaeroid(nlayer-1)) |
---|
| 2321 | gz(ig,l)=g*(rad**2)/(rad+zzlay(ig,l-1)+(phisfi(ig)/g))**2 |
---|
| 2322 | |
---|
[3203] | 2323 | |
---|
| 2324 | zzlay(ig,l)=zzlay(ig,l-1)- |
---|
[3157] | 2325 | & (log(zplay(ig,l)/zplay(ig,l-1))*rnew(ig,l)*tlaymean/gz(ig,l)) |
---|
[3203] | 2326 | |
---|
| 2327 | |
---|
[3157] | 2328 | ! update layers altitude |
---|
| 2329 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
---|
| 2330 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
---|
| 2331 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
[1114] | 2332 | ENDDO |
---|
[3203] | 2333 | ENDDO |
---|
[1114] | 2334 | #endif |
---|
[1996] | 2335 | ENDIF ! of IF (callcond) |
---|
| 2336 | |
---|
[1114] | 2337 | c----------------------------------------------------------------------- |
---|
[2184] | 2338 | c Updating tracer budget on surface |
---|
[3203] | 2339 | c----------------------------------------------------------------------- |
---|
[2184] | 2340 | DO iq=1, nq |
---|
| 2341 | DO ig=1,ngrid |
---|
[2900] | 2342 | DO islope = 1,nslope |
---|
| 2343 | qsurf(ig,iq,islope)=qsurf(ig,iq,islope)+ |
---|
| 2344 | & ptimestep*dqsurf(ig,iq,islope) |
---|
[3203] | 2345 | ENDDO |
---|
[2184] | 2346 | ENDDO ! (ig) |
---|
| 2347 | ENDDO ! (iq) |
---|
| 2348 | c----------------------------------------------------------------------- |
---|
[2149] | 2349 | c 12. Surface and sub-surface soil temperature |
---|
[42] | 2350 | c----------------------------------------------------------------------- |
---|
| 2351 | c |
---|
| 2352 | c |
---|
[2149] | 2353 | c 12.1 Increment Surface temperature: |
---|
[42] | 2354 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 2355 | |
---|
| 2356 | DO ig=1,ngrid |
---|
[2900] | 2357 | DO islope = 1,nslope |
---|
| 2358 | tsurf(ig,islope)=tsurf(ig,islope)+ |
---|
[3203] | 2359 | & ptimestep*zdtsurf(ig,islope) |
---|
[2900] | 2360 | ENDDO |
---|
[42] | 2361 | ENDDO |
---|
| 2362 | |
---|
| 2363 | c Prescribe a cold trap at south pole (except at high obliquity !!) |
---|
| 2364 | c Temperature at the surface is set there to be the temperature |
---|
| 2365 | c corresponding to equilibrium temperature between phases of CO2 |
---|
| 2366 | |
---|
[411] | 2367 | |
---|
[2823] | 2368 | IF (water) THEN |
---|
[3203] | 2369 | !#ifndef MESOSCALE |
---|
[2009] | 2370 | ! if (caps.and.(obliquit.lt.27.)) then => now done in co2condens |
---|
[226] | 2371 | ! NB: Updated surface pressure, at grid point 'ngrid', is |
---|
[883] | 2372 | ! ps(ngrid)=zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep |
---|
[1114] | 2373 | ! tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095* |
---|
| 2374 | ! & (zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep))) |
---|
| 2375 | ! tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095*ps(ngrid))) |
---|
| 2376 | ! endif |
---|
| 2377 | !#endif |
---|
[42] | 2378 | c ------------------------------------------------------------- |
---|
[283] | 2379 | c Change of surface albedo in case of ground frost |
---|
[42] | 2380 | c everywhere except on the north permanent cap and in regions |
---|
[3203] | 2381 | c covered by dry ice. |
---|
[2009] | 2382 | c ALWAYS PLACE these lines after co2condens !!! |
---|
[42] | 2383 | c ------------------------------------------------------------- |
---|
[3586] | 2384 | do ig = 1,ngrid |
---|
[2900] | 2385 | do islope = 1,nslope |
---|
[3586] | 2386 | if (abs(qsurf(ig,igcm_co2,islope)) < 1.e-10) then ! No CO2 frost |
---|
| 2387 | |
---|
| 2388 | if (qsurf(ig,igcm_h2o_ice,islope) > frost_albedo_threshold) |
---|
| 2389 | & then ! There is H2O frost |
---|
| 2390 | if (cst_cap_albedo .and. watercaptag(ig) .and. |
---|
| 2391 | & abs(perennial_co2ice(ig,islope)) < 1.e-10) then ! Water cap remains unchanged by water frost deposition and no CO2 perennial ice |
---|
| 2392 | albedo(ig,:,islope) = albedo_h2o_cap |
---|
| 2393 | emis(ig,islope) = 1. |
---|
| 2394 | else |
---|
| 2395 | albedo(ig,:,islope) = albedo_h2o_frost |
---|
| 2396 | emis(ig,islope) = 1. |
---|
| 2397 | endif |
---|
| 2398 | else ! No H2O frost |
---|
| 2399 | if (abs(perennial_co2ice(ig,islope)) < 1.e-10 .and. |
---|
| 2400 | & watercaptag(ig)) then ! No CO2 perennial ice but there is water cap |
---|
| 2401 | albedo(ig,:,islope) = albedo_h2o_cap |
---|
| 2402 | emis(ig,islope) = 1. |
---|
| 2403 | endif |
---|
| 2404 | endif |
---|
| 2405 | |
---|
[42] | 2406 | endif |
---|
[2900] | 2407 | enddo ! islope |
---|
[42] | 2408 | enddo ! of do ig=1,ngrid |
---|
[2823] | 2409 | ENDIF ! of IF (water) |
---|
[42] | 2410 | |
---|
[528] | 2411 | c |
---|
[2149] | 2412 | c 12.2 Compute soil temperatures and subsurface heat flux: |
---|
[42] | 2413 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 2414 | IF (callsoil) THEN |
---|
[833] | 2415 | c Thermal inertia feedback |
---|
[3230] | 2416 | IF (surfaceice_tifeedback.or.poreice_tifeedback) THEN |
---|
| 2417 | |
---|
| 2418 | CALL waterice_tifeedback(ngrid,nsoilmx,nslope, |
---|
| 2419 | s qsurf(:,igcm_h2o_ice,:),pore_icefraction, |
---|
| 2420 | s inertiesoil_tifeedback(:,:,:)) |
---|
| 2421 | |
---|
[2942] | 2422 | CALL soil(ngrid,nsoilmx,.false.,inertiesoil_tifeedback, |
---|
[833] | 2423 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 2424 | ELSE |
---|
[2942] | 2425 | CALL soil(ngrid,nsoilmx,.false.,inertiesoil, |
---|
[833] | 2426 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 2427 | ENDIF |
---|
[42] | 2428 | ENDIF |
---|
| 2429 | |
---|
[1974] | 2430 | c To avoid negative values |
---|
| 2431 | IF (rdstorm) THEN |
---|
[3203] | 2432 | where (pq(:,:,igcm_stormdust_mass) + |
---|
[1974] | 2433 | & ptimestep*pdq(:,:,igcm_stormdust_mass) < 0.) |
---|
[3203] | 2434 | pdq(:,:,igcm_stormdust_mass) = |
---|
[1974] | 2435 | & - pq(:,:,igcm_stormdust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 2436 | pdq(:,:,igcm_stormdust_number) = |
---|
[1974] | 2437 | & - pq(:,:,igcm_stormdust_number)/ptimestep + 1.e-30 |
---|
| 2438 | end where |
---|
[3203] | 2439 | where (pq(:,:,igcm_stormdust_number) + |
---|
[1974] | 2440 | & ptimestep*pdq(:,:,igcm_stormdust_number) < 0.) |
---|
[3203] | 2441 | pdq(:,:,igcm_stormdust_mass) = |
---|
[1974] | 2442 | & - pq(:,:,igcm_stormdust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 2443 | pdq(:,:,igcm_stormdust_number) = |
---|
[1974] | 2444 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 2445 | end where |
---|
| 2446 | |
---|
[3203] | 2447 | where (pq(:,:,igcm_dust_mass) + |
---|
[1974] | 2448 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
---|
[3203] | 2449 | pdq(:,:,igcm_dust_mass) = |
---|
[1974] | 2450 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 2451 | pdq(:,:,igcm_dust_number) = |
---|
[1974] | 2452 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 2453 | end where |
---|
[3203] | 2454 | where (pq(:,:,igcm_dust_number) + |
---|
[1974] | 2455 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
---|
[3203] | 2456 | pdq(:,:,igcm_dust_mass) = |
---|
[1974] | 2457 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 2458 | pdq(:,:,igcm_dust_number) = |
---|
[1974] | 2459 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 2460 | end where |
---|
[3203] | 2461 | ENDIF !(rdstorm) |
---|
[1974] | 2462 | |
---|
[42] | 2463 | c----------------------------------------------------------------------- |
---|
[2260] | 2464 | c J. Naar : Surface and sub-surface water ice |
---|
| 2465 | c----------------------------------------------------------------------- |
---|
| 2466 | c |
---|
| 2467 | c |
---|
| 2468 | c Increment Watercap (surface h2o reservoirs): |
---|
| 2469 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 2470 | |
---|
| 2471 | DO ig=1,ngrid |
---|
[2900] | 2472 | DO islope = 1,nslope |
---|
| 2473 | watercap(ig,islope)=watercap(ig,islope)+ |
---|
| 2474 | s ptimestep*dwatercap(ig,islope) |
---|
| 2475 | ENDDO |
---|
[2260] | 2476 | ENDDO |
---|
| 2477 | |
---|
[2561] | 2478 | IF (refill_watercap) THEN |
---|
| 2479 | |
---|
[3159] | 2480 | DO ig = 1,ngrid |
---|
[2900] | 2481 | DO islope = 1,nslope |
---|
[3159] | 2482 | if (watercaptag(ig) .and. (qsurf(ig,igcm_h2o_ice,islope) |
---|
| 2483 | & > frost_metam_threshold)) then |
---|
[2561] | 2484 | |
---|
[3159] | 2485 | watercap(ig,islope) = watercap(ig,islope) |
---|
| 2486 | & + qsurf(ig,igcm_h2o_ice,islope) |
---|
| 2487 | & - frost_metam_threshold |
---|
[2900] | 2488 | qsurf(ig,igcm_h2o_ice,islope) = frost_metam_threshold |
---|
[3159] | 2489 | endif ! watercaptag |
---|
[2900] | 2490 | ENDDO |
---|
[2561] | 2491 | ENDDO |
---|
| 2492 | |
---|
[3159] | 2493 | ENDIF ! refill_watercap |
---|
[2561] | 2494 | |
---|
[2260] | 2495 | c----------------------------------------------------------------------- |
---|
[2149] | 2496 | c 13. Write output files |
---|
[42] | 2497 | c ---------------------- |
---|
[2900] | 2498 | call compute_meshgridavg(ngrid,nq,albedo,emis,tsurf,qsurf, |
---|
| 2499 | & albedo_meshavg,emis_meshavg,tsurf_meshavg,qsurf_meshavg) |
---|
| 2500 | |
---|
[42] | 2501 | c ------------------------------- |
---|
| 2502 | c Dynamical fields incrementation |
---|
| 2503 | c ------------------------------- |
---|
| 2504 | c (FOR OUTPUT ONLY : the actual model integration is performed in the dynamics) |
---|
| 2505 | ! temperature, zonal and meridional wind |
---|
| 2506 | DO l=1,nlayer |
---|
| 2507 | DO ig=1,ngrid |
---|
| 2508 | zt(ig,l)=pt(ig,l) + pdt(ig,l)*ptimestep |
---|
| 2509 | zu(ig,l)=pu(ig,l) + pdu(ig,l)*ptimestep |
---|
| 2510 | zv(ig,l)=pv(ig,l) + pdv(ig,l)*ptimestep |
---|
| 2511 | ENDDO |
---|
| 2512 | ENDDO |
---|
| 2513 | |
---|
| 2514 | ! tracers |
---|
| 2515 | DO iq=1, nq |
---|
| 2516 | DO l=1,nlayer |
---|
| 2517 | DO ig=1,ngrid |
---|
| 2518 | zq(ig,l,iq)=pq(ig,l,iq) +pdq(ig,l,iq)*ptimestep |
---|
| 2519 | ENDDO |
---|
| 2520 | ENDDO |
---|
| 2521 | ENDDO |
---|
| 2522 | |
---|
[2362] | 2523 | ! Density |
---|
[42] | 2524 | DO l=1,nlayer |
---|
| 2525 | DO ig=1,ngrid |
---|
| 2526 | rho(ig,l) = zplay(ig,l)/(rnew(ig,l)*zt(ig,l)) |
---|
| 2527 | ENDDO |
---|
| 2528 | ENDDO |
---|
| 2529 | |
---|
[269] | 2530 | ! Potential Temperature |
---|
| 2531 | |
---|
[1047] | 2532 | DO ig=1,ngrid |
---|
| 2533 | DO l=1,nlayer |
---|
[528] | 2534 | zh(ig,l) = zt(ig,l)*(zplev(ig,1)/zplay(ig,l))**rcp |
---|
[269] | 2535 | ENDDO |
---|
| 2536 | ENDDO |
---|
| 2537 | |
---|
[226] | 2538 | c Compute surface stress : (NB: z0 is a common in surfdat.h) |
---|
[42] | 2539 | c DO ig=1,ngrid |
---|
[226] | 2540 | c cd = (0.4/log(zzlay(ig,1)/z0(ig)))**2 |
---|
[42] | 2541 | c zstress(ig) = rho(ig,1)*cd*(zu(ig,1)**2 + zv(ig,1)**2) |
---|
| 2542 | c ENDDO |
---|
| 2543 | |
---|
| 2544 | c Sum of fluxes in solar spectral bands (for output only) |
---|
[2685] | 2545 | fluxtop_dn_sw_tot(1:ngrid)=fluxtop_dn_sw(1:ngrid,1) + |
---|
| 2546 | & fluxtop_dn_sw(1:ngrid,2) |
---|
| 2547 | fluxtop_up_sw_tot(1:ngrid)=fluxtop_up_sw(1:ngrid,1) + |
---|
| 2548 | & fluxtop_up_sw(1:ngrid,2) |
---|
[2900] | 2549 | fluxsurf_dn_sw_tot(1:ngrid,1:nslope)= |
---|
| 2550 | & fluxsurf_dn_sw(1:ngrid,1,1:nslope) + |
---|
| 2551 | & fluxsurf_dn_sw(1:ngrid,2,1:nslope) |
---|
[2685] | 2552 | fluxsurf_up_sw_tot(1:ngrid)=fluxsurf_up_sw(1:ngrid,1) + |
---|
| 2553 | & fluxsurf_up_sw(1:ngrid,2) |
---|
| 2554 | |
---|
[42] | 2555 | c ******* TEST ****************************************************** |
---|
[835] | 2556 | ztim1 = 999 |
---|
| 2557 | DO l=1,nlayer |
---|
| 2558 | DO ig=1,ngrid |
---|
| 2559 | if (pt(ig,l).lt.ztim1) then |
---|
| 2560 | ztim1 = pt(ig,l) |
---|
| 2561 | igmin = ig |
---|
[3203] | 2562 | lmin = l |
---|
[835] | 2563 | end if |
---|
| 2564 | ENDDO |
---|
| 2565 | ENDDO |
---|
| 2566 | if(min(pt(igmin,lmin),zt(igmin,lmin)).lt.70.) then |
---|
| 2567 | write(*,*) 'PHYSIQ: stability WARNING :' |
---|
| 2568 | write(*,*) 'pt, zt Tmin = ', pt(igmin,lmin), zt(igmin,lmin), |
---|
| 2569 | & 'ig l =', igmin, lmin |
---|
| 2570 | end if |
---|
[42] | 2571 | |
---|
[566] | 2572 | c ---------------------------------------------------------- |
---|
| 2573 | c ---------------------------------------------------------- |
---|
| 2574 | c INTERPOLATIONS IN THE SURFACE-LAYER |
---|
| 2575 | c ---------------------------------------------------------- |
---|
| 2576 | c ---------------------------------------------------------- |
---|
| 2577 | |
---|
[657] | 2578 | n_out=0 ! number of elements in the z_out array. |
---|
[636] | 2579 | ! for z_out=[3.,2.,1.,0.5,0.1], n_out must be set |
---|
| 2580 | ! to 5 |
---|
| 2581 | IF (n_out .ne. 0) THEN |
---|
[566] | 2582 | |
---|
[636] | 2583 | IF(.NOT. ALLOCATED(z_out)) ALLOCATE(z_out(n_out)) |
---|
| 2584 | IF(.NOT. ALLOCATED(T_out)) ALLOCATE(T_out(ngrid,n_out)) |
---|
| 2585 | IF(.NOT. ALLOCATED(u_out)) ALLOCATE(u_out(ngrid,n_out)) |
---|
[566] | 2586 | |
---|
[636] | 2587 | z_out(:)=[3.,2.,1.,0.5,0.1] |
---|
| 2588 | u_out(:,:)=0. |
---|
| 2589 | T_out(:,:)=0. |
---|
[566] | 2590 | |
---|
[636] | 2591 | call pbl_parameters(ngrid,nlayer,ps,zplay,z0, |
---|
[3219] | 2592 | & g,zzlay,zzlev,zu,zv,wstar,hfmax_th,zmax_th,q2,tsurf(:,iflat), |
---|
[3325] | 2593 | & zh,zq(:,1,igcm_h2o_vap),qsurf(:,igcm_h2o_ice,iflat),mmean(:,1), |
---|
| 2594 | & z_out,n_out,T_out,u_out,ustar,tstar,vhf,vvv) |
---|
[1242] | 2595 | ! pourquoi ustar recalcule ici? fait dans vdifc. |
---|
[566] | 2596 | |
---|
| 2597 | #ifndef MESOSCALE |
---|
| 2598 | DO n=1,n_out |
---|
[636] | 2599 | write(zstring, '(F8.6)') z_out(n) |
---|
[2932] | 2600 | call write_output('T_out_'//trim(zstring), |
---|
| 2601 | & 'potential temperature at z_out','K',T_out(:,n)) |
---|
| 2602 | call write_output('u_out_'//trim(zstring), |
---|
| 2603 | & 'horizontal velocity norm at z_out','m/s',u_out(:,n)) |
---|
[636] | 2604 | ENDDO |
---|
[2932] | 2605 | call write_output('u_star', |
---|
| 2606 | & 'friction velocity','m/s',ustar) |
---|
| 2607 | call write_output('teta_star', |
---|
| 2608 | & 'friction potential temperature','K',tstar) |
---|
| 2609 | call write_output('vvv', |
---|
| 2610 | & 'Vertical velocity variance at zout','m',vvv) |
---|
| 2611 | call write_output('vhf', |
---|
| 2612 | & 'Vertical heat flux at zout','m',vhf) |
---|
[636] | 2613 | #else |
---|
| 2614 | T_out1(:)=T_out(:,1) |
---|
| 2615 | u_out1(:)=u_out(:,1) |
---|
[566] | 2616 | #endif |
---|
| 2617 | |
---|
| 2618 | ENDIF |
---|
| 2619 | |
---|
| 2620 | c ---------------------------------------------------------- |
---|
| 2621 | c ---------------------------------------------------------- |
---|
| 2622 | c END OF SURFACE LAYER INTERPOLATIONS |
---|
| 2623 | c ---------------------------------------------------------- |
---|
| 2624 | c ---------------------------------------------------------- |
---|
| 2625 | |
---|
[226] | 2626 | #ifndef MESOSCALE |
---|
[42] | 2627 | c ------------------------------------------------------------------- |
---|
| 2628 | c Writing NetCDF file "RESTARTFI" at the end of the run |
---|
| 2629 | c ------------------------------------------------------------------- |
---|
| 2630 | c Note: 'restartfi' is stored just before dynamics are stored |
---|
| 2631 | c in 'restart'. Between now and the writting of 'restart', |
---|
| 2632 | c there will have been the itau=itau+1 instruction and |
---|
| 2633 | c a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
---|
| 2634 | c thus we store for time=time+dtvr |
---|
| 2635 | |
---|
[2646] | 2636 | ! default: not writing a restart file at this time step |
---|
[3203] | 2637 | write_restart=.false. |
---|
[2646] | 2638 | IF (ecritstart.GT.0) THEN |
---|
| 2639 | ! For when we store multiple time steps in the restart file |
---|
| 2640 | IF (MODULO(icount*iphysiq,ecritstart).EQ.0) THEN |
---|
| 2641 | write_restart=.true. |
---|
| 2642 | ENDIF |
---|
| 2643 | ENDIF |
---|
| 2644 | IF (lastcall) THEN |
---|
| 2645 | ! Always write a restart at the end of the simulation |
---|
| 2646 | write_restart=.true. |
---|
| 2647 | ENDIF |
---|
[3203] | 2648 | |
---|
[2646] | 2649 | IF (write_restart) THEN |
---|
| 2650 | IF (grid_type==unstructured) THEN !IF DYNAMICO |
---|
[2507] | 2651 | |
---|
[2501] | 2652 | ! When running Dynamico, no need to add a dynamics time step to ztime_fin |
---|
[3203] | 2653 | IF (ptime.LE. 1.E-10) THEN |
---|
[2501] | 2654 | ! Residual ptime occurs with Dynamico |
---|
| 2655 | ztime_fin = pday !+ ptime + ptimestep/(float(iphysiq)*daysec) |
---|
| 2656 | . - day_ini - time_phys |
---|
| 2657 | ELSE |
---|
| 2658 | ztime_fin = pday + ptime !+ ptimestep/(float(iphysiq)*daysec) |
---|
| 2659 | . - day_ini - time_phys |
---|
| 2660 | ENDIF |
---|
[2514] | 2661 | if (ecritstart==0) then |
---|
| 2662 | ztime_fin = ztime_fin-(day_end-day_ini) |
---|
| 2663 | endif |
---|
[2507] | 2664 | |
---|
[2646] | 2665 | ELSE ! IF LMDZ |
---|
[2507] | 2666 | |
---|
[3094] | 2667 | if (ecritstart.GT.0) then !IF MULTIPLE RESTARTS nothing change |
---|
[3203] | 2668 | ztime_fin = pday - day_ini + ptime |
---|
[3094] | 2669 | & + ptimestep/(float(iphysiq)*daysec) |
---|
| 2670 | else !IF ONE RESTART final time in top of day_end |
---|
[3203] | 2671 | ztime_fin = pday - day_ini-(day_end-day_ini) |
---|
[3094] | 2672 | & + ptime + ptimestep/(float(iphysiq)*daysec) |
---|
| 2673 | endif |
---|
[2507] | 2674 | |
---|
[2646] | 2675 | ENDIF ! of IF (grid_type==unstructured) |
---|
[3203] | 2676 | write(*,'(A,I7,A,F12.5)') |
---|
[2646] | 2677 | . 'PHYSIQ: writing in restartfi ; icount=', |
---|
[999] | 2678 | . icount,' date=',ztime_fin |
---|
[3203] | 2679 | |
---|
[3113] | 2680 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil, |
---|
[999] | 2681 | . ptimestep,ztime_fin, |
---|
[2942] | 2682 | . tsurf,tsoil,inertiesoil,albedo, |
---|
[3113] | 2683 | . emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, |
---|
[3130] | 2684 | . wstar,watercap,perennial_co2ice) |
---|
[2924] | 2685 | ENDIF ! of IF (write_restart) |
---|
| 2686 | |
---|
[226] | 2687 | #endif |
---|
[42] | 2688 | |
---|
[2931] | 2689 | c IF (ngrid.NE.1) then |
---|
[2924] | 2690 | |
---|
[42] | 2691 | c ------------------------------------------------------------------- |
---|
| 2692 | c Calculation of diagnostic variables written in both stats and |
---|
| 2693 | c diagfi files |
---|
| 2694 | c ------------------------------------------------------------------- |
---|
[2678] | 2695 | do ig=1,ngrid |
---|
[3203] | 2696 | if(mu0(ig).le.0.01) then |
---|
| 2697 | fluxsurf_dir_dn_sw(ig) = 0. |
---|
| 2698 | else |
---|
[3147] | 2699 | if (water) then |
---|
| 2700 | ! both water and dust contribute |
---|
[3148] | 2701 | fluxsurf_dir_dn_sw(ig) = flux_1AU/dist_sol/dist_sol*mu0(ig)* |
---|
[2678] | 2702 | & exp(-(tau(ig,iaer_dust_doubleq)+ |
---|
| 2703 | & tau(ig,iaer_h2o_ice))/mu0(ig)) |
---|
[3147] | 2704 | else |
---|
| 2705 | ! only dust contributes |
---|
[3148] | 2706 | fluxsurf_dir_dn_sw(ig) = flux_1AU/dist_sol/dist_sol*mu0(ig)* |
---|
[3147] | 2707 | & exp(-(tau(ig,iaer_dust_doubleq))/mu0(ig)) |
---|
| 2708 | endif ! of if (water) |
---|
| 2709 | endif ! of if(mu0(ig).le.0.01) |
---|
[2678] | 2710 | enddo |
---|
| 2711 | |
---|
[2282] | 2712 | ! Density-scaled opacities |
---|
[2362] | 2713 | do ig=1,ngrid |
---|
| 2714 | dsodust(ig,:) = |
---|
[2282] | 2715 | & dsodust(ig,:)*tauscaling(ig) |
---|
[2362] | 2716 | dsords(ig,:) = |
---|
[2282] | 2717 | & dsords(ig,:)*tauscaling(ig) |
---|
| 2718 | dsotop(ig,:) = |
---|
| 2719 | & dsotop(ig,:)*tauscaling(ig) |
---|
| 2720 | enddo |
---|
[2362] | 2721 | |
---|
[719] | 2722 | if(doubleq) then |
---|
[3203] | 2723 | do ig=1,ngrid |
---|
| 2724 | IF (sedimentation) THEN |
---|
| 2725 | dqdustsurf(ig) = |
---|
[756] | 2726 | & zdqssed(ig,igcm_dust_mass)*tauscaling(ig) |
---|
[3203] | 2727 | dndustsurf(ig) = |
---|
[756] | 2728 | & zdqssed(ig,igcm_dust_number)*tauscaling(ig) |
---|
[2931] | 2729 | ENDIF |
---|
[756] | 2730 | ndust(ig,:) = |
---|
[1720] | 2731 | & zq(ig,:,igcm_dust_number)*tauscaling(ig) |
---|
[756] | 2732 | qdust(ig,:) = |
---|
[1720] | 2733 | & zq(ig,:,igcm_dust_mass)*tauscaling(ig) |
---|
[719] | 2734 | enddo |
---|
| 2735 | if (scavenging) then |
---|
[3203] | 2736 | do ig=1,ngrid |
---|
| 2737 | IF (sedimentation) THEN |
---|
| 2738 | dqdustsurf(ig) = dqdustsurf(ig) + |
---|
[756] | 2739 | & zdqssed(ig,igcm_ccn_mass)*tauscaling(ig) |
---|
[3203] | 2740 | dndustsurf(ig) = dndustsurf(ig) + |
---|
[756] | 2741 | & zdqssed(ig,igcm_ccn_number)*tauscaling(ig) |
---|
[2931] | 2742 | ENDIF |
---|
[756] | 2743 | nccn(ig,:) = |
---|
[1720] | 2744 | & zq(ig,:,igcm_ccn_number)*tauscaling(ig) |
---|
[756] | 2745 | qccn(ig,:) = |
---|
[1720] | 2746 | & zq(ig,:,igcm_ccn_mass)*tauscaling(ig) |
---|
[719] | 2747 | enddo |
---|
| 2748 | endif |
---|
[1921] | 2749 | endif ! of (doubleq) |
---|
[1974] | 2750 | |
---|
| 2751 | if (rdstorm) then ! diagnostics of stormdust tendancies for 1D and 3D |
---|
| 2752 | mstormdtot(:)=0 |
---|
| 2753 | mdusttot(:)=0 |
---|
| 2754 | qdusttotal(:,:)=0 |
---|
[3203] | 2755 | do ig=1,ngrid |
---|
| 2756 | rdsdqdustsurf(ig) = |
---|
[1974] | 2757 | & zdqssed(ig,igcm_stormdust_mass)*tauscaling(ig) |
---|
[3203] | 2758 | rdsdndustsurf(ig) = |
---|
[1974] | 2759 | & zdqssed(ig,igcm_stormdust_number)*tauscaling(ig) |
---|
| 2760 | rdsndust(ig,:) = |
---|
| 2761 | & pq(ig,:,igcm_stormdust_number)*tauscaling(ig) |
---|
| 2762 | rdsqdust(ig,:) = |
---|
| 2763 | & pq(ig,:,igcm_stormdust_mass)*tauscaling(ig) |
---|
| 2764 | do l=1,nlayer |
---|
[3203] | 2765 | mstormdtot(ig) = mstormdtot(ig) + |
---|
| 2766 | & zq(ig,l,igcm_stormdust_mass) * |
---|
[1974] | 2767 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[3203] | 2768 | mdusttot(ig) = mdusttot(ig) + |
---|
| 2769 | & zq(ig,l,igcm_dust_mass) * |
---|
[1974] | 2770 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
| 2771 | qdusttotal(ig,l) = qdust(ig,l)+rdsqdust(ig,l) !calculate total dust |
---|
| 2772 | enddo |
---|
| 2773 | enddo |
---|
| 2774 | endif !(rdstorm) |
---|
[3203] | 2775 | |
---|
[42] | 2776 | if (water) then |
---|
[286] | 2777 | mtot(:)=0 |
---|
| 2778 | icetot(:)=0 |
---|
| 2779 | rave(:)=0 |
---|
| 2780 | tauTES(:)=0 |
---|
[2312] | 2781 | |
---|
| 2782 | IF (hdo) then |
---|
| 2783 | mtotD(:)=0 |
---|
| 2784 | icetotD(:)=0 |
---|
| 2785 | ENDIF !hdo |
---|
| 2786 | |
---|
[2362] | 2787 | do ig=1,ngrid |
---|
[1047] | 2788 | do l=1,nlayer |
---|
[3203] | 2789 | mtot(ig) = mtot(ig) + |
---|
| 2790 | & zq(ig,l,igcm_h2o_vap) * |
---|
[883] | 2791 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[3203] | 2792 | icetot(ig) = icetot(ig) + |
---|
| 2793 | & zq(ig,l,igcm_h2o_ice) * |
---|
[883] | 2794 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[2312] | 2795 | IF (hdo) then |
---|
[2362] | 2796 | mtotD(ig) = mtotD(ig) + |
---|
| 2797 | & zq(ig,l,igcm_hdo_vap) * |
---|
[2312] | 2798 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[2362] | 2799 | icetotD(ig) = icetotD(ig) + |
---|
| 2800 | & zq(ig,l,igcm_hdo_ice) * |
---|
[2312] | 2801 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
| 2802 | ENDIF !hdo |
---|
| 2803 | |
---|
[42] | 2804 | c Computing abs optical depth at 825 cm-1 in each |
---|
| 2805 | c layer to simulate NEW TES retrieval |
---|
| 2806 | Qabsice = min( |
---|
| 2807 | & max(0.4e6*rice(ig,l)*(1.+nuice_ref)-0.05 ,0.),1.2 |
---|
| 2808 | & ) |
---|
[3203] | 2809 | opTES(ig,l)= 0.75 * Qabsice * |
---|
[42] | 2810 | & zq(ig,l,igcm_h2o_ice) * |
---|
[883] | 2811 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[42] | 2812 | & / (rho_ice * rice(ig,l) * (1.+nuice_ref)) |
---|
[3203] | 2813 | tauTES(ig)=tauTES(ig)+ opTES(ig,l) |
---|
[42] | 2814 | enddo |
---|
[669] | 2815 | c rave(ig)=rave(ig)/max(icetot(ig),1.e-30) ! mass weight |
---|
| 2816 | c if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
---|
[42] | 2817 | enddo |
---|
[1047] | 2818 | call watersat(ngrid*nlayer,zt,zplay,zqsat) |
---|
[669] | 2819 | satu(:,:) = zq(:,:,igcm_h2o_vap)/zqsat(:,:) |
---|
[42] | 2820 | |
---|
[669] | 2821 | if (scavenging) then |
---|
| 2822 | Nccntot(:)= 0 |
---|
| 2823 | Mccntot(:)= 0 |
---|
| 2824 | rave(:)=0 |
---|
[3203] | 2825 | do ig=1,ngrid |
---|
[1047] | 2826 | do l=1,nlayer |
---|
[3203] | 2827 | Nccntot(ig) = Nccntot(ig) + |
---|
[669] | 2828 | & zq(ig,l,igcm_ccn_number)*tauscaling(ig) |
---|
[883] | 2829 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[3203] | 2830 | Mccntot(ig) = Mccntot(ig) + |
---|
[669] | 2831 | & zq(ig,l,igcm_ccn_mass)*tauscaling(ig) |
---|
[883] | 2832 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[3203] | 2833 | cccc Column integrated effective ice radius |
---|
| 2834 | cccc is weighted by total ice surface area (BETTER than total ice mass) |
---|
| 2835 | rave(ig) = rave(ig) + |
---|
[669] | 2836 | & tauscaling(ig) * |
---|
| 2837 | & zq(ig,l,igcm_ccn_number) * |
---|
[3203] | 2838 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
---|
[669] | 2839 | & rice(ig,l) * rice(ig,l)* (1.+nuice_ref) |
---|
| 2840 | enddo |
---|
| 2841 | rave(ig)=(icetot(ig)/rho_ice+Mccntot(ig)/rho_dust)*0.75 |
---|
| 2842 | & /max(pi*rave(ig),1.e-30) ! surface weight |
---|
| 2843 | if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
---|
| 2844 | enddo |
---|
[833] | 2845 | else ! of if (scavenging) |
---|
| 2846 | rave(:)=0 |
---|
[3203] | 2847 | do ig=1,ngrid |
---|
[1047] | 2848 | do l=1,nlayer |
---|
[3203] | 2849 | rave(ig) = rave(ig) + |
---|
[833] | 2850 | & zq(ig,l,igcm_h2o_ice) * |
---|
[3203] | 2851 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
---|
[833] | 2852 | & rice(ig,l) * (1.+nuice_ref) |
---|
| 2853 | enddo |
---|
[3203] | 2854 | rave(ig) = max(rave(ig) / |
---|
[833] | 2855 | & max(icetot(ig),1.e-30),1.e-30) ! mass weight |
---|
| 2856 | enddo |
---|
[669] | 2857 | endif ! of if (scavenging) |
---|
| 2858 | |
---|
[1711] | 2859 | !Alternative A. Pottier weighting |
---|
| 2860 | rave2(:) = 0. |
---|
| 2861 | totrave2(:) = 0. |
---|
| 2862 | do ig=1,ngrid |
---|
| 2863 | do l=1,nlayer |
---|
| 2864 | rave2(ig) =rave2(ig)+ zq(ig,l,igcm_h2o_ice)*rice(ig,l) |
---|
| 2865 | totrave2(ig) = totrave2(ig) + zq(ig,l,igcm_h2o_ice) |
---|
| 2866 | end do |
---|
| 2867 | rave2(ig)=max(rave2(ig)/max(totrave2(ig),1.e-30),1.e-30) |
---|
| 2868 | end do |
---|
| 2869 | |
---|
[42] | 2870 | endif ! of if (water) |
---|
[2551] | 2871 | |
---|
| 2872 | if (co2clouds) then |
---|
| 2873 | mtotco2(1:ngrid) = 0. |
---|
| 2874 | icetotco2(1:ngrid) = 0. |
---|
| 2875 | vaptotco2(1:ngrid) = 0. |
---|
| 2876 | do ig=1,ngrid |
---|
| 2877 | do l=1,nlayer |
---|
[3203] | 2878 | vaptotco2(ig) = vaptotco2(ig) + |
---|
| 2879 | & zq(ig,l,igcm_co2) * |
---|
[2551] | 2880 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[3203] | 2881 | icetotco2(ig) = icetot(ig) + |
---|
| 2882 | & zq(ig,l,igcm_co2_ice) * |
---|
[2551] | 2883 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
| 2884 | end do |
---|
| 2885 | mtotco2(ig) = icetotco2(ig) + vaptotco2(ig) |
---|
| 2886 | end do |
---|
| 2887 | end if |
---|
[2823] | 2888 | |
---|
[1212] | 2889 | #ifndef MESOSCALE |
---|
[42] | 2890 | c ----------------------------------------------------------------- |
---|
| 2891 | c WSTATS: Saving statistics |
---|
| 2892 | c ----------------------------------------------------------------- |
---|
[2563] | 2893 | c ("stats" stores and accumulates key variables in file "stats.nc" |
---|
[42] | 2894 | c which can later be used to make the statistic files of the run: |
---|
[2563] | 2895 | c if flag "callstats" from callphys.def is .true.) |
---|
[3203] | 2896 | |
---|
[695] | 2897 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
[2900] | 2898 | call wstats(ngrid,"tsurf","Surface temperature","K",2 |
---|
| 2899 | & ,tsurf(:,iflat)) |
---|
[695] | 2900 | call wstats(ngrid,"co2ice","CO2 ice cover", |
---|
[2900] | 2901 | & "kg.m-2",2,qsurf(:,igcm_co2,iflat)) |
---|
[2260] | 2902 | call wstats(ngrid,"watercap","H2O ice cover", |
---|
[2900] | 2903 | & "kg.m-2",2,watercap(:,iflat)) |
---|
[2415] | 2904 | call wstats(ngrid,"tau_pref_scenario", |
---|
| 2905 | & "prescribed visible dod at 610 Pa","NU", |
---|
| 2906 | & 2,tau_pref_scenario) |
---|
| 2907 | call wstats(ngrid,"tau_pref_gcm", |
---|
| 2908 | & "visible dod at 610 Pa in the GCM","NU", |
---|
| 2909 | & 2,tau_pref_gcm) |
---|
[695] | 2910 | call wstats(ngrid,"fluxsurf_lw", |
---|
[575] | 2911 | & "Thermal IR radiative flux to surface","W.m-2",2, |
---|
[2900] | 2912 | & fluxsurf_lw(:,iflat)) |
---|
[2685] | 2913 | call wstats(ngrid,"fluxsurf_dn_sw", |
---|
| 2914 | & "Incoming Solar radiative flux to surface","W.m-2",2, |
---|
[2900] | 2915 | & fluxsurf_dn_sw_tot(:,iflat)) |
---|
[2685] | 2916 | call wstats(ngrid,"fluxsurf_up_sw", |
---|
| 2917 | & "Reflected Solar radiative flux from surface","W.m-2",2, |
---|
| 2918 | & fluxsurf_up_sw_tot) |
---|
[695] | 2919 | call wstats(ngrid,"fluxtop_lw", |
---|
[575] | 2920 | & "Thermal IR radiative flux to space","W.m-2",2, |
---|
| 2921 | & fluxtop_lw) |
---|
[2685] | 2922 | call wstats(ngrid,"fluxtop_dn_sw", |
---|
| 2923 | & "Incoming Solar radiative flux from space","W.m-2",2, |
---|
| 2924 | & fluxtop_dn_sw_tot) |
---|
| 2925 | call wstats(ngrid,"fluxtop_up_sw", |
---|
| 2926 | & "Outgoing Solar radiative flux to space","W.m-2",2, |
---|
| 2927 | & fluxtop_up_sw_tot) |
---|
[695] | 2928 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
---|
| 2929 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
---|
| 2930 | call wstats(ngrid,"v","Meridional (North-South) wind", |
---|
[575] | 2931 | & "m.s-1",3,zv) |
---|
[705] | 2932 | call wstats(ngrid,"w","Vertical (down-up) wind", |
---|
| 2933 | & "m.s-1",3,pw) |
---|
[695] | 2934 | call wstats(ngrid,"rho","Atmospheric density","kg/m3",3,rho) |
---|
[883] | 2935 | call wstats(ngrid,"pressure","Pressure","Pa",3,zplay) |
---|
[758] | 2936 | call wstats(ngrid,"q2", |
---|
| 2937 | & "Boundary layer eddy kinetic energy", |
---|
| 2938 | & "m2.s-2",3,q2) |
---|
| 2939 | call wstats(ngrid,"emis","Surface emissivity","w.m-1",2, |
---|
[2900] | 2940 | & emis(:,iflat)) |
---|
[2685] | 2941 | call wstats(ngrid,"fluxsurf_dir_dn_sw", |
---|
| 2942 | & "Direct incoming SW flux at surface", |
---|
[3203] | 2943 | & "W.m-2",2,fluxsurf_dir_dn_sw) |
---|
[42] | 2944 | |
---|
[758] | 2945 | if (calltherm) then |
---|
| 2946 | call wstats(ngrid,"zmax_th","Height of thermals", |
---|
| 2947 | & "m",2,zmax_th) |
---|
| 2948 | call wstats(ngrid,"hfmax_th","Max thermals heat flux", |
---|
| 2949 | & "K.m/s",2,hfmax_th) |
---|
| 2950 | call wstats(ngrid,"wstar", |
---|
| 2951 | & "Max vertical velocity in thermals", |
---|
| 2952 | & "m/s",2,wstar) |
---|
| 2953 | endif |
---|
| 2954 | |
---|
[226] | 2955 | if (water) then |
---|
[1047] | 2956 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
---|
| 2957 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
---|
[719] | 2958 | call wstats(ngrid,"vmr_h2ovap", |
---|
[520] | 2959 | & "H2O vapor volume mixing ratio","mol/mol", |
---|
| 2960 | & 3,vmr) |
---|
[1047] | 2961 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 2962 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
---|
[520] | 2963 | call wstats(ngrid,"vmr_h2oice", |
---|
| 2964 | & "H2O ice volume mixing ratio","mol/mol", |
---|
| 2965 | & 3,vmr) |
---|
[1278] | 2966 | ! also store vmr_ice*rice for better diagnostics of rice |
---|
| 2967 | vmr(1:ngrid,1:nlayer)=vmr(1:ngrid,1:nlayer)* |
---|
[1502] | 2968 | & rice(1:ngrid,1:nlayer) |
---|
[1278] | 2969 | call wstats(ngrid,"vmr_h2oice_rice", |
---|
| 2970 | & "H2O ice mixing ratio times ice particule size", |
---|
| 2971 | & "(mol/mol)*m", |
---|
| 2972 | & 3,vmr) |
---|
[1047] | 2973 | vmr=zqsat(1:ngrid,1:nlayer) |
---|
| 2974 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
---|
[669] | 2975 | call wstats(ngrid,"vmr_h2osat", |
---|
| 2976 | & "saturation volume mixing ratio","mol/mol", |
---|
| 2977 | & 3,vmr) |
---|
[226] | 2978 | call wstats(ngrid,"h2o_ice_s", |
---|
| 2979 | & "surface h2o_ice","kg/m2", |
---|
[2900] | 2980 | & 2,qsurf(1,igcm_h2o_ice,iflat)) |
---|
[758] | 2981 | call wstats(ngrid,'albedo', |
---|
| 2982 | & 'albedo', |
---|
[2900] | 2983 | & '',2,albedo(1,1,iflat)) |
---|
[226] | 2984 | call wstats(ngrid,"mtot", |
---|
| 2985 | & "total mass of water vapor","kg/m2", |
---|
| 2986 | & 2,mtot) |
---|
| 2987 | call wstats(ngrid,"icetot", |
---|
| 2988 | & "total mass of water ice","kg/m2", |
---|
| 2989 | & 2,icetot) |
---|
[520] | 2990 | call wstats(ngrid,"reffice", |
---|
| 2991 | & "Mean reff","m", |
---|
| 2992 | & 2,rave) |
---|
[669] | 2993 | call wstats(ngrid,"Nccntot", |
---|
[520] | 2994 | & "condensation nuclei","Nbr/m2", |
---|
[669] | 2995 | & 2,Nccntot) |
---|
| 2996 | call wstats(ngrid,"Mccntot", |
---|
| 2997 | & "condensation nuclei mass","kg/m2", |
---|
| 2998 | & 2,Mccntot) |
---|
[520] | 2999 | call wstats(ngrid,"rice", |
---|
| 3000 | & "Ice particle size","m", |
---|
| 3001 | & 3,rice) |
---|
[226] | 3002 | if (.not.activice) then |
---|
| 3003 | call wstats(ngrid,"tauTESap", |
---|
| 3004 | & "tau abs 825 cm-1","", |
---|
| 3005 | & 2,tauTES) |
---|
[520] | 3006 | else |
---|
[1047] | 3007 | call wstats(ngrid,'tauTES', |
---|
[520] | 3008 | & 'tau abs 825 cm-1', |
---|
| 3009 | & '',2,taucloudtes) |
---|
[226] | 3010 | endif |
---|
| 3011 | |
---|
| 3012 | endif ! of if (water) |
---|
[2551] | 3013 | |
---|
| 3014 | if (co2clouds) then |
---|
| 3015 | call wstats(ngrid,"mtotco2", |
---|
| 3016 | & "total mass atm of co2","kg/m2", |
---|
| 3017 | & 2,mtotco2) |
---|
| 3018 | call wstats(ngrid,"icetotco2", |
---|
| 3019 | & "total mass atm of co2 ice","kg/m2", |
---|
| 3020 | & 2,icetotco2) |
---|
| 3021 | call wstats(ngrid,"vaptotco2", |
---|
| 3022 | & "total mass atm of co2 vapor","kg/m2", |
---|
[3304] | 3023 | & 2,vaptotco2) |
---|
[2551] | 3024 | end if |
---|
[3203] | 3025 | |
---|
| 3026 | |
---|
[719] | 3027 | if (dustbin.ne.0) then |
---|
[3203] | 3028 | |
---|
[1047] | 3029 | call wstats(ngrid,'tau','taudust','SI',2,tau(1,1)) |
---|
[3203] | 3030 | |
---|
[719] | 3031 | if (doubleq) then |
---|
[1047] | 3032 | call wstats(ngrid,'dqsdust', |
---|
[719] | 3033 | & 'deposited surface dust mass', |
---|
| 3034 | & 'kg.m-2.s-1',2,dqdustsurf) |
---|
[1047] | 3035 | call wstats(ngrid,'dqndust', |
---|
[719] | 3036 | & 'deposited surface dust number', |
---|
| 3037 | & 'number.m-2.s-1',2,dndustsurf) |
---|
[1047] | 3038 | call wstats(ngrid,'reffdust','reffdust', |
---|
[719] | 3039 | & 'm',3,rdust*ref_r0) |
---|
[1047] | 3040 | call wstats(ngrid,'dustq','Dust mass mr', |
---|
[756] | 3041 | & 'kg/kg',3,qdust) |
---|
[1047] | 3042 | call wstats(ngrid,'dustN','Dust number', |
---|
[756] | 3043 | & 'part/kg',3,ndust) |
---|
[1974] | 3044 | if (rdstorm) then |
---|
| 3045 | call wstats(ngrid,'reffstormdust','reffdust', |
---|
| 3046 | & 'm',3,rstormdust*ref_r0) |
---|
| 3047 | call wstats(ngrid,'rdsdustq','Dust mass mr', |
---|
| 3048 | & 'kg/kg',3,rdsqdust) |
---|
| 3049 | call wstats(ngrid,'rdsdustN','Dust number', |
---|
| 3050 | & 'part/kg',3,rdsndust) |
---|
| 3051 | end if |
---|
[719] | 3052 | else |
---|
| 3053 | do iq=1,dustbin |
---|
| 3054 | write(str2(1:2),'(i2.2)') iq |
---|
[1047] | 3055 | call wstats(ngrid,'q'//str2,'mix. ratio', |
---|
[719] | 3056 | & 'kg/kg',3,zq(1,1,iq)) |
---|
[1047] | 3057 | call wstats(ngrid,'qsurf'//str2,'qsurf', |
---|
[2900] | 3058 | & 'kg.m-2',2,qsurf(1,iq,iflat)) |
---|
[719] | 3059 | end do |
---|
| 3060 | endif ! (doubleq) |
---|
[226] | 3061 | |
---|
[719] | 3062 | if (scavenging) then |
---|
[1047] | 3063 | call wstats(ngrid,'ccnq','CCN mass mr', |
---|
[756] | 3064 | & 'kg/kg',3,qccn) |
---|
[1047] | 3065 | call wstats(ngrid,'ccnN','CCN number', |
---|
[756] | 3066 | & 'part/kg',3,nccn) |
---|
[719] | 3067 | endif ! (scavenging) |
---|
[3203] | 3068 | |
---|
[1464] | 3069 | endif ! (dustbin.ne.0) |
---|
[719] | 3070 | |
---|
[2158] | 3071 | if (photochem) then |
---|
[1464] | 3072 | do iq=1,nq |
---|
| 3073 | if (noms(iq) .ne. "dust_mass" .and. |
---|
| 3074 | $ noms(iq) .ne. "dust_number" .and. |
---|
| 3075 | $ noms(iq) .ne. "ccn_mass" .and. |
---|
[1617] | 3076 | $ noms(iq) .ne. "ccn_number" .and. |
---|
| 3077 | $ noms(iq) .ne. "ccnco2_mass" .and. |
---|
[2825] | 3078 | $ noms(iq) .ne. "ccnco2_number" .and. |
---|
| 3079 | $ noms(iq) .ne. "stormdust_mass" .and. |
---|
| 3080 | $ noms(iq) .ne. "stormdust_number" .and. |
---|
| 3081 | $ noms(iq) .ne. "topdust_mass" .and. |
---|
| 3082 | $ noms(iq) .ne. "topdust_number") then |
---|
[1464] | 3083 | ! volume mixing ratio |
---|
| 3084 | |
---|
[705] | 3085 | vmr(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
---|
[1464] | 3086 | & *mmean(1:ngrid,1:nlayer)/mmol(iq) |
---|
| 3087 | |
---|
| 3088 | call wstats(ngrid,"vmr_"//trim(noms(iq)), |
---|
| 3089 | $ "Volume mixing ratio","mol/mol",3,vmr) |
---|
| 3090 | if ((noms(iq).eq."o") |
---|
| 3091 | $ .or. (noms(iq).eq."co2") |
---|
| 3092 | $ .or. (noms(iq).eq."o3") |
---|
| 3093 | $ .or. (noms(iq).eq."ar") |
---|
| 3094 | $ .or. (noms(iq).eq."o2") |
---|
| 3095 | $ .or. (noms(iq).eq."h2o_vap") ) then |
---|
[2932] | 3096 | call write_output("vmr_"//trim(noms(iq)), |
---|
| 3097 | $ "Volume mixing ratio","mol/mol",vmr(:,:)) |
---|
[1464] | 3098 | end if |
---|
| 3099 | |
---|
| 3100 | ! number density (molecule.cm-3) |
---|
| 3101 | |
---|
[705] | 3102 | rhopart(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
---|
| 3103 | & *rho(1:ngrid,1:nlayer)*n_avog/ |
---|
| 3104 | & (1000*mmol(iq)) |
---|
[1464] | 3105 | |
---|
[2481] | 3106 | call wstats(ngrid,"num_"//trim(noms(iq)), |
---|
[2158] | 3107 | $ "Number density","cm-3",3,rhopart) |
---|
[2932] | 3108 | call write_output("num_"//trim(noms(iq)), |
---|
| 3109 | $ "Number density","cm-3",rhopart(:,:)) |
---|
[226] | 3110 | |
---|
[1464] | 3111 | ! vertical column (molecule.cm-2) |
---|
| 3112 | |
---|
| 3113 | do ig = 1,ngrid |
---|
[3203] | 3114 | colden(ig,iq) = 0. |
---|
[1464] | 3115 | end do |
---|
[3203] | 3116 | do l=1,nlayer |
---|
| 3117 | do ig=1,ngrid |
---|
[1464] | 3118 | colden(ig,iq) = colden(ig,iq) + zq(ig,l,iq) |
---|
[3203] | 3119 | $ *(zplev(ig,l)-zplev(ig,l+1)) |
---|
| 3120 | $ *6.022e22/(mmol(iq)*g) |
---|
| 3121 | end do |
---|
| 3122 | end do |
---|
[1464] | 3123 | |
---|
[3203] | 3124 | call wstats(ngrid,"c_"//trim(noms(iq)), |
---|
| 3125 | $ "column","mol cm-2",2,colden(1,iq)) |
---|
[2932] | 3126 | call write_output("c_"//trim(noms(iq)), |
---|
| 3127 | $ "column","mol cm-2",colden(:,iq)) |
---|
[1464] | 3128 | |
---|
| 3129 | ! global mass (g) |
---|
[3203] | 3130 | |
---|
[1464] | 3131 | call planetwide_sumval(colden(:,iq)/6.022e23 |
---|
[1541] | 3132 | $ *mmol(iq)*1.e4*cell_area(:),mass(iq)) |
---|
[1464] | 3133 | |
---|
[2932] | 3134 | call write_output("mass_"//trim(noms(iq)), |
---|
| 3135 | $ "global mass","g",mass(iq)) |
---|
[1464] | 3136 | |
---|
| 3137 | end if ! of if (noms(iq) .ne. "dust_mass" ...) |
---|
| 3138 | end do ! of do iq=1,nq |
---|
[2158] | 3139 | end if ! of if (photochem) |
---|
[1464] | 3140 | |
---|
[2563] | 3141 | IF(lastcall.and.callstats) THEN |
---|
[226] | 3142 | write (*,*) "Writing stats..." |
---|
| 3143 | call mkstats(ierr) |
---|
| 3144 | ENDIF |
---|
| 3145 | |
---|
[42] | 3146 | c (Store EOF for Mars Climate database software) |
---|
| 3147 | IF (calleofdump) THEN |
---|
| 3148 | CALL eofdump(ngrid, nlayer, zu, zv, zt, rho, ps) |
---|
| 3149 | ENDIF |
---|
[1212] | 3150 | #endif |
---|
| 3151 | !endif of ifndef MESOSCALE |
---|
[42] | 3152 | |
---|
[1236] | 3153 | #ifdef MESOSCALE |
---|
[3203] | 3154 | |
---|
| 3155 | !! see comm_wrf. |
---|
[1236] | 3156 | !! not needed when an array is already in a shared module. |
---|
| 3157 | !! --> example : hfmax_th, zmax_th |
---|
[234] | 3158 | |
---|
[1590] | 3159 | CALL allocate_comm_wrf(ngrid,nlayer) |
---|
| 3160 | |
---|
[1236] | 3161 | !state real HR_SW ikj misc 1 - h "HR_SW" "HEATING RATE SW" "K/s" |
---|
| 3162 | comm_HR_SW(1:ngrid,1:nlayer) = zdtsw(1:ngrid,1:nlayer) |
---|
| 3163 | !state real HR_LW ikj misc 1 - h "HR_LW" "HEATING RATE LW" "K/s" |
---|
| 3164 | comm_HR_LW(1:ngrid,1:nlayer) = zdtlw(1:ngrid,1:nlayer) |
---|
| 3165 | !state real SWDOWNZ ij misc 1 - h "SWDOWNZ" "DOWNWARD SW FLUX AT SURFACE" "W m-2" |
---|
[2685] | 3166 | comm_SWDOWNZ(1:ngrid) = fluxsurf_dn_sw_tot(1:ngrid) |
---|
[1236] | 3167 | !state real TAU_DUST ij misc 1 - h "TAU_DUST" "REFERENCE VISIBLE DUST OPACITY" "" |
---|
[2415] | 3168 | comm_TAU_DUST(1:ngrid) = tau_pref_gcm(1:ngrid) |
---|
[1236] | 3169 | !state real RDUST ikj misc 1 - h "RDUST" "DUST RADIUS" "m" |
---|
| 3170 | comm_RDUST(1:ngrid,1:nlayer) = rdust(1:ngrid,1:nlayer) |
---|
| 3171 | !state real QSURFDUST ij misc 1 - h "QSURFDUST" "DUST MASS AT SURFACE" "kg m-2" |
---|
[308] | 3172 | IF (igcm_dust_mass .ne. 0) THEN |
---|
[1236] | 3173 | comm_QSURFDUST(1:ngrid) = qsurf(1:ngrid,igcm_dust_mass) |
---|
| 3174 | ELSE |
---|
| 3175 | comm_QSURFDUST(1:ngrid) = 0. |
---|
[308] | 3176 | ENDIF |
---|
[1236] | 3177 | !state real MTOT ij misc 1 - h "MTOT" "TOTAL MASS WATER VAPOR in pmic" "pmic" |
---|
| 3178 | comm_MTOT(1:ngrid) = mtot(1:ngrid) * 1.e6 / rho_ice |
---|
| 3179 | !state real ICETOT ij misc 1 - h "ICETOT" "TOTAL MASS WATER ICE" "kg m-2" |
---|
| 3180 | comm_ICETOT(1:ngrid) = icetot(1:ngrid) * 1.e6 / rho_ice |
---|
| 3181 | !state real VMR_ICE ikj misc 1 - h "VMR_ICE" "VOL. MIXING RATIO ICE" "ppm" |
---|
| 3182 | IF (igcm_h2o_ice .ne. 0) THEN |
---|
| 3183 | comm_VMR_ICE(1:ngrid,1:nlayer) = 1.e6 |
---|
| 3184 | . * zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 3185 | . * mmean(1:ngrid,1:nlayer) / mmol(igcm_h2o_ice) |
---|
| 3186 | ELSE |
---|
| 3187 | comm_VMR_ICE(1:ngrid,1:nlayer) = 0. |
---|
[81] | 3188 | ENDIF |
---|
[1236] | 3189 | !state real TAU_ICE ij misc 1 - h "TAU_ICE" "CLOUD OD at 825 cm-1 TES" "" |
---|
[1292] | 3190 | if (activice) then |
---|
| 3191 | comm_TAU_ICE(1:ngrid) = taucloudtes(1:ngrid) |
---|
| 3192 | else |
---|
| 3193 | comm_TAU_ICE(1:ngrid) = tauTES(1:ngrid) |
---|
| 3194 | endif |
---|
[1236] | 3195 | !state real RICE ikj misc 1 - h "RICE" "ICE RADIUS" "m" |
---|
| 3196 | comm_RICE(1:ngrid,1:nlayer) = rice(1:ngrid,1:nlayer) |
---|
[3203] | 3197 | |
---|
[1242] | 3198 | !! calculate sensible heat flux in W/m2 for outputs |
---|
| 3199 | !! -- the one computed in vdifc is not the real one |
---|
| 3200 | !! -- vdifc must have been called |
---|
| 3201 | if (.not.callrichsl) then |
---|
| 3202 | sensibFlux(1:ngrid) = zflubid(1:ngrid) |
---|
| 3203 | . - capcal(1:ngrid)*zdtsdif(1:ngrid) |
---|
| 3204 | else |
---|
[3203] | 3205 | sensibFlux(1:ngrid) = |
---|
[1242] | 3206 | & (pplay(1:ngrid,1)/(r*pt(1:ngrid,1)))*cpp |
---|
| 3207 | & *sqrt(pu(1:ngrid,1)*pu(1:ngrid,1)+pv(1:ngrid,1)*pv(1:ngrid,1) |
---|
| 3208 | & +(log(1.+0.7*wstar(1:ngrid) + 2.3*wstar(1:ngrid)**2))**2) |
---|
| 3209 | & *zcdh(1:ngrid)*(tsurf(1:ngrid)-zh(1:ngrid,1)) |
---|
| 3210 | endif |
---|
[3203] | 3211 | |
---|
[226] | 3212 | #else |
---|
[528] | 3213 | #ifndef MESOINI |
---|
[42] | 3214 | |
---|
[226] | 3215 | c ========================================================== |
---|
| 3216 | c WRITEDIAGFI: Outputs in netcdf file "DIAGFI", containing |
---|
| 3217 | c any variable for diagnostic (output with period |
---|
| 3218 | c "ecritphy", set in "run.def") |
---|
| 3219 | c ========================================================== |
---|
| 3220 | c WRITEDIAGFI can ALSO be called from any other subroutines |
---|
| 3221 | c for any variables !! |
---|
[2934] | 3222 | call write_output("emis","Surface emissivity","", |
---|
[2900] | 3223 | & emis(:,iflat)) |
---|
[2907] | 3224 | do islope=1,nslope |
---|
| 3225 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3226 | call write_output("emis_slope"//str2, |
---|
[2934] | 3227 | & "Surface emissivity","",emis(:,islope)) |
---|
[2907] | 3228 | ENDDO |
---|
[2934] | 3229 | call write_output("zzlay","Midlayer altitude", |
---|
| 3230 | & "m",zzlay(:,:)) |
---|
[2932] | 3231 | call write_output("zzlev","Interlayer altitude", |
---|
| 3232 | & "m",zzlev(:,1:nlayer)) |
---|
| 3233 | call write_output("pphi","Geopotential","m2s-2", |
---|
| 3234 | & pphi(:,:)) |
---|
| 3235 | call write_output("phisfi","Surface geopotential", |
---|
| 3236 | & "m2s-2",phisfi(:)) |
---|
[3078] | 3237 | if (grid_type == regular_lonlat) then |
---|
| 3238 | call write_output("area","Mesh area","m2", |
---|
| 3239 | & cell_area_for_lonlat_outputs) |
---|
| 3240 | else ! unstructured grid (e.g. dynamico) |
---|
| 3241 | call write_output("area","Mesh area","m2",cell_area) |
---|
| 3242 | endif |
---|
[2932] | 3243 | call write_output("tsurf","Surface temperature","K", |
---|
[2900] | 3244 | & tsurf(:,iflat)) |
---|
[2907] | 3245 | do islope=1,nslope |
---|
| 3246 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3247 | call write_output("tsurf_slope"//str2, |
---|
| 3248 | & "Surface temperature","K", |
---|
[2907] | 3249 | & tsurf(:,islope)) |
---|
| 3250 | ENDDO |
---|
[2932] | 3251 | call write_output("ps","surface pressure","Pa",ps(:)) |
---|
| 3252 | call write_output("co2ice","co2 ice thickness" |
---|
| 3253 | & ,"kg.m-2",qsurf(:,igcm_co2,iflat)) |
---|
[2907] | 3254 | do islope=1,nslope |
---|
| 3255 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3256 | call write_output("co2ice_slope"//str2,"co2 ice thickness" |
---|
| 3257 | & ,"kg.m-2",qsurf(:,igcm_co2,islope)) |
---|
[2907] | 3258 | ENDDO |
---|
[2934] | 3259 | call write_output("watercap","Perennial water ice thickness" |
---|
[2932] | 3260 | & ,"kg.m-2",watercap(:,iflat)) |
---|
[2907] | 3261 | do islope=1,nslope |
---|
| 3262 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3263 | call write_output("watercap_slope"//str2, |
---|
[2934] | 3264 | & "Perennial water ice thickness" |
---|
[2932] | 3265 | & ,"kg.m-2",watercap(:,islope)) |
---|
[2907] | 3266 | ENDDO |
---|
[3130] | 3267 | call write_output("perennial_co2ice", |
---|
| 3268 | & "Perennial co2 ice thickness","kg.m-2", |
---|
| 3269 | & perennial_co2ice(:,iflat)) |
---|
| 3270 | do islope=1,nslope |
---|
| 3271 | write(str2(1:2),'(i2.2)') islope |
---|
| 3272 | call write_output("perennial_co2ice_slope"//str2, |
---|
[3152] | 3273 | & "Perennial co2 ice thickness" |
---|
[3130] | 3274 | & ,"kg.m-2",perennial_co2ice(:,islope)) |
---|
| 3275 | ENDDO |
---|
[2932] | 3276 | call write_output("temp_layer1","temperature in layer 1", |
---|
| 3277 | & "K",zt(:,1)) |
---|
| 3278 | call write_output("temp7","temperature in layer 7", |
---|
| 3279 | & "K",zt(:,7)) |
---|
| 3280 | call write_output("fluxsurf_lw","fluxsurf_lw","W.m-2", |
---|
[2900] | 3281 | & fluxsurf_lw(:,iflat)) |
---|
[2907] | 3282 | do islope=1,nslope |
---|
| 3283 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3284 | call write_output("fluxsurf_lw_slope"//str2, |
---|
| 3285 | & "fluxsurf_lw","W.m-2", |
---|
[2907] | 3286 | & fluxsurf_lw(:,islope)) |
---|
| 3287 | ENDDO |
---|
[2932] | 3288 | call write_output("fluxsurf_dn_sw","fluxsurf_dn_sw", |
---|
| 3289 | & "W.m-2",fluxsurf_dn_sw_tot(:,iflat)) |
---|
[2907] | 3290 | do islope=1,nslope |
---|
| 3291 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3292 | call write_output("fluxsurf_dn_sw_slope"//str2, |
---|
[2907] | 3293 | & "fluxsurf_dn_sw", |
---|
[2932] | 3294 | & "W.m-2",fluxsurf_dn_sw_tot(:,islope)) |
---|
[2907] | 3295 | ENDDO |
---|
[3037] | 3296 | call write_output("fluxtop_dn_sw","fluxtop_dn_sw", |
---|
| 3297 | & "W.m-2",fluxtop_dn_sw(:,1) + fluxtop_dn_sw(:,2)) |
---|
[2932] | 3298 | call write_output("fluxtop_lw","fluxtop_lw","W.m-2", |
---|
| 3299 | & fluxtop_lw(:)) |
---|
| 3300 | call write_output("fluxtop_up_sw","fluxtop_up_sw","W.m-2", |
---|
| 3301 | & fluxtop_up_sw_tot(:)) |
---|
| 3302 | call write_output("temp","temperature","K",zt(:,:)) |
---|
| 3303 | call write_output("Sols","Time","sols",zday) |
---|
| 3304 | call write_output("Ls","Solar longitude","deg", |
---|
| 3305 | & zls*180./pi) |
---|
| 3306 | call write_output("u","Zonal wind","m.s-1",zu(:,:)) |
---|
| 3307 | call write_output("v","Meridional wind","m.s-1",zv(:,:)) |
---|
| 3308 | call write_output("w","Vertical wind","m.s-1",pw(:,:)) |
---|
| 3309 | call write_output("rho","density","kg.m-3",rho(:,:)) |
---|
| 3310 | call write_output("pressure","Pressure","Pa",zplay(:,:)) |
---|
[2934] | 3311 | call write_output("zplev","Interlayer pressure","Pa", |
---|
| 3312 | & zplev(:,1:nlayer)) |
---|
[2932] | 3313 | call write_output('sw_htrt','sw heat. rate', |
---|
| 3314 | & 'K/s',zdtsw(:,:)) |
---|
| 3315 | call write_output('lw_htrt','lw heat. rate', |
---|
| 3316 | & 'K/s',zdtlw(:,:)) |
---|
| 3317 | call write_output("local_time","Local time", |
---|
| 3318 | & 'sol',local_time(:)) |
---|
[3147] | 3319 | if (water) then |
---|
[520] | 3320 | if (.not.activice) then |
---|
[2932] | 3321 | CALL write_output('tauTESap', |
---|
[520] | 3322 | & 'tau abs 825 cm-1', |
---|
[2932] | 3323 | & '',tauTES(:)) |
---|
[520] | 3324 | else |
---|
[2932] | 3325 | CALL write_output('tauTES', |
---|
[520] | 3326 | & 'tau abs 825 cm-1', |
---|
[2932] | 3327 | & '',taucloudtes(:)) |
---|
[520] | 3328 | endif |
---|
[3147] | 3329 | endif ! of if (water) |
---|
[528] | 3330 | #else |
---|
[2362] | 3331 | !!! this is to ensure correct initialisation of mesoscale model |
---|
[2932] | 3332 | call write_output("tsurf","Surface temperature","K", |
---|
[2900] | 3333 | & tsurf(:,iflat)) |
---|
[2932] | 3334 | call write_output("ps","surface pressure","Pa",ps(:)) |
---|
| 3335 | call write_output("co2ice","co2 ice thickness","kg.m-2", |
---|
[2900] | 3336 | & qsurf(:,igcm_co2,iflat)) |
---|
[2932] | 3337 | call write_output("temp","temperature","K",zt(:,:)) |
---|
| 3338 | call write_output("u","Zonal wind","m.s-1",zu(:,:)) |
---|
| 3339 | call write_output("v","Meridional wind","m.s-1",zv(:,:)) |
---|
[2934] | 3340 | call write_output("emis","Surface emissivity","", |
---|
[2932] | 3341 | & emis(:,iflat)) |
---|
| 3342 | call write_output("tsoil","Soil temperature", |
---|
| 3343 | & "K",tsoil(:,:,iflat)) |
---|
| 3344 | call write_output("inertiedat","Soil inertia", |
---|
| 3345 | & "K",inertiedat(:,:)) |
---|
[299] | 3346 | #endif |
---|
[42] | 3347 | |
---|
[226] | 3348 | c ---------------------------------------------------------- |
---|
| 3349 | c Outputs of the CO2 cycle |
---|
| 3350 | c ---------------------------------------------------------- |
---|
[2823] | 3351 | if (igcm_co2.ne.0) then |
---|
[2932] | 3352 | call write_output("co2","co2 mass mixing ratio", |
---|
| 3353 | & "kg.kg-1",zq(:,:,igcm_co2)) |
---|
[2362] | 3354 | |
---|
| 3355 | if (co2clouds) then |
---|
[2932] | 3356 | call write_output('ccnqco2','CCNco2 mmr', |
---|
| 3357 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_mass)) |
---|
[1660] | 3358 | |
---|
[2932] | 3359 | call write_output('ccnNco2','CCNco2 number', |
---|
| 3360 | & 'part.kg-1',zq(:,:,igcm_ccnco2_number)) |
---|
[2362] | 3361 | |
---|
[2932] | 3362 | call write_output('co2_ice','co2_ice mmr in atm', |
---|
| 3363 | & 'kg.kg-1',zq(:,:,igcm_co2_ice)) |
---|
[2362] | 3364 | |
---|
[2932] | 3365 | call write_output("mtotco2","total mass atm of co2", |
---|
| 3366 | & "kg.m-2",mtotco2(:)) |
---|
| 3367 | call write_output("icetotco2","total mass atm of co2 ice", |
---|
| 3368 | & "kg.m-2", icetotco2(:)) |
---|
| 3369 | call write_output("vaptotco2","total mass atm of co2 "// |
---|
| 3370 | & "vapor","kg.m-2", vaptotco2(:)) |
---|
[2589] | 3371 | if (co2useh2o) then |
---|
[2932] | 3372 | call write_output('ccnqco2_h2o_m_ice', |
---|
[2589] | 3373 | & 'CCNco2_h2o_mass_ice mmr', |
---|
[2932] | 3374 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_h2o_mass_ice)) |
---|
[2589] | 3375 | |
---|
[2932] | 3376 | call write_output('ccnqco2_h2o_m_ccn', |
---|
[2589] | 3377 | & 'CCNco2_h2o_mass_ccn mmr', |
---|
[2932] | 3378 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_h2o_mass_ccn)) |
---|
[2589] | 3379 | |
---|
[2932] | 3380 | call write_output('ccnNco2_h2o','CCNco2_h2o number', |
---|
| 3381 | & 'part.kg-1',zq(:,:,igcm_ccnco2_h2o_number)) |
---|
[2589] | 3382 | end if |
---|
| 3383 | |
---|
| 3384 | if (meteo_flux) then |
---|
[2932] | 3385 | call write_output('ccnqco2_meteor','CCNco2_meteor mmr', |
---|
| 3386 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_meteor_mass)) |
---|
[2589] | 3387 | |
---|
[2932] | 3388 | call write_output('ccnNco2_meteor','CCNco2_meteor number', |
---|
| 3389 | & 'part.kg-1',zq(:,:,igcm_ccnco2_meteor_number)) |
---|
[2589] | 3390 | end if |
---|
| 3391 | |
---|
[2362] | 3392 | end if ! of if (co2clouds) |
---|
[2823] | 3393 | end if ! of if (igcm_co2.ne.0) |
---|
[2362] | 3394 | |
---|
| 3395 | ! Output He tracer, if there is one |
---|
[2823] | 3396 | if (igcm_he.ne.0) then |
---|
[2932] | 3397 | call write_output("he","helium mass mixing ratio", |
---|
| 3398 | & "kg/kg",zq(:,:,igcm_he)) |
---|
[2362] | 3399 | vmr = zq(1:ngrid,1:nlayer,igcm_he) |
---|
| 3400 | & * mmean(1:ngrid,1:nlayer)/mmol(igcm_he) |
---|
[2932] | 3401 | call write_output('vmr_he','helium vol. mixing ratio', |
---|
| 3402 | & 'mol/mol',vmr(:,:)) |
---|
[2362] | 3403 | end if |
---|
| 3404 | |
---|
[226] | 3405 | c ---------------------------------------------------------- |
---|
| 3406 | c Outputs of the water cycle |
---|
| 3407 | c ---------------------------------------------------------- |
---|
[2362] | 3408 | if (water) then |
---|
[299] | 3409 | #ifdef MESOINI |
---|
| 3410 | !!!! waterice = q01, voir readmeteo.F90 |
---|
[2932] | 3411 | call write_output('q01',noms(igcm_h2o_ice), |
---|
| 3412 | & 'kg/kg', |
---|
| 3413 | & zq(:,:,igcm_h2o_ice)) |
---|
[299] | 3414 | !!!! watervapor = q02, voir readmeteo.F90 |
---|
[2932] | 3415 | call write_output('q02',noms(igcm_h2o_vap), |
---|
| 3416 | & 'kg/kg', |
---|
| 3417 | & zq(:,:,igcm_h2o_vap)) |
---|
[299] | 3418 | !!!! surface waterice qsurf02 (voir readmeteo) |
---|
[2932] | 3419 | call write_output('qsurf02','surface tracer', |
---|
| 3420 | & 'kg.m-2', |
---|
| 3421 | & qsurf(:,igcm_h2o_ice,iflat)) |
---|
[2907] | 3422 | do islope=1,nslope |
---|
| 3423 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3424 | call write_output('qsurf02_slope'//str2, |
---|
| 3425 | & 'surface tracer','kg.m-2', |
---|
| 3426 | & qsurf(:,igcm_h2o_ice,islope)) |
---|
[2907] | 3427 | ENDDO |
---|
[299] | 3428 | #endif |
---|
[2932] | 3429 | call write_output('mtot', |
---|
[2362] | 3430 | & 'total mass of water vapor', |
---|
[2932] | 3431 | & 'kg/m2',mtot(:)) |
---|
| 3432 | call write_output('icetot', |
---|
[2362] | 3433 | & 'total mass of water ice', |
---|
[2932] | 3434 | & 'kg/m2',icetot(:)) |
---|
[2362] | 3435 | vmr = zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 3436 | & * mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
---|
[2932] | 3437 | call write_output('vmr_h2oice','h2o ice vmr', |
---|
| 3438 | & 'mol/mol',vmr(:,:)) |
---|
[2362] | 3439 | vmr = zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
---|
| 3440 | & * mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
---|
[2932] | 3441 | call write_output('vmr_h2ovap','h2o vap vmr', |
---|
| 3442 | & 'mol/mol',vmr(:,:)) |
---|
| 3443 | call write_output('reffice', |
---|
[2362] | 3444 | & 'Mean reff', |
---|
[2932] | 3445 | & 'm',rave(:)) |
---|
| 3446 | call write_output('h2o_ice','h2o_ice','kg/kg', |
---|
| 3447 | & zq(:,:,igcm_h2o_ice)) |
---|
| 3448 | call write_output('h2o_vap','h2o_vap','kg/kg', |
---|
| 3449 | & zq(:,:,igcm_h2o_vap)) |
---|
[1922] | 3450 | |
---|
[2312] | 3451 | if (hdo) then |
---|
| 3452 | vmr=zq(1:ngrid,1:nlayer,igcm_hdo_ice) |
---|
| 3453 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_hdo_ice) |
---|
[2932] | 3454 | CALL write_output('vmr_hdoice','hdo ice vmr', |
---|
| 3455 | & 'mol/mol',vmr(:,:)) |
---|
[2312] | 3456 | vmr=zq(1:ngrid,1:nlayer,igcm_hdo_vap) |
---|
| 3457 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_hdo_vap) |
---|
[2932] | 3458 | CALL write_output('vmr_hdovap','hdo vap vmr', |
---|
| 3459 | & 'mol/mol',vmr(:,:)) |
---|
| 3460 | call write_output('hdo_ice','hdo_ice','kg/kg', |
---|
| 3461 | & zq(:,:,igcm_hdo_ice)) |
---|
| 3462 | call write_output('hdo_vap','hdo_vap','kg/kg', |
---|
| 3463 | & zq(:,:,igcm_hdo_vap)) |
---|
[1922] | 3464 | |
---|
[2932] | 3465 | CALL write_output('mtotD', |
---|
[2312] | 3466 | & 'total mass of HDO vapor', |
---|
[2932] | 3467 | & 'kg/m2',mtotD(:)) |
---|
| 3468 | CALL write_output('icetotD', |
---|
[2312] | 3469 | & 'total mass of HDO ice', |
---|
[2932] | 3470 | & 'kg/m2',icetotD(:)) |
---|
[2312] | 3471 | |
---|
| 3472 | C Calculation of the D/H ratio |
---|
| 3473 | do l=1,nlayer |
---|
| 3474 | do ig=1,ngrid |
---|
[2362] | 3475 | if (zq(ig,l,igcm_h2o_vap).gt.qperemin) then |
---|
[2312] | 3476 | DoH_vap(ig,l) = ( zq(ig,l,igcm_hdo_vap)/ |
---|
| 3477 | & zq(ig,l,igcm_h2o_vap) )*1./(2.*155.76e-6) |
---|
| 3478 | else |
---|
| 3479 | DoH_vap(ig,l) = 0. |
---|
| 3480 | endif |
---|
| 3481 | enddo |
---|
| 3482 | enddo |
---|
| 3483 | |
---|
| 3484 | do l=1,nlayer |
---|
| 3485 | do ig=1,ngrid |
---|
[2324] | 3486 | if (zq(ig,l,igcm_h2o_ice).gt.qperemin) then |
---|
[2312] | 3487 | DoH_ice(ig,l) = ( zq(ig,l,igcm_hdo_ice)/ |
---|
| 3488 | & zq(ig,l,igcm_h2o_ice) )/(2.*155.76e-6) |
---|
| 3489 | else |
---|
| 3490 | DoH_ice(ig,l) = 0. |
---|
| 3491 | endif |
---|
| 3492 | enddo |
---|
| 3493 | enddo |
---|
| 3494 | |
---|
[2932] | 3495 | CALL write_output('DoH_vap', |
---|
[2312] | 3496 | & 'D/H ratio in vapor', |
---|
[2932] | 3497 | & ' ',DoH_vap(:,:)) |
---|
| 3498 | CALL write_output('DoH_ice', |
---|
[2312] | 3499 | & 'D/H ratio in ice', |
---|
[2932] | 3500 | & '',DoH_ice(:,:)) |
---|
[2312] | 3501 | |
---|
| 3502 | endif !hdo |
---|
| 3503 | |
---|
[1711] | 3504 | !A. Pottier |
---|
[2934] | 3505 | ! CALL write_output('rmoym', |
---|
| 3506 | ! & 'alternative reffice', |
---|
| 3507 | ! & 'm',rave2(:)) |
---|
| 3508 | call write_output('h2o_saturation', |
---|
| 3509 | & 'h2o vap saturation ratio','',satu(:,:)) |
---|
[1130] | 3510 | if (scavenging) then |
---|
[2932] | 3511 | CALL write_output("Nccntot", |
---|
[669] | 3512 | & "condensation nuclei","Nbr/m2", |
---|
[2932] | 3513 | & Nccntot(:)) |
---|
| 3514 | CALL write_output("Mccntot", |
---|
[719] | 3515 | & "mass condensation nuclei","kg/m2", |
---|
[2932] | 3516 | & Mccntot(:)) |
---|
[1130] | 3517 | endif |
---|
[2934] | 3518 | call write_output('rice','Water ice particle size', |
---|
[2932] | 3519 | & 'm',rice(:,:)) |
---|
| 3520 | call write_output('h2o_ice_s', |
---|
[226] | 3521 | & 'surface h2o_ice', |
---|
[2932] | 3522 | & 'kg.m-2',qsurf(:,igcm_h2o_ice,iflat)) |
---|
[2907] | 3523 | do islope=1,nslope |
---|
| 3524 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3525 | call write_output('h2o_ice_s_slope'//str2, |
---|
[2907] | 3526 | & 'surface h2o_ice', |
---|
[2932] | 3527 | & 'kg.m-2',qsurf(:,igcm_h2o_ice,islope)) |
---|
[2907] | 3528 | ENDDO |
---|
[2312] | 3529 | if (hdo) then |
---|
[2932] | 3530 | call write_output('hdo_ice_s', |
---|
[2312] | 3531 | & 'surface hdo_ice', |
---|
[2932] | 3532 | & 'kg.m-2',qsurf(:,igcm_hdo_ice,iflat)) |
---|
[2907] | 3533 | do islope=1,nslope |
---|
| 3534 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3535 | call write_output('hdo_ice_s_slope'//str2, |
---|
[2907] | 3536 | & 'surface hdo_ice', |
---|
[2932] | 3537 | & 'kg.m-2',qsurf(:,igcm_hdo_ice,islope)) |
---|
[2907] | 3538 | ENDDO |
---|
[2312] | 3539 | |
---|
| 3540 | do ig=1,ngrid |
---|
[2900] | 3541 | if (qsurf_meshavg(ig,igcm_h2o_ice).gt.qperemin) then |
---|
| 3542 | DoH_surf(ig) = 0.5*( qsurf_meshavg(ig,igcm_hdo_ice)/ |
---|
| 3543 | & qsurf_meshavg(ig,igcm_h2o_ice) )/155.76e-6 |
---|
[2312] | 3544 | else |
---|
| 3545 | DoH_surf(ig) = 0. |
---|
| 3546 | endif |
---|
| 3547 | enddo |
---|
| 3548 | |
---|
[2932] | 3549 | call write_output('DoH_surf', |
---|
[2312] | 3550 | & 'surface D/H', |
---|
[2932] | 3551 | & '',DoH_surf(:)) |
---|
[2312] | 3552 | endif ! hdo |
---|
| 3553 | |
---|
[2932] | 3554 | CALL write_output('albedo', |
---|
[833] | 3555 | & 'albedo', |
---|
[2932] | 3556 | & '',albedo(:,1,iflat)) |
---|
[2907] | 3557 | do islope=1,nslope |
---|
| 3558 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3559 | CALL write_output('albedo_slope'//str2, |
---|
[2907] | 3560 | & 'albedo', |
---|
[2932] | 3561 | & '',albedo(:,1,islope)) |
---|
[2907] | 3562 | ENDDO |
---|
[3230] | 3563 | if (surfaceice_tifeedback.or.poreice_tifeedback) then |
---|
[2932] | 3564 | call write_output("soiltemp", |
---|
[833] | 3565 | & "Soil temperature","K", |
---|
[2932] | 3566 | & tsoil(:,:,iflat)) |
---|
| 3567 | call write_output('soilti', |
---|
[833] | 3568 | & 'Soil Thermal Inertia', |
---|
[2942] | 3569 | & 'J.s-1/2.m-2.K-1',inertiesoil_tifeedback(:,:,iflat)) |
---|
[3230] | 3570 | |
---|
[2907] | 3571 | do islope=1,nslope |
---|
| 3572 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3573 | call write_output('soilti_slope'//str2, |
---|
[2907] | 3574 | & 'Soil Thermal Inertia', |
---|
[2942] | 3575 | & 'J.s-1/2.m-2.K-1',inertiesoil_tifeedback(:,:,islope)) |
---|
[2907] | 3576 | ENDDO |
---|
[833] | 3577 | endif |
---|
[1711] | 3578 | !A. Pottier |
---|
[2362] | 3579 | if (CLFvarying) then !AP14 nebulosity |
---|
[2932] | 3580 | call write_output('totcloudfrac', |
---|
[2362] | 3581 | & 'Total cloud fraction', |
---|
[2932] | 3582 | & ' ',totcloudfrac(:)) |
---|
[2362] | 3583 | end if !clf varying |
---|
| 3584 | end if !(water) |
---|
[1711] | 3585 | |
---|
[226] | 3586 | c ---------------------------------------------------------- |
---|
| 3587 | c Outputs of the dust cycle |
---|
| 3588 | c ---------------------------------------------------------- |
---|
| 3589 | |
---|
[2932] | 3590 | call write_output('tau_pref_scenario', |
---|
[2415] | 3591 | & 'Prescribed visible dust optical depth at 610Pa', |
---|
[2932] | 3592 | & 'NU',tau_pref_scenario(:)) |
---|
[226] | 3593 | |
---|
[2932] | 3594 | call write_output('tau_pref_gcm', |
---|
[2415] | 3595 | & 'Visible dust optical depth at 610Pa in the GCM', |
---|
[2932] | 3596 | & 'NU',tau_pref_gcm(:)) |
---|
[3203] | 3597 | |
---|
[2643] | 3598 | if (reff_driven_IRtoVIS_scenario) then |
---|
[2932] | 3599 | call write_output('IRtoVIScoef', |
---|
[2934] | 3600 | & 'Conversion coeff for dust tau from abs9.3um to ext0.67um', |
---|
[2932] | 3601 | & '/',IRtoVIScoef(:)) |
---|
[2643] | 3602 | endif |
---|
[2415] | 3603 | |
---|
[2823] | 3604 | if (dustbin.ne.0) then |
---|
[1264] | 3605 | |
---|
| 3606 | #ifndef MESOINI |
---|
[226] | 3607 | if (doubleq) then |
---|
[2932] | 3608 | call write_output('dqsdust', |
---|
[719] | 3609 | & 'deposited surface dust mass', |
---|
[2932] | 3610 | & 'kg.m-2.s-1',dqdustsurf(:)) |
---|
| 3611 | call write_output('dqndust', |
---|
[719] | 3612 | & 'deposited surface dust number', |
---|
[2932] | 3613 | & 'number.m-2.s-1',dndustsurf(:)) |
---|
| 3614 | call write_output('reffdust','reffdust', |
---|
| 3615 | & 'm',rdust(:,:)*ref_r0) |
---|
| 3616 | call write_output('dustq','Dust mass mr', |
---|
| 3617 | & 'kg/kg',qdust(:,:)) |
---|
| 3618 | call write_output('dustN','Dust number', |
---|
| 3619 | & 'part/kg',ndust(:,:)) |
---|
[2362] | 3620 | |
---|
[3203] | 3621 | select case (trim(dustiropacity)) |
---|
[2247] | 3622 | case ("tes") |
---|
[2934] | 3623 | call write_output('dsodust_TES', |
---|
[2247] | 3624 | & 'density scaled extinction opacity of std dust at 9.3um(TES)', |
---|
[2932] | 3625 | & 'm2.kg-1',dsodust(:,:)) |
---|
[2934] | 3626 | call write_output('dso_TES', |
---|
[2247] | 3627 | & 'density scaled extinction opacity of all dust at 9.3um(TES)', |
---|
[2932] | 3628 | & 'm2.kg-1',dsodust(:,:)+dsords(:,:)+dsotop(:,:)) |
---|
[2247] | 3629 | case ("mcs") |
---|
[2932] | 3630 | call write_output('dsodust', |
---|
[2247] | 3631 | & 'density scaled extinction opacity of std dust at 21.6um(MCS)', |
---|
[2932] | 3632 | & 'm2.kg-1',dsodust(:,:)) |
---|
| 3633 | call write_output('dso', |
---|
[2247] | 3634 | & 'density scaled extinction opacity of all dust at 21.6um(MCS)', |
---|
[2932] | 3635 | & 'm2.kg-1',dsodust(:,:)+dsords(:,:)+dsotop(:,:)) |
---|
[2247] | 3636 | end select |
---|
[2246] | 3637 | else ! (doubleq=.false.) |
---|
[226] | 3638 | do iq=1,dustbin |
---|
| 3639 | write(str2(1:2),'(i2.2)') iq |
---|
[2932] | 3640 | call write_output('q'//str2,'mix. ratio', |
---|
| 3641 | & 'kg/kg',zq(:,:,iq)) |
---|
| 3642 | call write_output('qsurf'//str2,'qsurf', |
---|
| 3643 | & 'kg.m-2',qsurf(:,iq,iflat)) |
---|
[2907] | 3644 | do islope=1,nslope |
---|
| 3645 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3646 | call write_output('qsurf_slope'//str2,'qsurf', |
---|
| 3647 | & 'kg.m-2',qsurf(:,iq,islope)) |
---|
[2907] | 3648 | ENDDO |
---|
[226] | 3649 | end do |
---|
| 3650 | endif ! (doubleq) |
---|
[358] | 3651 | |
---|
[1974] | 3652 | if (rdstorm) then ! writediagfi tendencies stormdust tracers |
---|
[2932] | 3653 | call write_output('reffstormdust','reffstormdust', |
---|
| 3654 | & 'm',rstormdust(:,:)*ref_r0) |
---|
| 3655 | call write_output('mstormdtot', |
---|
[1974] | 3656 | & 'total mass of stormdust only', |
---|
[2932] | 3657 | & 'kg.m-2',mstormdtot(:)) |
---|
| 3658 | call write_output('mdusttot', |
---|
[1974] | 3659 | & 'total mass of dust only', |
---|
[2932] | 3660 | & 'kg.m-2',mdusttot(:)) |
---|
| 3661 | call write_output('rdsdqsdust', |
---|
[1974] | 3662 | & 'deposited surface stormdust mass', |
---|
[2932] | 3663 | & 'kg.m-2.s-1',rdsdqdustsurf(:)) |
---|
| 3664 | call write_output('rdsdustq','storm Dust mass mr', |
---|
| 3665 | & 'kg/kg',rdsqdust(:,:)) |
---|
| 3666 | call write_output('rdsdustqmodel','storm Dust massmr', |
---|
| 3667 | & 'kg/kg',pq(:,:,igcm_stormdust_mass)) |
---|
| 3668 | call write_output('rdsdustN','storm Dust number', |
---|
| 3669 | & 'part/kg',rdsndust(:,:)) |
---|
| 3670 | call write_output("stormfract", |
---|
[1974] | 3671 | & "fraction of the mesh, with stormdust","none", |
---|
[2932] | 3672 | & totstormfract(:)) |
---|
[2934] | 3673 | ! call write_output('qsurf', |
---|
| 3674 | ! & 'stormdust injection', |
---|
| 3675 | ! & 'kg.m-2',qsurf(:,igcm_stormdust_mass,iflat)) |
---|
| 3676 | ! do islope=1,nslope |
---|
| 3677 | ! write(str2(1:2),'(i2.2)') islope |
---|
| 3678 | ! call write_output('qsurf_slope'//str2, |
---|
| 3679 | ! & 'stormdust injection', |
---|
| 3680 | ! & 'kg.m-2',qsurf(:,igcm_stormdust_mass,islope)) |
---|
| 3681 | ! ENDDO |
---|
| 3682 | ! call write_output('pdqsurf', |
---|
| 3683 | ! & 'tendancy stormdust mass at surface', |
---|
| 3684 | ! & 'kg.m-2',dqsurf(:,igcm_stormdust_mass,iflat)) |
---|
| 3685 | ! do islope=1,nslope |
---|
| 3686 | ! write(str2(1:2),'(i2.2)') islope |
---|
| 3687 | ! call write_output('pdqsurf_slope'//str2, |
---|
| 3688 | ! & 'tendancy stormdust mass at surface', |
---|
| 3689 | ! & 'kg.m-2',dqsurf(:,igcm_stormdust_mass,islope)) |
---|
| 3690 | ! ENDDO |
---|
| 3691 | call write_output('wspeed_stormdust', |
---|
| 3692 | & 'vertical velocity of stormdust', |
---|
| 3693 | & 'm/s',wspeed(:,:)) |
---|
| 3694 | call write_output('zdqsed_dust_mass' |
---|
| 3695 | & ,'sedimentation tendency of background dust mmr' |
---|
| 3696 | & ,'kg/kg.s-1', |
---|
[1974] | 3697 | & zdqsed(:,:,igcm_dust_mass)) |
---|
[2934] | 3698 | call write_output('zdqssed_dust_mass' |
---|
| 3699 | & ,'sedimentation tendency of background dust on surface' |
---|
| 3700 | & ,'kg.m-2.s-1', |
---|
[1974] | 3701 | & zdqssed(:,igcm_dust_mass)) |
---|
[2934] | 3702 | call write_output('zdqsed_stormdust_mass' |
---|
| 3703 | & ,'sedimentation tendency of stormdust dust mmr' |
---|
| 3704 | & ,'kg/kg.s-1', |
---|
[1974] | 3705 | & zdqsed(:,:,igcm_stormdust_mass)) |
---|
[2934] | 3706 | call write_output('zdqsed_dust_number' |
---|
| 3707 | & ,'sedimentation tendency of background dust number' |
---|
| 3708 | & ,'nbr/kg.s-1', |
---|
[2931] | 3709 | & zdqsed(:,:,igcm_dust_number)) |
---|
[2932] | 3710 | call write_output('rdust','rdust', |
---|
| 3711 | & 'm',rdust(:,:)) |
---|
| 3712 | call write_output('rstormdust','rstormdust', |
---|
| 3713 | & 'm',rstormdust(:,:)) |
---|
[2362] | 3714 | |
---|
[3203] | 3715 | select case (trim(dustiropacity)) |
---|
[2247] | 3716 | case ("tes") |
---|
[2934] | 3717 | call write_output('dsords_TES', |
---|
[2247] | 3718 | & 'density scaled extinction opacity of stormdust at 9.3um(TES)', |
---|
[2932] | 3719 | & 'm2.kg-1',dsords(:,:)) |
---|
[2247] | 3720 | case ("mcs") |
---|
[2932] | 3721 | call write_output('dsords', |
---|
[2247] | 3722 | & 'density scaled extinction opacity of stormdust at 21.6um(MCS)', |
---|
[2932] | 3723 | & 'm2.kg-1',dsords(:,:)) |
---|
[2247] | 3724 | end select |
---|
[1974] | 3725 | endif ! (rdstorm) |
---|
| 3726 | |
---|
[2628] | 3727 | if (topflows) then |
---|
[2934] | 3728 | call write_output('refftopdust', |
---|
| 3729 | & 'Topdust dust effective radius', |
---|
| 3730 | & 'm',rtopdust(:,:)*ref_r0) |
---|
[2932] | 3731 | call write_output('topdustq','top Dust mass mr', |
---|
| 3732 | & 'kg/kg',pq(:,:,igcm_topdust_mass)) |
---|
| 3733 | call write_output('topdustN','top Dust number', |
---|
| 3734 | & 'part/kg',pq(:,:,igcm_topdust_number)) |
---|
[3203] | 3735 | select case (trim(dustiropacity)) |
---|
[2247] | 3736 | case ("tes") |
---|
[2934] | 3737 | call write_output('dsotop_TES', |
---|
[2247] | 3738 | & 'density scaled extinction opacity of topdust at 9.3um(TES)', |
---|
[2932] | 3739 | & 'm2.kg-1',dsotop(:,:)) |
---|
[2247] | 3740 | case ("mcs") |
---|
[2932] | 3741 | call write_output('dsotop', |
---|
[2247] | 3742 | & 'density scaled extinction opacity of topdust at 21.6um(MCS)', |
---|
[2932] | 3743 | & 'm2.kg-1',dsotop(:,:)) |
---|
[2247] | 3744 | end select |
---|
[2628] | 3745 | endif ! (topflows) |
---|
[2362] | 3746 | |
---|
[2417] | 3747 | if (dustscaling_mode==2) then |
---|
[2932] | 3748 | call write_output("dust_rad_adjust", |
---|
[2417] | 3749 | & "radiative adjustment coefficient for dust", |
---|
[2932] | 3750 | & "",dust_rad_adjust(:)) |
---|
[2417] | 3751 | endif |
---|
| 3752 | |
---|
[2934] | 3753 | ! if (scavenging) then ! these outputs should be in the scavenging routine |
---|
| 3754 | ! call write_output('ccnq','CCN mass mr', |
---|
| 3755 | ! & 'kg/kg',qccn(:,:)) |
---|
| 3756 | ! call write_output('ccnN','CCN number', |
---|
| 3757 | ! & 'part/kg',nccn(:,:)) |
---|
| 3758 | ! call write_output('surfccnq','Surf nuclei mass mr', |
---|
| 3759 | ! & 'kg.m-2',qsurf(:,igcm_ccn_mass,iflat)) |
---|
| 3760 | ! do islope=1,nslope |
---|
| 3761 | ! write(str2(1:2),'(i2.2)') islope |
---|
| 3762 | ! call write_output('surfccnq_slope'//str2, |
---|
| 3763 | ! & 'Surf nuclei mass mr', |
---|
| 3764 | ! & 'kg.m-2',qsurf(:,igcm_ccn_mass,islope)) |
---|
| 3765 | ! ENDDO |
---|
| 3766 | ! call write_output('surfccnN','Surf nuclei number', |
---|
| 3767 | ! & 'kg.m-2',qsurf(:,igcm_ccn_number,iflat)) |
---|
| 3768 | ! do islope=1,nslope |
---|
| 3769 | ! write(str2(1:2),'(i2.2)') islope |
---|
| 3770 | ! call write_output('surfccnN_slope'//str2, |
---|
| 3771 | ! & 'Surf nuclei number', |
---|
| 3772 | ! & 'kg.m-2',qsurf(:,igcm_ccn_number,islope)) |
---|
| 3773 | ! ENDDO |
---|
| 3774 | ! endif ! (scavenging) |
---|
[358] | 3775 | |
---|
[1264] | 3776 | #else |
---|
| 3777 | ! !!! to initialize mesoscale we need scaled variables |
---|
| 3778 | ! !!! because this must correspond to starting point for tracers |
---|
[2932] | 3779 | ! call write_output('dustq','Dust mass mr', |
---|
[1264] | 3780 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_mass)) |
---|
[2932] | 3781 | ! call write_output('dustN','Dust number', |
---|
[1264] | 3782 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_number)) |
---|
[2932] | 3783 | ! call write_output('ccn','Nuclei mass mr', |
---|
[1264] | 3784 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_mass)) |
---|
[2932] | 3785 | ! call write_output('ccnN','Nuclei number', |
---|
[1264] | 3786 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_number)) |
---|
| 3787 | if (freedust) then |
---|
[2932] | 3788 | call write_output('dustq','Dust mass mr', |
---|
| 3789 | & 'kg/kg',qdust) |
---|
| 3790 | call write_output('dustN','Dust number', |
---|
| 3791 | & 'part/kg',ndust) |
---|
| 3792 | call write_output('ccn','CCN mass mr', |
---|
| 3793 | & 'kg/kg',qccn) |
---|
| 3794 | call write_output('ccnN','CCN number', |
---|
| 3795 | & 'part/kg',nccn) |
---|
[1264] | 3796 | else |
---|
[2932] | 3797 | call write_output('dustq','Dust mass mr', |
---|
| 3798 | & 'kg/kg',pq(:,:,igcm_dust_mass)) |
---|
| 3799 | call write_output('dustN','Dust number', |
---|
| 3800 | & 'part/kg',pq(:,:,igcm_dust_number)) |
---|
| 3801 | call write_output('ccn','Nuclei mass mr', |
---|
| 3802 | & 'kg/kg',pq(:,:,igcm_ccn_mass)) |
---|
| 3803 | call write_output('ccnN','Nuclei number', |
---|
| 3804 | & 'part/kg',pq(:,:,igcm_ccn_number)) |
---|
[1264] | 3805 | endif |
---|
| 3806 | #endif |
---|
| 3807 | |
---|
[2823] | 3808 | end if ! (dustbin.ne.0) |
---|
[226] | 3809 | |
---|
[2149] | 3810 | c ---------------------------------------------------------- |
---|
[705] | 3811 | c Thermospheric outputs |
---|
[267] | 3812 | c ---------------------------------------------------------- |
---|
[2362] | 3813 | if(callthermos) then |
---|
[705] | 3814 | |
---|
[2932] | 3815 | call write_output("quv","UV heating","K/s", |
---|
| 3816 | $ zdteuv(:,:)) |
---|
| 3817 | call write_output("cond","Thermal conduction","K/s", |
---|
| 3818 | $ zdtconduc(:,:)) |
---|
[705] | 3819 | |
---|
[2467] | 3820 | !H, H2 and D escape fluxes |
---|
| 3821 | |
---|
[2932] | 3822 | call write_output("PhiH","H escape flux","s-1", |
---|
| 3823 | $ PhiEscH) |
---|
| 3824 | call write_output("PhiH2","H2 escape flux","s-1", |
---|
| 3825 | $ PhiEscH2) |
---|
| 3826 | call write_output("PhiD","D escape flux","s-1", |
---|
| 3827 | $ PhiEscD) |
---|
[2467] | 3828 | |
---|
[705] | 3829 | endif !(callthermos) |
---|
| 3830 | |
---|
[2932] | 3831 | call write_output("q15um","15 um cooling","K/s", |
---|
| 3832 | $ zdtnlte(:,:)) |
---|
| 3833 | call write_output("qnir","NIR heating","K/s", |
---|
| 3834 | $ zdtnirco2(:,:)) |
---|
[2362] | 3835 | |
---|
[705] | 3836 | c ---------------------------------------------------------- |
---|
| 3837 | c ---------------------------------------------------------- |
---|
[267] | 3838 | c PBL OUTPUS |
---|
| 3839 | c ---------------------------------------------------------- |
---|
| 3840 | c ---------------------------------------------------------- |
---|
| 3841 | |
---|
| 3842 | c ---------------------------------------------------------- |
---|
[226] | 3843 | c Outputs of thermals |
---|
| 3844 | c ---------------------------------------------------------- |
---|
[2362] | 3845 | if (calltherm) then |
---|
[2932] | 3846 | call write_output('lmax_th', |
---|
[2934] | 3847 | & 'index of vertical extension of thermals', |
---|
| 3848 | & 'grid level',lmax_th_out(:)) |
---|
[2932] | 3849 | call write_output('zmax_th', |
---|
[2934] | 3850 | & 'vertical extension of thermals','m', |
---|
[2932] | 3851 | & zmax_th(:)) |
---|
| 3852 | call write_output('hfmax_th', |
---|
[2934] | 3853 | & 'maximum heat flux in thermals','K.m/s', |
---|
[2932] | 3854 | & hfmax_th(:)) |
---|
| 3855 | call write_output('wstar', |
---|
[2934] | 3856 | & 'maximum thermals vertical velocity','m/s', |
---|
[2932] | 3857 | & wstar(:)) |
---|
[2362] | 3858 | end if |
---|
[226] | 3859 | |
---|
| 3860 | c ---------------------------------------------------------- |
---|
[267] | 3861 | c ---------------------------------------------------------- |
---|
| 3862 | c END OF PBL OUTPUS |
---|
| 3863 | c ---------------------------------------------------------- |
---|
| 3864 | c ---------------------------------------------------------- |
---|
| 3865 | |
---|
| 3866 | c ---------------------------------------------------------- |
---|
[226] | 3867 | c Output in netcdf file "diagsoil.nc" for subterranean |
---|
| 3868 | c variables (output every "ecritphy", as for writediagfi) |
---|
| 3869 | c ---------------------------------------------------------- |
---|
| 3870 | ! Write soil temperature |
---|
[2932] | 3871 | call write_output("soiltemp","Soil temperature","K", |
---|
| 3872 | & tsoil(:,:,iflat)) |
---|
[2907] | 3873 | do islope=1,nslope |
---|
| 3874 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3875 | call write_output("soiltemp_slope"//str2, |
---|
[2907] | 3876 | & "Soil temperature","K", |
---|
[2932] | 3877 | & tsoil(:,:,islope)) |
---|
[2907] | 3878 | ENDDO |
---|
[226] | 3879 | |
---|
[2931] | 3880 | !PREVIOUSLY IN 1D ONLY |
---|
[2932] | 3881 | call write_output("dtrad","rad. heat. rate", |
---|
| 3882 | & "K.s-1",dtrad(:,:)) |
---|
[544] | 3883 | |
---|
[1974] | 3884 | if (rdstorm) then |
---|
[2932] | 3885 | call write_output('aerosol_dust','opacity of env. dust','' |
---|
| 3886 | & ,aerosol(:,:,iaer_dust_doubleq)) |
---|
| 3887 | call write_output('aerosol_stormdust', |
---|
[1974] | 3888 | & 'opacity of storm dust','' |
---|
[2932] | 3889 | & ,aerosol(:,:,iaer_stormdust_doubleq)) |
---|
[2934] | 3890 | call write_output('dqsdifdustq', |
---|
| 3891 | &'tendency due to vertical diffusion of background dust on surface' |
---|
| 3892 | & ,'kg.m-2.s-1',zdqsdif(:,igcm_dust_mass,iflat)) |
---|
[2907] | 3893 | do islope=1,nslope |
---|
| 3894 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3895 | call write_output('dqsdifdustq_slope'//str2, |
---|
[2934] | 3896 | &'tendency due to vertical diffusion of background dust on surface' |
---|
| 3897 | & ,'kg.m-2.s-1',zdqsdif(:,igcm_dust_mass,islope)) |
---|
[2907] | 3898 | ENDDO |
---|
[2934] | 3899 | call write_output('dqsdifrdsq', |
---|
| 3900 | & 'tendency due to vertical diffusion of stormdust on surface', |
---|
[2932] | 3901 | & 'kg.m-2.s-1',zdqsdif(:,igcm_stormdust_mass,iflat)) |
---|
[2907] | 3902 | do islope=1,nslope |
---|
| 3903 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3904 | call write_output('dqsdifrdsq_slope'//str2, |
---|
[2934] | 3905 | & 'tendency due to vertical diffusion of stormdust on surface', |
---|
[2932] | 3906 | & 'kg.m-2.s-1',zdqsdif(:,igcm_stormdust_mass,islope)) |
---|
[2907] | 3907 | ENDDO |
---|
[2931] | 3908 | endif !(rdstorm) |
---|
[1974] | 3909 | |
---|
[2931] | 3910 | if(water) then |
---|
| 3911 | if (.not.scavenging) then |
---|
[2932] | 3912 | call write_output('zdqcloud_ice','cloud ice', |
---|
| 3913 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_h2o_ice)) |
---|
| 3914 | call write_output('zdqcloud_vap','cloud vap', |
---|
| 3915 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_h2o_vap)) |
---|
[3000] | 3916 | call write_output('zdqcloud','cloud', |
---|
[2932] | 3917 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_h2o_ice) |
---|
| 3918 | & +zdqcloud(:,:,igcm_h2o_vap)) |
---|
[2312] | 3919 | IF (hdo) THEN |
---|
[2932] | 3920 | call write_output('zdqcloud_iceD','cloud ice hdo', |
---|
| 3921 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_hdo_ice)) |
---|
| 3922 | call write_output('zdqcloud_vapD','cloud vap hdo', |
---|
| 3923 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_hdo_vap)) |
---|
[2312] | 3924 | ENDIF ! hdo |
---|
[2931] | 3925 | endif !not.scavenging |
---|
[2963] | 3926 | |
---|
| 3927 | ! Output needed by the PEM |
---|
| 3928 | DO ig = 1,ngrid |
---|
| 3929 | ztmp1 =(1/m_co2 - 1/m_noco2) |
---|
| 3930 | ztmp2=1/m_noco2 |
---|
| 3931 | pvap_surf(ig) = 1/(ztmp1*zq(ig,1,igcm_co2)+ztmp2) |
---|
| 3932 | & * zq(ig,1,igcm_h2o_vap)/(mmol(igcm_h2o_vap)*1.e-3)*ps(ig) |
---|
| 3933 | |
---|
| 3934 | DO islope = 1,nslope |
---|
[3203] | 3935 | ! Clapeyron law for psat (psat = exp(beta/Th2o+alpha)),following Murphy and Koop 2005 |
---|
[2963] | 3936 | rhowater_surf_sat(ig,islope) = |
---|
[2965] | 3937 | & exp(beta_clap_h2o/tsurf(ig,islope)+alpha_clap_h2o) |
---|
[2963] | 3938 | & / tsurf(ig,islope) |
---|
[2965] | 3939 | & * mmol(igcm_h2o_vap)/(mugaz*r) |
---|
[3203] | 3940 | |
---|
[2963] | 3941 | if(qsurf(ig,igcm_h2o_ice,islope).gt.(1.e-4)) then |
---|
[3203] | 3942 | ! we consider to be at saturation above 1.e-4 kg.m-2 |
---|
[2965] | 3943 | rhowater_surf(ig,islope) = rhowater_surf_sat(ig,islope) |
---|
[2963] | 3944 | else |
---|
[3203] | 3945 | ! otherwise, use vapor partial pressure |
---|
[2963] | 3946 | rhowater_surf(ig,islope) = pvap_surf(ig) |
---|
| 3947 | & / tsurf(ig,islope) |
---|
[2965] | 3948 | & * mmol(igcm_h2o_vap)/(mugaz*r) |
---|
[2963] | 3949 | endif |
---|
| 3950 | DO isoil = 1,nsoilmx |
---|
| 3951 | rhowater_soil(ig,isoil,islope) = |
---|
[2965] | 3952 | & exp(beta_clap_h2o/tsoil(ig,isoil,islope)+alpha_clap_h2o) |
---|
[2963] | 3953 | & / tsoil(ig,isoil,islope) |
---|
[2965] | 3954 | & * mmol(igcm_h2o_vap)/(mugaz*r) |
---|
[2963] | 3955 | ENDDO |
---|
| 3956 | ENDDO |
---|
| 3957 | ENDDO |
---|
| 3958 | |
---|
[3122] | 3959 | CALL write_output("waterdensity_soil", |
---|
[3106] | 3960 | & "rhowater_soil",'kg.m-3', |
---|
| 3961 | & rhowater_soil(:,:,iflat)) |
---|
[3122] | 3962 | CALL write_output("waterdensity_surface", |
---|
[3106] | 3963 | & "rhowater_surface",'kg.m-3', |
---|
| 3964 | & rhowater_surf(:,iflat)) |
---|
[2963] | 3965 | DO islope = 1,nslope |
---|
| 3966 | write(str2(1:2),'(i2.2)') islope |
---|
[3122] | 3967 | CALL write_output("waterdensity_soil_slope"//str2, |
---|
[2965] | 3968 | & "rhowater_soil_slope"//str2,'kg.m-3', |
---|
[2963] | 3969 | & rhowater_soil(:,:,islope)) |
---|
[3612] | 3970 | CALL write_output("waterdensity_surface_slope"//str2, |
---|
[2965] | 3971 | & "rhowater_surface"//str2,'kg.m-3', |
---|
[2963] | 3972 | & rhowater_surf(:,islope)) |
---|
| 3973 | ENDDO |
---|
| 3974 | |
---|
[2965] | 3975 | CALL write_output("h2o_layer1","h2o mass mr in the first layer", |
---|
| 3976 | & 'kg/kg',zq(:,1,igcm_h2o_vap)) |
---|
| 3977 | CALL write_output("co2_layer1","co2 mass mr in the first layer", |
---|
| 3978 | & 'kg/kg',zq(:,1,igcm_co2)) |
---|
[3027] | 3979 | ENDIF ! of IF (water) |
---|
[2963] | 3980 | |
---|
[2931] | 3981 | !PREVIOUSLY IN 1D ONLY |
---|
[2383] | 3982 | |
---|
[2931] | 3983 | c ========================================================== |
---|
| 3984 | c END OF WRITEDIAGFI |
---|
| 3985 | c ========================================================== |
---|
| 3986 | #endif |
---|
| 3987 | ! of ifdef MESOSCALE |
---|
[1711] | 3988 | |
---|
[2931] | 3989 | c ELSE ! if(ngrid.eq.1) |
---|
[358] | 3990 | |
---|
[2931] | 3991 | c#ifndef MESOSCALE |
---|
| 3992 | c write(*, |
---|
| 3993 | c & '("Ls =",f11.6," tau_pref_scenario(",f4.0," Pa) =",f9.6)') |
---|
| 3994 | c & zls*180./pi,odpref,tau_pref_scenario |
---|
| 3995 | c#endif |
---|
[226] | 3996 | |
---|
[2931] | 3997 | c END IF ! if(ngrid.ne.1) |
---|
[2887] | 3998 | |
---|
[2374] | 3999 | ! test for co2 conservation with co2 microphysics |
---|
| 4000 | if (igcm_co2_ice.ne.0) then |
---|
| 4001 | co2totB = 0. ! added by C.M. |
---|
| 4002 | do ig=1,ngrid |
---|
| 4003 | do l=1,nlayer |
---|
| 4004 | co2totB = co2totB + (zplev(ig,l)-zplev(ig,l+1))/g* |
---|
| 4005 | & (pq(ig,l,igcm_co2)+pq(ig,l,igcm_co2_ice) |
---|
| 4006 | & +(pdq(ig,l,igcm_co2)+pdq(ig,l,igcm_co2_ice))*ptimestep) |
---|
| 4007 | enddo |
---|
[2900] | 4008 | co2totB = co2totB + qsurf(ig,igcm_co2,iflat) |
---|
[2362] | 4009 | enddo |
---|
[2599] | 4010 | else |
---|
| 4011 | co2totB = 0. ! added by C.M. |
---|
| 4012 | do ig=1,ngrid |
---|
| 4013 | do l=1,nlayer |
---|
| 4014 | co2totB = co2totB + (zplev(ig,l)-zplev(ig,l+1))/g* |
---|
| 4015 | & (pq(ig,l,igcm_co2)+pdq(ig,l,igcm_co2)*ptimestep) |
---|
| 4016 | enddo |
---|
[2900] | 4017 | co2totB = co2totB + qsurf(ig,igcm_co2,iflat) |
---|
[2599] | 4018 | enddo |
---|
| 4019 | endif ! of if (igcm_co2_ice.ne.0) |
---|
[2660] | 4020 | co2conservation = (co2totA-co2totB)/co2totA |
---|
[2932] | 4021 | call write_output( 'co2conservation', |
---|
[2374] | 4022 | & 'Total CO2 mass conservation in physic', |
---|
[2934] | 4023 | & 'kg', co2conservation) |
---|
[2223] | 4024 | ! XIOS outputs |
---|
[3203] | 4025 | #ifdef CPP_XIOS |
---|
[2223] | 4026 | ! Send fields to XIOS: (NB these fields must also be defined as |
---|
| 4027 | ! <field id="..." /> in context_lmdz_physics.xml to be correctly used) |
---|
[2545] | 4028 | |
---|
| 4029 | CALL send_xios_field("controle",tab_cntrl_mod,1) |
---|
| 4030 | |
---|
| 4031 | CALL send_xios_field("ap",ap,1) |
---|
| 4032 | CALL send_xios_field("bp",bp,1) |
---|
| 4033 | CALL send_xios_field("aps",aps,1) |
---|
| 4034 | CALL send_xios_field("bps",bps,1) |
---|
| 4035 | |
---|
[2223] | 4036 | if (lastcall.and.is_omp_master) then |
---|
| 4037 | write(*,*) "physiq lastcall: call xios_context_finalize" |
---|
| 4038 | call xios_context_finalize |
---|
| 4039 | endif |
---|
| 4040 | #endif |
---|
| 4041 | |
---|
[2551] | 4042 | if (check_physics_outputs) then |
---|
| 4043 | ! Check the validity of updated fields at the end of the physics step |
---|
[2570] | 4044 | call check_physics_fields("end of physiq:",zt,zu,zv,zplev,zq) |
---|
[2551] | 4045 | endif |
---|
[2223] | 4046 | |
---|
[42] | 4047 | icount=icount+1 |
---|
[1549] | 4048 | |
---|
| 4049 | END SUBROUTINE physiq |
---|
| 4050 | |
---|
| 4051 | END MODULE physiq_mod |
---|