[1549] | 1 | MODULE physiq_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[234] | 7 | SUBROUTINE physiq( |
---|
[226] | 8 | $ ngrid,nlayer,nq |
---|
| 9 | $ ,firstcall,lastcall |
---|
| 10 | $ ,pday,ptime,ptimestep |
---|
| 11 | $ ,pplev,pplay,pphi |
---|
| 12 | $ ,pu,pv,pt,pq |
---|
[1312] | 13 | $ ,flxw |
---|
[1576] | 14 | $ ,pdu,pdv,pdt,pdq,pdpsrf) |
---|
[42] | 15 | |
---|
[2162] | 16 | use watercloud_mod, only: watercloud, zdqcloud, zdqscloud |
---|
[2164] | 17 | use calchim_mod, only: calchim, ichemistry, zdqchim, zdqschim |
---|
[1996] | 18 | use watersat_mod, only: watersat |
---|
[3207] | 19 | use co2condens_mod, only: co2condens, CO2cond_ps |
---|
[2562] | 20 | use co2cloud_mod, only: co2cloud |
---|
[1974] | 21 | use callradite_mod, only: callradite |
---|
| 22 | use callsedim_mod, only: callsedim |
---|
| 23 | use rocketduststorm_mod, only: rocketduststorm, dustliftday |
---|
| 24 | use calcstormfract_mod, only: calcstormfract |
---|
[2628] | 25 | use topmons_mod, only: topmons,topmons_setup |
---|
[3012] | 26 | use nltecool_mod, only: nltecool |
---|
| 27 | use nlte_tcool_mod, only: nlte_tcool |
---|
[3016] | 28 | use blendrad_mod, only: blendrad |
---|
| 29 | use nlthermeq_mod, only: nlthermeq |
---|
[3015] | 30 | use thermosphere_mod, only: thermosphere |
---|
[1617] | 31 | use tracer_mod, only: noms, mmol, igcm_co2, igcm_n2, igcm_co2_ice, |
---|
[1036] | 32 | & igcm_co, igcm_o, igcm_h2o_vap, igcm_h2o_ice, |
---|
[2312] | 33 | & igcm_hdo_vap, igcm_hdo_ice, |
---|
[1036] | 34 | & igcm_ccn_mass, igcm_ccn_number, |
---|
[1617] | 35 | & igcm_ccnco2_mass, igcm_ccnco2_number, |
---|
[2562] | 36 | & igcm_ccnco2_h2o_mass_ice, |
---|
| 37 | & igcm_ccnco2_h2o_mass_ccn, |
---|
| 38 | & igcm_ccnco2_h2o_number, |
---|
[2589] | 39 | & igcm_ccnco2_meteor_mass, |
---|
| 40 | & igcm_ccnco2_meteor_number, |
---|
[1036] | 41 | & igcm_dust_mass, igcm_dust_number, igcm_h2o2, |
---|
[1660] | 42 | & nuice_ref, rho_ice, rho_dust, ref_r0, |
---|
[1974] | 43 | & igcm_he, igcm_stormdust_mass, |
---|
[2199] | 44 | & igcm_stormdust_number, igcm_topdust_mass, |
---|
[2324] | 45 | & igcm_topdust_number, |
---|
| 46 | & qperemin |
---|
[2942] | 47 | use comsoil_h, only: inertiedat, inertiesoil,! dat: soil thermal inertia for present climate, inertiesoil is the TI read in the start |
---|
[2285] | 48 | & tsoil, nsoilmx,!number of subsurface layers |
---|
[3113] | 49 | & mlayer,layer, ! soil mid layer depths |
---|
| 50 | & nqsoil,qsoil ! adsorption |
---|
[1974] | 51 | use geometry_mod, only: longitude, latitude, cell_area, |
---|
[3078] | 52 | & cell_area_for_lonlat_outputs,longitude_deg |
---|
[1541] | 53 | use comgeomfi_h, only: sinlon, coslon, sinlat, coslat |
---|
[3203] | 54 | use surfdat_h, only: phisfi, albedodat, z0, albedo_h2o_cap, |
---|
| 55 | & albedo_h2o_frost, frost_albedo_threshold, |
---|
| 56 | & frost_metam_threshold, tsurf, emis, capcal, |
---|
| 57 | & fluxgrd, qsurf, watercap, watercaptag, |
---|
[3130] | 58 | & perennial_co2ice |
---|
[3203] | 59 | use comsaison_h, only: dist_sol, declin, zls, |
---|
[2597] | 60 | & mu0, fract, local_time |
---|
[3094] | 61 | use solarlong_mod, only: solarlong |
---|
[3006] | 62 | use nirdata_mod, only: NIR_leedat |
---|
| 63 | use nirco2abs_mod, only: nirco2abs |
---|
[3183] | 64 | use slope_mod, only: theta_sl, psi_sl, getslopes, param_slope |
---|
[3203] | 65 | use conc_mod, only: init_r_cp_mu, update_r_cp_mu_ak, rnew, |
---|
[3185] | 66 | & cpnew, mmean |
---|
[1525] | 67 | use time_phylmdz_mod, only: iphysiq, day_step, ecritstart, daysec |
---|
[2409] | 68 | use dimradmars_mod, only: aerosol, totcloudfrac, |
---|
[1246] | 69 | & dtrad, fluxrad_sky, fluxrad, albedo, |
---|
[3203] | 70 | & naerkind, iaer_dust_doubleq, |
---|
[2678] | 71 | & iaer_stormdust_doubleq, iaer_h2o_ice, |
---|
| 72 | & flux_1AU |
---|
[2409] | 73 | use dust_param_mod, only: doubleq, lifting, callddevil, |
---|
[2417] | 74 | & tauscaling, odpref, dustbin, |
---|
[2442] | 75 | & dustscaling_mode, dust_rad_adjust, |
---|
[2643] | 76 | & freedust, reff_driven_IRtoVIS_scenario |
---|
[3203] | 77 | use turb_mod, only: q2, wstar, ustar, sensibFlux, |
---|
[1236] | 78 | & zmax_th, hfmax_th, turb_resolved |
---|
[1229] | 79 | use planete_h, only: aphelie, periheli, year_day, peri_day, |
---|
| 80 | & obliquit |
---|
[3095] | 81 | use planete_h, only: iniorbit |
---|
[3203] | 82 | USE comcstfi_h, only: r, cpp, mugaz, g, rcp, pi, rad |
---|
[1912] | 83 | USE calldrag_noro_mod, ONLY: calldrag_noro |
---|
[1969] | 84 | USE vdifc_mod, ONLY: vdifc |
---|
[3203] | 85 | use param_v4_h, only: nreact,n_avog, |
---|
[1266] | 86 | & fill_data_thermos, allocate_param_thermos |
---|
| 87 | use iono_h, only: allocate_param_iono |
---|
[1974] | 88 | use compute_dtau_mod, only: compute_dtau |
---|
[2149] | 89 | use nonoro_gwd_ran_mod, only: nonoro_gwd_ran |
---|
[3144] | 90 | use nonoro_gwd_mix_mod, only: nonoro_gwd_mix, calljliu_gwimix |
---|
[2551] | 91 | use check_fields_mod, only: check_physics_fields |
---|
[3142] | 92 | use surfini_mod, only: surfini |
---|
[1112] | 93 | #ifdef MESOSCALE |
---|
| 94 | use comsoil_h, only: mlayer,layer |
---|
| 95 | use surfdat_h, only: z0_default |
---|
[1236] | 96 | use comm_wrf |
---|
[1212] | 97 | #else |
---|
[2223] | 98 | USE planetwide_mod, ONLY: planetwide_maxval, planetwide_minval, |
---|
| 99 | & planetwide_sumval |
---|
[1212] | 100 | use phyredem, only: physdem0, physdem1 |
---|
[2545] | 101 | use phyetat0_mod, only: phyetat0, tab_cntrl_mod |
---|
[2559] | 102 | use wstats_mod, only: callstats, wstats, mkstats |
---|
[1212] | 103 | use eofdump_mod, only: eofdump |
---|
[2223] | 104 | USE vertical_layers_mod, ONLY: ap,bp,aps,bps,presnivs,pseudoalt |
---|
| 105 | USE mod_phys_lmdz_omp_data, ONLY: is_omp_master |
---|
[2511] | 106 | USE time_phylmdz_mod, ONLY: day_end |
---|
[1112] | 107 | #endif |
---|
| 108 | |
---|
[3203] | 109 | #ifdef CPP_XIOS |
---|
[2223] | 110 | use xios_output_mod, only: initialize_xios_output, |
---|
| 111 | & update_xios_timestep, |
---|
| 112 | & send_xios_field |
---|
| 113 | use wxios, only: wxios_context_init, xios_context_finalize |
---|
| 114 | #endif |
---|
[3203] | 115 | USE mod_grid_phy_lmdz, ONLY: grid_type, unstructured, |
---|
[3078] | 116 | & regular_lonlat |
---|
[2551] | 117 | use ioipsl_getin_p_mod, only: getin_p |
---|
[2896] | 118 | use comslope_mod, ONLY: nslope,def_slope,def_slope_mean, |
---|
| 119 | & subslope_dist,iflat,sky_slope, |
---|
| 120 | & major_slope,compute_meshgridavg, |
---|
| 121 | & ini_comslope_h |
---|
[2932] | 122 | use write_output_mod, only: write_output |
---|
[3151] | 123 | use pbl_parameters_mod, only: pbl_parameters |
---|
[3167] | 124 | use lmdz_atke_turbulence_ini, only : atke_ini |
---|
[3230] | 125 | use waterice_tifeedback_mod, only : waterice_tifeedback |
---|
[42] | 126 | IMPLICIT NONE |
---|
| 127 | c======================================================================= |
---|
| 128 | c |
---|
| 129 | c subject: |
---|
| 130 | c -------- |
---|
| 131 | c |
---|
[3203] | 132 | c Organisation of the physical parametrisations of the LMD |
---|
[42] | 133 | c martian atmospheric general circulation model. |
---|
| 134 | c |
---|
| 135 | c The GCM can be run without or with tracer transport |
---|
| 136 | c depending on the value of Logical "tracer" in file "callphys.def" |
---|
| 137 | c Tracers may be water vapor, ice OR chemical species OR dust particles |
---|
| 138 | c |
---|
| 139 | c SEE comments in initracer.F about numbering of tracer species... |
---|
| 140 | c |
---|
| 141 | c It includes: |
---|
| 142 | c |
---|
| 143 | c 1. Initialization: |
---|
| 144 | c 1.1 First call initializations |
---|
| 145 | c 1.2 Initialization for every call to physiq |
---|
| 146 | c 1.2.5 Compute mean mass and cp, R and thermal conduction coeff. |
---|
| 147 | c 2. Compute radiative transfer tendencies |
---|
| 148 | c (longwave and shortwave) for CO2 and aerosols. |
---|
| 149 | c 3. Gravity wave and subgrid scale topography drag : |
---|
| 150 | c 4. Vertical diffusion (turbulent mixing): |
---|
| 151 | c 5. Convective adjustment |
---|
| 152 | c 6. Condensation and sublimation of carbon dioxide. |
---|
| 153 | c 7. TRACERS : |
---|
[1617] | 154 | c 7a. water, water ice, co2 ice (clouds) |
---|
[42] | 155 | c 7b. call for photochemistry when tracers are chemical species |
---|
| 156 | c 7c. other scheme for tracer (dust) transport (lifting, sedimentation) |
---|
| 157 | c 7d. updates (CO2 pressure variations, surface budget) |
---|
| 158 | c 8. Contribution to tendencies due to thermosphere |
---|
| 159 | c 9. Surface and sub-surface temperature calculations |
---|
| 160 | c 10. Write outputs : |
---|
| 161 | c - "startfi", "histfi" (if it's time) |
---|
| 162 | c - Saving statistics (if "callstats = .true.") |
---|
| 163 | c - Dumping eof (if "calleofdump = .true.") |
---|
[3203] | 164 | c - Output any needed variables in "diagfi" |
---|
[42] | 165 | c 11. Diagnostic: mass conservation of tracers |
---|
[3203] | 166 | c |
---|
| 167 | c author: |
---|
| 168 | c ------- |
---|
| 169 | c Frederic Hourdin 15/10/93 |
---|
| 170 | c Francois Forget 1994 |
---|
| 171 | c Christophe Hourdin 02/1997 |
---|
[42] | 172 | c Subroutine completly rewritten by F.Forget (01/2000) |
---|
| 173 | c Introduction of the photochemical module: S. Lebonnois (11/2002) |
---|
| 174 | c Introduction of the thermosphere module: M. Angelats i Coll (2002) |
---|
| 175 | c Water ice clouds: Franck Montmessin (update 06/2003) |
---|
| 176 | c Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
---|
| 177 | c Nb: See callradite.F for more information. |
---|
[234] | 178 | c Mesoscale lines: Aymeric Spiga (2007 - 2011) -- check MESOSCALE flags |
---|
[414] | 179 | c jul 2011 malv+fgg: Modified calls to NIR heating routine and 15 um cooling parameterization |
---|
[1617] | 180 | c |
---|
| 181 | c 10/16 J. Audouard: modifications for CO2 clouds scheme |
---|
| 182 | |
---|
[42] | 183 | c arguments: |
---|
| 184 | c ---------- |
---|
| 185 | c |
---|
| 186 | c input: |
---|
| 187 | c ------ |
---|
| 188 | c ecri period (in dynamical timestep) to write output |
---|
| 189 | c ngrid Size of the horizontal grid. |
---|
| 190 | c All internal loops are performed on that grid. |
---|
| 191 | c nlayer Number of vertical layers. |
---|
| 192 | c nq Number of advected fields |
---|
| 193 | c firstcall True at the first call |
---|
| 194 | c lastcall True at the last call |
---|
| 195 | c pday Number of days counted from the North. Spring |
---|
| 196 | c equinoxe. |
---|
| 197 | c ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT |
---|
| 198 | c ptimestep timestep (s) |
---|
| 199 | c pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa) |
---|
| 200 | c pplev(ngrid,nlayer+1) intermediate pressure levels (pa) |
---|
| 201 | c pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2s-2) |
---|
| 202 | c pu(ngrid,nlayer) u component of the wind (ms-1) |
---|
| 203 | c pv(ngrid,nlayer) v component of the wind (ms-1) |
---|
| 204 | c pt(ngrid,nlayer) Temperature (K) |
---|
| 205 | c pq(ngrid,nlayer,nq) Advected fields |
---|
[3203] | 206 | c pudyn(ngrid,nlayer) | |
---|
[330] | 207 | c pvdyn(ngrid,nlayer) | Dynamical temporal derivative for the |
---|
| 208 | c ptdyn(ngrid,nlayer) | corresponding variables |
---|
| 209 | c pqdyn(ngrid,nlayer,nq) | |
---|
[1312] | 210 | c flxw(ngrid,nlayer) vertical mass flux (kg/s) at layer lower boundary |
---|
[42] | 211 | c |
---|
| 212 | c output: |
---|
| 213 | c ------- |
---|
| 214 | c |
---|
[1047] | 215 | c pdu(ngrid,nlayer) | |
---|
| 216 | c pdv(ngrid,nlayer) | Temporal derivative of the corresponding |
---|
| 217 | c pdt(ngrid,nlayer) | variables due to physical processes. |
---|
| 218 | c pdq(ngrid,nlayer,nq) | |
---|
| 219 | c pdpsrf(ngrid) | |
---|
[42] | 220 | |
---|
| 221 | c |
---|
| 222 | c======================================================================= |
---|
| 223 | c |
---|
| 224 | c 0. Declarations : |
---|
| 225 | c ------------------ |
---|
| 226 | |
---|
[1922] | 227 | include "callkeys.h" |
---|
| 228 | include "netcdf.inc" |
---|
[42] | 229 | |
---|
| 230 | c Arguments : |
---|
| 231 | c ----------- |
---|
| 232 | |
---|
| 233 | c inputs: |
---|
| 234 | c ------- |
---|
[1312] | 235 | INTEGER,INTENT(in) :: ngrid ! number of atmospheric columns |
---|
| 236 | INTEGER,INTENT(in) :: nlayer ! number of atmospheric layers |
---|
| 237 | INTEGER,INTENT(in) :: nq ! number of tracers |
---|
| 238 | LOGICAL,INTENT(in) :: firstcall ! signals first call to physics |
---|
| 239 | LOGICAL,INTENT(in) :: lastcall ! signals last call to physics |
---|
| 240 | REAL,INTENT(in) :: pday ! number of elapsed sols since reference Ls=0 |
---|
| 241 | REAL,INTENT(in) :: ptime ! "universal time", given as fraction of sol (e.g.: 0.5 for noon) |
---|
| 242 | REAL,INTENT(in) :: ptimestep ! physics timestep (s) |
---|
| 243 | REAL,INTENT(in) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
---|
| 244 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! mid-layer pressure (Pa) |
---|
| 245 | REAL,INTENT(IN) :: pphi(ngrid,nlayer) ! geopotential at mid-layer (m2s-2) |
---|
| 246 | REAL,INTENT(in) :: pu(ngrid,nlayer) ! zonal wind component (m/s) |
---|
| 247 | REAL,INTENT(in) :: pv(ngrid,nlayer) ! meridional wind component (m/s) |
---|
| 248 | REAL,INTENT(in) :: pt(ngrid,nlayer) ! temperature (K) |
---|
| 249 | REAL,INTENT(in) :: pq(ngrid,nlayer,nq) ! tracers (.../kg_of_air) |
---|
[3203] | 250 | REAL,INTENT(in) :: flxw(ngrid,nlayer) ! vertical mass flux (ks/s) at lower boundary of layer |
---|
[226] | 251 | |
---|
[42] | 252 | c outputs: |
---|
| 253 | c -------- |
---|
| 254 | c physical tendencies |
---|
[1312] | 255 | REAL,INTENT(out) :: pdu(ngrid,nlayer) ! zonal wind tendency (m/s/s) |
---|
| 256 | REAL,INTENT(out) :: pdv(ngrid,nlayer) ! meridional wind tendency (m/s/s) |
---|
| 257 | REAL,INTENT(out) :: pdt(ngrid,nlayer) ! temperature tendency (K/s) |
---|
| 258 | REAL,INTENT(out) :: pdq(ngrid,nlayer,nq) ! tracer tendencies (../kg/s) |
---|
| 259 | REAL,INTENT(out) :: pdpsrf(ngrid) ! surface pressure tendency (Pa/s) |
---|
[42] | 260 | |
---|
| 261 | c Local saved variables: |
---|
| 262 | c ---------------------- |
---|
[1233] | 263 | INTEGER,SAVE :: day_ini ! Initial date of the run (sol since Ls=0) |
---|
[3042] | 264 | INTEGER,SAVE :: icount ! Counter of calls to physiq during the run. |
---|
[2578] | 265 | REAL,SAVE :: time_phys |
---|
[1974] | 266 | |
---|
[2578] | 267 | !$OMP THREADPRIVATE(day_ini,icount,time_phys) |
---|
| 268 | |
---|
[1375] | 269 | #ifdef DUSTSTORM |
---|
| 270 | REAL pq_tmp(ngrid, nlayer, 2) ! To compute tendencies due the dust bomb |
---|
| 271 | #endif |
---|
[3203] | 272 | |
---|
[42] | 273 | c Variables used by the water ice microphysical scheme: |
---|
[1047] | 274 | REAL rice(ngrid,nlayer) ! Water ice geometric mean radius (m) |
---|
| 275 | REAL nuice(ngrid,nlayer) ! Estimated effective variance |
---|
[42] | 276 | ! of the size distribution |
---|
[1047] | 277 | real rsedcloud(ngrid,nlayer) ! Cloud sedimentation radius |
---|
| 278 | real rhocloud(ngrid,nlayer) ! Cloud density (kg.m-3) |
---|
[2447] | 279 | real rsedcloudco2(ngrid,nlayer) ! CO2 Cloud sedimentation radius |
---|
| 280 | real rhocloudco2(ngrid,nlayer) ! CO2 Cloud density (kg.m-3) |
---|
[3203] | 281 | real nuiceco2(ngrid,nlayer) ! Estimated effective variance of the |
---|
[2447] | 282 | ! size distribution |
---|
[2942] | 283 | REAL inertiesoil_tifeedback(ngrid,nsoilmx,nslope) ! Time varying subsurface |
---|
[1047] | 284 | ! thermal inertia (J.s-1/2.m-2.K-1) |
---|
[3230] | 285 | ! (used only when tifeedback surface or pore =.true.) |
---|
[1617] | 286 | c Variables used by the CO2 clouds microphysical scheme: |
---|
[1934] | 287 | DOUBLE PRECISION riceco2(ngrid,nlayer) ! co2 ice geometric mean radius (m) |
---|
[1617] | 288 | real zdqssed_co2(ngrid) ! CO2 flux at the surface (kg.m-2.s-1) |
---|
[2562] | 289 | real zdqssed_ccn(ngrid,nq) ! CCN flux at the surface (kg.m-2.s-1) |
---|
[3203] | 290 | real, dimension(ngrid,nlayer) :: zcondicea_co2microp |
---|
[1495] | 291 | c Variables used by the photochemistry |
---|
| 292 | REAL surfdust(ngrid,nlayer) ! dust surface area (m2/m3, if photochemistry) |
---|
| 293 | REAL surfice(ngrid,nlayer) ! ice surface area (m2/m3, if photochemistry) |
---|
[234] | 294 | c Variables used by the slope model |
---|
[3203] | 295 | REAL sl_lct, sl_lat |
---|
[234] | 296 | REAL sl_tau, sl_alb, sl_the, sl_psi |
---|
| 297 | REAL sl_fl0, sl_flu |
---|
| 298 | REAL sl_ra, sl_di0 |
---|
| 299 | REAL sky |
---|
[2685] | 300 | REAL fluxsurf_dir_dn_sw(ngrid) ! Incident direct solar flux on Mars at surface (W.m-2) |
---|
[234] | 301 | |
---|
[1047] | 302 | REAL,PARAMETER :: stephan = 5.67e-08 ! Stephan Boltzman constant |
---|
[42] | 303 | |
---|
| 304 | c Local variables : |
---|
| 305 | c ----------------- |
---|
| 306 | REAL CBRT |
---|
| 307 | EXTERNAL CBRT |
---|
| 308 | |
---|
[3203] | 309 | ! CHARACTER*80 fichier |
---|
| 310 | INTEGER l,ig,ierr,igout,iq,isoil |
---|
[42] | 311 | |
---|
[2900] | 312 | REAL fluxsurf_lw(ngrid,nslope) !incident LW (IR) surface flux (W.m-2) |
---|
| 313 | REAL fluxsurf_dn_sw(ngrid,2,nslope) ! Incident SW (solar) surface flux (W.m-2) |
---|
[2685] | 314 | REAL fluxsurf_up_sw(ngrid,2) ! Reflected SW (solar) surface flux (W.m-2) |
---|
[1047] | 315 | REAL fluxtop_lw(ngrid) !Outgoing LW (IR) flux to space (W.m-2) |
---|
[2685] | 316 | REAL fluxtop_dn_sw(ngrid,2) ! Incoming SW (solar) flux from space (W.m-2) |
---|
| 317 | REAL fluxtop_up_sw(ngrid,2) ! Outgoing SW (solar) flux to space (W.m-2) |
---|
[2415] | 318 | REAL tau_pref_scenario(ngrid) ! prescribed dust column visible opacity |
---|
| 319 | ! at odpref |
---|
[2643] | 320 | REAL IRtoVIScoef(ngrid) ! conversion coefficient to apply on |
---|
| 321 | ! scenario absorption IR (9.3um) CDOD |
---|
| 322 | ! = tau_pref_gcm_VIS / tau_pref_gcm_IR |
---|
[2415] | 323 | REAL tau_pref_gcm(ngrid) ! dust column visible opacity at odpref in the GCM |
---|
[1974] | 324 | c rocket dust storm |
---|
| 325 | REAL totstormfract(ngrid) ! fraction of the mesh where the dust storm is contained |
---|
[3203] | 326 | logical clearatm ! clearatm used to calculate twice the radiative |
---|
| 327 | ! transfer when rdstorm is active : |
---|
[1974] | 328 | ! - in a mesh with stormdust and background dust (false) |
---|
| 329 | ! - in a mesh with background dust only (true) |
---|
[2628] | 330 | c entrainment by mountain top dust flows |
---|
[3203] | 331 | logical nohmons ! nohmons used to calculate twice the radiative |
---|
| 332 | ! transfer when topflows is active : |
---|
[2199] | 333 | ! - in a mesh with topdust and background dust (false) |
---|
| 334 | ! - in a mesh with background dust only (true) |
---|
[3203] | 335 | |
---|
[1047] | 336 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
[1246] | 337 | ! AS: TBD: this one should be in a module ! |
---|
[42] | 338 | REAL zday ! date (time since Ls=0, in martian days) |
---|
[1047] | 339 | REAL zzlay(ngrid,nlayer) ! altitude at the middle of the layers |
---|
| 340 | REAL zzlev(ngrid,nlayer+1) ! altitude at layer boundaries |
---|
[3157] | 341 | REAL gz(ngrid,nlayer) ! variation of g with altitude from aeroid surface |
---|
[1036] | 342 | ! REAL latvl1,lonvl1 ! Viking Lander 1 point (for diagnostic) |
---|
[42] | 343 | |
---|
| 344 | c Tendancies due to various processes: |
---|
[2900] | 345 | REAL dqsurf(ngrid,nq,nslope) ! tendency for tracers on surface (Kg/m2/s) |
---|
[1047] | 346 | REAL zdtlw(ngrid,nlayer) ! (K/s) |
---|
| 347 | REAL zdtsw(ngrid,nlayer) ! (K/s) |
---|
[1974] | 348 | REAL pdqrds(ngrid,nlayer,nq) ! tendency for dust after rocketduststorm |
---|
| 349 | |
---|
[1047] | 350 | REAL zdtnirco2(ngrid,nlayer) ! (K/s) |
---|
| 351 | REAL zdtnlte(ngrid,nlayer) ! (K/s) |
---|
[2900] | 352 | REAL zdtsurf(ngrid,nslope) ! (K/s) |
---|
[1617] | 353 | REAL zdtcloud(ngrid,nlayer),zdtcloudco2(ngrid,nlayer) |
---|
[1047] | 354 | REAL zdvdif(ngrid,nlayer),zdudif(ngrid,nlayer) ! (m.s-2) |
---|
[2900] | 355 | REAL zdhdif(ngrid,nlayer), zdtsdif(ngrid,nslope) ! (K/s) |
---|
[1047] | 356 | REAL zdvadj(ngrid,nlayer),zduadj(ngrid,nlayer) ! (m.s-2) |
---|
| 357 | REAL zdhadj(ngrid,nlayer) ! (K/s) |
---|
| 358 | REAL zdtgw(ngrid,nlayer) ! (K/s) |
---|
| 359 | REAL zdugw(ngrid,nlayer),zdvgw(ngrid,nlayer) ! (m.s-2) |
---|
[2900] | 360 | REAL zdtc(ngrid,nlayer),zdtsurfc(ngrid,nslope) |
---|
[1047] | 361 | REAL zdvc(ngrid,nlayer),zduc(ngrid,nlayer) |
---|
[42] | 362 | |
---|
[2900] | 363 | REAL zdqdif(ngrid,nlayer,nq), zdqsdif(ngrid,nq,nslope) |
---|
[1047] | 364 | REAL zdqsed(ngrid,nlayer,nq), zdqssed(ngrid,nq) |
---|
| 365 | REAL zdqdev(ngrid,nlayer,nq), zdqsdev(ngrid,nq) |
---|
| 366 | REAL zdqadj(ngrid,nlayer,nq) |
---|
| 367 | REAL zdqc(ngrid,nlayer,nq) |
---|
[2162] | 368 | REAL zdqcloudco2(ngrid,nlayer,nq) |
---|
[2900] | 369 | REAL zdqsc(ngrid,nq,nslope) |
---|
[42] | 370 | |
---|
[1047] | 371 | REAL zdteuv(ngrid,nlayer) ! (K/s) |
---|
| 372 | REAL zdtconduc(ngrid,nlayer) ! (K/s) |
---|
| 373 | REAL zdumolvis(ngrid,nlayer) |
---|
| 374 | REAL zdvmolvis(ngrid,nlayer) |
---|
| 375 | real zdqmoldiff(ngrid,nlayer,nq) |
---|
[2467] | 376 | real*8 PhiEscH,PhiEscH2,PhiEscD |
---|
[42] | 377 | |
---|
[2900] | 378 | REAL dwatercap(ngrid,nslope), dwatercap_dif(ngrid,nslope) ! (kg/m-2) |
---|
[2260] | 379 | |
---|
[42] | 380 | c Local variable for local intermediate calcul: |
---|
[2900] | 381 | REAL zflubid(ngrid,nslope) |
---|
[1047] | 382 | REAL zplanck(ngrid),zpopsk(ngrid,nlayer) |
---|
| 383 | REAL zdum1(ngrid,nlayer) |
---|
| 384 | REAL zdum2(ngrid,nlayer) |
---|
[42] | 385 | REAL ztim1,ztim2,ztim3, z1,z2 |
---|
| 386 | REAL ztime_fin |
---|
[1047] | 387 | REAL zdh(ngrid,nlayer) |
---|
[1313] | 388 | REAL zh(ngrid,nlayer) ! potential temperature (K) |
---|
[1312] | 389 | REAL pw(ngrid,nlayer) ! vertical velocity (m/s) (>0 when downwards) |
---|
[42] | 390 | INTEGER length |
---|
| 391 | PARAMETER (length=100) |
---|
[3157] | 392 | REAL tlaymean ! temporary value of mean layer temperature for zzlay |
---|
[42] | 393 | |
---|
[1974] | 394 | c Variables for the total dust for diagnostics |
---|
| 395 | REAL qdusttotal(ngrid,nlayer) !it equals to dust + stormdust |
---|
| 396 | |
---|
[42] | 397 | c local variables only used for diagnostic (output in file "diagfi" or "stats") |
---|
| 398 | c ----------------------------------------------------------------------------- |
---|
[1047] | 399 | REAL ps(ngrid), zt(ngrid,nlayer) |
---|
| 400 | REAL zu(ngrid,nlayer),zv(ngrid,nlayer) |
---|
| 401 | REAL zq(ngrid,nlayer,nq) |
---|
[1974] | 402 | |
---|
[2685] | 403 | REAL fluxtop_dn_sw_tot(ngrid), fluxtop_up_sw_tot(ngrid) |
---|
[2900] | 404 | REAL fluxsurf_dn_sw_tot(ngrid,nslope), fluxsurf_up_sw_tot(ngrid) |
---|
[42] | 405 | character*2 str2 |
---|
[1036] | 406 | ! character*5 str5 |
---|
[1047] | 407 | real zdtdif(ngrid,nlayer), zdtadj(ngrid,nlayer) |
---|
| 408 | real rdust(ngrid,nlayer) ! dust geometric mean radius (m) |
---|
[1974] | 409 | real rstormdust(ngrid,nlayer) ! stormdust geometric mean radius (m) |
---|
[2199] | 410 | real rtopdust(ngrid,nlayer) ! topdust geometric mean radius (m) |
---|
[42] | 411 | integer igmin, lmin |
---|
| 412 | |
---|
[883] | 413 | ! pplev and pplay are dynamical inputs and must not be modified in the physics. |
---|
| 414 | ! instead, use zplay and zplev : |
---|
[3203] | 415 | REAL zplev(ngrid,nlayer+1),zplay(ngrid,nlayer) |
---|
[1036] | 416 | ! REAL zstress(ngrid),cd |
---|
[1047] | 417 | real rho(ngrid,nlayer) ! density |
---|
| 418 | real vmr(ngrid,nlayer) ! volume mixing ratio |
---|
| 419 | real rhopart(ngrid,nlayer) ! number density of a given species |
---|
| 420 | real colden(ngrid,nq) ! vertical column of tracers |
---|
[1464] | 421 | real mass(nq) ! global mass of tracers (g) |
---|
[1047] | 422 | REAL mtot(ngrid) ! Total mass of water vapor (kg/m2) |
---|
[1974] | 423 | REAL mstormdtot(ngrid) ! Total mass of stormdust tracer (kg/m2) |
---|
[2362] | 424 | REAL mdusttot(ngrid) ! Total mass of dust tracer (kg/m2) |
---|
[1047] | 425 | REAL icetot(ngrid) ! Total mass of water ice (kg/m2) |
---|
[2551] | 426 | REAL mtotco2(ngrid) ! Total mass of co2, including ice at the surface (kg/m2) |
---|
| 427 | REAL vaptotco2(ngrid) ! Total mass of co2 vapor (kg/m2) |
---|
| 428 | REAL icetotco2(ngrid) ! Total mass of co2 ice (kg/m2) |
---|
[1047] | 429 | REAL Nccntot(ngrid) ! Total number of ccn (nbr/m2) |
---|
| 430 | REAL Mccntot(ngrid) ! Total mass of ccn (kg/m2) |
---|
| 431 | REAL rave(ngrid) ! Mean water ice effective radius (m) |
---|
| 432 | REAL opTES(ngrid,nlayer) ! abs optical depth at 825 cm-1 |
---|
| 433 | REAL tauTES(ngrid) ! column optical depth at 825 cm-1 |
---|
[42] | 434 | REAL Qabsice ! Water ice absorption coefficient |
---|
[1047] | 435 | REAL taucloudtes(ngrid) ! Cloud opacity at infrared |
---|
[520] | 436 | ! reference wavelength using |
---|
| 437 | ! Qabs instead of Qext |
---|
| 438 | ! (direct comparison with TES) |
---|
[2312] | 439 | REAL mtotD(ngrid) ! Total mass of HDO vapor (kg/m2) |
---|
| 440 | REAL icetotD(ngrid) ! Total mass of HDO ice (kg/m2) |
---|
| 441 | REAL DoH_vap(ngrid,nlayer) !D/H ratio |
---|
| 442 | REAL DoH_ice(ngrid,nlayer) !D/H ratio |
---|
| 443 | REAL DoH_surf(ngrid) !D/H ratio surface |
---|
[2362] | 444 | |
---|
[1047] | 445 | REAL dqdustsurf(ngrid) ! surface q dust flux (kg/m2/s) |
---|
| 446 | REAL dndustsurf(ngrid) ! surface n dust flux (number/m2/s) |
---|
| 447 | REAL ndust(ngrid,nlayer) ! true n dust (kg/kg) |
---|
| 448 | REAL qdust(ngrid,nlayer) ! true q dust (kg/kg) |
---|
| 449 | REAL nccn(ngrid,nlayer) ! true n ccn (kg/kg) |
---|
| 450 | REAL qccn(ngrid,nlayer) ! true q ccn (kg/kg) |
---|
[1974] | 451 | c definition tendancies of stormdust tracers |
---|
| 452 | REAL rdsdqdustsurf(ngrid) ! surface q stormdust flux (kg/m2/s) |
---|
| 453 | REAL rdsdndustsurf(ngrid) ! surface n stormdust flux (number/m2/s) |
---|
| 454 | REAL rdsndust(ngrid,nlayer) ! true n stormdust (kg/kg) |
---|
| 455 | REAL rdsqdust(ngrid,nlayer) ! true q stormdust (kg/kg) |
---|
[2414] | 456 | REAL wspeed(ngrid,nlayer+1) ! vertical velocity stormdust tracer |
---|
| 457 | REAL wtop(ngrid,nlayer+1) ! vertical velocity topdust tracer |
---|
[2413] | 458 | REAL dsodust(ngrid,nlayer) ! density scaled opacity for background dust |
---|
| 459 | REAL dsords(ngrid,nlayer) ! density scaled opacity for stormdust |
---|
| 460 | REAL dsotop(ngrid,nlayer) ! density scaled opacity for topdust |
---|
[1974] | 461 | |
---|
[411] | 462 | c Test 1d/3d scavenging |
---|
[1047] | 463 | REAL satu(ngrid,nlayer) ! satu ratio for output |
---|
| 464 | REAL zqsat(ngrid,nlayer) ! saturation |
---|
[42] | 465 | |
---|
[414] | 466 | ! Added for new NLTE scheme |
---|
[1047] | 467 | real co2vmr_gcm(ngrid,nlayer) |
---|
| 468 | real n2vmr_gcm(ngrid,nlayer) |
---|
| 469 | real ovmr_gcm(ngrid,nlayer) |
---|
| 470 | real covmr_gcm(ngrid,nlayer) |
---|
[1124] | 471 | integer ierr_nlte |
---|
| 472 | real*8 varerr |
---|
[414] | 473 | |
---|
[2149] | 474 | c Non-oro GW tendencies |
---|
| 475 | REAL d_u_hin(ngrid,nlayer), d_v_hin(ngrid,nlayer) |
---|
| 476 | REAL d_t_hin(ngrid,nlayer) |
---|
[3144] | 477 | REAL d_u_mix(ngrid,nlayer), d_v_mix(ngrid,nlayer) |
---|
| 478 | REAL d_t_mix(ngrid,nlayer), zdq_mix(ngrid,nlayer,nq) |
---|
| 479 | |
---|
[2149] | 480 | c Diagnostics 2D of gw_nonoro |
---|
| 481 | REAL zustrhi(ngrid), zvstrhi(ngrid) |
---|
[267] | 482 | c Variables for PBL |
---|
[1047] | 483 | REAL zz1(ngrid) |
---|
[1236] | 484 | REAL lmax_th_out(ngrid) |
---|
[1047] | 485 | REAL pdu_th(ngrid,nlayer),pdv_th(ngrid,nlayer) |
---|
| 486 | REAL pdt_th(ngrid,nlayer),pdq_th(ngrid,nlayer,nq) |
---|
[3203] | 487 | INTEGER lmax_th(ngrid),n_out,n |
---|
[566] | 488 | CHARACTER(50) zstring |
---|
[1047] | 489 | REAL dtke_th(ngrid,nlayer+1) |
---|
[636] | 490 | REAL, ALLOCATABLE, DIMENSION(:,:) :: T_out |
---|
[566] | 491 | REAL, ALLOCATABLE, DIMENSION(:,:) :: u_out ! Interpolated teta and u at z_out |
---|
[1047] | 492 | REAL u_out1(ngrid) |
---|
| 493 | REAL T_out1(ngrid) |
---|
[566] | 494 | REAL, ALLOCATABLE, DIMENSION(:) :: z_out ! height of interpolation between z0 and z1 [meters] |
---|
[1236] | 495 | REAL tstar(ngrid) ! friction velocity and friction potential temp |
---|
[3203] | 496 | REAL vhf(ngrid), vvv(ngrid) |
---|
[1974] | 497 | real qdustrds0(ngrid,nlayer),qdustrds1(ngrid,nlayer) |
---|
[3203] | 498 | real qstormrds0(ngrid,nlayer),qstormrds1(ngrid,nlayer) |
---|
[1974] | 499 | real qdusttotal0(ngrid),qdusttotal1(ngrid) |
---|
[790] | 500 | |
---|
[1711] | 501 | c sub-grid scale water ice clouds (A. Pottier 2013) |
---|
| 502 | logical clearsky |
---|
| 503 | ! flux for the part without clouds |
---|
[1972] | 504 | real zdtswclf(ngrid,nlayer) |
---|
| 505 | real zdtlwclf(ngrid,nlayer) |
---|
[3203] | 506 | real fluxsurf_lwclf(ngrid) |
---|
[2685] | 507 | real fluxsurf_dn_swclf(ngrid,2),fluxsurf_up_swclf(ngrid,2) |
---|
[1972] | 508 | real fluxtop_lwclf(ngrid) |
---|
[2685] | 509 | real fluxtop_dn_swclf(ngrid,2),fluxtop_up_swclf(ngrid,2) |
---|
[1972] | 510 | real taucloudtesclf(ngrid) |
---|
[1973] | 511 | real tf_clf, ntf_clf ! tf: fraction of clouds, ntf: fraction without clouds |
---|
[1972] | 512 | real rave2(ngrid), totrave2(ngrid) ! Mean water ice mean radius (m) |
---|
[2362] | 513 | C test de conservation de la masse de CO2 |
---|
| 514 | REAL co2totA |
---|
| 515 | REAL co2totB |
---|
[2660] | 516 | REAL co2conservation |
---|
[1711] | 517 | |
---|
[2628] | 518 | c entrainment by mountain top dust flows above sub-grid scale topography |
---|
[2199] | 519 | REAL pdqtop(ngrid,nlayer,nq) ! tendency for dust after topmons |
---|
| 520 | |
---|
[2285] | 521 | c when no startfi file is asked for init |
---|
| 522 | real alpha,lay1 ! coefficients for building layers |
---|
| 523 | integer iloop |
---|
| 524 | |
---|
[2551] | 525 | ! flags to trigger extra sanity checks |
---|
| 526 | logical,save :: check_physics_inputs=.false. |
---|
| 527 | logical,save :: check_physics_outputs=.false. |
---|
[2281] | 528 | |
---|
[3203] | 529 | !$OMP THREADPRIVATE(check_physics_inputs,check_physics_outputs) |
---|
| 530 | |
---|
[2896] | 531 | c Sub-grid scale slopes |
---|
[2900] | 532 | real :: tsurf_meshavg(ngrid) ! Surface temperature grid box averaged [K] |
---|
| 533 | real :: albedo_meshavg(ngrid,2) ! albedo temperature grid box averaged [1] |
---|
| 534 | real :: emis_meshavg(ngrid,2) ! emis temperature grid box averaged [1] |
---|
| 535 | real :: qsurf_meshavg(ngrid,nq) ! surface tracer mesh averaged [kg/m^2] |
---|
| 536 | real :: qsurf_tmp(ngrid,nq) ! temporary qsurf for chimie |
---|
[2896] | 537 | integer :: islope |
---|
[2900] | 538 | real :: zdqsdif_meshavg_tmp(ngrid,nq) ! temporary for dust lifting |
---|
[2896] | 539 | |
---|
[2646] | 540 | logical :: write_restart |
---|
[2616] | 541 | |
---|
[2963] | 542 | ! Variable for ice table |
---|
[3230] | 543 | REAL :: rhowater_surf(ngrid,nslope) ! Water density at the surface [kg/m^3] |
---|
| 544 | REAL :: rhowater_surf_sat(ngrid,nslope) ! Water density at the surface at saturation [kg/m^3] |
---|
| 545 | REAL :: rhowater_soil(ngrid,nsoilmx,nslope) ! Water density in soil layers [kg/m^3] |
---|
| 546 | REAL,PARAMETER :: alpha_clap_h2o = 28.9074 ! Coeff for Clapeyron law [/] |
---|
| 547 | REAL,PARAMETER :: beta_clap_h2o = -6143.7 ! Coeff for Clapeyron law [K] |
---|
| 548 | REAL :: pvap_surf(ngrid) ! Water vapor partial pressure in first layer [Pa] |
---|
| 549 | REAL,PARAMETER :: m_co2 = 44.01E-3 ! CO2 molecular mass [kg/mol] |
---|
| 550 | REAL,PARAMETER :: m_noco2 = 33.37E-3 ! Non condensible mol mass [kg/mol] |
---|
| 551 | REAL :: ztmp1,ztmp2 ! intermediate variables to compute the mean molar mass of the layer |
---|
| 552 | REAL :: pore_icefraction(ngrid,nsoilmx,nslope) ! ice filling fraction in the pores |
---|
[3167] | 553 | ! Variable for the computation of the TKE with parameterization from ATKE working group |
---|
| 554 | REAL :: viscom ! kinematic molecular viscosity for momentum |
---|
| 555 | REAL :: viscoh ! kinematic molecular viscosity for heat |
---|
| 556 | |
---|
[42] | 557 | c======================================================================= |
---|
[2362] | 558 | pdq(:,:,:) = 0. |
---|
[42] | 559 | |
---|
| 560 | c 1. Initialisation: |
---|
| 561 | c ----------------- |
---|
| 562 | c 1.1 Initialisation only at first call |
---|
| 563 | c --------------------------------------- |
---|
| 564 | IF (firstcall) THEN |
---|
| 565 | |
---|
[2551] | 566 | call getin_p("check_physics_inputs",check_physics_inputs) |
---|
| 567 | call getin_p("check_physics_outputs",check_physics_outputs) |
---|
| 568 | |
---|
[42] | 569 | c variables set to 0 |
---|
| 570 | c ~~~~~~~~~~~~~~~~~~ |
---|
[286] | 571 | aerosol(:,:,:)=0 |
---|
| 572 | dtrad(:,:)=0 |
---|
[674] | 573 | |
---|
| 574 | #ifndef MESOSCALE |
---|
[2900] | 575 | fluxrad(:,:)=0 |
---|
[528] | 576 | wstar(:)=0. |
---|
[674] | 577 | #endif |
---|
[268] | 578 | |
---|
[2223] | 579 | #ifdef CPP_XIOS |
---|
| 580 | ! Initialize XIOS context |
---|
| 581 | write(*,*) "physiq: call wxios_context_init" |
---|
| 582 | CALL wxios_context_init |
---|
| 583 | #endif |
---|
| 584 | |
---|
[3203] | 585 | c read startfi |
---|
[42] | 586 | c ~~~~~~~~~~~~ |
---|
[226] | 587 | #ifndef MESOSCALE |
---|
[2896] | 588 | |
---|
[1233] | 589 | ! GCM. Read netcdf initial physical parameters. |
---|
[226] | 590 | CALL phyetat0 ("startfi.nc",0,0, |
---|
[3113] | 591 | & nsoilmx,ngrid,nlayer,nq,nqsoil, |
---|
[226] | 592 | & day_ini,time_phys, |
---|
[1944] | 593 | & tsurf,tsoil,albedo,emis, |
---|
[3113] | 594 | & q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar, |
---|
[3130] | 595 | & watercap,perennial_co2ice, |
---|
[2999] | 596 | & def_slope,def_slope_mean,subslope_dist) |
---|
[185] | 597 | |
---|
[3203] | 598 | ! Sky view: |
---|
[2896] | 599 | DO islope=1,nslope |
---|
| 600 | sky_slope(islope) = (1.+cos(pi*def_slope_mean(islope)/180.))/2. |
---|
| 601 | END DO |
---|
| 602 | ! Determine the 'flatest' slopes |
---|
| 603 | iflat = 1 |
---|
| 604 | DO islope=2,nslope |
---|
| 605 | IF(abs(def_slope_mean(islope)).lt. |
---|
| 606 | & abs(def_slope_mean(iflat)))THEN |
---|
| 607 | iflat = islope |
---|
| 608 | ENDIF |
---|
| 609 | ENDDO |
---|
[3037] | 610 | write(*,*)'Flat slope for islope = ',iflat |
---|
| 611 | write(*,*)'corresponding criterium = ',def_slope_mean(iflat) |
---|
[2896] | 612 | |
---|
[1233] | 613 | #else |
---|
| 614 | ! MESOSCALE. Supposedly everything is already set in modules. |
---|
[1579] | 615 | ! So we just check. And we fill day_ini |
---|
[3037] | 616 | write(*,*)"check: --- in physiq.F" |
---|
| 617 | write(*,*)"check: rad,cpp,g,r,rcp,daysec" |
---|
| 618 | write(*,*)rad,cpp,g,r,rcp,daysec |
---|
| 619 | write(*,*)'check: tsurf ',tsurf(1,:),tsurf(ngrid,:) |
---|
| 620 | write(*,*)'check: tsoil ',tsoil(1,1,:),tsoil(ngrid,nsoilmx,:) |
---|
[3203] | 621 | write(*,*)'check: inert ',inertiedat(1,1),inertiedat(ngrid,nsoilmx) |
---|
[3037] | 622 | write(*,*)'check: midlayer,layer ', mlayer(:),layer(:) |
---|
| 623 | write(*,*)'check: tracernames ', noms |
---|
| 624 | write(*,*)'check: emis ',emis(1,:),emis(ngrid,:) |
---|
| 625 | write(*,*)'check: q2 ',q2(1,1),q2(ngrid,nlayer+1) |
---|
| 626 | write(*,*)'check: qsurf ',qsurf(1,1,:),qsurf(ngrid,nq,:) |
---|
| 627 | write(*,*)'check: co2ice ',qsurf(1,igcm_co2,:),qsurf(ngrid,igcm_co2,:) |
---|
[1579] | 628 | !!! |
---|
[1233] | 629 | day_ini = pday |
---|
[2491] | 630 | !!! a couple initializations (dummy for mesoscale) done in phyetat0 |
---|
| 631 | !!! --- maybe this should be done in update_inputs_physiq_mod |
---|
[2562] | 632 | |
---|
[2491] | 633 | tauscaling(:)=1.0 !! probably important |
---|
| 634 | totcloudfrac(:)=1.0 |
---|
[2942] | 635 | DO islope = 1,nslope |
---|
| 636 | albedo(:,1,islope)=albedodat(:) |
---|
| 637 | albedo(:,2,islope)=albedo(:,1,islope) |
---|
| 638 | inertiesoil(:,:,islope) = inertiedat(:,:) |
---|
| 639 | watercap(:,:)=0.0 |
---|
| 640 | ENDDO |
---|
[1233] | 641 | #endif |
---|
[2281] | 642 | #ifndef MESOSCALE |
---|
| 643 | if (.not.startphy_file) then |
---|
| 644 | ! starting without startfi.nc and with callsoil |
---|
| 645 | ! is not yet possible as soildepth default is not defined |
---|
[2362] | 646 | if (callsoil) then |
---|
[2285] | 647 | ! default mlayer distribution, following a power law: |
---|
| 648 | ! mlayer(k)=lay1*alpha**(k-1/2) |
---|
| 649 | lay1=2.e-4 |
---|
[3203] | 650 | alpha=2 |
---|
[2285] | 651 | do iloop=0,nsoilmx-1 |
---|
[3203] | 652 | mlayer(iloop)=lay1*(alpha**(iloop-0.5)) |
---|
| 653 | enddo |
---|
[2285] | 654 | lay1=sqrt(mlayer(0)*mlayer(1)) |
---|
| 655 | alpha=mlayer(1)/mlayer(0) |
---|
| 656 | do iloop=1,nsoilmx |
---|
| 657 | layer(iloop)=lay1*(alpha**(iloop-1)) |
---|
| 658 | enddo |
---|
[2281] | 659 | endif |
---|
| 660 | ! additionnal "academic" initialization of physics |
---|
[2900] | 661 | do islope = 1,nslope |
---|
| 662 | tsurf(:,islope)=pt(:,1) |
---|
| 663 | enddo |
---|
[2281] | 664 | write(*,*) "Physiq: initializing tsoil(:) to pt(:,1) !!" |
---|
| 665 | do isoil=1,nsoilmx |
---|
[2900] | 666 | tsoil(1:ngrid,isoil,:)=tsurf(1:ngrid,:) |
---|
[2281] | 667 | enddo |
---|
| 668 | write(*,*) "Physiq: initializing inertiedat !!" |
---|
| 669 | inertiedat(:,:)=400. |
---|
[2942] | 670 | inertiesoil(:,:,:)=400. |
---|
[2281] | 671 | write(*,*) "Physiq: initializing day_ini to pdat !" |
---|
| 672 | day_ini=pday |
---|
| 673 | endif |
---|
| 674 | #endif |
---|
| 675 | if (pday.ne.day_ini) then |
---|
| 676 | write(*,*) "PHYSIQ: ERROR: bad synchronization between ", |
---|
| 677 | & "physics and dynamics" |
---|
| 678 | write(*,*) "dynamics day [pday]: ",pday |
---|
| 679 | write(*,*) "physics day [day_ini]: ",day_ini |
---|
| 680 | call abort_physic("physiq","dynamics day /= physics day",1) |
---|
| 681 | endif |
---|
| 682 | |
---|
| 683 | write (*,*) 'In physiq day_ini =', day_ini |
---|
| 684 | |
---|
[286] | 685 | c initialize tracers |
---|
| 686 | c ~~~~~~~~~~~~~~~~~~ |
---|
[2823] | 687 | CALL initracer(ngrid,nq,qsurf) |
---|
[286] | 688 | |
---|
[42] | 689 | c Initialize albedo and orbital calculation |
---|
| 690 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[3013] | 691 | CALL surfini(ngrid,nslope,qsurf) |
---|
[42] | 692 | CALL iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
---|
[3203] | 693 | c initialize soil |
---|
[42] | 694 | c ~~~~~~~~~~~~~~~ |
---|
| 695 | IF (callsoil) THEN |
---|
[833] | 696 | c Thermal inertia feedback: |
---|
[3230] | 697 | IF (surfaceice_tifeedback.or.poreice_tifeedback) THEN |
---|
[2900] | 698 | DO islope = 1,nslope |
---|
[3230] | 699 | CALL waterice_tifeedback(ngrid,nsoilmx,nslope, |
---|
| 700 | s qsurf(:,igcm_h2o_ice,:),pore_icefraction, |
---|
| 701 | s inertiesoil_tifeedback) |
---|
[2900] | 702 | ENDDO |
---|
[2942] | 703 | CALL soil(ngrid,nsoilmx,firstcall, |
---|
| 704 | s inertiesoil_tifeedback, |
---|
[833] | 705 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 706 | ELSE |
---|
[2942] | 707 | CALL soil(ngrid,nsoilmx,firstcall,inertiesoil, |
---|
[833] | 708 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 709 | ENDIF ! of IF (tifeedback) |
---|
[42] | 710 | ELSE |
---|
[3037] | 711 | write(*,*) |
---|
[42] | 712 | & 'PHYSIQ WARNING! Thermal conduction in the soil turned off' |
---|
| 713 | DO ig=1,ngrid |
---|
[2900] | 714 | capcal(ig,:)=1.e5 |
---|
| 715 | fluxgrd(ig,:)=0. |
---|
[42] | 716 | ENDDO |
---|
| 717 | ENDIF |
---|
| 718 | icount=1 |
---|
| 719 | |
---|
[226] | 720 | #ifndef MESOSCALE |
---|
| 721 | c Initialize thermospheric parameters |
---|
| 722 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[42] | 723 | |
---|
[705] | 724 | if (callthermos) then |
---|
[1266] | 725 | call fill_data_thermos |
---|
| 726 | call allocate_param_thermos(nlayer) |
---|
| 727 | call allocate_param_iono(nlayer,nreact) |
---|
[1684] | 728 | call param_read_e107 |
---|
[705] | 729 | endif |
---|
[226] | 730 | #endif |
---|
[42] | 731 | |
---|
[3185] | 732 | c Initialize rnew cpnew and mmean as constant |
---|
| 733 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[3203] | 734 | call init_r_cp_mu(ngrid,nlayer) |
---|
[42] | 735 | |
---|
[2383] | 736 | if(callnlte.and.nltemodel.eq.2) call nlte_setup |
---|
| 737 | if(callnirco2.and.nircorr.eq.1) call NIR_leedat |
---|
[414] | 738 | |
---|
[2383] | 739 | |
---|
[2823] | 740 | IF (water.AND.(ngrid.NE.1)) THEN |
---|
[3203] | 741 | write(*,*)"physiq: water_param Surface water frost albedo:", |
---|
[2508] | 742 | . albedo_h2o_frost |
---|
[3203] | 743 | write(*,*)"physiq: water_param Surface watercap albedo:", |
---|
[2508] | 744 | . albedo_h2o_cap |
---|
[42] | 745 | ENDIF |
---|
[900] | 746 | |
---|
| 747 | #ifndef MESOSCALE |
---|
[3203] | 748 | ! no need to compute slopes when in 1D; it is an input |
---|
| 749 | if (ngrid /= 1 .and. callslope) call getslopes(ngrid,phisfi) |
---|
| 750 | if (ecritstart.GT.0) then |
---|
[2507] | 751 | call physdem0("restartfi.nc",longitude,latitude, |
---|
[2224] | 752 | & nsoilmx,ngrid,nlayer,nq, |
---|
[2544] | 753 | & ptimestep,pday,0.,cell_area, |
---|
[2896] | 754 | & albedodat,inertiedat,def_slope, |
---|
| 755 | & subslope_dist) |
---|
[3203] | 756 | else |
---|
[2507] | 757 | call physdem0("restartfi.nc",longitude,latitude, |
---|
| 758 | & nsoilmx,ngrid,nlayer,nq, |
---|
[2544] | 759 | & ptimestep,float(day_end),0.,cell_area, |
---|
[2896] | 760 | & albedodat,inertiedat,def_slope, |
---|
| 761 | & subslope_dist) |
---|
[3203] | 762 | endif |
---|
[2199] | 763 | |
---|
[2628] | 764 | c Initialize mountain mesh fraction for the entrainment by top flows param. |
---|
[2199] | 765 | c ~~~~~~~~~~~~~~~ |
---|
[2628] | 766 | if (topflows) call topmons_setup(ngrid) |
---|
[3203] | 767 | |
---|
[3167] | 768 | c Parameterization of the ATKE routine |
---|
| 769 | c ~~~~~~~~~~~~~~~ |
---|
| 770 | if (callatke) then |
---|
| 771 | viscom = 0.001 |
---|
| 772 | viscoh = 0.001 |
---|
| 773 | CALL atke_ini(g, r, pi, cpp, 0., viscom, viscoh) |
---|
| 774 | endif |
---|
[2212] | 775 | |
---|
| 776 | #endif |
---|
[3203] | 777 | |
---|
[2223] | 778 | #ifdef CPP_XIOS |
---|
| 779 | ! XIOS outputs |
---|
| 780 | write(*,*) "physiq firstcall: call initialize_xios_output" |
---|
| 781 | call initialize_xios_output(pday,ptime,ptimestep,daysec, |
---|
[2333] | 782 | & presnivs,pseudoalt,mlayer) |
---|
[2223] | 783 | #endif |
---|
[42] | 784 | ENDIF ! (end of "if firstcall") |
---|
| 785 | |
---|
[2551] | 786 | if (check_physics_inputs) then |
---|
| 787 | ! Check the validity of input fields coming from the dynamics |
---|
[2570] | 788 | call check_physics_fields("begin physiq:",pt,pu,pv,pplev,pq) |
---|
[2551] | 789 | endif |
---|
| 790 | |
---|
[42] | 791 | c --------------------------------------------------- |
---|
| 792 | c 1.2 Initializations done at every physical timestep: |
---|
| 793 | c --------------------------------------------------- |
---|
| 794 | c |
---|
[3203] | 795 | #ifdef CPP_XIOS |
---|
[2223] | 796 | ! update XIOS time/calendar |
---|
[3203] | 797 | call update_xios_timestep |
---|
| 798 | #endif |
---|
[2312] | 799 | |
---|
| 800 | c Initialize various variables |
---|
[42] | 801 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[286] | 802 | pdv(:,:)=0 |
---|
| 803 | pdu(:,:)=0 |
---|
| 804 | pdt(:,:)=0 |
---|
| 805 | pdq(:,:,:)=0 |
---|
| 806 | pdpsrf(:)=0 |
---|
[2900] | 807 | zflubid(:,:)=0 |
---|
| 808 | zdtsurf(:,:)=0 |
---|
| 809 | dqsurf(:,:,:)=0 |
---|
[2252] | 810 | dsodust(:,:)=0. |
---|
| 811 | dsords(:,:)=0. |
---|
| 812 | dsotop(:,:)=0. |
---|
[2900] | 813 | dwatercap(:,:)=0 |
---|
[2907] | 814 | |
---|
| 815 | call compute_meshgridavg(ngrid,nq,albedo,emis,tsurf,qsurf, |
---|
| 816 | & albedo_meshavg,emis_meshavg,tsurf_meshavg,qsurf_meshavg) |
---|
[3203] | 817 | |
---|
[2643] | 818 | ! Dust scenario conversion coefficient from IRabs to VISext |
---|
| 819 | IRtoVIScoef(1:ngrid)=2.6 ! initialized with former value from Montabone et al 2015 |
---|
| 820 | ! recomputed in aeropacity if reff_driven_IRtoVIS_scenario=.true. |
---|
[2362] | 821 | |
---|
[1377] | 822 | #ifdef DUSTSTORM |
---|
[1375] | 823 | pq_tmp(:,:,:)=0 |
---|
[1377] | 824 | #endif |
---|
[3203] | 825 | igout=ngrid/2+1 |
---|
[42] | 826 | |
---|
| 827 | |
---|
| 828 | zday=pday+ptime ! compute time, in sols (and fraction thereof) |
---|
[1974] | 829 | ! Compute local time at each grid point |
---|
| 830 | DO ig=1,ngrid |
---|
| 831 | local_time(ig)=modulo(1.+(zday-INT(zday)) |
---|
| 832 | & +(longitude_deg(ig)/15)/24,1.) |
---|
| 833 | ENDDO |
---|
[42] | 834 | c Compute Solar Longitude (Ls) : |
---|
| 835 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 836 | if (season) then |
---|
| 837 | call solarlong(zday,zls) |
---|
| 838 | else |
---|
| 839 | call solarlong(float(day_ini),zls) |
---|
| 840 | end if |
---|
| 841 | |
---|
[883] | 842 | c Initialize pressure levels |
---|
| 843 | c ~~~~~~~~~~~~~~~~~~ |
---|
| 844 | zplev(:,:) = pplev(:,:) |
---|
| 845 | zplay(:,:) = pplay(:,:) |
---|
| 846 | ps(:) = pplev(:,1) |
---|
| 847 | |
---|
[3157] | 848 | #ifndef MESOSCALE |
---|
| 849 | c----------------------------------------------------------------------- |
---|
| 850 | c 1.2.1 Compute mean mass, cp, and R |
---|
[3185] | 851 | c update_r_cp_mu_ak outputs rnew(ngrid,nlayer), cpnew(ngrid,nlayer) |
---|
[3203] | 852 | c , mmean(ngrid,nlayer) and Akknew(ngrid,nlayer) |
---|
[3157] | 853 | c -------------------------------- |
---|
| 854 | |
---|
| 855 | if(photochem.or.callthermos) then |
---|
[3185] | 856 | call update_r_cp_mu_ak(ngrid,nlayer,nq, |
---|
[3157] | 857 | & zplay,pt,pdt,pq,pdq,ptimestep) |
---|
| 858 | endif |
---|
| 859 | #endif |
---|
| 860 | |
---|
[42] | 861 | c Compute geopotential at interlayers |
---|
| 862 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 863 | c ponderation des altitudes au niveau des couches en dp/p |
---|
[3157] | 864 | cc ------------------------------------------ |
---|
[3203] | 865 | !Calculation zzlev & zzlay for first layer |
---|
[42] | 866 | DO ig=1,ngrid |
---|
[3203] | 867 | zzlay(ig,1)=-(log(pplay(ig,1)/ps(ig)))*rnew(ig,1)*pt(ig,1)/g |
---|
| 868 | zzlev(ig,1)=0 |
---|
[42] | 869 | zzlev(ig,nlayer+1)=1.e7 ! dummy top of last layer above 10000 km... |
---|
[3157] | 870 | gz(ig,1)=g |
---|
[3203] | 871 | |
---|
| 872 | DO l=2,nlayer |
---|
[3157] | 873 | ! compute "mean" temperature of the layer |
---|
| 874 | if(pt(ig,l) .eq. pt(ig,l-1)) then |
---|
| 875 | tlaymean=pt(ig,l) |
---|
| 876 | else |
---|
| 877 | tlaymean=(pt(ig,l)- pt(ig,l-1))/log(pt(ig,l)/pt(ig,l-1)) |
---|
| 878 | endif |
---|
[3203] | 879 | |
---|
[3157] | 880 | ! compute gravitational acceleration (at altitude zaeroid(nlayer-1)) |
---|
| 881 | gz(ig,l)=g*(rad**2)/(rad+zzlay(ig,l-1)+(phisfi(ig)/g))**2 |
---|
[3203] | 882 | |
---|
| 883 | zzlay(ig,l)=zzlay(ig,l-1)- |
---|
[3157] | 884 | & (log(pplay(ig,l)/pplay(ig,l-1))*rnew(ig,l)*tlaymean/gz(ig,l)) |
---|
[3203] | 885 | |
---|
[3157] | 886 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
---|
| 887 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
---|
| 888 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
| 889 | ENDDO |
---|
[42] | 890 | ENDDO |
---|
| 891 | |
---|
| 892 | ! Potential temperature calculation not the same in physiq and dynamic |
---|
| 893 | |
---|
| 894 | c Compute potential temperature |
---|
| 895 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 896 | DO l=1,nlayer |
---|
[3203] | 897 | DO ig=1,ngrid |
---|
[883] | 898 | zpopsk(ig,l)=(zplay(ig,l)/zplev(ig,1))**rcp |
---|
[42] | 899 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
---|
| 900 | ENDDO |
---|
| 901 | ENDDO |
---|
[2312] | 902 | |
---|
[42] | 903 | |
---|
[1313] | 904 | ! Compute vertical velocity (m/s) from vertical mass flux |
---|
[1346] | 905 | ! w = F / (rho*area) and rho = P/(r*T) |
---|
[1313] | 906 | ! but first linearly interpolate mass flux to mid-layers |
---|
| 907 | do l=1,nlayer-1 |
---|
[1312] | 908 | pw(1:ngrid,l)=0.5*(flxw(1:ngrid,l)+flxw(1:ngrid,l+1)) |
---|
[1313] | 909 | enddo |
---|
| 910 | pw(1:ngrid,nlayer)=0.5*flxw(1:ngrid,nlayer) ! since flxw(nlayer+1)=0 |
---|
| 911 | do l=1,nlayer |
---|
[3203] | 912 | pw(1:ngrid,l)=(pw(1:ngrid,l)*r*pt(1:ngrid,l)) / |
---|
[1541] | 913 | & (pplay(1:ngrid,l)*cell_area(1:ngrid)) |
---|
[1346] | 914 | ! NB: here we use r and not rnew since this diagnostic comes |
---|
[1312] | 915 | ! from the dynamics |
---|
[1313] | 916 | enddo |
---|
[1312] | 917 | |
---|
[2374] | 918 | ! test for co2 conservation with co2 microphysics |
---|
| 919 | if (igcm_co2_ice.ne.0) then |
---|
| 920 | ! calculates the amount of co2 at the beginning of physics |
---|
| 921 | co2totA = 0. |
---|
| 922 | do ig=1,ngrid |
---|
| 923 | do l=1,nlayer |
---|
| 924 | co2totA = co2totA + (zplev(ig,l)-zplev(ig,l+1))/g* |
---|
| 925 | & (pq(ig,l,igcm_co2)+pq(ig,l,igcm_co2_ice) |
---|
| 926 | & +(pdq(ig,l,igcm_co2)+pdq(ig,l,igcm_co2_ice))*ptimestep) |
---|
| 927 | end do |
---|
[2900] | 928 | do islope = 1,nslope |
---|
| 929 | co2totA = co2totA + qsurf(ig,igcm_co2,islope)* |
---|
| 930 | & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
---|
| 931 | enddo |
---|
[2362] | 932 | end do |
---|
[2599] | 933 | else |
---|
| 934 | co2totA = 0. |
---|
| 935 | do ig=1,ngrid |
---|
| 936 | do l=1,nlayer |
---|
| 937 | co2totA = co2totA + (zplev(ig,l)-zplev(ig,l+1))/g* |
---|
| 938 | & (pq(ig,l,igcm_co2) |
---|
| 939 | & +pdq(ig,l,igcm_co2)*ptimestep) |
---|
| 940 | end do |
---|
[2900] | 941 | do islope = 1,nslope |
---|
| 942 | co2totA = co2totA + qsurf(ig,igcm_co2,islope)* |
---|
| 943 | & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
---|
| 944 | enddo |
---|
[2599] | 945 | end do |
---|
[2374] | 946 | endif ! of if (igcm_co2_ice.ne.0) |
---|
[42] | 947 | c----------------------------------------------------------------------- |
---|
| 948 | c 2. Compute radiative tendencies : |
---|
| 949 | c------------------------------------ |
---|
| 950 | |
---|
| 951 | IF (callrad) THEN |
---|
| 952 | |
---|
[2162] | 953 | c Local Solar zenith angle |
---|
| 954 | c ~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2880] | 955 | |
---|
[2162] | 956 | CALL orbite(zls,dist_sol,declin) |
---|
[2880] | 957 | |
---|
[2162] | 958 | IF (diurnal) THEN |
---|
| 959 | ztim1=SIN(declin) |
---|
| 960 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
---|
| 961 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
---|
[42] | 962 | |
---|
[2162] | 963 | CALL solang(ngrid,sinlon,coslon,sinlat,coslat, |
---|
| 964 | & ztim1,ztim2,ztim3, mu0,fract) |
---|
[42] | 965 | |
---|
[2162] | 966 | ELSE |
---|
| 967 | CALL mucorr(ngrid,declin,latitude,mu0,fract,10000.,rad) |
---|
| 968 | ENDIF ! of IF (diurnal) |
---|
[2880] | 969 | |
---|
[2162] | 970 | IF( MOD(icount-1,iradia).EQ.0) THEN |
---|
| 971 | |
---|
[42] | 972 | c NLTE cooling from CO2 emission |
---|
| 973 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[414] | 974 | IF(callnlte) then |
---|
| 975 | if(nltemodel.eq.0.or.nltemodel.eq.1) then |
---|
[2447] | 976 | CALL nltecool(ngrid,nlayer,nq,zplay,pt,pq,zdtnlte) |
---|
[414] | 977 | else if(nltemodel.eq.2) then |
---|
[705] | 978 | co2vmr_gcm(1:ngrid,1:nlayer)= |
---|
| 979 | & pq(1:ngrid,1:nlayer,igcm_co2)* |
---|
| 980 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co2) |
---|
| 981 | n2vmr_gcm(1:ngrid,1:nlayer)= |
---|
| 982 | & pq(1:ngrid,1:nlayer,igcm_n2)* |
---|
| 983 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_n2) |
---|
| 984 | covmr_gcm(1:ngrid,1:nlayer)= |
---|
| 985 | & pq(1:ngrid,1:nlayer,igcm_co)* |
---|
| 986 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co) |
---|
| 987 | ovmr_gcm(1:ngrid,1:nlayer)= |
---|
| 988 | & pq(1:ngrid,1:nlayer,igcm_o)* |
---|
| 989 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_o) |
---|
[2362] | 990 | |
---|
[883] | 991 | CALL nlte_tcool(ngrid,nlayer,zplay*9.869e-6, |
---|
[3203] | 992 | $ pt,zzlay,co2vmr_gcm, n2vmr_gcm, covmr_gcm, |
---|
[1124] | 993 | $ ovmr_gcm, zdtnlte,ierr_nlte,varerr ) |
---|
| 994 | if(ierr_nlte.gt.0) then |
---|
| 995 | write(*,*) |
---|
| 996 | $ 'WARNING: nlte_tcool output with error message', |
---|
| 997 | $ 'ierr_nlte=',ierr_nlte,'varerr=',varerr |
---|
| 998 | write(*,*)'I will continue anyway' |
---|
| 999 | endif |
---|
[42] | 1000 | |
---|
[705] | 1001 | zdtnlte(1:ngrid,1:nlayer)= |
---|
| 1002 | & zdtnlte(1:ngrid,1:nlayer)/86400. |
---|
[414] | 1003 | endif |
---|
[1974] | 1004 | ELSE |
---|
[528] | 1005 | zdtnlte(:,:)=0. |
---|
[1974] | 1006 | ENDIF !end callnlte |
---|
[42] | 1007 | |
---|
| 1008 | c Find number of layers for LTE radiation calculations |
---|
| 1009 | IF(MOD(iphysiq*(icount-1),day_step).EQ.0) |
---|
[883] | 1010 | & CALL nlthermeq(ngrid,nlayer,zplev,zplay) |
---|
[42] | 1011 | |
---|
[1974] | 1012 | c rocketstorm : compute dust storm mesh fraction |
---|
| 1013 | IF (rdstorm) THEN |
---|
| 1014 | CALL calcstormfract(ngrid,nlayer,nq,pq, |
---|
| 1015 | & totstormfract) |
---|
| 1016 | ENDIF |
---|
| 1017 | |
---|
[42] | 1018 | c Note: Dustopacity.F has been transferred to callradite.F |
---|
[1410] | 1019 | |
---|
| 1020 | #ifdef DUSTSTORM |
---|
| 1021 | !! specific case: save the quantity of dust before adding perturbation |
---|
[2616] | 1022 | |
---|
[1410] | 1023 | if (firstcall) then |
---|
| 1024 | pq_tmp(1:ngrid,1:nlayer,1)=pq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 1025 | pq_tmp(1:ngrid,1:nlayer,2)=pq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 1026 | endif |
---|
| 1027 | #endif |
---|
[3203] | 1028 | |
---|
[42] | 1029 | c Call main radiative transfer scheme |
---|
| 1030 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1031 | c Transfer through CO2 (except NIR CO2 absorption) |
---|
| 1032 | c and aerosols (dust and water ice) |
---|
[2628] | 1033 | ! callradite for background dust (out of the rdstorm fraction) |
---|
[1974] | 1034 | clearatm=.true. |
---|
[2628] | 1035 | !! callradite for background dust (out of the topflows fraction) |
---|
[2199] | 1036 | nohmons=.true. |
---|
[2312] | 1037 | |
---|
[42] | 1038 | c Radiative transfer |
---|
| 1039 | c ------------------ |
---|
[1711] | 1040 | ! callradite for the part with clouds |
---|
[2362] | 1041 | clearsky=.false. ! part with clouds for both cases CLFvarying true/false |
---|
[2900] | 1042 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq, |
---|
[2907] | 1043 | & albedo_meshavg,emis_meshavg, |
---|
[2908] | 1044 | & mu0,zplev,zplay,pt,tsurf_meshavg,fract,dist_sol,igout, |
---|
[2900] | 1045 | & zdtlw,zdtsw,fluxsurf_lw(:,iflat),fluxsurf_dn_sw(:,:,iflat), |
---|
| 1046 | & fluxsurf_up_sw, |
---|
[2685] | 1047 | & fluxtop_lw,fluxtop_dn_sw,fluxtop_up_sw, |
---|
| 1048 | & tau_pref_scenario,tau_pref_gcm, |
---|
[2643] | 1049 | & tau,aerosol,dsodust,tauscaling,dust_rad_adjust,IRtoVIScoef, |
---|
[2826] | 1050 | & taucloudtes,rdust,rice,nuice,riceco2,nuiceco2, |
---|
[2907] | 1051 | & qsurf_meshavg(:,igcm_co2),rstormdust,rtopdust,totstormfract, |
---|
[2826] | 1052 | & clearatm,dsords,dsotop,nohmons,clearsky,totcloudfrac) |
---|
[2616] | 1053 | |
---|
[2900] | 1054 | DO islope=1,nslope |
---|
| 1055 | fluxsurf_lw(:,islope) =fluxsurf_lw(:,iflat) |
---|
| 1056 | fluxsurf_dn_sw(:,:,islope) =fluxsurf_dn_sw(:,:,iflat) |
---|
| 1057 | ENDDO |
---|
| 1058 | |
---|
[1711] | 1059 | ! case of sub-grid water ice clouds: callradite for the clear case |
---|
| 1060 | IF (CLFvarying) THEN |
---|
[3203] | 1061 | ! ---> PROBLEMS WITH ALLOCATED ARRAYS |
---|
[1711] | 1062 | ! (temporary solution in callcorrk: do not deallocate |
---|
| 1063 | ! if |
---|
| 1064 | ! CLFvarying ...) ?? AP ?? |
---|
[3203] | 1065 | clearsky=.true. |
---|
[1711] | 1066 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq, |
---|
[2907] | 1067 | & albedo_meshavg,emis_meshavg,mu0,zplev,zplay,pt, |
---|
[2908] | 1068 | & tsurf_meshavg,fract, |
---|
[2685] | 1069 | & dist_sol,igout,zdtlwclf,zdtswclf, |
---|
| 1070 | & fluxsurf_lwclf,fluxsurf_dn_swclf,fluxsurf_up_swclf, |
---|
| 1071 | & fluxtop_lwclf,fluxtop_dn_swclf,fluxtop_up_swclf, |
---|
[2643] | 1072 | & tau_pref_scenario,tau_pref_gcm,tau,aerosol, |
---|
| 1073 | & dsodust,tauscaling,dust_rad_adjust,IRtoVIScoef, |
---|
[2417] | 1074 | & taucloudtesclf,rdust, |
---|
[2907] | 1075 | & rice,nuice,riceco2, nuiceco2, |
---|
| 1076 | & qsurf_meshavg(:,igcm_co2), |
---|
[2826] | 1077 | & rstormdust,rtopdust,totstormfract, |
---|
[2628] | 1078 | & clearatm,dsords,dsotop, |
---|
| 1079 | & nohmons,clearsky,totcloudfrac) |
---|
[1711] | 1080 | clearsky = .false. ! just in case. |
---|
| 1081 | ! Sum the fluxes and heating rates from cloudy/clear |
---|
| 1082 | ! cases |
---|
| 1083 | DO ig=1,ngrid |
---|
[1973] | 1084 | tf_clf=totcloudfrac(ig) |
---|
| 1085 | ntf_clf=1.-tf_clf |
---|
[2900] | 1086 | DO islope=1,nslope |
---|
[3203] | 1087 | fluxsurf_lw(ig,islope) = ntf_clf*fluxsurf_lwclf(ig) |
---|
[2900] | 1088 | & + tf_clf*fluxsurf_lw(ig,islope) |
---|
[3203] | 1089 | fluxsurf_dn_sw(ig,1:2,islope) = |
---|
| 1090 | & ntf_clf*fluxsurf_dn_swclf(ig,1:2) |
---|
[2900] | 1091 | & + tf_clf*fluxsurf_dn_sw(ig,1:2,islope) |
---|
| 1092 | ENDDO |
---|
[3203] | 1093 | fluxsurf_up_sw(ig,1:2) = |
---|
| 1094 | & ntf_clf*fluxsurf_up_swclf(ig,1:2) |
---|
[2685] | 1095 | & + tf_clf*fluxsurf_up_sw(ig,1:2) |
---|
[3203] | 1096 | fluxtop_lw(ig) = ntf_clf*fluxtop_lwclf(ig) |
---|
[1973] | 1097 | & + tf_clf*fluxtop_lw(ig) |
---|
[3203] | 1098 | fluxtop_dn_sw(ig,1:2)=ntf_clf*fluxtop_dn_swclf(ig,1:2) |
---|
[2685] | 1099 | & + tf_clf*fluxtop_dn_sw(ig,1:2) |
---|
[3203] | 1100 | fluxtop_up_sw(ig,1:2)=ntf_clf*fluxtop_up_swclf(ig,1:2) |
---|
[2685] | 1101 | & + tf_clf*fluxtop_up_sw(ig,1:2) |
---|
[3203] | 1102 | taucloudtes(ig) = ntf_clf*taucloudtesclf(ig) |
---|
[1973] | 1103 | & + tf_clf*taucloudtes(ig) |
---|
[3203] | 1104 | zdtlw(ig,1:nlayer) = ntf_clf*zdtlwclf(ig,1:nlayer) |
---|
[1973] | 1105 | & + tf_clf*zdtlw(ig,1:nlayer) |
---|
[3203] | 1106 | zdtsw(ig,1:nlayer) = ntf_clf*zdtswclf(ig,1:nlayer) |
---|
[1973] | 1107 | & + tf_clf*zdtsw(ig,1:nlayer) |
---|
[1711] | 1108 | ENDDO |
---|
[42] | 1109 | |
---|
[1711] | 1110 | ENDIF ! (CLFvarying) |
---|
[3203] | 1111 | |
---|
[2265] | 1112 | !============================================================================ |
---|
[3203] | 1113 | |
---|
[1375] | 1114 | #ifdef DUSTSTORM |
---|
[1410] | 1115 | !! specific case: compute the added quantity of dust for perturbation |
---|
| 1116 | if (firstcall) then |
---|
[3203] | 1117 | pdq(1:ngrid,1:nlayer,igcm_dust_mass)= |
---|
| 1118 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
[1410] | 1119 | & - pq_tmp(1:ngrid,1:nlayer,1) |
---|
| 1120 | & + pq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 1121 | pdq(1:ngrid,1:nlayer,igcm_dust_number)= |
---|
| 1122 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 1123 | & - pq_tmp(1:ngrid,1:nlayer,2) |
---|
| 1124 | & + pq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 1125 | endif |
---|
[1375] | 1126 | #endif |
---|
| 1127 | |
---|
[234] | 1128 | c Outputs for basic check (middle of domain) |
---|
| 1129 | c ------------------------------------------ |
---|
[627] | 1130 | write(*,'("Ls =",f11.6," check lat =",f10.6, |
---|
| 1131 | & " lon =",f11.6)') |
---|
[1541] | 1132 | & zls*180./pi,latitude(igout)*180/pi, |
---|
| 1133 | & longitude(igout)*180/pi |
---|
[2281] | 1134 | |
---|
[2415] | 1135 | write(*,'(" tau_pref_gcm(",f4.0," Pa) =",f9.6, |
---|
[627] | 1136 | & " tau(",f4.0," Pa) =",f9.6)') |
---|
[2415] | 1137 | & odpref,tau_pref_gcm(igout), |
---|
[883] | 1138 | & odpref,tau(igout,1)*odpref/zplev(igout,1) |
---|
[2616] | 1139 | |
---|
| 1140 | |
---|
[234] | 1141 | c --------------------------------------------------------- |
---|
| 1142 | c Call slope parameterization for direct and scattered flux |
---|
| 1143 | c --------------------------------------------------------- |
---|
| 1144 | IF(callslope) THEN |
---|
[2900] | 1145 | ! assume that in this case, nslope = 1 |
---|
| 1146 | if(nslope.ne.1) then |
---|
| 1147 | call abort_physic( |
---|
| 1148 | & "physiq","callslope=true but nslope.ne.1",1) |
---|
| 1149 | endif |
---|
[3203] | 1150 | write(*,*) 'Slope scheme is on and computing...' |
---|
| 1151 | DO ig=1,ngrid |
---|
[234] | 1152 | sl_the = theta_sl(ig) |
---|
| 1153 | IF (sl_the .ne. 0.) THEN |
---|
[2942] | 1154 | ztim1=fluxsurf_dn_sw(ig,1,iflat) |
---|
| 1155 | & +fluxsurf_dn_sw(ig,2,iflat) |
---|
[234] | 1156 | DO l=1,2 |
---|
[1541] | 1157 | sl_lct = ptime*24. + 180.*longitude(ig)/pi/15. |
---|
[234] | 1158 | sl_ra = pi*(1.0-sl_lct/12.) |
---|
[1541] | 1159 | sl_lat = 180.*latitude(ig)/pi |
---|
[577] | 1160 | sl_tau = tau(ig,1) !il faudrait iaerdust(iaer) |
---|
[2942] | 1161 | sl_alb = albedo(ig,l,iflat) |
---|
[234] | 1162 | sl_psi = psi_sl(ig) |
---|
[2942] | 1163 | sl_fl0 = fluxsurf_dn_sw(ig,l,iflat) |
---|
[234] | 1164 | sl_di0 = 0. |
---|
[2879] | 1165 | if ((mu0(ig) .gt. 0.).and.(ztim1.gt.0.)) then |
---|
[3203] | 1166 | sl_di0 = mu0(ig)*(exp(-sl_tau/mu0(ig))) |
---|
[2678] | 1167 | sl_di0 = sl_di0*flux_1AU/dist_sol/dist_sol |
---|
[234] | 1168 | sl_di0 = sl_di0/ztim1 |
---|
[2942] | 1169 | sl_di0 = fluxsurf_dn_sw(ig,l,iflat)*sl_di0 |
---|
[234] | 1170 | endif |
---|
| 1171 | ! you never know (roundup concern...) |
---|
| 1172 | if (sl_fl0 .lt. sl_di0) sl_di0=sl_fl0 |
---|
| 1173 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[3203] | 1174 | CALL param_slope( mu0(ig), declin, sl_ra, sl_lat, |
---|
[234] | 1175 | & sl_tau, sl_alb, sl_the, sl_psi, |
---|
| 1176 | & sl_di0, sl_fl0, sl_flu ) |
---|
| 1177 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[2900] | 1178 | fluxsurf_dn_sw(ig,l,1) = sl_flu |
---|
[234] | 1179 | ENDDO |
---|
| 1180 | !!! compute correction on IR flux as well |
---|
| 1181 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
---|
[2900] | 1182 | fluxsurf_lw(ig,:)= fluxsurf_lw(ig,:)*sky |
---|
[234] | 1183 | ENDIF |
---|
| 1184 | ENDDO |
---|
[2942] | 1185 | ELSE ! not calling subslope, nslope might be > 1 |
---|
| 1186 | DO islope = 1,nslope |
---|
[3203] | 1187 | sl_the=abs(def_slope_mean(islope)) |
---|
[2942] | 1188 | IF (sl_the .gt. 1e-6) THEN |
---|
[2953] | 1189 | IF(def_slope_mean(islope).ge.0.) THEN |
---|
| 1190 | psi_sl(:) = 0. !Northward slope |
---|
| 1191 | ELSE |
---|
| 1192 | psi_sl(:) = 180. !Southward slope |
---|
| 1193 | ENDIF |
---|
[3203] | 1194 | DO ig=1,ngrid |
---|
[2942] | 1195 | ztim1=fluxsurf_dn_sw(ig,1,islope) |
---|
| 1196 | s +fluxsurf_dn_sw(ig,2,islope) |
---|
| 1197 | DO l=1,2 |
---|
| 1198 | sl_lct = ptime*24. + 180.*longitude(ig)/pi/15. |
---|
| 1199 | sl_ra = pi*(1.0-sl_lct/12.) |
---|
| 1200 | sl_lat = 180.*latitude(ig)/pi |
---|
| 1201 | sl_tau = tau(ig,1) !il faudrait iaerdust(iaer) |
---|
| 1202 | sl_alb = albedo(ig,l,islope) |
---|
| 1203 | sl_psi = psi_sl(ig) |
---|
| 1204 | sl_fl0 = fluxsurf_dn_sw(ig,l,islope) |
---|
| 1205 | sl_di0 = 0. |
---|
| 1206 | if (mu0(ig) .gt. 0.) then |
---|
[3203] | 1207 | sl_di0 = mu0(ig)*(exp(-sl_tau/mu0(ig))) |
---|
[2942] | 1208 | sl_di0 = sl_di0*flux_1AU/dist_sol/dist_sol |
---|
| 1209 | sl_di0 = sl_di0/ztim1 |
---|
| 1210 | sl_di0 = fluxsurf_dn_sw(ig,l,islope)*sl_di0 |
---|
| 1211 | endif |
---|
| 1212 | ! you never know (roundup concern...) |
---|
| 1213 | if (sl_fl0 .lt. sl_di0) sl_di0=sl_fl0 |
---|
| 1214 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[3203] | 1215 | CALL param_slope( mu0(ig), declin, sl_ra, sl_lat, |
---|
[2942] | 1216 | & sl_tau, sl_alb, sl_the, sl_psi, |
---|
| 1217 | & sl_di0, sl_fl0, sl_flu ) |
---|
| 1218 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 1219 | fluxsurf_dn_sw(ig,l,islope) = sl_flu |
---|
| 1220 | ENDDO |
---|
| 1221 | !!! compute correction on IR flux as well |
---|
| 1222 | |
---|
| 1223 | fluxsurf_lw(ig,islope)= fluxsurf_lw(ig,islope) |
---|
| 1224 | & *sky_slope(islope) |
---|
| 1225 | ENDDO |
---|
| 1226 | ENDIF ! sub grid is not flat |
---|
| 1227 | ENDDO ! islope = 1,nslope |
---|
[2900] | 1228 | ENDIF ! callslope |
---|
[234] | 1229 | |
---|
[42] | 1230 | c CO2 near infrared absorption |
---|
| 1231 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[286] | 1232 | zdtnirco2(:,:)=0 |
---|
[42] | 1233 | if (callnirco2) then |
---|
[883] | 1234 | call nirco2abs (ngrid,nlayer,zplay,dist_sol,nq,pq, |
---|
[42] | 1235 | . mu0,fract,declin, zdtnirco2) |
---|
| 1236 | endif |
---|
| 1237 | |
---|
| 1238 | c Radiative flux from the sky absorbed by the surface (W.m-2) |
---|
| 1239 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1240 | DO ig=1,ngrid |
---|
[2900] | 1241 | DO islope = 1,nslope |
---|
| 1242 | fluxrad_sky(ig,islope) = |
---|
| 1243 | $ emis(ig,islope)*fluxsurf_lw(ig,islope) |
---|
[3203] | 1244 | $ +fluxsurf_dn_sw(ig,1,islope)*(1.-albedo(ig,1,islope)) |
---|
[2900] | 1245 | $ +fluxsurf_dn_sw(ig,2,islope)*(1.-albedo(ig,2,islope)) |
---|
| 1246 | ENDDO |
---|
[42] | 1247 | ENDDO |
---|
| 1248 | |
---|
| 1249 | c Net atmospheric radiative heating rate (K.s-1) |
---|
| 1250 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1251 | IF(callnlte) THEN |
---|
[883] | 1252 | CALL blendrad(ngrid, nlayer, zplay, |
---|
[42] | 1253 | & zdtsw, zdtlw, zdtnirco2, zdtnlte, dtrad) |
---|
| 1254 | ELSE |
---|
| 1255 | DO l=1,nlayer |
---|
| 1256 | DO ig=1,ngrid |
---|
| 1257 | dtrad(ig,l)=zdtsw(ig,l)+zdtlw(ig,l) |
---|
| 1258 | & +zdtnirco2(ig,l) |
---|
| 1259 | ENDDO |
---|
| 1260 | ENDDO |
---|
| 1261 | ENDIF |
---|
| 1262 | |
---|
| 1263 | ENDIF ! of if(mod(icount-1,iradia).eq.0) |
---|
| 1264 | |
---|
| 1265 | c Transformation of the radiative tendencies: |
---|
| 1266 | c ------------------------------------------- |
---|
| 1267 | |
---|
| 1268 | c Net radiative surface flux (W.m-2) |
---|
| 1269 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2953] | 1270 | |
---|
[42] | 1271 | c |
---|
| 1272 | DO ig=1,ngrid |
---|
[2900] | 1273 | DO islope = 1,nslope |
---|
| 1274 | zplanck(ig)=tsurf(ig,islope)*tsurf(ig,islope) |
---|
| 1275 | zplanck(ig)=emis(ig,islope)* |
---|
[42] | 1276 | $ stephan*zplanck(ig)*zplanck(ig) |
---|
[2900] | 1277 | fluxrad(ig,islope)=fluxrad_sky(ig,islope)-zplanck(ig) |
---|
[234] | 1278 | IF(callslope) THEN |
---|
| 1279 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
---|
[2900] | 1280 | fluxrad(ig,nslope)=fluxrad(ig,nslope)+ |
---|
| 1281 | $ (1.-sky)*zplanck(ig) |
---|
[3203] | 1282 | ELSE |
---|
[2900] | 1283 | fluxrad(ig,islope)=fluxrad(ig,islope) + |
---|
| 1284 | $ (1.-sky_slope(iflat))*emis(ig,iflat)* |
---|
[3203] | 1285 | $ stephan*tsurf(ig,iflat)**4 |
---|
[234] | 1286 | ENDIF |
---|
[42] | 1287 | ENDDO |
---|
[2900] | 1288 | ENDDO |
---|
[42] | 1289 | |
---|
| 1290 | DO l=1,nlayer |
---|
| 1291 | DO ig=1,ngrid |
---|
| 1292 | pdt(ig,l)=pdt(ig,l)+dtrad(ig,l) |
---|
| 1293 | ENDDO |
---|
| 1294 | ENDDO |
---|
| 1295 | |
---|
| 1296 | ENDIF ! of IF (callrad) |
---|
| 1297 | |
---|
[2199] | 1298 | c 3.1 Rocket dust storm |
---|
[1974] | 1299 | c ------------------------------------------- |
---|
| 1300 | IF (rdstorm) THEN |
---|
| 1301 | clearatm=.false. |
---|
| 1302 | pdqrds(:,:,:)=0. |
---|
| 1303 | qdusttotal0(:)=0. |
---|
| 1304 | qdusttotal1(:)=0. |
---|
| 1305 | do ig=1,ngrid |
---|
| 1306 | do l=1,nlayer |
---|
| 1307 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) ! updated potential |
---|
| 1308 | ! temperature tendency |
---|
| 1309 | ! for diagnostics |
---|
[2934] | 1310 | ! qdustrds0(ig,l)=pq(ig,l,igcm_dust_mass)+ |
---|
| 1311 | ! & pdq(ig,l,igcm_dust_mass)*ptimestep |
---|
| 1312 | ! qstormrds0(ig,l)=pq(ig,l,igcm_stormdust_mass)+ |
---|
| 1313 | ! & pdq(ig,l,igcm_stormdust_mass)*ptimestep |
---|
| 1314 | ! qdusttotal0(ig)=qdusttotal0(ig)+(qdustrds0(ig,l)+ |
---|
| 1315 | ! & qstormrds0(ig,l))*(zplev(ig,l)- |
---|
| 1316 | ! & zplev(ig,l+1))/g |
---|
[1974] | 1317 | enddo |
---|
| 1318 | enddo |
---|
[2934] | 1319 | ! call write_output('qdustrds0','qdust before rds', |
---|
| 1320 | ! & 'kg/kg ',qdustrds0(:,:)) |
---|
| 1321 | ! call write_output('qstormrds0','qstorm before rds', |
---|
| 1322 | ! & 'kg/kg ',qstormrds0(:,:)) |
---|
[1974] | 1323 | |
---|
| 1324 | CALL rocketduststorm(ngrid,nlayer,nq,ptime,ptimestep, |
---|
| 1325 | & pq,pdq,pt,pdt,zplev,zplay,zzlev, |
---|
| 1326 | & zzlay,zdtsw,zdtlw, |
---|
| 1327 | c for radiative transfer |
---|
| 1328 | & clearatm,icount,zday,zls, |
---|
[2953] | 1329 | & tsurf_meshavg,qsurf_meshavg(:,igcm_co2), |
---|
| 1330 | & igout,totstormfract,tauscaling, |
---|
[2826] | 1331 | & dust_rad_adjust,IRtoVIScoef, |
---|
[2953] | 1332 | & albedo_meshavg,emis_meshavg, |
---|
[1974] | 1333 | c input sub-grid scale cloud |
---|
| 1334 | & clearsky,totcloudfrac, |
---|
[2199] | 1335 | c input sub-grid scale topography |
---|
[2628] | 1336 | & nohmons, |
---|
[1974] | 1337 | c output |
---|
[2246] | 1338 | & pdqrds,wspeed,dsodust,dsords,dsotop, |
---|
[2415] | 1339 | & tau_pref_scenario,tau_pref_gcm) |
---|
[3203] | 1340 | |
---|
[1974] | 1341 | c update the tendencies of both dust after vertical transport |
---|
| 1342 | DO l=1,nlayer |
---|
| 1343 | DO ig=1,ngrid |
---|
| 1344 | pdq(ig,l,igcm_stormdust_mass)= |
---|
[3203] | 1345 | & pdq(ig,l,igcm_stormdust_mass)+ |
---|
[1974] | 1346 | & pdqrds(ig,l,igcm_stormdust_mass) |
---|
| 1347 | pdq(ig,l,igcm_stormdust_number)= |
---|
| 1348 | & pdq(ig,l,igcm_stormdust_number)+ |
---|
| 1349 | & pdqrds(ig,l,igcm_stormdust_number) |
---|
| 1350 | |
---|
| 1351 | pdq(ig,l,igcm_dust_mass)= |
---|
| 1352 | & pdq(ig,l,igcm_dust_mass)+ pdqrds(ig,l,igcm_dust_mass) |
---|
| 1353 | pdq(ig,l,igcm_dust_number)= |
---|
[3203] | 1354 | & pdq(ig,l,igcm_dust_number)+ |
---|
[1974] | 1355 | & pdqrds(ig,l,igcm_dust_number) |
---|
| 1356 | |
---|
| 1357 | ENDDO |
---|
| 1358 | ENDDO |
---|
| 1359 | do l=1,nlayer |
---|
| 1360 | do ig=1,ngrid |
---|
| 1361 | qdustrds1(ig,l)=pq(ig,l,igcm_dust_mass)+ |
---|
| 1362 | & pdq(ig,l,igcm_dust_mass)*ptimestep |
---|
| 1363 | qstormrds1(ig,l)=pq(ig,l,igcm_stormdust_mass)+ |
---|
| 1364 | & pdq(ig,l,igcm_stormdust_mass)*ptimestep |
---|
| 1365 | qdusttotal1(ig)=qdusttotal1(ig)+(qdustrds1(ig,l)+ |
---|
| 1366 | & qstormrds1(ig,l))*(zplev(ig,l)- |
---|
| 1367 | & zplev(ig,l+1))/g |
---|
| 1368 | enddo |
---|
| 1369 | enddo |
---|
| 1370 | |
---|
| 1371 | c for diagnostics |
---|
[2934] | 1372 | ! call write_output('qdustrds1','qdust after rds', |
---|
| 1373 | ! & 'kg/kg ',qdustrds1(:,:)) |
---|
| 1374 | ! call write_output('qstormrds1','qstorm after rds', |
---|
| 1375 | ! & 'kg/kg ',qstormrds1(:,:)) |
---|
[3203] | 1376 | ! |
---|
[2934] | 1377 | ! call write_output('qdusttotal0','q sum before rds', |
---|
| 1378 | ! & 'kg/m2 ',qdusttotal0(:)) |
---|
| 1379 | ! call write_output('qdusttotal1','q sum after rds', |
---|
| 1380 | ! & 'kg/m2 ',qdusttotal1(:)) |
---|
[1974] | 1381 | |
---|
| 1382 | ENDIF ! end of if(rdstorm) |
---|
| 1383 | |
---|
[2199] | 1384 | c 3.2 Dust entrained from the PBL up to the top of sub-grid scale topography |
---|
| 1385 | c ------------------------------------------- |
---|
[2628] | 1386 | IF (topflows) THEN |
---|
[2362] | 1387 | clearatm=.true. ! stormdust is not accounted in the extra heating on top of the mountains |
---|
[2199] | 1388 | nohmons=.false. |
---|
[2362] | 1389 | pdqtop(:,:,:)=0. |
---|
[2199] | 1390 | CALL topmons(ngrid,nlayer,nq,ptime,ptimestep, |
---|
| 1391 | & pq,pdq,pt,pdt,zplev,zplay,zzlev, |
---|
| 1392 | & zzlay,zdtsw,zdtlw, |
---|
[2900] | 1393 | & icount,zday,zls,tsurf(:,iflat), |
---|
[3203] | 1394 | & qsurf_meshavg(:,igcm_co2), |
---|
[2826] | 1395 | & igout,aerosol,tauscaling,dust_rad_adjust, |
---|
[2953] | 1396 | & IRtoVIScoef,albedo_meshavg,emis_meshavg, |
---|
| 1397 | & totstormfract,clearatm, |
---|
[2199] | 1398 | & clearsky,totcloudfrac, |
---|
[2628] | 1399 | & nohmons, |
---|
[2246] | 1400 | & pdqtop,wtop,dsodust,dsords,dsotop, |
---|
[2415] | 1401 | & tau_pref_scenario,tau_pref_gcm) |
---|
[3203] | 1402 | |
---|
[2199] | 1403 | c update the tendencies of both dust after vertical transport |
---|
| 1404 | DO l=1,nlayer |
---|
| 1405 | DO ig=1,ngrid |
---|
| 1406 | pdq(ig,l,igcm_topdust_mass)= |
---|
| 1407 | & pdq(ig,l,igcm_topdust_mass)+ |
---|
| 1408 | & pdqtop(ig,l,igcm_topdust_mass) |
---|
| 1409 | pdq(ig,l,igcm_topdust_number)= |
---|
| 1410 | & pdq(ig,l,igcm_topdust_number)+ |
---|
| 1411 | & pdqtop(ig,l,igcm_topdust_number) |
---|
| 1412 | pdq(ig,l,igcm_dust_mass)= |
---|
| 1413 | & pdq(ig,l,igcm_dust_mass)+ pdqtop(ig,l,igcm_dust_mass) |
---|
| 1414 | pdq(ig,l,igcm_dust_number)= |
---|
| 1415 | & pdq(ig,l,igcm_dust_number)+pdqtop(ig,l,igcm_dust_number) |
---|
| 1416 | |
---|
| 1417 | ENDDO |
---|
| 1418 | ENDDO |
---|
| 1419 | |
---|
[2628] | 1420 | ENDIF ! end of if (topflows) |
---|
[2199] | 1421 | |
---|
| 1422 | c 3.3 Dust injection from the surface |
---|
| 1423 | c ------------------------------------------- |
---|
| 1424 | if (dustinjection.gt.0) then |
---|
[2281] | 1425 | |
---|
[2199] | 1426 | CALL compute_dtau(ngrid,nlayer, |
---|
[3203] | 1427 | & zday,pplev,tau_pref_gcm, |
---|
| 1428 | & ptimestep,local_time,IRtoVIScoef, |
---|
[2643] | 1429 | & dustliftday) |
---|
[2199] | 1430 | endif ! end of if (dustinjection.gt.0) |
---|
| 1431 | |
---|
[226] | 1432 | c----------------------------------------------------------------------- |
---|
[1974] | 1433 | c 4. Gravity wave and subgrid scale topography drag : |
---|
[226] | 1434 | c ------------------------------------------------- |
---|
[42] | 1435 | |
---|
[226] | 1436 | |
---|
| 1437 | IF(calllott)THEN |
---|
| 1438 | CALL calldrag_noro(ngrid,nlayer,ptimestep, |
---|
[883] | 1439 | & zplay,zplev,pt,pu,pv,zdtgw,zdugw,zdvgw) |
---|
[2362] | 1440 | |
---|
[226] | 1441 | DO l=1,nlayer |
---|
| 1442 | DO ig=1,ngrid |
---|
| 1443 | pdv(ig,l)=pdv(ig,l)+zdvgw(ig,l) |
---|
| 1444 | pdu(ig,l)=pdu(ig,l)+zdugw(ig,l) |
---|
| 1445 | pdt(ig,l)=pdt(ig,l)+zdtgw(ig,l) |
---|
| 1446 | ENDDO |
---|
| 1447 | ENDDO |
---|
| 1448 | ENDIF |
---|
[234] | 1449 | |
---|
[42] | 1450 | c----------------------------------------------------------------------- |
---|
[1974] | 1451 | c 5. Vertical diffusion (turbulent mixing): |
---|
[42] | 1452 | c ----------------------------------------- |
---|
[226] | 1453 | |
---|
[42] | 1454 | IF (calldifv) THEN |
---|
| 1455 | DO ig=1,ngrid |
---|
[2900] | 1456 | DO islope = 1,nslope |
---|
| 1457 | zflubid(ig,islope)=fluxrad(ig,islope) |
---|
| 1458 | & +fluxgrd(ig,islope) |
---|
| 1459 | ENDDO |
---|
[42] | 1460 | ENDDO |
---|
[286] | 1461 | zdum1(:,:)=0 |
---|
| 1462 | zdum2(:,:)=0 |
---|
[42] | 1463 | do l=1,nlayer |
---|
| 1464 | do ig=1,ngrid |
---|
| 1465 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
---|
| 1466 | enddo |
---|
| 1467 | enddo |
---|
[226] | 1468 | |
---|
[288] | 1469 | c ---------------------- |
---|
[284] | 1470 | c Treatment of a special case : using new surface layer (Richardson based) |
---|
| 1471 | c without using the thermals in gcm and mesoscale can yield problems in |
---|
| 1472 | c weakly unstable situations when winds are near to 0. For those cases, we add |
---|
[3203] | 1473 | c a unit subgrid gustiness. Remember that thermals should be used we using the |
---|
[284] | 1474 | c Richardson based surface layer model. |
---|
[3203] | 1475 | IF ( .not.calltherm |
---|
| 1476 | . .and. callrichsl |
---|
[1236] | 1477 | . .and. .not.turb_resolved) THEN |
---|
[2616] | 1478 | |
---|
[1047] | 1479 | DO ig=1, ngrid |
---|
[2908] | 1480 | IF (zh(ig,1) .lt. tsurf_meshavg(ig)) THEN |
---|
[528] | 1481 | wstar(ig)=1. |
---|
| 1482 | hfmax_th(ig)=0.2 |
---|
| 1483 | ELSE |
---|
| 1484 | wstar(ig)=0. |
---|
| 1485 | hfmax_th(ig)=0. |
---|
[3203] | 1486 | ENDIF |
---|
[284] | 1487 | ENDDO |
---|
| 1488 | ENDIF |
---|
[2953] | 1489 | |
---|
[288] | 1490 | c ---------------------- |
---|
[284] | 1491 | |
---|
[544] | 1492 | IF (tke_heat_flux .ne. 0.) THEN |
---|
[2616] | 1493 | |
---|
[544] | 1494 | zz1(:)=(pt(:,1)+pdt(:,1)*ptimestep)*(r/g)* |
---|
[883] | 1495 | & (-alog(zplay(:,1)/zplev(:,1))) |
---|
[544] | 1496 | pdt(:,1)=pdt(:,1) + (tke_heat_flux/zz1(:))*zpopsk(:,1) |
---|
| 1497 | ENDIF |
---|
[2312] | 1498 | |
---|
[42] | 1499 | c Calling vdif (Martian version WITH CO2 condensation) |
---|
[2900] | 1500 | dwatercap_dif(:,:) = 0. |
---|
[3115] | 1501 | CALL vdifc(ngrid,nlayer,nsoilmx,nq,nqsoil,zpopsk, |
---|
[42] | 1502 | $ ptimestep,capcal,lwrite, |
---|
[883] | 1503 | $ zplay,zplev,zzlay,zzlev,z0, |
---|
[3230] | 1504 | $ pu,pv,zh,pq,tsurf,tsoil,emis,qsurf, |
---|
| 1505 | $ qsoil,pore_icefraction, |
---|
[42] | 1506 | $ zdum1,zdum2,zdh,pdq,zflubid, |
---|
| 1507 | $ zdudif,zdvdif,zdhdif,zdtsdif,q2, |
---|
[3203] | 1508 | & zdqdif,zdqsdif,wstar,hfmax_th, |
---|
[1996] | 1509 | & zcondicea_co2microp,sensibFlux, |
---|
[3115] | 1510 | & dustliftday,local_time,watercap,dwatercap_dif) |
---|
[2896] | 1511 | |
---|
[1236] | 1512 | DO ig=1,ngrid |
---|
[2900] | 1513 | zdtsurf(ig,:)=zdtsurf(ig,:)+zdtsdif(ig,:) |
---|
| 1514 | dwatercap(ig,:)=dwatercap(ig,:)+dwatercap_dif(ig,:) |
---|
[1236] | 1515 | ENDDO |
---|
[2963] | 1516 | |
---|
[2907] | 1517 | call compute_meshgridavg(ngrid,nq,albedo,emis,tsurf,zdqsdif, |
---|
| 1518 | & albedo_meshavg,emis_meshavg,tsurf_meshavg,zdqsdif_meshavg_tmp) |
---|
[1236] | 1519 | IF (.not.turb_resolved) THEN |
---|
| 1520 | DO l=1,nlayer |
---|
[42] | 1521 | DO ig=1,ngrid |
---|
| 1522 | pdv(ig,l)=pdv(ig,l)+zdvdif(ig,l) |
---|
| 1523 | pdu(ig,l)=pdu(ig,l)+zdudif(ig,l) |
---|
| 1524 | pdt(ig,l)=pdt(ig,l)+zdhdif(ig,l)*zpopsk(ig,l) |
---|
| 1525 | |
---|
| 1526 | zdtdif(ig,l)=zdhdif(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
| 1527 | ENDDO |
---|
[226] | 1528 | ENDDO |
---|
[2312] | 1529 | |
---|
[42] | 1530 | DO iq=1, nq |
---|
| 1531 | DO l=1,nlayer |
---|
| 1532 | DO ig=1,ngrid |
---|
[2362] | 1533 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
---|
[42] | 1534 | ENDDO |
---|
| 1535 | ENDDO |
---|
| 1536 | ENDDO |
---|
| 1537 | DO iq=1, nq |
---|
| 1538 | DO ig=1,ngrid |
---|
[2900] | 1539 | dqsurf(ig,iq,:)=dqsurf(ig,iq,:) + zdqsdif(ig,iq,:) |
---|
[42] | 1540 | ENDDO |
---|
| 1541 | ENDDO |
---|
[2823] | 1542 | |
---|
[1242] | 1543 | ELSE |
---|
| 1544 | write (*,*) '******************************************' |
---|
| 1545 | write (*,*) '** LES mode: the difv part is only used to' |
---|
| 1546 | write (*,*) '** - provide HFX and UST to the dynamics' |
---|
| 1547 | write (*,*) '** - update TSURF' |
---|
| 1548 | write (*,*) '******************************************' |
---|
| 1549 | !! Specific treatment for lifting in turbulent-resolving mode (AC) |
---|
| 1550 | IF (lifting .and. doubleq) THEN |
---|
[3203] | 1551 | !! lifted dust is injected in the first layer. |
---|
| 1552 | !! Sedimentation must be called after turbulent mixing, i.e. on next step, after WRF. |
---|
[1242] | 1553 | !! => lifted dust is not incremented before the sedimentation step. |
---|
| 1554 | zdqdif(1:ngrid,1,1:nq)=0. |
---|
[3203] | 1555 | zdqdif(1:ngrid,1,igcm_dust_number) = |
---|
[2907] | 1556 | . -zdqsdif_meshavg_tmp(1:ngrid,igcm_dust_number) |
---|
[3203] | 1557 | zdqdif(1:ngrid,1,igcm_dust_mass) = |
---|
[2907] | 1558 | . -zdqsdif_meshavg_tmp(1:ngrid,igcm_dust_mass) |
---|
[1266] | 1559 | zdqdif(1:ngrid,2:nlayer,1:nq) = 0. |
---|
[1242] | 1560 | DO iq=1, nq |
---|
[1974] | 1561 | IF ((iq .ne. igcm_dust_mass) |
---|
| 1562 | & .and. (iq .ne. igcm_dust_number)) THEN |
---|
[2900] | 1563 | zdqsdif(:,iq,:)=0. |
---|
[1974] | 1564 | ENDIF |
---|
[1242] | 1565 | ENDDO |
---|
| 1566 | ELSE |
---|
| 1567 | zdqdif(1:ngrid,1:nlayer,1:nq) = 0. |
---|
[2900] | 1568 | zdqsdif(1:ngrid,1:nq,1:nslope) = 0. |
---|
[1242] | 1569 | ENDIF |
---|
[790] | 1570 | ENDIF |
---|
[3203] | 1571 | ELSE |
---|
[42] | 1572 | DO ig=1,ngrid |
---|
[2900] | 1573 | DO islope=1,nslope |
---|
| 1574 | zdtsurf(ig,islope)=zdtsurf(ig,islope)+ |
---|
| 1575 | s (fluxrad(ig,islope)+fluxgrd(ig,islope))/capcal(ig,islope) |
---|
| 1576 | ENDDO |
---|
[42] | 1577 | ENDDO |
---|
[2963] | 1578 | |
---|
[1236] | 1579 | IF (turb_resolved) THEN |
---|
[3203] | 1580 | write(*,*) 'Turbulent-resolving mode !' |
---|
[42] | 1581 | write(*,*) 'Please set calldifv to T in callphys.def' |
---|
[2214] | 1582 | call abort_physic("physiq","turbulent-resolving mode",1) |
---|
[42] | 1583 | ENDIF |
---|
| 1584 | ENDIF ! of IF (calldifv) |
---|
| 1585 | |
---|
[162] | 1586 | c----------------------------------------------------------------------- |
---|
[1974] | 1587 | c 6. Thermals : |
---|
[162] | 1588 | c ----------------------------- |
---|
[566] | 1589 | |
---|
[1236] | 1590 | if(calltherm .and. .not.turb_resolved) then |
---|
[2362] | 1591 | |
---|
[2823] | 1592 | call calltherm_interface(ngrid,nlayer,nq,igcm_co2, |
---|
[652] | 1593 | $ zzlev,zzlay, |
---|
[162] | 1594 | $ ptimestep,pu,pv,pt,pq,pdu,pdv,pdt,pdq,q2, |
---|
[883] | 1595 | $ zplay,zplev,pphi,zpopsk, |
---|
[185] | 1596 | $ pdu_th,pdv_th,pdt_th,pdq_th,lmax_th,zmax_th, |
---|
[660] | 1597 | $ dtke_th,zdhdif,hfmax_th,wstar,sensibFlux) |
---|
[3203] | 1598 | |
---|
[162] | 1599 | DO l=1,nlayer |
---|
| 1600 | DO ig=1,ngrid |
---|
| 1601 | pdu(ig,l)=pdu(ig,l)+pdu_th(ig,l) |
---|
| 1602 | pdv(ig,l)=pdv(ig,l)+pdv_th(ig,l) |
---|
| 1603 | pdt(ig,l)=pdt(ig,l)+pdt_th(ig,l) |
---|
| 1604 | q2(ig,l)=q2(ig,l)+dtke_th(ig,l)*ptimestep |
---|
| 1605 | ENDDO |
---|
| 1606 | ENDDO |
---|
[2362] | 1607 | |
---|
[162] | 1608 | DO ig=1,ngrid |
---|
| 1609 | q2(ig,nlayer+1)=q2(ig,nlayer+1)+dtke_th(ig,nlayer+1)*ptimestep |
---|
[2362] | 1610 | ENDDO |
---|
[2312] | 1611 | |
---|
[162] | 1612 | DO iq=1,nq |
---|
| 1613 | DO l=1,nlayer |
---|
| 1614 | DO ig=1,ngrid |
---|
| 1615 | pdq(ig,l,iq)=pdq(ig,l,iq)+pdq_th(ig,l,iq) |
---|
| 1616 | ENDDO |
---|
| 1617 | ENDDO |
---|
| 1618 | ENDDO |
---|
[42] | 1619 | |
---|
[277] | 1620 | lmax_th_out(:)=real(lmax_th(:)) |
---|
| 1621 | |
---|
[1236] | 1622 | else !of if calltherm |
---|
[162] | 1623 | lmax_th(:)=0 |
---|
[528] | 1624 | wstar(:)=0. |
---|
| 1625 | hfmax_th(:)=0. |
---|
[277] | 1626 | lmax_th_out(:)=0. |
---|
[1236] | 1627 | end if |
---|
[2312] | 1628 | |
---|
[42] | 1629 | c----------------------------------------------------------------------- |
---|
[1974] | 1630 | c 7. Dry convective adjustment: |
---|
[42] | 1631 | c ----------------------------- |
---|
| 1632 | |
---|
| 1633 | IF(calladj) THEN |
---|
| 1634 | |
---|
| 1635 | DO l=1,nlayer |
---|
| 1636 | DO ig=1,ngrid |
---|
| 1637 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
---|
| 1638 | ENDDO |
---|
| 1639 | ENDDO |
---|
[286] | 1640 | zduadj(:,:)=0 |
---|
| 1641 | zdvadj(:,:)=0 |
---|
| 1642 | zdhadj(:,:)=0 |
---|
[42] | 1643 | |
---|
| 1644 | CALL convadj(ngrid,nlayer,nq,ptimestep, |
---|
[883] | 1645 | $ zplay,zplev,zpopsk,lmax_th, |
---|
[42] | 1646 | $ pu,pv,zh,pq, |
---|
| 1647 | $ pdu,pdv,zdh,pdq, |
---|
| 1648 | $ zduadj,zdvadj,zdhadj, |
---|
| 1649 | $ zdqadj) |
---|
| 1650 | |
---|
| 1651 | DO l=1,nlayer |
---|
| 1652 | DO ig=1,ngrid |
---|
| 1653 | pdu(ig,l)=pdu(ig,l)+zduadj(ig,l) |
---|
| 1654 | pdv(ig,l)=pdv(ig,l)+zdvadj(ig,l) |
---|
| 1655 | pdt(ig,l)=pdt(ig,l)+zdhadj(ig,l)*zpopsk(ig,l) |
---|
| 1656 | |
---|
| 1657 | zdtadj(ig,l)=zdhadj(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
| 1658 | ENDDO |
---|
| 1659 | ENDDO |
---|
| 1660 | |
---|
| 1661 | DO iq=1, nq |
---|
| 1662 | DO l=1,nlayer |
---|
| 1663 | DO ig=1,ngrid |
---|
[3203] | 1664 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqadj(ig,l,iq) |
---|
[42] | 1665 | ENDDO |
---|
| 1666 | ENDDO |
---|
| 1667 | ENDDO |
---|
| 1668 | ENDIF ! of IF(calladj) |
---|
| 1669 | |
---|
[2149] | 1670 | c----------------------------------------------------- |
---|
| 1671 | c 8. Non orographic Gravity waves : |
---|
| 1672 | c ------------------------------------------------- |
---|
[42] | 1673 | |
---|
[2149] | 1674 | IF (calllott_nonoro) THEN |
---|
| 1675 | |
---|
[2594] | 1676 | CALL nonoro_gwd_ran(ngrid,nlayer,ptimestep, |
---|
| 1677 | & cpnew,rnew, |
---|
| 1678 | & zplay, |
---|
[2149] | 1679 | & zmax_th, ! max altitude reached by thermals (m) |
---|
| 1680 | & pt, pu, pv, |
---|
| 1681 | & pdt, pdu, pdv, |
---|
| 1682 | & zustrhi,zvstrhi, |
---|
[2225] | 1683 | & d_t_hin, d_u_hin, d_v_hin) |
---|
[3144] | 1684 | IF (calljliu_gwimix) THEN |
---|
| 1685 | CALL nonoro_gwd_mix(ngrid,nlayer,ptimestep, |
---|
[3203] | 1686 | & nq,cpnew, rnew, |
---|
| 1687 | & zplay, |
---|
| 1688 | & zmax_th, |
---|
| 1689 | & pt, pu, pv, pq, |
---|
[3144] | 1690 | !loss, chemical reaction loss rates |
---|
| 1691 | & pdt, pdu, pdv, pdq, |
---|
| 1692 | ! zustrhi,zvstrhi, |
---|
| 1693 | & zdq_mix, d_t_mix, d_u_mix, d_v_mix) |
---|
| 1694 | ENDIF |
---|
[2149] | 1695 | |
---|
| 1696 | ! Update tendencies |
---|
| 1697 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer) |
---|
| 1698 | & +d_t_hin(1:ngrid,1:nlayer) |
---|
| 1699 | pdu(1:ngrid,1:nlayer)=pdu(1:ngrid,1:nlayer) |
---|
[3203] | 1700 | & +d_u_hin(1:ngrid,1:nlayer) |
---|
[2149] | 1701 | pdv(1:ngrid,1:nlayer)=pdv(1:ngrid,1:nlayer) |
---|
| 1702 | & +d_v_hin(1:ngrid,1:nlayer) |
---|
[3144] | 1703 | ! Update tendencies of gw mixing |
---|
| 1704 | IF (calljliu_gwimix) THEN |
---|
| 1705 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer) |
---|
| 1706 | & +d_t_mix(1:ngrid,1:nlayer) |
---|
| 1707 | pdu(1:ngrid,1:nlayer)=pdu(1:ngrid,1:nlayer) |
---|
[3203] | 1708 | & +d_u_mix(1:ngrid,1:nlayer) |
---|
[3144] | 1709 | pdv(1:ngrid,1:nlayer)=pdv(1:ngrid,1:nlayer) |
---|
| 1710 | & +d_v_mix(1:ngrid,1:nlayer) |
---|
| 1711 | pdq(1:ngrid,1:nlayer,1:nq)=pdq(1:ngrid,1:nlayer,1:nq) |
---|
| 1712 | & +zdq_mix(1:ngrid,1:nlayer,1:nq) |
---|
| 1713 | ENDIF |
---|
[2149] | 1714 | |
---|
[3144] | 1715 | |
---|
[2149] | 1716 | ENDIF ! of IF (calllott_nonoro) |
---|
| 1717 | |
---|
[42] | 1718 | c----------------------------------------------------------------------- |
---|
[3203] | 1719 | c 9. Specific parameterizations for tracers |
---|
[42] | 1720 | c: ----------------------------------------- |
---|
| 1721 | |
---|
| 1722 | |
---|
[2149] | 1723 | c 9a. Water and ice |
---|
[42] | 1724 | c --------------- |
---|
| 1725 | |
---|
| 1726 | c --------------------------------------- |
---|
| 1727 | c Water ice condensation in the atmosphere |
---|
| 1728 | c ---------------------------------------- |
---|
| 1729 | IF (water) THEN |
---|
| 1730 | |
---|
| 1731 | call watercloud(ngrid,nlayer,ptimestep, |
---|
[883] | 1732 | & zplev,zplay,pdpsrf,zzlay, pt,pdt, |
---|
[626] | 1733 | & pq,pdq,zdqcloud,zdtcloud, |
---|
[358] | 1734 | & nq,tau,tauscaling,rdust,rice,nuice, |
---|
[1711] | 1735 | & rsedcloud,rhocloud,totcloudfrac) |
---|
[633] | 1736 | c Temperature variation due to latent heat release |
---|
[42] | 1737 | if (activice) then |
---|
[2362] | 1738 | pdt(1:ngrid,1:nlayer) = |
---|
| 1739 | & pdt(1:ngrid,1:nlayer) + |
---|
[633] | 1740 | & zdtcloud(1:ngrid,1:nlayer) |
---|
[42] | 1741 | endif |
---|
[2312] | 1742 | |
---|
[42] | 1743 | ! increment water vapour and ice atmospheric tracers tendencies |
---|
[3203] | 1744 | pdq(1:ngrid,1:nlayer,igcm_h2o_vap) = |
---|
| 1745 | & pdq(1:ngrid,1:nlayer,igcm_h2o_vap) + |
---|
[706] | 1746 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_vap) |
---|
[3203] | 1747 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = |
---|
| 1748 | & pdq(1:ngrid,1:nlayer,igcm_h2o_ice) + |
---|
[706] | 1749 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 1750 | |
---|
[2312] | 1751 | if (hdo) then |
---|
| 1752 | ! increment HDO vapour and ice atmospheric tracers tendencies |
---|
[2362] | 1753 | pdq(1:ngrid,1:nlayer,igcm_hdo_vap) = |
---|
| 1754 | & pdq(1:ngrid,1:nlayer,igcm_hdo_vap) + |
---|
[2312] | 1755 | & zdqcloud(1:ngrid,1:nlayer,igcm_hdo_vap) |
---|
[2362] | 1756 | pdq(1:ngrid,1:nlayer,igcm_hdo_ice) = |
---|
| 1757 | & pdq(1:ngrid,1:nlayer,igcm_hdo_ice) + |
---|
[2312] | 1758 | & zdqcloud(1:ngrid,1:nlayer,igcm_hdo_ice) |
---|
| 1759 | endif !hdo |
---|
| 1760 | |
---|
[706] | 1761 | ! increment dust and ccn masses and numbers |
---|
[883] | 1762 | ! We need to check that we have Nccn & Ndust > 0 |
---|
| 1763 | ! This is due to single precision rounding problems |
---|
[706] | 1764 | if (microphys) then |
---|
[3203] | 1765 | pdq(1:ngrid,1:nlayer,igcm_ccn_mass) = |
---|
| 1766 | & pdq(1:ngrid,1:nlayer,igcm_ccn_mass) + |
---|
[706] | 1767 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_mass) |
---|
[3203] | 1768 | pdq(1:ngrid,1:nlayer,igcm_ccn_number) = |
---|
| 1769 | & pdq(1:ngrid,1:nlayer,igcm_ccn_number) + |
---|
[706] | 1770 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_number) |
---|
[3203] | 1771 | where (pq(:,:,igcm_ccn_mass) + |
---|
[883] | 1772 | & ptimestep*pdq(:,:,igcm_ccn_mass) < 0.) |
---|
[3203] | 1773 | pdq(:,:,igcm_ccn_mass) = |
---|
[883] | 1774 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1775 | pdq(:,:,igcm_ccn_number) = |
---|
[883] | 1776 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
| 1777 | end where |
---|
[3203] | 1778 | where (pq(:,:,igcm_ccn_number) + |
---|
[883] | 1779 | & ptimestep*pdq(:,:,igcm_ccn_number) < 0.) |
---|
[3203] | 1780 | pdq(:,:,igcm_ccn_mass) = |
---|
[883] | 1781 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1782 | pdq(:,:,igcm_ccn_number) = |
---|
[883] | 1783 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
| 1784 | end where |
---|
[706] | 1785 | endif |
---|
| 1786 | |
---|
[883] | 1787 | if (scavenging) then |
---|
[3203] | 1788 | pdq(1:ngrid,1:nlayer,igcm_dust_mass) = |
---|
| 1789 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) + |
---|
[883] | 1790 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
[3203] | 1791 | pdq(1:ngrid,1:nlayer,igcm_dust_number) = |
---|
| 1792 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) + |
---|
[883] | 1793 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_number) |
---|
[3203] | 1794 | where (pq(:,:,igcm_dust_mass) + |
---|
[883] | 1795 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
---|
[3203] | 1796 | pdq(:,:,igcm_dust_mass) = |
---|
[883] | 1797 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1798 | pdq(:,:,igcm_dust_number) = |
---|
[883] | 1799 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 1800 | end where |
---|
[3203] | 1801 | where (pq(:,:,igcm_dust_number) + |
---|
[883] | 1802 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
---|
[3203] | 1803 | pdq(:,:,igcm_dust_mass) = |
---|
[883] | 1804 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1805 | pdq(:,:,igcm_dust_number) = |
---|
[883] | 1806 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 1807 | end where |
---|
| 1808 | endif ! of if scavenging |
---|
[3203] | 1809 | |
---|
[42] | 1810 | END IF ! of IF (water) |
---|
| 1811 | |
---|
[2149] | 1812 | c 9a bis. CO2 clouds (CL & JA) |
---|
[1617] | 1813 | c --------------------------------------- |
---|
| 1814 | c CO2 ice cloud condensation in the atmosphere |
---|
| 1815 | c ---------------------------------------- |
---|
[1818] | 1816 | c flag needed in callphys.def: |
---|
| 1817 | c co2clouds=.true. is mandatory (default is .false.) |
---|
[3203] | 1818 | c co2useh2o=.true. if you want to allow co2 condensation |
---|
| 1819 | c on water ice particles |
---|
[1818] | 1820 | c meteo_flux=.true. if you want to add a meteoritic |
---|
| 1821 | c supply of CCN |
---|
| 1822 | c CLFvaryingCO2=.true. if you want to have a sub-grid |
---|
[3203] | 1823 | c temperature distribution |
---|
[1818] | 1824 | c spantCO2=integer (i.e. 3) amplitude of the sub-grid T disti |
---|
[3203] | 1825 | c nuiceco2_sed=0.2 variance of the size distribution for the |
---|
[1818] | 1826 | c sedimentation |
---|
[3203] | 1827 | c nuiceco2_ref=0.2 variance of the size distribution for the |
---|
[1818] | 1828 | c nucleation |
---|
| 1829 | c imicroco2=50 micro-timestep is 1/50 of physical timestep |
---|
[2362] | 1830 | zdqssed_co2(:) = 0. |
---|
[2562] | 1831 | zdqssed_ccn(:,:) = 0. |
---|
[1922] | 1832 | |
---|
[2362] | 1833 | IF (co2clouds) THEN |
---|
| 1834 | call co2cloud(ngrid,nlayer,ptimestep, |
---|
[1617] | 1835 | & zplev,zplay,pdpsrf,zzlay,pt,pdt, |
---|
| 1836 | & pq,pdq,zdqcloudco2,zdtcloudco2, |
---|
| 1837 | & nq,tau,tauscaling,rdust,rice,riceco2,nuice, |
---|
[2447] | 1838 | & rhocloud, rsedcloudco2,rhocloudco2,zzlev,zdqssed_co2, |
---|
[2826] | 1839 | & zdqssed_ccn,pdu,pu,zcondicea_co2microp) |
---|
[1617] | 1840 | |
---|
[2562] | 1841 | DO iq=1, nq |
---|
| 1842 | DO ig=1,ngrid |
---|
[2900] | 1843 | DO islope = 1,nslope |
---|
| 1844 | dqsurf(ig,iq,islope)=dqsurf(ig,iq,islope)+ |
---|
| 1845 | & zdqssed_ccn(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
---|
| 1846 | ENDDO !(islope) |
---|
[2562] | 1847 | ENDDO ! (ig) |
---|
[2900] | 1848 | ENDDO ! (iq)q) |
---|
[1617] | 1849 | c Temperature variation due to latent heat release |
---|
[2562] | 1850 | pdt(1:ngrid,1:nlayer) = |
---|
[3203] | 1851 | & pdt(1:ngrid,1:nlayer) + |
---|
[2551] | 1852 | & zdtcloudco2(1:ngrid,1:nlayer) |
---|
[1617] | 1853 | |
---|
| 1854 | ! increment dust and ccn masses and numbers |
---|
| 1855 | ! We need to check that we have Nccn & Ndust > 0 |
---|
| 1856 | ! This is due to single precision rounding problems |
---|
[1816] | 1857 | ! increment dust tracers tendancies |
---|
[2362] | 1858 | pdq(:,:,igcm_dust_mass) = pdq(:,:,igcm_dust_mass) |
---|
| 1859 | & + zdqcloudco2(:,:,igcm_dust_mass) |
---|
| 1860 | |
---|
| 1861 | pdq(:,:,igcm_dust_number) = pdq(:,:,igcm_dust_number) |
---|
| 1862 | & + zdqcloudco2(:,:,igcm_dust_number) |
---|
| 1863 | |
---|
| 1864 | pdq(:,:,igcm_co2) = pdq(:,:,igcm_co2) |
---|
| 1865 | & + zdqcloudco2(:,:,igcm_co2) |
---|
| 1866 | |
---|
| 1867 | pdq(:,:,igcm_co2_ice) = pdq(:,:,igcm_co2_ice) |
---|
| 1868 | & + zdqcloudco2(:,:,igcm_co2_ice) |
---|
| 1869 | |
---|
| 1870 | pdq(:,:,igcm_ccnco2_mass) = pdq(:,:,igcm_ccnco2_mass) |
---|
| 1871 | & + zdqcloudco2(:,:,igcm_ccnco2_mass) |
---|
| 1872 | |
---|
| 1873 | pdq(:,:,igcm_ccnco2_number) = pdq(:,:,igcm_ccnco2_number) |
---|
| 1874 | & + zdqcloudco2(:,:,igcm_ccnco2_number) |
---|
| 1875 | |
---|
[2589] | 1876 | if (meteo_flux) then |
---|
| 1877 | pdq(:,:,igcm_ccnco2_meteor_mass) = |
---|
| 1878 | & pdq(:,:,igcm_ccnco2_meteor_mass) + |
---|
| 1879 | & zdqcloudco2(:,:,igcm_ccnco2_meteor_mass) |
---|
| 1880 | |
---|
| 1881 | pdq(:,:,igcm_ccnco2_meteor_number) = |
---|
| 1882 | & pdq(:,:,igcm_ccnco2_meteor_number) |
---|
| 1883 | & + zdqcloudco2(:,:,igcm_ccnco2_meteor_number) |
---|
| 1884 | end if |
---|
[1816] | 1885 | !Update water ice clouds values as well |
---|
| 1886 | if (co2useh2o) then |
---|
[3203] | 1887 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = |
---|
| 1888 | & pdq(1:ngrid,1:nlayer,igcm_h2o_ice) + |
---|
[1816] | 1889 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
[3203] | 1890 | pdq(1:ngrid,1:nlayer,igcm_ccn_mass) = |
---|
| 1891 | & pdq(1:ngrid,1:nlayer,igcm_ccn_mass) + |
---|
[1816] | 1892 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccn_mass) |
---|
[3203] | 1893 | pdq(1:ngrid,1:nlayer,igcm_ccn_number) = |
---|
| 1894 | & pdq(1:ngrid,1:nlayer,igcm_ccn_number) + |
---|
[1816] | 1895 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccn_number) |
---|
[2362] | 1896 | |
---|
[2562] | 1897 | pdq(:,:,igcm_ccnco2_h2o_mass_ice) = |
---|
| 1898 | & pdq(:,:,igcm_ccnco2_h2o_mass_ice) + |
---|
| 1899 | & zdqcloudco2(:,:,igcm_ccnco2_h2o_mass_ice) |
---|
| 1900 | |
---|
| 1901 | pdq(:,:,igcm_ccnco2_h2o_mass_ccn) = |
---|
| 1902 | & pdq(:,:,igcm_ccnco2_h2o_mass_ccn) + |
---|
| 1903 | & zdqcloudco2(:,:,igcm_ccnco2_h2o_mass_ccn) |
---|
| 1904 | |
---|
| 1905 | pdq(:,:,igcm_ccnco2_h2o_number) = |
---|
| 1906 | & pdq(:,:,igcm_ccnco2_h2o_number) + |
---|
| 1907 | & zdqcloudco2(:,:,igcm_ccnco2_h2o_number) |
---|
| 1908 | |
---|
[2362] | 1909 | c Negative values? |
---|
| 1910 | where (pq(:,:,igcm_ccn_mass) + |
---|
[1921] | 1911 | & ptimestep*pdq(:,:,igcm_ccn_mass) < 0.) |
---|
[3203] | 1912 | pdq(:,:,igcm_ccn_mass) = |
---|
[1816] | 1913 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1914 | pdq(:,:,igcm_ccn_number) = |
---|
[1816] | 1915 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
[1921] | 1916 | end where |
---|
[2362] | 1917 | c Negative values? |
---|
| 1918 | where (pq(:,:,igcm_ccn_number) + |
---|
[1921] | 1919 | & ptimestep*pdq(:,:,igcm_ccn_number) < 0.) |
---|
[3203] | 1920 | pdq(:,:,igcm_ccn_mass) = |
---|
[1921] | 1921 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1922 | pdq(:,:,igcm_ccn_number) = |
---|
[1921] | 1923 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
| 1924 | end where |
---|
[2562] | 1925 | where (pq(:,:,igcm_ccnco2_h2o_mass_ice) + |
---|
| 1926 | & pq(:,:,igcm_ccnco2_h2o_mass_ccn) + |
---|
| 1927 | & (pdq(:,:,igcm_ccnco2_h2o_mass_ice) + |
---|
| 1928 | & pdq(:,:,igcm_ccnco2_h2o_mass_ccn) |
---|
| 1929 | & )*ptimestep < 0.) |
---|
| 1930 | pdq(:,:,igcm_ccnco2_h2o_mass_ice) = |
---|
| 1931 | & - pq(:,:,igcm_ccnco2_h2o_mass_ice) |
---|
| 1932 | & /ptimestep + 1.e-30 |
---|
| 1933 | pdq(:,:,igcm_ccnco2_h2o_mass_ccn) = |
---|
| 1934 | & - pq(:,:,igcm_ccnco2_h2o_mass_ccn) |
---|
| 1935 | & /ptimestep + 1.e-30 |
---|
| 1936 | pdq(:,:,igcm_ccnco2_h2o_number) = |
---|
| 1937 | & - pq(:,:,igcm_ccnco2_h2o_number) |
---|
| 1938 | & /ptimestep + 1.e-30 |
---|
| 1939 | end where |
---|
| 1940 | |
---|
| 1941 | where (pq(:,:,igcm_ccnco2_h2o_number) + |
---|
| 1942 | & (pdq(:,:,igcm_ccnco2_h2o_number) |
---|
| 1943 | & )*ptimestep < 0.) |
---|
| 1944 | pdq(:,:,igcm_ccnco2_h2o_mass_ice) = |
---|
| 1945 | & - pq(:,:,igcm_ccnco2_h2o_mass_ice) |
---|
| 1946 | & /ptimestep + 1.e-30 |
---|
| 1947 | pdq(:,:,igcm_ccnco2_h2o_mass_ccn) = |
---|
| 1948 | & - pq(:,:,igcm_ccnco2_h2o_mass_ccn) |
---|
| 1949 | & /ptimestep + 1.e-30 |
---|
| 1950 | pdq(:,:,igcm_ccnco2_h2o_number) = |
---|
| 1951 | & - pq(:,:,igcm_ccnco2_h2o_number) |
---|
| 1952 | & /ptimestep + 1.e-30 |
---|
| 1953 | end where |
---|
[1921] | 1954 | endif ! of if (co2useh2o) |
---|
[1720] | 1955 | c Negative values? |
---|
[3203] | 1956 | where (pq(:,:,igcm_ccnco2_mass) + |
---|
[1921] | 1957 | & ptimestep*pdq(:,:,igcm_ccnco2_mass) < 0.) |
---|
[3203] | 1958 | pdq(:,:,igcm_ccnco2_mass) = |
---|
[1617] | 1959 | & - pq(:,:,igcm_ccnco2_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1960 | pdq(:,:,igcm_ccnco2_number) = |
---|
[1617] | 1961 | & - pq(:,:,igcm_ccnco2_number)/ptimestep + 1.e-30 |
---|
[1720] | 1962 | end where |
---|
[3203] | 1963 | where (pq(:,:,igcm_ccnco2_number) + |
---|
[1921] | 1964 | & ptimestep*pdq(:,:,igcm_ccnco2_number) < 0.) |
---|
[3203] | 1965 | pdq(:,:,igcm_ccnco2_mass) = |
---|
[1720] | 1966 | & - pq(:,:,igcm_ccnco2_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1967 | pdq(:,:,igcm_ccnco2_number) = |
---|
[1720] | 1968 | & - pq(:,:,igcm_ccnco2_number)/ptimestep + 1.e-30 |
---|
[1921] | 1969 | end where |
---|
[3203] | 1970 | |
---|
[1617] | 1971 | c Negative values? |
---|
[3203] | 1972 | where (pq(:,:,igcm_dust_mass) + |
---|
[1921] | 1973 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
---|
[3203] | 1974 | pdq(:,:,igcm_dust_mass) = |
---|
[1922] | 1975 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1976 | pdq(:,:,igcm_dust_number) = |
---|
[1922] | 1977 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
[1921] | 1978 | end where |
---|
[3203] | 1979 | where (pq(:,:,igcm_dust_number) + |
---|
[1921] | 1980 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
---|
[3203] | 1981 | pdq(:,:,igcm_dust_mass) = |
---|
[1922] | 1982 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 1983 | pdq(:,:,igcm_dust_number) = |
---|
[1922] | 1984 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
[1921] | 1985 | end where |
---|
[2589] | 1986 | if (meteo_flux) then |
---|
| 1987 | where (pq(:,:,igcm_ccnco2_meteor_mass) + |
---|
| 1988 | & ptimestep*pdq(:,:,igcm_ccnco2_meteor_mass) < 0.) |
---|
| 1989 | pdq(:,:,igcm_ccnco2_meteor_mass) = |
---|
| 1990 | & - pq(:,:,igcm_ccnco2_meteor_mass)/ptimestep + 1.e-30 |
---|
| 1991 | pdq(:,:,igcm_ccnco2_meteor_number) = |
---|
| 1992 | & - pq(:,:,igcm_ccnco2_meteor_number)/ptimestep + 1.e-30 |
---|
| 1993 | end where |
---|
| 1994 | where (pq(:,:,igcm_ccnco2_meteor_number) + |
---|
| 1995 | & ptimestep*pdq(:,:,igcm_ccnco2_meteor_number) < 0.) |
---|
| 1996 | pdq(:,:,igcm_ccnco2_meteor_mass) = |
---|
| 1997 | & - pq(:,:,igcm_ccnco2_meteor_mass)/ptimestep + 1.e-30 |
---|
| 1998 | pdq(:,:,igcm_ccnco2_meteor_number) = |
---|
| 1999 | & - pq(:,:,igcm_ccnco2_meteor_number)/ptimestep + 1.e-30 |
---|
| 2000 | end where |
---|
| 2001 | end if |
---|
[2362] | 2002 | END IF ! of IF (co2clouds) |
---|
[1617] | 2003 | |
---|
[2149] | 2004 | c 9b. Aerosol particles |
---|
[42] | 2005 | c ------------------- |
---|
| 2006 | c ---------- |
---|
| 2007 | c Dust devil : |
---|
| 2008 | c ---------- |
---|
[3203] | 2009 | IF(callddevil) then |
---|
[883] | 2010 | call dustdevil(ngrid,nlayer,nq, zplev,pu,pv,pt, tsurf,q2, |
---|
[42] | 2011 | & zdqdev,zdqsdev) |
---|
[2896] | 2012 | |
---|
[42] | 2013 | if (dustbin.ge.1) then |
---|
| 2014 | do iq=1,nq |
---|
| 2015 | DO l=1,nlayer |
---|
| 2016 | DO ig=1,ngrid |
---|
| 2017 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdev(ig,l,iq) |
---|
| 2018 | ENDDO |
---|
| 2019 | ENDDO |
---|
| 2020 | enddo |
---|
| 2021 | do iq=1,nq |
---|
| 2022 | DO ig=1,ngrid |
---|
[2900] | 2023 | DO islope = 1,nslope |
---|
| 2024 | dqsurf(ig,iq,islope)= dqsurf(ig,iq,islope) + |
---|
| 2025 | & zdqsdev(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
---|
| 2026 | ENDDO |
---|
[42] | 2027 | ENDDO |
---|
| 2028 | enddo |
---|
| 2029 | endif ! of if (dustbin.ge.1) |
---|
| 2030 | |
---|
| 2031 | END IF ! of IF (callddevil) |
---|
| 2032 | |
---|
[3203] | 2033 | c ------------- |
---|
[42] | 2034 | c Sedimentation : acts also on water ice |
---|
[1974] | 2035 | c ------------- |
---|
[3203] | 2036 | IF (sedimentation) THEN |
---|
[42] | 2037 | zdqsed(1:ngrid,1:nlayer,1:nq)=0 |
---|
| 2038 | zdqssed(1:ngrid,1:nq)=0 |
---|
| 2039 | |
---|
[1921] | 2040 | c Sedimentation for co2 clouds tracers are inside co2cloud microtimestep |
---|
| 2041 | c Zdqssed isn't |
---|
[2953] | 2042 | |
---|
[1974] | 2043 | call callsedim(ngrid,nlayer,ptimestep, |
---|
[2199] | 2044 | & zplev,zzlev,zzlay,pt,pdt, |
---|
| 2045 | & rdust,rstormdust,rtopdust, |
---|
[1974] | 2046 | & rice,rsedcloud,rhocloud, |
---|
[3203] | 2047 | & pq,pdq,zdqsed,zdqssed,nq, |
---|
[411] | 2048 | & tau,tauscaling) |
---|
[2896] | 2049 | |
---|
[3157] | 2050 | |
---|
[1921] | 2051 | c Flux at the surface of co2 ice computed in co2cloud microtimestep |
---|
[1974] | 2052 | IF (rdstorm) THEN |
---|
| 2053 | c Storm dust cannot sediment to the surface |
---|
[3203] | 2054 | DO ig=1,ngrid |
---|
[1974] | 2055 | zdqsed(ig,1,igcm_stormdust_mass)= |
---|
| 2056 | & zdqsed(ig,1,igcm_stormdust_mass)+ |
---|
| 2057 | & zdqssed(ig,igcm_stormdust_mass) / |
---|
| 2058 | & ((pplev(ig,1)-pplev(ig,2))/g) |
---|
| 2059 | zdqsed(ig,1,igcm_stormdust_number)= |
---|
| 2060 | & zdqsed(ig,1,igcm_stormdust_number)+ |
---|
| 2061 | & zdqssed(ig,igcm_stormdust_number) / |
---|
[3203] | 2062 | & ((pplev(ig,1)-pplev(ig,2))/g) |
---|
[1974] | 2063 | zdqssed(ig,igcm_stormdust_mass)=0. |
---|
| 2064 | zdqssed(ig,igcm_stormdust_number)=0. |
---|
| 2065 | ENDDO |
---|
| 2066 | ENDIF !rdstorm |
---|
| 2067 | |
---|
[42] | 2068 | DO iq=1, nq |
---|
| 2069 | DO l=1,nlayer |
---|
| 2070 | DO ig=1,ngrid |
---|
| 2071 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqsed(ig,l,iq) |
---|
| 2072 | ENDDO |
---|
| 2073 | ENDDO |
---|
| 2074 | ENDDO |
---|
| 2075 | DO iq=1, nq |
---|
| 2076 | DO ig=1,ngrid |
---|
[2900] | 2077 | DO islope = 1,nslope |
---|
| 2078 | dqsurf(ig,iq,islope)= dqsurf(ig,iq,islope) + |
---|
| 2079 | & zdqssed(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
---|
| 2080 | ENDDO |
---|
[42] | 2081 | ENDDO |
---|
| 2082 | ENDDO |
---|
[1974] | 2083 | |
---|
[42] | 2084 | END IF ! of IF (sedimentation) |
---|
[1974] | 2085 | |
---|
[1236] | 2086 | c Add lifted dust to tendancies after sedimentation in the LES (AC) |
---|
| 2087 | IF (turb_resolved) THEN |
---|
| 2088 | DO iq=1, nq |
---|
| 2089 | DO l=1,nlayer |
---|
| 2090 | DO ig=1,ngrid |
---|
| 2091 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
---|
| 2092 | ENDDO |
---|
| 2093 | ENDDO |
---|
| 2094 | ENDDO |
---|
| 2095 | DO iq=1, nq |
---|
| 2096 | DO ig=1,ngrid |
---|
[2900] | 2097 | dqsurf(ig,iq,:)=dqsurf(ig,iq,:) + zdqsdif(ig,iq,:) |
---|
[1236] | 2098 | ENDDO |
---|
| 2099 | ENDDO |
---|
| 2100 | ENDIF |
---|
[556] | 2101 | c |
---|
[2149] | 2102 | c 9c. Chemical species |
---|
[556] | 2103 | c ------------------ |
---|
[42] | 2104 | |
---|
[556] | 2105 | #ifndef MESOSCALE |
---|
| 2106 | c -------------- |
---|
| 2107 | c photochemistry : |
---|
| 2108 | c -------------- |
---|
[2158] | 2109 | IF (photochem) then |
---|
[411] | 2110 | |
---|
[2164] | 2111 | if (modulo(icount-1,ichemistry).eq.0) then |
---|
| 2112 | ! compute chemistry every ichemistry physics step |
---|
| 2113 | |
---|
[556] | 2114 | ! dust and ice surface area |
---|
[1246] | 2115 | call surfacearea(ngrid, nlayer, naerkind, |
---|
[3203] | 2116 | $ ptimestep, zplay, zzlay, |
---|
| 2117 | $ pt, pq, pdq, nq, |
---|
| 2118 | $ rdust, rice, tau, tauscaling, |
---|
[556] | 2119 | $ surfdust, surfice) |
---|
| 2120 | ! call photochemistry |
---|
[2900] | 2121 | DO ig = 1,ngrid |
---|
| 2122 | qsurf_tmp(ig,:) = qsurf(ig,:,major_slope(ig)) |
---|
| 2123 | ENDDO |
---|
[1047] | 2124 | call calchim(ngrid,nlayer,nq, |
---|
[1036] | 2125 | & ptimestep,zplay,zplev,pt,pdt,dist_sol,mu0, |
---|
[556] | 2126 | $ zzlev,zzlay,zday,pq,pdq,zdqchim,zdqschim, |
---|
[2900] | 2127 | $ zdqcloud,zdqscloud,tau(:,1), |
---|
| 2128 | $ qsurf_tmp(:,igcm_co2), |
---|
[556] | 2129 | $ pu,pdu,pv,pdv,surfdust,surfice) |
---|
[2896] | 2130 | |
---|
[2164] | 2131 | endif ! of if (modulo(icount-1,ichemistry).eq.0) |
---|
| 2132 | |
---|
[556] | 2133 | ! increment values of tracers: |
---|
| 2134 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
---|
| 2135 | ! tracers is zero anyways |
---|
| 2136 | DO l=1,nlayer |
---|
| 2137 | DO ig=1,ngrid |
---|
| 2138 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqchim(ig,l,iq) |
---|
| 2139 | ENDDO |
---|
| 2140 | ENDDO |
---|
| 2141 | ENDDO ! of DO iq=1,nq |
---|
[3203] | 2142 | |
---|
[556] | 2143 | ! add condensation tendency for H2O2 |
---|
| 2144 | if (igcm_h2o2.ne.0) then |
---|
| 2145 | DO l=1,nlayer |
---|
| 2146 | DO ig=1,ngrid |
---|
| 2147 | pdq(ig,l,igcm_h2o2)=pdq(ig,l,igcm_h2o2) |
---|
| 2148 | & +zdqcloud(ig,l,igcm_h2o2) |
---|
| 2149 | ENDDO |
---|
| 2150 | ENDDO |
---|
| 2151 | endif |
---|
| 2152 | |
---|
| 2153 | ! increment surface values of tracers: |
---|
| 2154 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
---|
| 2155 | ! tracers is zero anyways |
---|
| 2156 | DO ig=1,ngrid |
---|
[2900] | 2157 | DO islope = 1,nslope |
---|
| 2158 | dqsurf(ig,iq,islope)=dqsurf(ig,iq,islope) + |
---|
| 2159 | & zdqschim(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
---|
| 2160 | ENDDO |
---|
[556] | 2161 | ENDDO |
---|
| 2162 | ENDDO ! of DO iq=1,nq |
---|
| 2163 | |
---|
| 2164 | ! add condensation tendency for H2O2 |
---|
| 2165 | if (igcm_h2o2.ne.0) then |
---|
| 2166 | DO ig=1,ngrid |
---|
[2900] | 2167 | DO islope = 1,nslope |
---|
| 2168 | dqsurf(ig,igcm_h2o2,islope)=dqsurf(ig,igcm_h2o2,islope)+ |
---|
| 2169 | & zdqscloud(ig,igcm_h2o2)*cos(pi*def_slope_mean(islope)/180.) |
---|
| 2170 | ENDDO |
---|
[556] | 2171 | ENDDO |
---|
| 2172 | endif |
---|
| 2173 | |
---|
[2158] | 2174 | END IF ! of IF (photochem) |
---|
[556] | 2175 | #endif |
---|
| 2176 | |
---|
[42] | 2177 | |
---|
[226] | 2178 | #ifndef MESOSCALE |
---|
| 2179 | c----------------------------------------------------------------------- |
---|
[2149] | 2180 | c 10. THERMOSPHERE CALCULATION |
---|
[226] | 2181 | c----------------------------------------------------------------------- |
---|
[42] | 2182 | |
---|
[226] | 2183 | if (callthermos) then |
---|
[1047] | 2184 | call thermosphere(ngrid,nlayer,nq,zplev,zplay,dist_sol, |
---|
[2908] | 2185 | $ mu0,ptimestep,ptime,zday,tsurf_meshavg,zzlev,zzlay, |
---|
[226] | 2186 | & pt,pq,pu,pv,pdt,pdq, |
---|
[2467] | 2187 | $ zdteuv,zdtconduc,zdumolvis,zdvmolvis,zdqmoldiff, |
---|
| 2188 | $ PhiEscH,PhiEscH2,PhiEscD) |
---|
[226] | 2189 | |
---|
| 2190 | DO l=1,nlayer |
---|
| 2191 | DO ig=1,ngrid |
---|
| 2192 | dtrad(ig,l)=dtrad(ig,l)+zdteuv(ig,l) |
---|
[2362] | 2193 | pdt(ig,l)=pdt(ig,l)+zdtconduc(ig,l)+zdteuv(ig,l) |
---|
[226] | 2194 | pdv(ig,l)=pdv(ig,l)+zdvmolvis(ig,l) |
---|
| 2195 | pdu(ig,l)=pdu(ig,l)+zdumolvis(ig,l) |
---|
| 2196 | DO iq=1, nq |
---|
| 2197 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqmoldiff(ig,l,iq) |
---|
| 2198 | ENDDO |
---|
| 2199 | ENDDO |
---|
| 2200 | ENDDO |
---|
| 2201 | |
---|
| 2202 | endif ! of if (callthermos) |
---|
| 2203 | #endif |
---|
[2963] | 2204 | |
---|
[42] | 2205 | c----------------------------------------------------------------------- |
---|
[2149] | 2206 | c 11. Carbon dioxide condensation-sublimation: |
---|
[1114] | 2207 | c (should be the last atmospherical physical process to be computed) |
---|
| 2208 | c ------------------------------------------- |
---|
| 2209 | IF (tituscap) THEN |
---|
| 2210 | !!! get the actual co2 seasonal cap from Titus observations |
---|
[2362] | 2211 | CALL geticecover(ngrid, 180.*zls/pi, |
---|
[2826] | 2212 | . 180.*longitude/pi, 180.*latitude/pi, |
---|
[2900] | 2213 | . qsurf_tmp(:,igcm_co2) ) |
---|
| 2214 | qsurf_tmp(:,igcm_co2) = qsurf_tmp(:,igcm_co2) * 10000. |
---|
[1114] | 2215 | ENDIF |
---|
| 2216 | |
---|
[3203] | 2217 | |
---|
[1114] | 2218 | IF (callcond) THEN |
---|
[2362] | 2219 | zdtc(:,:) = 0. |
---|
[2900] | 2220 | zdtsurfc(:,:) = 0. |
---|
[2362] | 2221 | zduc(:,:) = 0. |
---|
| 2222 | zdvc(:,:) = 0. |
---|
| 2223 | zdqc(:,:,:) = 0. |
---|
[2900] | 2224 | zdqsc(:,:,:) = 0. |
---|
[2953] | 2225 | CALL co2condens(ngrid,nlayer,nq,nslope,ptimestep, |
---|
[1114] | 2226 | $ capcal,zplay,zplev,tsurf,pt, |
---|
| 2227 | $ pphi,pdt,pdu,pdv,zdtsurf,pu,pv,pq,pdq, |
---|
[3130] | 2228 | $ qsurf(:,igcm_co2,:),perennial_co2ice, |
---|
[2999] | 2229 | $ albedo,emis,rdust, |
---|
[1114] | 2230 | $ zdtc,zdtsurfc,pdpsrf,zduc,zdvc,zdqc, |
---|
[2685] | 2231 | $ fluxsurf_dn_sw,zls, |
---|
[1996] | 2232 | $ zdqssed_co2,zcondicea_co2microp, |
---|
[2551] | 2233 | & zdqsc) |
---|
[2896] | 2234 | |
---|
[3207] | 2235 | if (ngrid == 1) then ! For the 1D model |
---|
| 2236 | ! CO2cond_ps is a coefficient to control the surface pressure change |
---|
| 2237 | pdpsrf = CO2cond_ps*pdpsrf |
---|
| 2238 | zduc = CO2cond_ps*zduc |
---|
| 2239 | zdvc = CO2cond_ps*zdvc |
---|
| 2240 | zdqc = CO2cond_ps*zdqc |
---|
| 2241 | endif |
---|
| 2242 | |
---|
[2566] | 2243 | DO iq=1, nq |
---|
[1114] | 2244 | DO ig=1,ngrid |
---|
[2900] | 2245 | dqsurf(ig,iq,:)=dqsurf(ig,iq,:)+zdqsc(ig,iq,:) |
---|
[2362] | 2246 | ENDDO ! (ig) |
---|
[2566] | 2247 | ENDDO ! (iq) |
---|
| 2248 | DO l=1,nlayer |
---|
[2362] | 2249 | DO ig=1,ngrid |
---|
[1114] | 2250 | pdt(ig,l)=pdt(ig,l)+zdtc(ig,l) |
---|
| 2251 | pdv(ig,l)=pdv(ig,l)+zdvc(ig,l) |
---|
| 2252 | pdu(ig,l)=pdu(ig,l)+zduc(ig,l) |
---|
| 2253 | ENDDO |
---|
[2566] | 2254 | ENDDO |
---|
| 2255 | DO ig=1,ngrid |
---|
[2900] | 2256 | zdtsurf(ig,:) = zdtsurf(ig,:) + zdtsurfc(ig,:) |
---|
[2566] | 2257 | ENDDO |
---|
[1114] | 2258 | |
---|
| 2259 | DO iq=1, nq |
---|
| 2260 | DO l=1,nlayer |
---|
| 2261 | DO ig=1,ngrid |
---|
[2362] | 2262 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqc(ig,l,iq) |
---|
[1114] | 2263 | ENDDO |
---|
| 2264 | ENDDO |
---|
| 2265 | ENDDO |
---|
| 2266 | |
---|
| 2267 | #ifndef MESOSCALE |
---|
| 2268 | ! update surface pressure |
---|
| 2269 | DO ig=1,ngrid |
---|
| 2270 | ps(ig) = zplev(ig,1) + pdpsrf(ig)*ptimestep |
---|
| 2271 | ENDDO |
---|
| 2272 | ! update pressure levels |
---|
| 2273 | DO l=1,nlayer |
---|
| 2274 | DO ig=1,ngrid |
---|
| 2275 | zplay(ig,l) = aps(l) + bps(l)*ps(ig) |
---|
| 2276 | zplev(ig,l) = ap(l) + bp(l)*ps(ig) |
---|
| 2277 | ENDDO |
---|
| 2278 | ENDDO |
---|
| 2279 | zplev(:,nlayer+1) = 0. |
---|
[3157] | 2280 | |
---|
[3203] | 2281 | ! Calculation of zzlay and zzlay with udpated pressure and temperature |
---|
| 2282 | DO ig=1,ngrid |
---|
| 2283 | zzlay(ig,1)=-(log(zplay(ig,1)/ps(ig)))*rnew(ig,1)* |
---|
| 2284 | & (pt(ig,1)+pdt(ig,1)*ptimestep) /g |
---|
| 2285 | |
---|
| 2286 | DO l=2,nlayer |
---|
| 2287 | |
---|
[3157] | 2288 | ! compute "mean" temperature of the layer |
---|
| 2289 | if((pt(ig,l)+pdt(ig,l)*ptimestep) .eq. |
---|
| 2290 | & (pt(ig,l-1)+pdt(ig,l-1)*ptimestep)) then |
---|
| 2291 | tlaymean= pt(ig,l)+pdt(ig,l)*ptimestep |
---|
| 2292 | else |
---|
[3203] | 2293 | tlaymean=((pt(ig,l)+pdt(ig,l)*ptimestep)- |
---|
| 2294 | & (pt(ig,l-1)+pdt(ig,l-1)*ptimestep))/ |
---|
| 2295 | & log((pt(ig,l)+pdt(ig,l)*ptimestep)/ |
---|
| 2296 | & (pt(ig,l-1)+pdt(ig,l-1)*ptimestep)) |
---|
[3157] | 2297 | endif |
---|
[3203] | 2298 | |
---|
[3157] | 2299 | ! compute gravitational acceleration (at altitude zaeroid(nlayer-1)) |
---|
| 2300 | gz(ig,l)=g*(rad**2)/(rad+zzlay(ig,l-1)+(phisfi(ig)/g))**2 |
---|
| 2301 | |
---|
[3203] | 2302 | |
---|
| 2303 | zzlay(ig,l)=zzlay(ig,l-1)- |
---|
[3157] | 2304 | & (log(zplay(ig,l)/zplay(ig,l-1))*rnew(ig,l)*tlaymean/gz(ig,l)) |
---|
[3203] | 2305 | |
---|
| 2306 | |
---|
[3157] | 2307 | ! update layers altitude |
---|
| 2308 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
---|
| 2309 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
---|
| 2310 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
[1114] | 2311 | ENDDO |
---|
[3203] | 2312 | ENDDO |
---|
[1114] | 2313 | #endif |
---|
[1996] | 2314 | ENDIF ! of IF (callcond) |
---|
| 2315 | |
---|
[1114] | 2316 | c----------------------------------------------------------------------- |
---|
[2184] | 2317 | c Updating tracer budget on surface |
---|
[3203] | 2318 | c----------------------------------------------------------------------- |
---|
[2184] | 2319 | DO iq=1, nq |
---|
| 2320 | DO ig=1,ngrid |
---|
[2900] | 2321 | DO islope = 1,nslope |
---|
| 2322 | qsurf(ig,iq,islope)=qsurf(ig,iq,islope)+ |
---|
| 2323 | & ptimestep*dqsurf(ig,iq,islope) |
---|
[3203] | 2324 | ENDDO |
---|
[2184] | 2325 | ENDDO ! (ig) |
---|
| 2326 | ENDDO ! (iq) |
---|
| 2327 | c----------------------------------------------------------------------- |
---|
[2149] | 2328 | c 12. Surface and sub-surface soil temperature |
---|
[42] | 2329 | c----------------------------------------------------------------------- |
---|
| 2330 | c |
---|
| 2331 | c |
---|
[2149] | 2332 | c 12.1 Increment Surface temperature: |
---|
[42] | 2333 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 2334 | |
---|
| 2335 | DO ig=1,ngrid |
---|
[2900] | 2336 | DO islope = 1,nslope |
---|
| 2337 | tsurf(ig,islope)=tsurf(ig,islope)+ |
---|
[3203] | 2338 | & ptimestep*zdtsurf(ig,islope) |
---|
[2900] | 2339 | ENDDO |
---|
[42] | 2340 | ENDDO |
---|
| 2341 | |
---|
| 2342 | c Prescribe a cold trap at south pole (except at high obliquity !!) |
---|
| 2343 | c Temperature at the surface is set there to be the temperature |
---|
| 2344 | c corresponding to equilibrium temperature between phases of CO2 |
---|
| 2345 | |
---|
[411] | 2346 | |
---|
[2823] | 2347 | IF (water) THEN |
---|
[3203] | 2348 | !#ifndef MESOSCALE |
---|
[2009] | 2349 | ! if (caps.and.(obliquit.lt.27.)) then => now done in co2condens |
---|
[226] | 2350 | ! NB: Updated surface pressure, at grid point 'ngrid', is |
---|
[883] | 2351 | ! ps(ngrid)=zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep |
---|
[1114] | 2352 | ! tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095* |
---|
| 2353 | ! & (zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep))) |
---|
| 2354 | ! tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095*ps(ngrid))) |
---|
| 2355 | ! endif |
---|
| 2356 | !#endif |
---|
[42] | 2357 | c ------------------------------------------------------------- |
---|
[283] | 2358 | c Change of surface albedo in case of ground frost |
---|
[42] | 2359 | c everywhere except on the north permanent cap and in regions |
---|
[3203] | 2360 | c covered by dry ice. |
---|
[2009] | 2361 | c ALWAYS PLACE these lines after co2condens !!! |
---|
[42] | 2362 | c ------------------------------------------------------------- |
---|
| 2363 | do ig=1,ngrid |
---|
[2900] | 2364 | do islope = 1,nslope |
---|
| 2365 | if ((qsurf(ig,igcm_co2,islope).eq.0).and. |
---|
| 2366 | & (qsurf(ig,igcm_h2o_ice,islope) |
---|
| 2367 | & .gt.frost_albedo_threshold)) then |
---|
[2561] | 2368 | if ((watercaptag(ig)).and.(cst_cap_albedo)) then |
---|
[2900] | 2369 | albedo(ig,1,islope) = albedo_h2o_cap |
---|
| 2370 | albedo(ig,2,islope) = albedo_h2o_cap |
---|
[2512] | 2371 | else |
---|
[2900] | 2372 | albedo(ig,1,islope) = albedo_h2o_frost |
---|
| 2373 | albedo(ig,2,islope) = albedo_h2o_frost |
---|
[2561] | 2374 | endif !((watercaptag(ig)).and.(cst_cap_albedo)) then |
---|
[283] | 2375 | c write(*,*) "frost thickness", qsurf(ig,igcm_h2o_ice) |
---|
| 2376 | c write(*,*) "physiq.F frost :" |
---|
[1541] | 2377 | c & ,latitude(ig)*180./pi, longitude(ig)*180./pi |
---|
[42] | 2378 | endif |
---|
[2900] | 2379 | enddo ! islope |
---|
[42] | 2380 | enddo ! of do ig=1,ngrid |
---|
[2823] | 2381 | ENDIF ! of IF (water) |
---|
[42] | 2382 | |
---|
[528] | 2383 | c |
---|
[2149] | 2384 | c 12.2 Compute soil temperatures and subsurface heat flux: |
---|
[42] | 2385 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 2386 | IF (callsoil) THEN |
---|
[833] | 2387 | c Thermal inertia feedback |
---|
[3230] | 2388 | IF (surfaceice_tifeedback.or.poreice_tifeedback) THEN |
---|
| 2389 | |
---|
| 2390 | CALL waterice_tifeedback(ngrid,nsoilmx,nslope, |
---|
| 2391 | s qsurf(:,igcm_h2o_ice,:),pore_icefraction, |
---|
| 2392 | s inertiesoil_tifeedback(:,:,:)) |
---|
| 2393 | |
---|
[2942] | 2394 | CALL soil(ngrid,nsoilmx,.false.,inertiesoil_tifeedback, |
---|
[833] | 2395 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 2396 | ELSE |
---|
[2942] | 2397 | CALL soil(ngrid,nsoilmx,.false.,inertiesoil, |
---|
[833] | 2398 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 2399 | ENDIF |
---|
[42] | 2400 | ENDIF |
---|
| 2401 | |
---|
[1974] | 2402 | c To avoid negative values |
---|
| 2403 | IF (rdstorm) THEN |
---|
[3203] | 2404 | where (pq(:,:,igcm_stormdust_mass) + |
---|
[1974] | 2405 | & ptimestep*pdq(:,:,igcm_stormdust_mass) < 0.) |
---|
[3203] | 2406 | pdq(:,:,igcm_stormdust_mass) = |
---|
[1974] | 2407 | & - pq(:,:,igcm_stormdust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 2408 | pdq(:,:,igcm_stormdust_number) = |
---|
[1974] | 2409 | & - pq(:,:,igcm_stormdust_number)/ptimestep + 1.e-30 |
---|
| 2410 | end where |
---|
[3203] | 2411 | where (pq(:,:,igcm_stormdust_number) + |
---|
[1974] | 2412 | & ptimestep*pdq(:,:,igcm_stormdust_number) < 0.) |
---|
[3203] | 2413 | pdq(:,:,igcm_stormdust_mass) = |
---|
[1974] | 2414 | & - pq(:,:,igcm_stormdust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 2415 | pdq(:,:,igcm_stormdust_number) = |
---|
[1974] | 2416 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 2417 | end where |
---|
| 2418 | |
---|
[3203] | 2419 | where (pq(:,:,igcm_dust_mass) + |
---|
[1974] | 2420 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
---|
[3203] | 2421 | pdq(:,:,igcm_dust_mass) = |
---|
[1974] | 2422 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 2423 | pdq(:,:,igcm_dust_number) = |
---|
[1974] | 2424 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 2425 | end where |
---|
[3203] | 2426 | where (pq(:,:,igcm_dust_number) + |
---|
[1974] | 2427 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
---|
[3203] | 2428 | pdq(:,:,igcm_dust_mass) = |
---|
[1974] | 2429 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
[3203] | 2430 | pdq(:,:,igcm_dust_number) = |
---|
[1974] | 2431 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 2432 | end where |
---|
[3203] | 2433 | ENDIF !(rdstorm) |
---|
[1974] | 2434 | |
---|
[42] | 2435 | c----------------------------------------------------------------------- |
---|
[2260] | 2436 | c J. Naar : Surface and sub-surface water ice |
---|
| 2437 | c----------------------------------------------------------------------- |
---|
| 2438 | c |
---|
| 2439 | c |
---|
| 2440 | c Increment Watercap (surface h2o reservoirs): |
---|
| 2441 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 2442 | |
---|
| 2443 | DO ig=1,ngrid |
---|
[2900] | 2444 | DO islope = 1,nslope |
---|
| 2445 | watercap(ig,islope)=watercap(ig,islope)+ |
---|
| 2446 | s ptimestep*dwatercap(ig,islope) |
---|
| 2447 | ENDDO |
---|
[2260] | 2448 | ENDDO |
---|
| 2449 | |
---|
[2561] | 2450 | IF (refill_watercap) THEN |
---|
| 2451 | |
---|
[3159] | 2452 | DO ig = 1,ngrid |
---|
[2900] | 2453 | DO islope = 1,nslope |
---|
[3159] | 2454 | if (watercaptag(ig) .and. (qsurf(ig,igcm_h2o_ice,islope) |
---|
| 2455 | & > frost_metam_threshold)) then |
---|
[2561] | 2456 | |
---|
[3159] | 2457 | watercap(ig,islope) = watercap(ig,islope) |
---|
| 2458 | & + qsurf(ig,igcm_h2o_ice,islope) |
---|
| 2459 | & - frost_metam_threshold |
---|
[2900] | 2460 | qsurf(ig,igcm_h2o_ice,islope) = frost_metam_threshold |
---|
[3159] | 2461 | endif ! watercaptag |
---|
[2900] | 2462 | ENDDO |
---|
[2561] | 2463 | ENDDO |
---|
| 2464 | |
---|
[3159] | 2465 | ENDIF ! refill_watercap |
---|
[2561] | 2466 | |
---|
[2260] | 2467 | c----------------------------------------------------------------------- |
---|
[2149] | 2468 | c 13. Write output files |
---|
[42] | 2469 | c ---------------------- |
---|
[2900] | 2470 | call compute_meshgridavg(ngrid,nq,albedo,emis,tsurf,qsurf, |
---|
| 2471 | & albedo_meshavg,emis_meshavg,tsurf_meshavg,qsurf_meshavg) |
---|
| 2472 | |
---|
[42] | 2473 | c ------------------------------- |
---|
| 2474 | c Dynamical fields incrementation |
---|
| 2475 | c ------------------------------- |
---|
| 2476 | c (FOR OUTPUT ONLY : the actual model integration is performed in the dynamics) |
---|
| 2477 | ! temperature, zonal and meridional wind |
---|
| 2478 | DO l=1,nlayer |
---|
| 2479 | DO ig=1,ngrid |
---|
| 2480 | zt(ig,l)=pt(ig,l) + pdt(ig,l)*ptimestep |
---|
| 2481 | zu(ig,l)=pu(ig,l) + pdu(ig,l)*ptimestep |
---|
| 2482 | zv(ig,l)=pv(ig,l) + pdv(ig,l)*ptimestep |
---|
| 2483 | ENDDO |
---|
| 2484 | ENDDO |
---|
| 2485 | |
---|
| 2486 | ! tracers |
---|
| 2487 | DO iq=1, nq |
---|
| 2488 | DO l=1,nlayer |
---|
| 2489 | DO ig=1,ngrid |
---|
| 2490 | zq(ig,l,iq)=pq(ig,l,iq) +pdq(ig,l,iq)*ptimestep |
---|
| 2491 | ENDDO |
---|
| 2492 | ENDDO |
---|
| 2493 | ENDDO |
---|
| 2494 | |
---|
[2362] | 2495 | ! Density |
---|
[42] | 2496 | DO l=1,nlayer |
---|
| 2497 | DO ig=1,ngrid |
---|
| 2498 | rho(ig,l) = zplay(ig,l)/(rnew(ig,l)*zt(ig,l)) |
---|
| 2499 | ENDDO |
---|
| 2500 | ENDDO |
---|
| 2501 | |
---|
[269] | 2502 | ! Potential Temperature |
---|
| 2503 | |
---|
[1047] | 2504 | DO ig=1,ngrid |
---|
| 2505 | DO l=1,nlayer |
---|
[528] | 2506 | zh(ig,l) = zt(ig,l)*(zplev(ig,1)/zplay(ig,l))**rcp |
---|
[269] | 2507 | ENDDO |
---|
| 2508 | ENDDO |
---|
| 2509 | |
---|
[226] | 2510 | c Compute surface stress : (NB: z0 is a common in surfdat.h) |
---|
[42] | 2511 | c DO ig=1,ngrid |
---|
[226] | 2512 | c cd = (0.4/log(zzlay(ig,1)/z0(ig)))**2 |
---|
[42] | 2513 | c zstress(ig) = rho(ig,1)*cd*(zu(ig,1)**2 + zv(ig,1)**2) |
---|
| 2514 | c ENDDO |
---|
| 2515 | |
---|
| 2516 | c Sum of fluxes in solar spectral bands (for output only) |
---|
[2685] | 2517 | fluxtop_dn_sw_tot(1:ngrid)=fluxtop_dn_sw(1:ngrid,1) + |
---|
| 2518 | & fluxtop_dn_sw(1:ngrid,2) |
---|
| 2519 | fluxtop_up_sw_tot(1:ngrid)=fluxtop_up_sw(1:ngrid,1) + |
---|
| 2520 | & fluxtop_up_sw(1:ngrid,2) |
---|
[2900] | 2521 | fluxsurf_dn_sw_tot(1:ngrid,1:nslope)= |
---|
| 2522 | & fluxsurf_dn_sw(1:ngrid,1,1:nslope) + |
---|
| 2523 | & fluxsurf_dn_sw(1:ngrid,2,1:nslope) |
---|
[2685] | 2524 | fluxsurf_up_sw_tot(1:ngrid)=fluxsurf_up_sw(1:ngrid,1) + |
---|
| 2525 | & fluxsurf_up_sw(1:ngrid,2) |
---|
| 2526 | |
---|
[42] | 2527 | c ******* TEST ****************************************************** |
---|
[835] | 2528 | ztim1 = 999 |
---|
| 2529 | DO l=1,nlayer |
---|
| 2530 | DO ig=1,ngrid |
---|
| 2531 | if (pt(ig,l).lt.ztim1) then |
---|
| 2532 | ztim1 = pt(ig,l) |
---|
| 2533 | igmin = ig |
---|
[3203] | 2534 | lmin = l |
---|
[835] | 2535 | end if |
---|
| 2536 | ENDDO |
---|
| 2537 | ENDDO |
---|
| 2538 | if(min(pt(igmin,lmin),zt(igmin,lmin)).lt.70.) then |
---|
| 2539 | write(*,*) 'PHYSIQ: stability WARNING :' |
---|
| 2540 | write(*,*) 'pt, zt Tmin = ', pt(igmin,lmin), zt(igmin,lmin), |
---|
| 2541 | & 'ig l =', igmin, lmin |
---|
| 2542 | end if |
---|
[42] | 2543 | c ******************************************************************* |
---|
| 2544 | |
---|
| 2545 | c --------------------- |
---|
[3203] | 2546 | c Outputs to the screen |
---|
[42] | 2547 | c --------------------- |
---|
| 2548 | |
---|
| 2549 | IF (lwrite) THEN |
---|
[3037] | 2550 | write(*,*)'Global diagnostics for the physics' |
---|
| 2551 | write(*,*)'Variables and their increments x and dx/dt * dt' |
---|
[42] | 2552 | WRITE(*,'(a6,a10,2a15)') 'Ts','dTs','ps','dps' |
---|
| 2553 | WRITE(*,'(2f10.5,2f15.5)') |
---|
[2900] | 2554 | s tsurf(igout,:),zdtsurf(igout,:)*ptimestep, |
---|
[883] | 2555 | s zplev(igout,1),pdpsrf(igout)*ptimestep |
---|
[42] | 2556 | WRITE(*,'(a4,a6,5a10)') 'l','u','du','v','dv','T','dT' |
---|
| 2557 | WRITE(*,'(i4,6f10.5)') (l, |
---|
| 2558 | s pu(igout,l),pdu(igout,l)*ptimestep, |
---|
| 2559 | s pv(igout,l),pdv(igout,l)*ptimestep, |
---|
| 2560 | s pt(igout,l),pdt(igout,l)*ptimestep, |
---|
| 2561 | s l=1,nlayer) |
---|
| 2562 | ENDIF ! of IF (lwrite) |
---|
| 2563 | |
---|
[566] | 2564 | c ---------------------------------------------------------- |
---|
| 2565 | c ---------------------------------------------------------- |
---|
| 2566 | c INTERPOLATIONS IN THE SURFACE-LAYER |
---|
| 2567 | c ---------------------------------------------------------- |
---|
| 2568 | c ---------------------------------------------------------- |
---|
| 2569 | |
---|
[657] | 2570 | n_out=0 ! number of elements in the z_out array. |
---|
[636] | 2571 | ! for z_out=[3.,2.,1.,0.5,0.1], n_out must be set |
---|
| 2572 | ! to 5 |
---|
| 2573 | IF (n_out .ne. 0) THEN |
---|
[566] | 2574 | |
---|
[636] | 2575 | IF(.NOT. ALLOCATED(z_out)) ALLOCATE(z_out(n_out)) |
---|
| 2576 | IF(.NOT. ALLOCATED(T_out)) ALLOCATE(T_out(ngrid,n_out)) |
---|
| 2577 | IF(.NOT. ALLOCATED(u_out)) ALLOCATE(u_out(ngrid,n_out)) |
---|
[566] | 2578 | |
---|
[636] | 2579 | z_out(:)=[3.,2.,1.,0.5,0.1] |
---|
| 2580 | u_out(:,:)=0. |
---|
| 2581 | T_out(:,:)=0. |
---|
[566] | 2582 | |
---|
[636] | 2583 | call pbl_parameters(ngrid,nlayer,ps,zplay,z0, |
---|
[3219] | 2584 | & g,zzlay,zzlev,zu,zv,wstar,hfmax_th,zmax_th,q2,tsurf(:,iflat), |
---|
[3151] | 2585 | & zh,z_out,n_out,T_out,u_out,ustar,tstar,vhf,vvv) |
---|
[1242] | 2586 | ! pourquoi ustar recalcule ici? fait dans vdifc. |
---|
[566] | 2587 | |
---|
| 2588 | #ifndef MESOSCALE |
---|
| 2589 | DO n=1,n_out |
---|
[636] | 2590 | write(zstring, '(F8.6)') z_out(n) |
---|
[2932] | 2591 | call write_output('T_out_'//trim(zstring), |
---|
| 2592 | & 'potential temperature at z_out','K',T_out(:,n)) |
---|
| 2593 | call write_output('u_out_'//trim(zstring), |
---|
| 2594 | & 'horizontal velocity norm at z_out','m/s',u_out(:,n)) |
---|
[636] | 2595 | ENDDO |
---|
[2932] | 2596 | call write_output('u_star', |
---|
| 2597 | & 'friction velocity','m/s',ustar) |
---|
| 2598 | call write_output('teta_star', |
---|
| 2599 | & 'friction potential temperature','K',tstar) |
---|
| 2600 | call write_output('vvv', |
---|
| 2601 | & 'Vertical velocity variance at zout','m',vvv) |
---|
| 2602 | call write_output('vhf', |
---|
| 2603 | & 'Vertical heat flux at zout','m',vhf) |
---|
[636] | 2604 | #else |
---|
| 2605 | T_out1(:)=T_out(:,1) |
---|
| 2606 | u_out1(:)=u_out(:,1) |
---|
[566] | 2607 | #endif |
---|
| 2608 | |
---|
| 2609 | ENDIF |
---|
| 2610 | |
---|
| 2611 | c ---------------------------------------------------------- |
---|
| 2612 | c ---------------------------------------------------------- |
---|
| 2613 | c END OF SURFACE LAYER INTERPOLATIONS |
---|
| 2614 | c ---------------------------------------------------------- |
---|
| 2615 | c ---------------------------------------------------------- |
---|
| 2616 | |
---|
[226] | 2617 | #ifndef MESOSCALE |
---|
[42] | 2618 | c ------------------------------------------------------------------- |
---|
| 2619 | c Writing NetCDF file "RESTARTFI" at the end of the run |
---|
| 2620 | c ------------------------------------------------------------------- |
---|
| 2621 | c Note: 'restartfi' is stored just before dynamics are stored |
---|
| 2622 | c in 'restart'. Between now and the writting of 'restart', |
---|
| 2623 | c there will have been the itau=itau+1 instruction and |
---|
| 2624 | c a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
---|
| 2625 | c thus we store for time=time+dtvr |
---|
| 2626 | |
---|
[2646] | 2627 | ! default: not writing a restart file at this time step |
---|
[3203] | 2628 | write_restart=.false. |
---|
[2646] | 2629 | IF (ecritstart.GT.0) THEN |
---|
| 2630 | ! For when we store multiple time steps in the restart file |
---|
| 2631 | IF (MODULO(icount*iphysiq,ecritstart).EQ.0) THEN |
---|
| 2632 | write_restart=.true. |
---|
| 2633 | ENDIF |
---|
| 2634 | ENDIF |
---|
| 2635 | IF (lastcall) THEN |
---|
| 2636 | ! Always write a restart at the end of the simulation |
---|
| 2637 | write_restart=.true. |
---|
| 2638 | ENDIF |
---|
[3203] | 2639 | |
---|
[2646] | 2640 | IF (write_restart) THEN |
---|
| 2641 | IF (grid_type==unstructured) THEN !IF DYNAMICO |
---|
[2507] | 2642 | |
---|
[2501] | 2643 | ! When running Dynamico, no need to add a dynamics time step to ztime_fin |
---|
[3203] | 2644 | IF (ptime.LE. 1.E-10) THEN |
---|
[2501] | 2645 | ! Residual ptime occurs with Dynamico |
---|
| 2646 | ztime_fin = pday !+ ptime + ptimestep/(float(iphysiq)*daysec) |
---|
| 2647 | . - day_ini - time_phys |
---|
| 2648 | ELSE |
---|
| 2649 | ztime_fin = pday + ptime !+ ptimestep/(float(iphysiq)*daysec) |
---|
| 2650 | . - day_ini - time_phys |
---|
| 2651 | ENDIF |
---|
[2514] | 2652 | if (ecritstart==0) then |
---|
| 2653 | ztime_fin = ztime_fin-(day_end-day_ini) |
---|
| 2654 | endif |
---|
[2507] | 2655 | |
---|
[2646] | 2656 | ELSE ! IF LMDZ |
---|
[2507] | 2657 | |
---|
[3094] | 2658 | if (ecritstart.GT.0) then !IF MULTIPLE RESTARTS nothing change |
---|
[3203] | 2659 | ztime_fin = pday - day_ini + ptime |
---|
[3094] | 2660 | & + ptimestep/(float(iphysiq)*daysec) |
---|
| 2661 | else !IF ONE RESTART final time in top of day_end |
---|
[3203] | 2662 | ztime_fin = pday - day_ini-(day_end-day_ini) |
---|
[3094] | 2663 | & + ptime + ptimestep/(float(iphysiq)*daysec) |
---|
| 2664 | endif |
---|
[2507] | 2665 | |
---|
[2646] | 2666 | ENDIF ! of IF (grid_type==unstructured) |
---|
[3203] | 2667 | write(*,'(A,I7,A,F12.5)') |
---|
[2646] | 2668 | . 'PHYSIQ: writing in restartfi ; icount=', |
---|
[999] | 2669 | . icount,' date=',ztime_fin |
---|
[3203] | 2670 | |
---|
[3113] | 2671 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil, |
---|
[999] | 2672 | . ptimestep,ztime_fin, |
---|
[2942] | 2673 | . tsurf,tsoil,inertiesoil,albedo, |
---|
[3113] | 2674 | . emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, |
---|
[3130] | 2675 | . wstar,watercap,perennial_co2ice) |
---|
[2924] | 2676 | ENDIF ! of IF (write_restart) |
---|
| 2677 | |
---|
[226] | 2678 | #endif |
---|
[42] | 2679 | |
---|
[2931] | 2680 | c IF (ngrid.NE.1) then |
---|
[2924] | 2681 | |
---|
[42] | 2682 | c ------------------------------------------------------------------- |
---|
| 2683 | c Calculation of diagnostic variables written in both stats and |
---|
| 2684 | c diagfi files |
---|
| 2685 | c ------------------------------------------------------------------- |
---|
[2678] | 2686 | do ig=1,ngrid |
---|
[3203] | 2687 | if(mu0(ig).le.0.01) then |
---|
| 2688 | fluxsurf_dir_dn_sw(ig) = 0. |
---|
| 2689 | else |
---|
[3147] | 2690 | if (water) then |
---|
| 2691 | ! both water and dust contribute |
---|
[3148] | 2692 | fluxsurf_dir_dn_sw(ig) = flux_1AU/dist_sol/dist_sol*mu0(ig)* |
---|
[2678] | 2693 | & exp(-(tau(ig,iaer_dust_doubleq)+ |
---|
| 2694 | & tau(ig,iaer_h2o_ice))/mu0(ig)) |
---|
[3147] | 2695 | else |
---|
| 2696 | ! only dust contributes |
---|
[3148] | 2697 | fluxsurf_dir_dn_sw(ig) = flux_1AU/dist_sol/dist_sol*mu0(ig)* |
---|
[3147] | 2698 | & exp(-(tau(ig,iaer_dust_doubleq))/mu0(ig)) |
---|
| 2699 | endif ! of if (water) |
---|
| 2700 | endif ! of if(mu0(ig).le.0.01) |
---|
[2678] | 2701 | enddo |
---|
| 2702 | |
---|
[2282] | 2703 | ! Density-scaled opacities |
---|
[2362] | 2704 | do ig=1,ngrid |
---|
| 2705 | dsodust(ig,:) = |
---|
[2282] | 2706 | & dsodust(ig,:)*tauscaling(ig) |
---|
[2362] | 2707 | dsords(ig,:) = |
---|
[2282] | 2708 | & dsords(ig,:)*tauscaling(ig) |
---|
| 2709 | dsotop(ig,:) = |
---|
| 2710 | & dsotop(ig,:)*tauscaling(ig) |
---|
| 2711 | enddo |
---|
[2362] | 2712 | |
---|
[719] | 2713 | if(doubleq) then |
---|
[3203] | 2714 | do ig=1,ngrid |
---|
| 2715 | IF (sedimentation) THEN |
---|
| 2716 | dqdustsurf(ig) = |
---|
[756] | 2717 | & zdqssed(ig,igcm_dust_mass)*tauscaling(ig) |
---|
[3203] | 2718 | dndustsurf(ig) = |
---|
[756] | 2719 | & zdqssed(ig,igcm_dust_number)*tauscaling(ig) |
---|
[2931] | 2720 | ENDIF |
---|
[756] | 2721 | ndust(ig,:) = |
---|
[1720] | 2722 | & zq(ig,:,igcm_dust_number)*tauscaling(ig) |
---|
[756] | 2723 | qdust(ig,:) = |
---|
[1720] | 2724 | & zq(ig,:,igcm_dust_mass)*tauscaling(ig) |
---|
[719] | 2725 | enddo |
---|
| 2726 | if (scavenging) then |
---|
[3203] | 2727 | do ig=1,ngrid |
---|
| 2728 | IF (sedimentation) THEN |
---|
| 2729 | dqdustsurf(ig) = dqdustsurf(ig) + |
---|
[756] | 2730 | & zdqssed(ig,igcm_ccn_mass)*tauscaling(ig) |
---|
[3203] | 2731 | dndustsurf(ig) = dndustsurf(ig) + |
---|
[756] | 2732 | & zdqssed(ig,igcm_ccn_number)*tauscaling(ig) |
---|
[2931] | 2733 | ENDIF |
---|
[756] | 2734 | nccn(ig,:) = |
---|
[1720] | 2735 | & zq(ig,:,igcm_ccn_number)*tauscaling(ig) |
---|
[756] | 2736 | qccn(ig,:) = |
---|
[1720] | 2737 | & zq(ig,:,igcm_ccn_mass)*tauscaling(ig) |
---|
[719] | 2738 | enddo |
---|
| 2739 | endif |
---|
[1921] | 2740 | endif ! of (doubleq) |
---|
[1974] | 2741 | |
---|
| 2742 | if (rdstorm) then ! diagnostics of stormdust tendancies for 1D and 3D |
---|
| 2743 | mstormdtot(:)=0 |
---|
| 2744 | mdusttot(:)=0 |
---|
| 2745 | qdusttotal(:,:)=0 |
---|
[3203] | 2746 | do ig=1,ngrid |
---|
| 2747 | rdsdqdustsurf(ig) = |
---|
[1974] | 2748 | & zdqssed(ig,igcm_stormdust_mass)*tauscaling(ig) |
---|
[3203] | 2749 | rdsdndustsurf(ig) = |
---|
[1974] | 2750 | & zdqssed(ig,igcm_stormdust_number)*tauscaling(ig) |
---|
| 2751 | rdsndust(ig,:) = |
---|
| 2752 | & pq(ig,:,igcm_stormdust_number)*tauscaling(ig) |
---|
| 2753 | rdsqdust(ig,:) = |
---|
| 2754 | & pq(ig,:,igcm_stormdust_mass)*tauscaling(ig) |
---|
| 2755 | do l=1,nlayer |
---|
[3203] | 2756 | mstormdtot(ig) = mstormdtot(ig) + |
---|
| 2757 | & zq(ig,l,igcm_stormdust_mass) * |
---|
[1974] | 2758 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[3203] | 2759 | mdusttot(ig) = mdusttot(ig) + |
---|
| 2760 | & zq(ig,l,igcm_dust_mass) * |
---|
[1974] | 2761 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
| 2762 | qdusttotal(ig,l) = qdust(ig,l)+rdsqdust(ig,l) !calculate total dust |
---|
| 2763 | enddo |
---|
| 2764 | enddo |
---|
| 2765 | endif !(rdstorm) |
---|
[3203] | 2766 | |
---|
[42] | 2767 | if (water) then |
---|
[286] | 2768 | mtot(:)=0 |
---|
| 2769 | icetot(:)=0 |
---|
| 2770 | rave(:)=0 |
---|
| 2771 | tauTES(:)=0 |
---|
[2312] | 2772 | |
---|
| 2773 | IF (hdo) then |
---|
| 2774 | mtotD(:)=0 |
---|
| 2775 | icetotD(:)=0 |
---|
| 2776 | ENDIF !hdo |
---|
| 2777 | |
---|
[2362] | 2778 | do ig=1,ngrid |
---|
[1047] | 2779 | do l=1,nlayer |
---|
[3203] | 2780 | mtot(ig) = mtot(ig) + |
---|
| 2781 | & zq(ig,l,igcm_h2o_vap) * |
---|
[883] | 2782 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[3203] | 2783 | icetot(ig) = icetot(ig) + |
---|
| 2784 | & zq(ig,l,igcm_h2o_ice) * |
---|
[883] | 2785 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[2312] | 2786 | IF (hdo) then |
---|
[2362] | 2787 | mtotD(ig) = mtotD(ig) + |
---|
| 2788 | & zq(ig,l,igcm_hdo_vap) * |
---|
[2312] | 2789 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[2362] | 2790 | icetotD(ig) = icetotD(ig) + |
---|
| 2791 | & zq(ig,l,igcm_hdo_ice) * |
---|
[2312] | 2792 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
| 2793 | ENDIF !hdo |
---|
| 2794 | |
---|
[42] | 2795 | c Computing abs optical depth at 825 cm-1 in each |
---|
| 2796 | c layer to simulate NEW TES retrieval |
---|
| 2797 | Qabsice = min( |
---|
| 2798 | & max(0.4e6*rice(ig,l)*(1.+nuice_ref)-0.05 ,0.),1.2 |
---|
| 2799 | & ) |
---|
[3203] | 2800 | opTES(ig,l)= 0.75 * Qabsice * |
---|
[42] | 2801 | & zq(ig,l,igcm_h2o_ice) * |
---|
[883] | 2802 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[42] | 2803 | & / (rho_ice * rice(ig,l) * (1.+nuice_ref)) |
---|
[3203] | 2804 | tauTES(ig)=tauTES(ig)+ opTES(ig,l) |
---|
[42] | 2805 | enddo |
---|
[669] | 2806 | c rave(ig)=rave(ig)/max(icetot(ig),1.e-30) ! mass weight |
---|
| 2807 | c if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
---|
[42] | 2808 | enddo |
---|
[1047] | 2809 | call watersat(ngrid*nlayer,zt,zplay,zqsat) |
---|
[669] | 2810 | satu(:,:) = zq(:,:,igcm_h2o_vap)/zqsat(:,:) |
---|
[42] | 2811 | |
---|
[669] | 2812 | if (scavenging) then |
---|
| 2813 | Nccntot(:)= 0 |
---|
| 2814 | Mccntot(:)= 0 |
---|
| 2815 | rave(:)=0 |
---|
[3203] | 2816 | do ig=1,ngrid |
---|
[1047] | 2817 | do l=1,nlayer |
---|
[3203] | 2818 | Nccntot(ig) = Nccntot(ig) + |
---|
[669] | 2819 | & zq(ig,l,igcm_ccn_number)*tauscaling(ig) |
---|
[883] | 2820 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[3203] | 2821 | Mccntot(ig) = Mccntot(ig) + |
---|
[669] | 2822 | & zq(ig,l,igcm_ccn_mass)*tauscaling(ig) |
---|
[883] | 2823 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[3203] | 2824 | cccc Column integrated effective ice radius |
---|
| 2825 | cccc is weighted by total ice surface area (BETTER than total ice mass) |
---|
| 2826 | rave(ig) = rave(ig) + |
---|
[669] | 2827 | & tauscaling(ig) * |
---|
| 2828 | & zq(ig,l,igcm_ccn_number) * |
---|
[3203] | 2829 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
---|
[669] | 2830 | & rice(ig,l) * rice(ig,l)* (1.+nuice_ref) |
---|
| 2831 | enddo |
---|
| 2832 | rave(ig)=(icetot(ig)/rho_ice+Mccntot(ig)/rho_dust)*0.75 |
---|
| 2833 | & /max(pi*rave(ig),1.e-30) ! surface weight |
---|
| 2834 | if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
---|
| 2835 | enddo |
---|
[833] | 2836 | else ! of if (scavenging) |
---|
| 2837 | rave(:)=0 |
---|
[3203] | 2838 | do ig=1,ngrid |
---|
[1047] | 2839 | do l=1,nlayer |
---|
[3203] | 2840 | rave(ig) = rave(ig) + |
---|
[833] | 2841 | & zq(ig,l,igcm_h2o_ice) * |
---|
[3203] | 2842 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
---|
[833] | 2843 | & rice(ig,l) * (1.+nuice_ref) |
---|
| 2844 | enddo |
---|
[3203] | 2845 | rave(ig) = max(rave(ig) / |
---|
[833] | 2846 | & max(icetot(ig),1.e-30),1.e-30) ! mass weight |
---|
| 2847 | enddo |
---|
[669] | 2848 | endif ! of if (scavenging) |
---|
| 2849 | |
---|
[1711] | 2850 | !Alternative A. Pottier weighting |
---|
| 2851 | rave2(:) = 0. |
---|
| 2852 | totrave2(:) = 0. |
---|
| 2853 | do ig=1,ngrid |
---|
| 2854 | do l=1,nlayer |
---|
| 2855 | rave2(ig) =rave2(ig)+ zq(ig,l,igcm_h2o_ice)*rice(ig,l) |
---|
| 2856 | totrave2(ig) = totrave2(ig) + zq(ig,l,igcm_h2o_ice) |
---|
| 2857 | end do |
---|
| 2858 | rave2(ig)=max(rave2(ig)/max(totrave2(ig),1.e-30),1.e-30) |
---|
| 2859 | end do |
---|
| 2860 | |
---|
[42] | 2861 | endif ! of if (water) |
---|
[2551] | 2862 | |
---|
| 2863 | if (co2clouds) then |
---|
| 2864 | mtotco2(1:ngrid) = 0. |
---|
| 2865 | icetotco2(1:ngrid) = 0. |
---|
| 2866 | vaptotco2(1:ngrid) = 0. |
---|
| 2867 | do ig=1,ngrid |
---|
| 2868 | do l=1,nlayer |
---|
[3203] | 2869 | vaptotco2(ig) = vaptotco2(ig) + |
---|
| 2870 | & zq(ig,l,igcm_co2) * |
---|
[2551] | 2871 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[3203] | 2872 | icetotco2(ig) = icetot(ig) + |
---|
| 2873 | & zq(ig,l,igcm_co2_ice) * |
---|
[2551] | 2874 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
| 2875 | end do |
---|
| 2876 | mtotco2(ig) = icetotco2(ig) + vaptotco2(ig) |
---|
| 2877 | end do |
---|
| 2878 | end if |
---|
[2823] | 2879 | |
---|
[1212] | 2880 | #ifndef MESOSCALE |
---|
[42] | 2881 | c ----------------------------------------------------------------- |
---|
| 2882 | c WSTATS: Saving statistics |
---|
| 2883 | c ----------------------------------------------------------------- |
---|
[2563] | 2884 | c ("stats" stores and accumulates key variables in file "stats.nc" |
---|
[42] | 2885 | c which can later be used to make the statistic files of the run: |
---|
[2563] | 2886 | c if flag "callstats" from callphys.def is .true.) |
---|
[3203] | 2887 | |
---|
[695] | 2888 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
[2900] | 2889 | call wstats(ngrid,"tsurf","Surface temperature","K",2 |
---|
| 2890 | & ,tsurf(:,iflat)) |
---|
[695] | 2891 | call wstats(ngrid,"co2ice","CO2 ice cover", |
---|
[2900] | 2892 | & "kg.m-2",2,qsurf(:,igcm_co2,iflat)) |
---|
[2260] | 2893 | call wstats(ngrid,"watercap","H2O ice cover", |
---|
[2900] | 2894 | & "kg.m-2",2,watercap(:,iflat)) |
---|
[2415] | 2895 | call wstats(ngrid,"tau_pref_scenario", |
---|
| 2896 | & "prescribed visible dod at 610 Pa","NU", |
---|
| 2897 | & 2,tau_pref_scenario) |
---|
| 2898 | call wstats(ngrid,"tau_pref_gcm", |
---|
| 2899 | & "visible dod at 610 Pa in the GCM","NU", |
---|
| 2900 | & 2,tau_pref_gcm) |
---|
[695] | 2901 | call wstats(ngrid,"fluxsurf_lw", |
---|
[575] | 2902 | & "Thermal IR radiative flux to surface","W.m-2",2, |
---|
[2900] | 2903 | & fluxsurf_lw(:,iflat)) |
---|
[2685] | 2904 | call wstats(ngrid,"fluxsurf_dn_sw", |
---|
| 2905 | & "Incoming Solar radiative flux to surface","W.m-2",2, |
---|
[2900] | 2906 | & fluxsurf_dn_sw_tot(:,iflat)) |
---|
[2685] | 2907 | call wstats(ngrid,"fluxsurf_up_sw", |
---|
| 2908 | & "Reflected Solar radiative flux from surface","W.m-2",2, |
---|
| 2909 | & fluxsurf_up_sw_tot) |
---|
[695] | 2910 | call wstats(ngrid,"fluxtop_lw", |
---|
[575] | 2911 | & "Thermal IR radiative flux to space","W.m-2",2, |
---|
| 2912 | & fluxtop_lw) |
---|
[2685] | 2913 | call wstats(ngrid,"fluxtop_dn_sw", |
---|
| 2914 | & "Incoming Solar radiative flux from space","W.m-2",2, |
---|
| 2915 | & fluxtop_dn_sw_tot) |
---|
| 2916 | call wstats(ngrid,"fluxtop_up_sw", |
---|
| 2917 | & "Outgoing Solar radiative flux to space","W.m-2",2, |
---|
| 2918 | & fluxtop_up_sw_tot) |
---|
[695] | 2919 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
---|
| 2920 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
---|
| 2921 | call wstats(ngrid,"v","Meridional (North-South) wind", |
---|
[575] | 2922 | & "m.s-1",3,zv) |
---|
[705] | 2923 | call wstats(ngrid,"w","Vertical (down-up) wind", |
---|
| 2924 | & "m.s-1",3,pw) |
---|
[695] | 2925 | call wstats(ngrid,"rho","Atmospheric density","kg/m3",3,rho) |
---|
[883] | 2926 | call wstats(ngrid,"pressure","Pressure","Pa",3,zplay) |
---|
[758] | 2927 | call wstats(ngrid,"q2", |
---|
| 2928 | & "Boundary layer eddy kinetic energy", |
---|
| 2929 | & "m2.s-2",3,q2) |
---|
| 2930 | call wstats(ngrid,"emis","Surface emissivity","w.m-1",2, |
---|
[2900] | 2931 | & emis(:,iflat)) |
---|
[2685] | 2932 | call wstats(ngrid,"fluxsurf_dir_dn_sw", |
---|
| 2933 | & "Direct incoming SW flux at surface", |
---|
[3203] | 2934 | & "W.m-2",2,fluxsurf_dir_dn_sw) |
---|
[42] | 2935 | |
---|
[758] | 2936 | if (calltherm) then |
---|
| 2937 | call wstats(ngrid,"zmax_th","Height of thermals", |
---|
| 2938 | & "m",2,zmax_th) |
---|
| 2939 | call wstats(ngrid,"hfmax_th","Max thermals heat flux", |
---|
| 2940 | & "K.m/s",2,hfmax_th) |
---|
| 2941 | call wstats(ngrid,"wstar", |
---|
| 2942 | & "Max vertical velocity in thermals", |
---|
| 2943 | & "m/s",2,wstar) |
---|
| 2944 | endif |
---|
| 2945 | |
---|
[226] | 2946 | if (water) then |
---|
[1047] | 2947 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
---|
| 2948 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
---|
[719] | 2949 | call wstats(ngrid,"vmr_h2ovap", |
---|
[520] | 2950 | & "H2O vapor volume mixing ratio","mol/mol", |
---|
| 2951 | & 3,vmr) |
---|
[1047] | 2952 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 2953 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
---|
[520] | 2954 | call wstats(ngrid,"vmr_h2oice", |
---|
| 2955 | & "H2O ice volume mixing ratio","mol/mol", |
---|
| 2956 | & 3,vmr) |
---|
[1278] | 2957 | ! also store vmr_ice*rice for better diagnostics of rice |
---|
| 2958 | vmr(1:ngrid,1:nlayer)=vmr(1:ngrid,1:nlayer)* |
---|
[1502] | 2959 | & rice(1:ngrid,1:nlayer) |
---|
[1278] | 2960 | call wstats(ngrid,"vmr_h2oice_rice", |
---|
| 2961 | & "H2O ice mixing ratio times ice particule size", |
---|
| 2962 | & "(mol/mol)*m", |
---|
| 2963 | & 3,vmr) |
---|
[1047] | 2964 | vmr=zqsat(1:ngrid,1:nlayer) |
---|
| 2965 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
---|
[669] | 2966 | call wstats(ngrid,"vmr_h2osat", |
---|
| 2967 | & "saturation volume mixing ratio","mol/mol", |
---|
| 2968 | & 3,vmr) |
---|
[226] | 2969 | call wstats(ngrid,"h2o_ice_s", |
---|
| 2970 | & "surface h2o_ice","kg/m2", |
---|
[2900] | 2971 | & 2,qsurf(1,igcm_h2o_ice,iflat)) |
---|
[758] | 2972 | call wstats(ngrid,'albedo', |
---|
| 2973 | & 'albedo', |
---|
[2900] | 2974 | & '',2,albedo(1,1,iflat)) |
---|
[226] | 2975 | call wstats(ngrid,"mtot", |
---|
| 2976 | & "total mass of water vapor","kg/m2", |
---|
| 2977 | & 2,mtot) |
---|
| 2978 | call wstats(ngrid,"icetot", |
---|
| 2979 | & "total mass of water ice","kg/m2", |
---|
| 2980 | & 2,icetot) |
---|
[520] | 2981 | call wstats(ngrid,"reffice", |
---|
| 2982 | & "Mean reff","m", |
---|
| 2983 | & 2,rave) |
---|
[669] | 2984 | call wstats(ngrid,"Nccntot", |
---|
[520] | 2985 | & "condensation nuclei","Nbr/m2", |
---|
[669] | 2986 | & 2,Nccntot) |
---|
| 2987 | call wstats(ngrid,"Mccntot", |
---|
| 2988 | & "condensation nuclei mass","kg/m2", |
---|
| 2989 | & 2,Mccntot) |
---|
[520] | 2990 | call wstats(ngrid,"rice", |
---|
| 2991 | & "Ice particle size","m", |
---|
| 2992 | & 3,rice) |
---|
[226] | 2993 | if (.not.activice) then |
---|
| 2994 | call wstats(ngrid,"tauTESap", |
---|
| 2995 | & "tau abs 825 cm-1","", |
---|
| 2996 | & 2,tauTES) |
---|
[520] | 2997 | else |
---|
[1047] | 2998 | call wstats(ngrid,'tauTES', |
---|
[520] | 2999 | & 'tau abs 825 cm-1', |
---|
| 3000 | & '',2,taucloudtes) |
---|
[226] | 3001 | endif |
---|
| 3002 | |
---|
| 3003 | endif ! of if (water) |
---|
[2551] | 3004 | |
---|
| 3005 | if (co2clouds) then |
---|
| 3006 | call wstats(ngrid,"mtotco2", |
---|
| 3007 | & "total mass atm of co2","kg/m2", |
---|
| 3008 | & 2,mtotco2) |
---|
| 3009 | call wstats(ngrid,"icetotco2", |
---|
| 3010 | & "total mass atm of co2 ice","kg/m2", |
---|
| 3011 | & 2,icetotco2) |
---|
| 3012 | call wstats(ngrid,"vaptotco2", |
---|
| 3013 | & "total mass atm of co2 vapor","kg/m2", |
---|
| 3014 | & 2,icetotco2) |
---|
| 3015 | end if |
---|
[3203] | 3016 | |
---|
| 3017 | |
---|
[719] | 3018 | if (dustbin.ne.0) then |
---|
[3203] | 3019 | |
---|
[1047] | 3020 | call wstats(ngrid,'tau','taudust','SI',2,tau(1,1)) |
---|
[3203] | 3021 | |
---|
[719] | 3022 | if (doubleq) then |
---|
[1047] | 3023 | call wstats(ngrid,'dqsdust', |
---|
[719] | 3024 | & 'deposited surface dust mass', |
---|
| 3025 | & 'kg.m-2.s-1',2,dqdustsurf) |
---|
[1047] | 3026 | call wstats(ngrid,'dqndust', |
---|
[719] | 3027 | & 'deposited surface dust number', |
---|
| 3028 | & 'number.m-2.s-1',2,dndustsurf) |
---|
[1047] | 3029 | call wstats(ngrid,'reffdust','reffdust', |
---|
[719] | 3030 | & 'm',3,rdust*ref_r0) |
---|
[1047] | 3031 | call wstats(ngrid,'dustq','Dust mass mr', |
---|
[756] | 3032 | & 'kg/kg',3,qdust) |
---|
[1047] | 3033 | call wstats(ngrid,'dustN','Dust number', |
---|
[756] | 3034 | & 'part/kg',3,ndust) |
---|
[1974] | 3035 | if (rdstorm) then |
---|
| 3036 | call wstats(ngrid,'reffstormdust','reffdust', |
---|
| 3037 | & 'm',3,rstormdust*ref_r0) |
---|
| 3038 | call wstats(ngrid,'rdsdustq','Dust mass mr', |
---|
| 3039 | & 'kg/kg',3,rdsqdust) |
---|
| 3040 | call wstats(ngrid,'rdsdustN','Dust number', |
---|
| 3041 | & 'part/kg',3,rdsndust) |
---|
| 3042 | end if |
---|
[719] | 3043 | else |
---|
| 3044 | do iq=1,dustbin |
---|
| 3045 | write(str2(1:2),'(i2.2)') iq |
---|
[1047] | 3046 | call wstats(ngrid,'q'//str2,'mix. ratio', |
---|
[719] | 3047 | & 'kg/kg',3,zq(1,1,iq)) |
---|
[1047] | 3048 | call wstats(ngrid,'qsurf'//str2,'qsurf', |
---|
[2900] | 3049 | & 'kg.m-2',2,qsurf(1,iq,iflat)) |
---|
[719] | 3050 | end do |
---|
| 3051 | endif ! (doubleq) |
---|
[226] | 3052 | |
---|
[719] | 3053 | if (scavenging) then |
---|
[1047] | 3054 | call wstats(ngrid,'ccnq','CCN mass mr', |
---|
[756] | 3055 | & 'kg/kg',3,qccn) |
---|
[1047] | 3056 | call wstats(ngrid,'ccnN','CCN number', |
---|
[756] | 3057 | & 'part/kg',3,nccn) |
---|
[719] | 3058 | endif ! (scavenging) |
---|
[3203] | 3059 | |
---|
[1464] | 3060 | endif ! (dustbin.ne.0) |
---|
[719] | 3061 | |
---|
[2158] | 3062 | if (photochem) then |
---|
[1464] | 3063 | do iq=1,nq |
---|
| 3064 | if (noms(iq) .ne. "dust_mass" .and. |
---|
| 3065 | $ noms(iq) .ne. "dust_number" .and. |
---|
| 3066 | $ noms(iq) .ne. "ccn_mass" .and. |
---|
[1617] | 3067 | $ noms(iq) .ne. "ccn_number" .and. |
---|
| 3068 | $ noms(iq) .ne. "ccnco2_mass" .and. |
---|
[2825] | 3069 | $ noms(iq) .ne. "ccnco2_number" .and. |
---|
| 3070 | $ noms(iq) .ne. "stormdust_mass" .and. |
---|
| 3071 | $ noms(iq) .ne. "stormdust_number" .and. |
---|
| 3072 | $ noms(iq) .ne. "topdust_mass" .and. |
---|
| 3073 | $ noms(iq) .ne. "topdust_number") then |
---|
[1464] | 3074 | ! volume mixing ratio |
---|
| 3075 | |
---|
[705] | 3076 | vmr(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
---|
[1464] | 3077 | & *mmean(1:ngrid,1:nlayer)/mmol(iq) |
---|
| 3078 | |
---|
| 3079 | call wstats(ngrid,"vmr_"//trim(noms(iq)), |
---|
| 3080 | $ "Volume mixing ratio","mol/mol",3,vmr) |
---|
| 3081 | if ((noms(iq).eq."o") |
---|
| 3082 | $ .or. (noms(iq).eq."co2") |
---|
| 3083 | $ .or. (noms(iq).eq."o3") |
---|
| 3084 | $ .or. (noms(iq).eq."ar") |
---|
| 3085 | $ .or. (noms(iq).eq."o2") |
---|
| 3086 | $ .or. (noms(iq).eq."h2o_vap") ) then |
---|
[2932] | 3087 | call write_output("vmr_"//trim(noms(iq)), |
---|
| 3088 | $ "Volume mixing ratio","mol/mol",vmr(:,:)) |
---|
[1464] | 3089 | end if |
---|
| 3090 | |
---|
| 3091 | ! number density (molecule.cm-3) |
---|
| 3092 | |
---|
[705] | 3093 | rhopart(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
---|
| 3094 | & *rho(1:ngrid,1:nlayer)*n_avog/ |
---|
| 3095 | & (1000*mmol(iq)) |
---|
[1464] | 3096 | |
---|
[2481] | 3097 | call wstats(ngrid,"num_"//trim(noms(iq)), |
---|
[2158] | 3098 | $ "Number density","cm-3",3,rhopart) |
---|
[2932] | 3099 | call write_output("num_"//trim(noms(iq)), |
---|
| 3100 | $ "Number density","cm-3",rhopart(:,:)) |
---|
[226] | 3101 | |
---|
[1464] | 3102 | ! vertical column (molecule.cm-2) |
---|
| 3103 | |
---|
| 3104 | do ig = 1,ngrid |
---|
[3203] | 3105 | colden(ig,iq) = 0. |
---|
[1464] | 3106 | end do |
---|
[3203] | 3107 | do l=1,nlayer |
---|
| 3108 | do ig=1,ngrid |
---|
[1464] | 3109 | colden(ig,iq) = colden(ig,iq) + zq(ig,l,iq) |
---|
[3203] | 3110 | $ *(zplev(ig,l)-zplev(ig,l+1)) |
---|
| 3111 | $ *6.022e22/(mmol(iq)*g) |
---|
| 3112 | end do |
---|
| 3113 | end do |
---|
[1464] | 3114 | |
---|
[3203] | 3115 | call wstats(ngrid,"c_"//trim(noms(iq)), |
---|
| 3116 | $ "column","mol cm-2",2,colden(1,iq)) |
---|
[2932] | 3117 | call write_output("c_"//trim(noms(iq)), |
---|
| 3118 | $ "column","mol cm-2",colden(:,iq)) |
---|
[1464] | 3119 | |
---|
| 3120 | ! global mass (g) |
---|
[3203] | 3121 | |
---|
[1464] | 3122 | call planetwide_sumval(colden(:,iq)/6.022e23 |
---|
[1541] | 3123 | $ *mmol(iq)*1.e4*cell_area(:),mass(iq)) |
---|
[1464] | 3124 | |
---|
[2932] | 3125 | call write_output("mass_"//trim(noms(iq)), |
---|
| 3126 | $ "global mass","g",mass(iq)) |
---|
[1464] | 3127 | |
---|
| 3128 | end if ! of if (noms(iq) .ne. "dust_mass" ...) |
---|
| 3129 | end do ! of do iq=1,nq |
---|
[2158] | 3130 | end if ! of if (photochem) |
---|
[1464] | 3131 | |
---|
[2563] | 3132 | IF(lastcall.and.callstats) THEN |
---|
[226] | 3133 | write (*,*) "Writing stats..." |
---|
| 3134 | call mkstats(ierr) |
---|
| 3135 | ENDIF |
---|
| 3136 | |
---|
[42] | 3137 | c (Store EOF for Mars Climate database software) |
---|
| 3138 | IF (calleofdump) THEN |
---|
| 3139 | CALL eofdump(ngrid, nlayer, zu, zv, zt, rho, ps) |
---|
| 3140 | ENDIF |
---|
[1212] | 3141 | #endif |
---|
| 3142 | !endif of ifndef MESOSCALE |
---|
[42] | 3143 | |
---|
[1236] | 3144 | #ifdef MESOSCALE |
---|
[3203] | 3145 | |
---|
| 3146 | !! see comm_wrf. |
---|
[1236] | 3147 | !! not needed when an array is already in a shared module. |
---|
| 3148 | !! --> example : hfmax_th, zmax_th |
---|
[234] | 3149 | |
---|
[1590] | 3150 | CALL allocate_comm_wrf(ngrid,nlayer) |
---|
| 3151 | |
---|
[1236] | 3152 | !state real HR_SW ikj misc 1 - h "HR_SW" "HEATING RATE SW" "K/s" |
---|
| 3153 | comm_HR_SW(1:ngrid,1:nlayer) = zdtsw(1:ngrid,1:nlayer) |
---|
| 3154 | !state real HR_LW ikj misc 1 - h "HR_LW" "HEATING RATE LW" "K/s" |
---|
| 3155 | comm_HR_LW(1:ngrid,1:nlayer) = zdtlw(1:ngrid,1:nlayer) |
---|
| 3156 | !state real SWDOWNZ ij misc 1 - h "SWDOWNZ" "DOWNWARD SW FLUX AT SURFACE" "W m-2" |
---|
[2685] | 3157 | comm_SWDOWNZ(1:ngrid) = fluxsurf_dn_sw_tot(1:ngrid) |
---|
[1236] | 3158 | !state real TAU_DUST ij misc 1 - h "TAU_DUST" "REFERENCE VISIBLE DUST OPACITY" "" |
---|
[2415] | 3159 | comm_TAU_DUST(1:ngrid) = tau_pref_gcm(1:ngrid) |
---|
[1236] | 3160 | !state real RDUST ikj misc 1 - h "RDUST" "DUST RADIUS" "m" |
---|
| 3161 | comm_RDUST(1:ngrid,1:nlayer) = rdust(1:ngrid,1:nlayer) |
---|
| 3162 | !state real QSURFDUST ij misc 1 - h "QSURFDUST" "DUST MASS AT SURFACE" "kg m-2" |
---|
[308] | 3163 | IF (igcm_dust_mass .ne. 0) THEN |
---|
[1236] | 3164 | comm_QSURFDUST(1:ngrid) = qsurf(1:ngrid,igcm_dust_mass) |
---|
| 3165 | ELSE |
---|
| 3166 | comm_QSURFDUST(1:ngrid) = 0. |
---|
[308] | 3167 | ENDIF |
---|
[1236] | 3168 | !state real MTOT ij misc 1 - h "MTOT" "TOTAL MASS WATER VAPOR in pmic" "pmic" |
---|
| 3169 | comm_MTOT(1:ngrid) = mtot(1:ngrid) * 1.e6 / rho_ice |
---|
| 3170 | !state real ICETOT ij misc 1 - h "ICETOT" "TOTAL MASS WATER ICE" "kg m-2" |
---|
| 3171 | comm_ICETOT(1:ngrid) = icetot(1:ngrid) * 1.e6 / rho_ice |
---|
| 3172 | !state real VMR_ICE ikj misc 1 - h "VMR_ICE" "VOL. MIXING RATIO ICE" "ppm" |
---|
| 3173 | IF (igcm_h2o_ice .ne. 0) THEN |
---|
| 3174 | comm_VMR_ICE(1:ngrid,1:nlayer) = 1.e6 |
---|
| 3175 | . * zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 3176 | . * mmean(1:ngrid,1:nlayer) / mmol(igcm_h2o_ice) |
---|
| 3177 | ELSE |
---|
| 3178 | comm_VMR_ICE(1:ngrid,1:nlayer) = 0. |
---|
[81] | 3179 | ENDIF |
---|
[1236] | 3180 | !state real TAU_ICE ij misc 1 - h "TAU_ICE" "CLOUD OD at 825 cm-1 TES" "" |
---|
[1292] | 3181 | if (activice) then |
---|
| 3182 | comm_TAU_ICE(1:ngrid) = taucloudtes(1:ngrid) |
---|
| 3183 | else |
---|
| 3184 | comm_TAU_ICE(1:ngrid) = tauTES(1:ngrid) |
---|
| 3185 | endif |
---|
[1236] | 3186 | !state real RICE ikj misc 1 - h "RICE" "ICE RADIUS" "m" |
---|
| 3187 | comm_RICE(1:ngrid,1:nlayer) = rice(1:ngrid,1:nlayer) |
---|
[3203] | 3188 | |
---|
[1242] | 3189 | !! calculate sensible heat flux in W/m2 for outputs |
---|
| 3190 | !! -- the one computed in vdifc is not the real one |
---|
| 3191 | !! -- vdifc must have been called |
---|
| 3192 | if (.not.callrichsl) then |
---|
| 3193 | sensibFlux(1:ngrid) = zflubid(1:ngrid) |
---|
| 3194 | . - capcal(1:ngrid)*zdtsdif(1:ngrid) |
---|
| 3195 | else |
---|
[3203] | 3196 | sensibFlux(1:ngrid) = |
---|
[1242] | 3197 | & (pplay(1:ngrid,1)/(r*pt(1:ngrid,1)))*cpp |
---|
| 3198 | & *sqrt(pu(1:ngrid,1)*pu(1:ngrid,1)+pv(1:ngrid,1)*pv(1:ngrid,1) |
---|
| 3199 | & +(log(1.+0.7*wstar(1:ngrid) + 2.3*wstar(1:ngrid)**2))**2) |
---|
| 3200 | & *zcdh(1:ngrid)*(tsurf(1:ngrid)-zh(1:ngrid,1)) |
---|
| 3201 | endif |
---|
[3203] | 3202 | |
---|
[226] | 3203 | #else |
---|
[528] | 3204 | #ifndef MESOINI |
---|
[42] | 3205 | |
---|
[226] | 3206 | c ========================================================== |
---|
| 3207 | c WRITEDIAGFI: Outputs in netcdf file "DIAGFI", containing |
---|
| 3208 | c any variable for diagnostic (output with period |
---|
| 3209 | c "ecritphy", set in "run.def") |
---|
| 3210 | c ========================================================== |
---|
| 3211 | c WRITEDIAGFI can ALSO be called from any other subroutines |
---|
| 3212 | c for any variables !! |
---|
[2934] | 3213 | call write_output("emis","Surface emissivity","", |
---|
[2900] | 3214 | & emis(:,iflat)) |
---|
[2907] | 3215 | do islope=1,nslope |
---|
| 3216 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3217 | call write_output("emis_slope"//str2, |
---|
[2934] | 3218 | & "Surface emissivity","",emis(:,islope)) |
---|
[2907] | 3219 | ENDDO |
---|
[2934] | 3220 | call write_output("zzlay","Midlayer altitude", |
---|
| 3221 | & "m",zzlay(:,:)) |
---|
[2932] | 3222 | call write_output("zzlev","Interlayer altitude", |
---|
| 3223 | & "m",zzlev(:,1:nlayer)) |
---|
| 3224 | call write_output("pphi","Geopotential","m2s-2", |
---|
| 3225 | & pphi(:,:)) |
---|
| 3226 | call write_output("phisfi","Surface geopotential", |
---|
| 3227 | & "m2s-2",phisfi(:)) |
---|
[3078] | 3228 | if (grid_type == regular_lonlat) then |
---|
| 3229 | call write_output("area","Mesh area","m2", |
---|
| 3230 | & cell_area_for_lonlat_outputs) |
---|
| 3231 | else ! unstructured grid (e.g. dynamico) |
---|
| 3232 | call write_output("area","Mesh area","m2",cell_area) |
---|
| 3233 | endif |
---|
[2932] | 3234 | call write_output("tsurf","Surface temperature","K", |
---|
[2900] | 3235 | & tsurf(:,iflat)) |
---|
[2907] | 3236 | do islope=1,nslope |
---|
| 3237 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3238 | call write_output("tsurf_slope"//str2, |
---|
| 3239 | & "Surface temperature","K", |
---|
[2907] | 3240 | & tsurf(:,islope)) |
---|
| 3241 | ENDDO |
---|
[2932] | 3242 | call write_output("ps","surface pressure","Pa",ps(:)) |
---|
| 3243 | call write_output("co2ice","co2 ice thickness" |
---|
| 3244 | & ,"kg.m-2",qsurf(:,igcm_co2,iflat)) |
---|
[2907] | 3245 | do islope=1,nslope |
---|
| 3246 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3247 | call write_output("co2ice_slope"//str2,"co2 ice thickness" |
---|
| 3248 | & ,"kg.m-2",qsurf(:,igcm_co2,islope)) |
---|
[2907] | 3249 | ENDDO |
---|
[2934] | 3250 | call write_output("watercap","Perennial water ice thickness" |
---|
[2932] | 3251 | & ,"kg.m-2",watercap(:,iflat)) |
---|
[2907] | 3252 | do islope=1,nslope |
---|
| 3253 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3254 | call write_output("watercap_slope"//str2, |
---|
[2934] | 3255 | & "Perennial water ice thickness" |
---|
[2932] | 3256 | & ,"kg.m-2",watercap(:,islope)) |
---|
[2907] | 3257 | ENDDO |
---|
[3130] | 3258 | call write_output("perennial_co2ice", |
---|
| 3259 | & "Perennial co2 ice thickness","kg.m-2", |
---|
| 3260 | & perennial_co2ice(:,iflat)) |
---|
| 3261 | do islope=1,nslope |
---|
| 3262 | write(str2(1:2),'(i2.2)') islope |
---|
| 3263 | call write_output("perennial_co2ice_slope"//str2, |
---|
[3152] | 3264 | & "Perennial co2 ice thickness" |
---|
[3130] | 3265 | & ,"kg.m-2",perennial_co2ice(:,islope)) |
---|
| 3266 | ENDDO |
---|
[2932] | 3267 | call write_output("temp_layer1","temperature in layer 1", |
---|
| 3268 | & "K",zt(:,1)) |
---|
| 3269 | call write_output("temp7","temperature in layer 7", |
---|
| 3270 | & "K",zt(:,7)) |
---|
| 3271 | call write_output("fluxsurf_lw","fluxsurf_lw","W.m-2", |
---|
[2900] | 3272 | & fluxsurf_lw(:,iflat)) |
---|
[2907] | 3273 | do islope=1,nslope |
---|
| 3274 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3275 | call write_output("fluxsurf_lw_slope"//str2, |
---|
| 3276 | & "fluxsurf_lw","W.m-2", |
---|
[2907] | 3277 | & fluxsurf_lw(:,islope)) |
---|
| 3278 | ENDDO |
---|
[2932] | 3279 | call write_output("fluxsurf_dn_sw","fluxsurf_dn_sw", |
---|
| 3280 | & "W.m-2",fluxsurf_dn_sw_tot(:,iflat)) |
---|
[2907] | 3281 | do islope=1,nslope |
---|
| 3282 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3283 | call write_output("fluxsurf_dn_sw_slope"//str2, |
---|
[2907] | 3284 | & "fluxsurf_dn_sw", |
---|
[2932] | 3285 | & "W.m-2",fluxsurf_dn_sw_tot(:,islope)) |
---|
[2907] | 3286 | ENDDO |
---|
[3037] | 3287 | call write_output("fluxtop_dn_sw","fluxtop_dn_sw", |
---|
| 3288 | & "W.m-2",fluxtop_dn_sw(:,1) + fluxtop_dn_sw(:,2)) |
---|
[2932] | 3289 | call write_output("fluxtop_lw","fluxtop_lw","W.m-2", |
---|
| 3290 | & fluxtop_lw(:)) |
---|
| 3291 | call write_output("fluxtop_up_sw","fluxtop_up_sw","W.m-2", |
---|
| 3292 | & fluxtop_up_sw_tot(:)) |
---|
| 3293 | call write_output("temp","temperature","K",zt(:,:)) |
---|
| 3294 | call write_output("Sols","Time","sols",zday) |
---|
| 3295 | call write_output("Ls","Solar longitude","deg", |
---|
| 3296 | & zls*180./pi) |
---|
| 3297 | call write_output("u","Zonal wind","m.s-1",zu(:,:)) |
---|
| 3298 | call write_output("v","Meridional wind","m.s-1",zv(:,:)) |
---|
| 3299 | call write_output("w","Vertical wind","m.s-1",pw(:,:)) |
---|
| 3300 | call write_output("rho","density","kg.m-3",rho(:,:)) |
---|
| 3301 | call write_output("pressure","Pressure","Pa",zplay(:,:)) |
---|
[2934] | 3302 | call write_output("zplev","Interlayer pressure","Pa", |
---|
| 3303 | & zplev(:,1:nlayer)) |
---|
[2932] | 3304 | call write_output('sw_htrt','sw heat. rate', |
---|
| 3305 | & 'K/s',zdtsw(:,:)) |
---|
| 3306 | call write_output('lw_htrt','lw heat. rate', |
---|
| 3307 | & 'K/s',zdtlw(:,:)) |
---|
| 3308 | call write_output("local_time","Local time", |
---|
| 3309 | & 'sol',local_time(:)) |
---|
[3147] | 3310 | if (water) then |
---|
[520] | 3311 | if (.not.activice) then |
---|
[2932] | 3312 | CALL write_output('tauTESap', |
---|
[520] | 3313 | & 'tau abs 825 cm-1', |
---|
[2932] | 3314 | & '',tauTES(:)) |
---|
[520] | 3315 | else |
---|
[2932] | 3316 | CALL write_output('tauTES', |
---|
[520] | 3317 | & 'tau abs 825 cm-1', |
---|
[2932] | 3318 | & '',taucloudtes(:)) |
---|
[520] | 3319 | endif |
---|
[3147] | 3320 | endif ! of if (water) |
---|
[528] | 3321 | #else |
---|
[2362] | 3322 | !!! this is to ensure correct initialisation of mesoscale model |
---|
[2932] | 3323 | call write_output("tsurf","Surface temperature","K", |
---|
[2900] | 3324 | & tsurf(:,iflat)) |
---|
[2932] | 3325 | call write_output("ps","surface pressure","Pa",ps(:)) |
---|
| 3326 | call write_output("co2ice","co2 ice thickness","kg.m-2", |
---|
[2900] | 3327 | & qsurf(:,igcm_co2,iflat)) |
---|
[2932] | 3328 | call write_output("temp","temperature","K",zt(:,:)) |
---|
| 3329 | call write_output("u","Zonal wind","m.s-1",zu(:,:)) |
---|
| 3330 | call write_output("v","Meridional wind","m.s-1",zv(:,:)) |
---|
[2934] | 3331 | call write_output("emis","Surface emissivity","", |
---|
[2932] | 3332 | & emis(:,iflat)) |
---|
| 3333 | call write_output("tsoil","Soil temperature", |
---|
| 3334 | & "K",tsoil(:,:,iflat)) |
---|
| 3335 | call write_output("inertiedat","Soil inertia", |
---|
| 3336 | & "K",inertiedat(:,:)) |
---|
[299] | 3337 | #endif |
---|
[42] | 3338 | |
---|
[226] | 3339 | c ---------------------------------------------------------- |
---|
| 3340 | c Outputs of the CO2 cycle |
---|
| 3341 | c ---------------------------------------------------------- |
---|
[2823] | 3342 | if (igcm_co2.ne.0) then |
---|
[2932] | 3343 | call write_output("co2","co2 mass mixing ratio", |
---|
| 3344 | & "kg.kg-1",zq(:,:,igcm_co2)) |
---|
[2362] | 3345 | |
---|
| 3346 | if (co2clouds) then |
---|
[2932] | 3347 | call write_output('ccnqco2','CCNco2 mmr', |
---|
| 3348 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_mass)) |
---|
[1660] | 3349 | |
---|
[2932] | 3350 | call write_output('ccnNco2','CCNco2 number', |
---|
| 3351 | & 'part.kg-1',zq(:,:,igcm_ccnco2_number)) |
---|
[2362] | 3352 | |
---|
[2932] | 3353 | call write_output('co2_ice','co2_ice mmr in atm', |
---|
| 3354 | & 'kg.kg-1',zq(:,:,igcm_co2_ice)) |
---|
[2362] | 3355 | |
---|
[2932] | 3356 | call write_output("mtotco2","total mass atm of co2", |
---|
| 3357 | & "kg.m-2",mtotco2(:)) |
---|
| 3358 | call write_output("icetotco2","total mass atm of co2 ice", |
---|
| 3359 | & "kg.m-2", icetotco2(:)) |
---|
| 3360 | call write_output("vaptotco2","total mass atm of co2 "// |
---|
| 3361 | & "vapor","kg.m-2", vaptotco2(:)) |
---|
[2589] | 3362 | if (co2useh2o) then |
---|
[2932] | 3363 | call write_output('ccnqco2_h2o_m_ice', |
---|
[2589] | 3364 | & 'CCNco2_h2o_mass_ice mmr', |
---|
[2932] | 3365 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_h2o_mass_ice)) |
---|
[2589] | 3366 | |
---|
[2932] | 3367 | call write_output('ccnqco2_h2o_m_ccn', |
---|
[2589] | 3368 | & 'CCNco2_h2o_mass_ccn mmr', |
---|
[2932] | 3369 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_h2o_mass_ccn)) |
---|
[2589] | 3370 | |
---|
[2932] | 3371 | call write_output('ccnNco2_h2o','CCNco2_h2o number', |
---|
| 3372 | & 'part.kg-1',zq(:,:,igcm_ccnco2_h2o_number)) |
---|
[2589] | 3373 | end if |
---|
| 3374 | |
---|
| 3375 | if (meteo_flux) then |
---|
[2932] | 3376 | call write_output('ccnqco2_meteor','CCNco2_meteor mmr', |
---|
| 3377 | & 'kg.kg-1',zq(:,:,igcm_ccnco2_meteor_mass)) |
---|
[2589] | 3378 | |
---|
[2932] | 3379 | call write_output('ccnNco2_meteor','CCNco2_meteor number', |
---|
| 3380 | & 'part.kg-1',zq(:,:,igcm_ccnco2_meteor_number)) |
---|
[2589] | 3381 | end if |
---|
| 3382 | |
---|
[2362] | 3383 | end if ! of if (co2clouds) |
---|
[2823] | 3384 | end if ! of if (igcm_co2.ne.0) |
---|
[2362] | 3385 | |
---|
| 3386 | ! Output He tracer, if there is one |
---|
[2823] | 3387 | if (igcm_he.ne.0) then |
---|
[2932] | 3388 | call write_output("he","helium mass mixing ratio", |
---|
| 3389 | & "kg/kg",zq(:,:,igcm_he)) |
---|
[2362] | 3390 | vmr = zq(1:ngrid,1:nlayer,igcm_he) |
---|
| 3391 | & * mmean(1:ngrid,1:nlayer)/mmol(igcm_he) |
---|
[2932] | 3392 | call write_output('vmr_he','helium vol. mixing ratio', |
---|
| 3393 | & 'mol/mol',vmr(:,:)) |
---|
[2362] | 3394 | end if |
---|
| 3395 | |
---|
[226] | 3396 | c ---------------------------------------------------------- |
---|
| 3397 | c Outputs of the water cycle |
---|
| 3398 | c ---------------------------------------------------------- |
---|
[2362] | 3399 | if (water) then |
---|
[299] | 3400 | #ifdef MESOINI |
---|
| 3401 | !!!! waterice = q01, voir readmeteo.F90 |
---|
[2932] | 3402 | call write_output('q01',noms(igcm_h2o_ice), |
---|
| 3403 | & 'kg/kg', |
---|
| 3404 | & zq(:,:,igcm_h2o_ice)) |
---|
[299] | 3405 | !!!! watervapor = q02, voir readmeteo.F90 |
---|
[2932] | 3406 | call write_output('q02',noms(igcm_h2o_vap), |
---|
| 3407 | & 'kg/kg', |
---|
| 3408 | & zq(:,:,igcm_h2o_vap)) |
---|
[299] | 3409 | !!!! surface waterice qsurf02 (voir readmeteo) |
---|
[2932] | 3410 | call write_output('qsurf02','surface tracer', |
---|
| 3411 | & 'kg.m-2', |
---|
| 3412 | & qsurf(:,igcm_h2o_ice,iflat)) |
---|
[2907] | 3413 | do islope=1,nslope |
---|
| 3414 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3415 | call write_output('qsurf02_slope'//str2, |
---|
| 3416 | & 'surface tracer','kg.m-2', |
---|
| 3417 | & qsurf(:,igcm_h2o_ice,islope)) |
---|
[2907] | 3418 | ENDDO |
---|
[299] | 3419 | #endif |
---|
[2932] | 3420 | call write_output('mtot', |
---|
[2362] | 3421 | & 'total mass of water vapor', |
---|
[2932] | 3422 | & 'kg/m2',mtot(:)) |
---|
| 3423 | call write_output('icetot', |
---|
[2362] | 3424 | & 'total mass of water ice', |
---|
[2932] | 3425 | & 'kg/m2',icetot(:)) |
---|
[2362] | 3426 | vmr = zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 3427 | & * mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
---|
[2932] | 3428 | call write_output('vmr_h2oice','h2o ice vmr', |
---|
| 3429 | & 'mol/mol',vmr(:,:)) |
---|
[2362] | 3430 | vmr = zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
---|
| 3431 | & * mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
---|
[2932] | 3432 | call write_output('vmr_h2ovap','h2o vap vmr', |
---|
| 3433 | & 'mol/mol',vmr(:,:)) |
---|
| 3434 | call write_output('reffice', |
---|
[2362] | 3435 | & 'Mean reff', |
---|
[2932] | 3436 | & 'm',rave(:)) |
---|
| 3437 | call write_output('h2o_ice','h2o_ice','kg/kg', |
---|
| 3438 | & zq(:,:,igcm_h2o_ice)) |
---|
| 3439 | call write_output('h2o_vap','h2o_vap','kg/kg', |
---|
| 3440 | & zq(:,:,igcm_h2o_vap)) |
---|
[1922] | 3441 | |
---|
[2312] | 3442 | if (hdo) then |
---|
| 3443 | vmr=zq(1:ngrid,1:nlayer,igcm_hdo_ice) |
---|
| 3444 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_hdo_ice) |
---|
[2932] | 3445 | CALL write_output('vmr_hdoice','hdo ice vmr', |
---|
| 3446 | & 'mol/mol',vmr(:,:)) |
---|
[2312] | 3447 | vmr=zq(1:ngrid,1:nlayer,igcm_hdo_vap) |
---|
| 3448 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_hdo_vap) |
---|
[2932] | 3449 | CALL write_output('vmr_hdovap','hdo vap vmr', |
---|
| 3450 | & 'mol/mol',vmr(:,:)) |
---|
| 3451 | call write_output('hdo_ice','hdo_ice','kg/kg', |
---|
| 3452 | & zq(:,:,igcm_hdo_ice)) |
---|
| 3453 | call write_output('hdo_vap','hdo_vap','kg/kg', |
---|
| 3454 | & zq(:,:,igcm_hdo_vap)) |
---|
[1922] | 3455 | |
---|
[2932] | 3456 | CALL write_output('mtotD', |
---|
[2312] | 3457 | & 'total mass of HDO vapor', |
---|
[2932] | 3458 | & 'kg/m2',mtotD(:)) |
---|
| 3459 | CALL write_output('icetotD', |
---|
[2312] | 3460 | & 'total mass of HDO ice', |
---|
[2932] | 3461 | & 'kg/m2',icetotD(:)) |
---|
[2312] | 3462 | |
---|
| 3463 | C Calculation of the D/H ratio |
---|
| 3464 | do l=1,nlayer |
---|
| 3465 | do ig=1,ngrid |
---|
[2362] | 3466 | if (zq(ig,l,igcm_h2o_vap).gt.qperemin) then |
---|
[2312] | 3467 | DoH_vap(ig,l) = ( zq(ig,l,igcm_hdo_vap)/ |
---|
| 3468 | & zq(ig,l,igcm_h2o_vap) )*1./(2.*155.76e-6) |
---|
| 3469 | else |
---|
| 3470 | DoH_vap(ig,l) = 0. |
---|
| 3471 | endif |
---|
| 3472 | enddo |
---|
| 3473 | enddo |
---|
| 3474 | |
---|
| 3475 | do l=1,nlayer |
---|
| 3476 | do ig=1,ngrid |
---|
[2324] | 3477 | if (zq(ig,l,igcm_h2o_ice).gt.qperemin) then |
---|
[2312] | 3478 | DoH_ice(ig,l) = ( zq(ig,l,igcm_hdo_ice)/ |
---|
| 3479 | & zq(ig,l,igcm_h2o_ice) )/(2.*155.76e-6) |
---|
| 3480 | else |
---|
| 3481 | DoH_ice(ig,l) = 0. |
---|
| 3482 | endif |
---|
| 3483 | enddo |
---|
| 3484 | enddo |
---|
| 3485 | |
---|
[2932] | 3486 | CALL write_output('DoH_vap', |
---|
[2312] | 3487 | & 'D/H ratio in vapor', |
---|
[2932] | 3488 | & ' ',DoH_vap(:,:)) |
---|
| 3489 | CALL write_output('DoH_ice', |
---|
[2312] | 3490 | & 'D/H ratio in ice', |
---|
[2932] | 3491 | & '',DoH_ice(:,:)) |
---|
[2312] | 3492 | |
---|
| 3493 | endif !hdo |
---|
| 3494 | |
---|
[1711] | 3495 | !A. Pottier |
---|
[2934] | 3496 | ! CALL write_output('rmoym', |
---|
| 3497 | ! & 'alternative reffice', |
---|
| 3498 | ! & 'm',rave2(:)) |
---|
| 3499 | call write_output('h2o_saturation', |
---|
| 3500 | & 'h2o vap saturation ratio','',satu(:,:)) |
---|
[1130] | 3501 | if (scavenging) then |
---|
[2932] | 3502 | CALL write_output("Nccntot", |
---|
[669] | 3503 | & "condensation nuclei","Nbr/m2", |
---|
[2932] | 3504 | & Nccntot(:)) |
---|
| 3505 | CALL write_output("Mccntot", |
---|
[719] | 3506 | & "mass condensation nuclei","kg/m2", |
---|
[2932] | 3507 | & Mccntot(:)) |
---|
[1130] | 3508 | endif |
---|
[2934] | 3509 | call write_output('rice','Water ice particle size', |
---|
[2932] | 3510 | & 'm',rice(:,:)) |
---|
| 3511 | call write_output('h2o_ice_s', |
---|
[226] | 3512 | & 'surface h2o_ice', |
---|
[2932] | 3513 | & 'kg.m-2',qsurf(:,igcm_h2o_ice,iflat)) |
---|
[2907] | 3514 | do islope=1,nslope |
---|
| 3515 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3516 | call write_output('h2o_ice_s_slope'//str2, |
---|
[2907] | 3517 | & 'surface h2o_ice', |
---|
[2932] | 3518 | & 'kg.m-2',qsurf(:,igcm_h2o_ice,islope)) |
---|
[2907] | 3519 | ENDDO |
---|
[2312] | 3520 | if (hdo) then |
---|
[2932] | 3521 | call write_output('hdo_ice_s', |
---|
[2312] | 3522 | & 'surface hdo_ice', |
---|
[2932] | 3523 | & 'kg.m-2',qsurf(:,igcm_hdo_ice,iflat)) |
---|
[2907] | 3524 | do islope=1,nslope |
---|
| 3525 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3526 | call write_output('hdo_ice_s_slope'//str2, |
---|
[2907] | 3527 | & 'surface hdo_ice', |
---|
[2932] | 3528 | & 'kg.m-2',qsurf(:,igcm_hdo_ice,islope)) |
---|
[2907] | 3529 | ENDDO |
---|
[2312] | 3530 | |
---|
| 3531 | do ig=1,ngrid |
---|
[2900] | 3532 | if (qsurf_meshavg(ig,igcm_h2o_ice).gt.qperemin) then |
---|
| 3533 | DoH_surf(ig) = 0.5*( qsurf_meshavg(ig,igcm_hdo_ice)/ |
---|
| 3534 | & qsurf_meshavg(ig,igcm_h2o_ice) )/155.76e-6 |
---|
[2312] | 3535 | else |
---|
| 3536 | DoH_surf(ig) = 0. |
---|
| 3537 | endif |
---|
| 3538 | enddo |
---|
| 3539 | |
---|
[2932] | 3540 | call write_output('DoH_surf', |
---|
[2312] | 3541 | & 'surface D/H', |
---|
[2932] | 3542 | & '',DoH_surf(:)) |
---|
[2312] | 3543 | endif ! hdo |
---|
| 3544 | |
---|
[2932] | 3545 | CALL write_output('albedo', |
---|
[833] | 3546 | & 'albedo', |
---|
[2932] | 3547 | & '',albedo(:,1,iflat)) |
---|
[2907] | 3548 | do islope=1,nslope |
---|
| 3549 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3550 | CALL write_output('albedo_slope'//str2, |
---|
[2907] | 3551 | & 'albedo', |
---|
[2932] | 3552 | & '',albedo(:,1,islope)) |
---|
[2907] | 3553 | ENDDO |
---|
[3230] | 3554 | if (surfaceice_tifeedback.or.poreice_tifeedback) then |
---|
[2932] | 3555 | call write_output("soiltemp", |
---|
[833] | 3556 | & "Soil temperature","K", |
---|
[2932] | 3557 | & tsoil(:,:,iflat)) |
---|
| 3558 | call write_output('soilti', |
---|
[833] | 3559 | & 'Soil Thermal Inertia', |
---|
[2942] | 3560 | & 'J.s-1/2.m-2.K-1',inertiesoil_tifeedback(:,:,iflat)) |
---|
[3230] | 3561 | |
---|
[2907] | 3562 | do islope=1,nslope |
---|
| 3563 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3564 | call write_output('soilti_slope'//str2, |
---|
[2907] | 3565 | & 'Soil Thermal Inertia', |
---|
[2942] | 3566 | & 'J.s-1/2.m-2.K-1',inertiesoil_tifeedback(:,:,islope)) |
---|
[2907] | 3567 | ENDDO |
---|
[833] | 3568 | endif |
---|
[1711] | 3569 | !A. Pottier |
---|
[2362] | 3570 | if (CLFvarying) then !AP14 nebulosity |
---|
[2932] | 3571 | call write_output('totcloudfrac', |
---|
[2362] | 3572 | & 'Total cloud fraction', |
---|
[2932] | 3573 | & ' ',totcloudfrac(:)) |
---|
[2362] | 3574 | end if !clf varying |
---|
| 3575 | end if !(water) |
---|
[1711] | 3576 | |
---|
[226] | 3577 | c ---------------------------------------------------------- |
---|
| 3578 | c Outputs of the dust cycle |
---|
| 3579 | c ---------------------------------------------------------- |
---|
| 3580 | |
---|
[2932] | 3581 | call write_output('tau_pref_scenario', |
---|
[2415] | 3582 | & 'Prescribed visible dust optical depth at 610Pa', |
---|
[2932] | 3583 | & 'NU',tau_pref_scenario(:)) |
---|
[226] | 3584 | |
---|
[2932] | 3585 | call write_output('tau_pref_gcm', |
---|
[2415] | 3586 | & 'Visible dust optical depth at 610Pa in the GCM', |
---|
[2932] | 3587 | & 'NU',tau_pref_gcm(:)) |
---|
[3203] | 3588 | |
---|
[2643] | 3589 | if (reff_driven_IRtoVIS_scenario) then |
---|
[2932] | 3590 | call write_output('IRtoVIScoef', |
---|
[2934] | 3591 | & 'Conversion coeff for dust tau from abs9.3um to ext0.67um', |
---|
[2932] | 3592 | & '/',IRtoVIScoef(:)) |
---|
[2643] | 3593 | endif |
---|
[2415] | 3594 | |
---|
[2823] | 3595 | if (dustbin.ne.0) then |
---|
[1264] | 3596 | |
---|
| 3597 | #ifndef MESOINI |
---|
[226] | 3598 | if (doubleq) then |
---|
[2932] | 3599 | call write_output('dqsdust', |
---|
[719] | 3600 | & 'deposited surface dust mass', |
---|
[2932] | 3601 | & 'kg.m-2.s-1',dqdustsurf(:)) |
---|
| 3602 | call write_output('dqndust', |
---|
[719] | 3603 | & 'deposited surface dust number', |
---|
[2932] | 3604 | & 'number.m-2.s-1',dndustsurf(:)) |
---|
| 3605 | call write_output('reffdust','reffdust', |
---|
| 3606 | & 'm',rdust(:,:)*ref_r0) |
---|
| 3607 | call write_output('dustq','Dust mass mr', |
---|
| 3608 | & 'kg/kg',qdust(:,:)) |
---|
| 3609 | call write_output('dustN','Dust number', |
---|
| 3610 | & 'part/kg',ndust(:,:)) |
---|
[2362] | 3611 | |
---|
[3203] | 3612 | select case (trim(dustiropacity)) |
---|
[2247] | 3613 | case ("tes") |
---|
[2934] | 3614 | call write_output('dsodust_TES', |
---|
[2247] | 3615 | & 'density scaled extinction opacity of std dust at 9.3um(TES)', |
---|
[2932] | 3616 | & 'm2.kg-1',dsodust(:,:)) |
---|
[2934] | 3617 | call write_output('dso_TES', |
---|
[2247] | 3618 | & 'density scaled extinction opacity of all dust at 9.3um(TES)', |
---|
[2932] | 3619 | & 'm2.kg-1',dsodust(:,:)+dsords(:,:)+dsotop(:,:)) |
---|
[2247] | 3620 | case ("mcs") |
---|
[2932] | 3621 | call write_output('dsodust', |
---|
[2247] | 3622 | & 'density scaled extinction opacity of std dust at 21.6um(MCS)', |
---|
[2932] | 3623 | & 'm2.kg-1',dsodust(:,:)) |
---|
| 3624 | call write_output('dso', |
---|
[2247] | 3625 | & 'density scaled extinction opacity of all dust at 21.6um(MCS)', |
---|
[2932] | 3626 | & 'm2.kg-1',dsodust(:,:)+dsords(:,:)+dsotop(:,:)) |
---|
[2247] | 3627 | end select |
---|
[2246] | 3628 | else ! (doubleq=.false.) |
---|
[226] | 3629 | do iq=1,dustbin |
---|
| 3630 | write(str2(1:2),'(i2.2)') iq |
---|
[2932] | 3631 | call write_output('q'//str2,'mix. ratio', |
---|
| 3632 | & 'kg/kg',zq(:,:,iq)) |
---|
| 3633 | call write_output('qsurf'//str2,'qsurf', |
---|
| 3634 | & 'kg.m-2',qsurf(:,iq,iflat)) |
---|
[2907] | 3635 | do islope=1,nslope |
---|
| 3636 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3637 | call write_output('qsurf_slope'//str2,'qsurf', |
---|
| 3638 | & 'kg.m-2',qsurf(:,iq,islope)) |
---|
[2907] | 3639 | ENDDO |
---|
[226] | 3640 | end do |
---|
| 3641 | endif ! (doubleq) |
---|
[358] | 3642 | |
---|
[1974] | 3643 | if (rdstorm) then ! writediagfi tendencies stormdust tracers |
---|
[2932] | 3644 | call write_output('reffstormdust','reffstormdust', |
---|
| 3645 | & 'm',rstormdust(:,:)*ref_r0) |
---|
| 3646 | call write_output('mstormdtot', |
---|
[1974] | 3647 | & 'total mass of stormdust only', |
---|
[2932] | 3648 | & 'kg.m-2',mstormdtot(:)) |
---|
| 3649 | call write_output('mdusttot', |
---|
[1974] | 3650 | & 'total mass of dust only', |
---|
[2932] | 3651 | & 'kg.m-2',mdusttot(:)) |
---|
| 3652 | call write_output('rdsdqsdust', |
---|
[1974] | 3653 | & 'deposited surface stormdust mass', |
---|
[2932] | 3654 | & 'kg.m-2.s-1',rdsdqdustsurf(:)) |
---|
| 3655 | call write_output('rdsdustq','storm Dust mass mr', |
---|
| 3656 | & 'kg/kg',rdsqdust(:,:)) |
---|
| 3657 | call write_output('rdsdustqmodel','storm Dust massmr', |
---|
| 3658 | & 'kg/kg',pq(:,:,igcm_stormdust_mass)) |
---|
| 3659 | call write_output('rdsdustN','storm Dust number', |
---|
| 3660 | & 'part/kg',rdsndust(:,:)) |
---|
| 3661 | call write_output("stormfract", |
---|
[1974] | 3662 | & "fraction of the mesh, with stormdust","none", |
---|
[2932] | 3663 | & totstormfract(:)) |
---|
[2934] | 3664 | ! call write_output('qsurf', |
---|
| 3665 | ! & 'stormdust injection', |
---|
| 3666 | ! & 'kg.m-2',qsurf(:,igcm_stormdust_mass,iflat)) |
---|
| 3667 | ! do islope=1,nslope |
---|
| 3668 | ! write(str2(1:2),'(i2.2)') islope |
---|
| 3669 | ! call write_output('qsurf_slope'//str2, |
---|
| 3670 | ! & 'stormdust injection', |
---|
| 3671 | ! & 'kg.m-2',qsurf(:,igcm_stormdust_mass,islope)) |
---|
| 3672 | ! ENDDO |
---|
| 3673 | ! call write_output('pdqsurf', |
---|
| 3674 | ! & 'tendancy stormdust mass at surface', |
---|
| 3675 | ! & 'kg.m-2',dqsurf(:,igcm_stormdust_mass,iflat)) |
---|
| 3676 | ! do islope=1,nslope |
---|
| 3677 | ! write(str2(1:2),'(i2.2)') islope |
---|
| 3678 | ! call write_output('pdqsurf_slope'//str2, |
---|
| 3679 | ! & 'tendancy stormdust mass at surface', |
---|
| 3680 | ! & 'kg.m-2',dqsurf(:,igcm_stormdust_mass,islope)) |
---|
| 3681 | ! ENDDO |
---|
| 3682 | call write_output('wspeed_stormdust', |
---|
| 3683 | & 'vertical velocity of stormdust', |
---|
| 3684 | & 'm/s',wspeed(:,:)) |
---|
| 3685 | call write_output('zdqsed_dust_mass' |
---|
| 3686 | & ,'sedimentation tendency of background dust mmr' |
---|
| 3687 | & ,'kg/kg.s-1', |
---|
[1974] | 3688 | & zdqsed(:,:,igcm_dust_mass)) |
---|
[2934] | 3689 | call write_output('zdqssed_dust_mass' |
---|
| 3690 | & ,'sedimentation tendency of background dust on surface' |
---|
| 3691 | & ,'kg.m-2.s-1', |
---|
[1974] | 3692 | & zdqssed(:,igcm_dust_mass)) |
---|
[2934] | 3693 | call write_output('zdqsed_stormdust_mass' |
---|
| 3694 | & ,'sedimentation tendency of stormdust dust mmr' |
---|
| 3695 | & ,'kg/kg.s-1', |
---|
[1974] | 3696 | & zdqsed(:,:,igcm_stormdust_mass)) |
---|
[2934] | 3697 | call write_output('zdqsed_dust_number' |
---|
| 3698 | & ,'sedimentation tendency of background dust number' |
---|
| 3699 | & ,'nbr/kg.s-1', |
---|
[2931] | 3700 | & zdqsed(:,:,igcm_dust_number)) |
---|
[2932] | 3701 | call write_output('rdust','rdust', |
---|
| 3702 | & 'm',rdust(:,:)) |
---|
| 3703 | call write_output('rstormdust','rstormdust', |
---|
| 3704 | & 'm',rstormdust(:,:)) |
---|
[2362] | 3705 | |
---|
[3203] | 3706 | select case (trim(dustiropacity)) |
---|
[2247] | 3707 | case ("tes") |
---|
[2934] | 3708 | call write_output('dsords_TES', |
---|
[2247] | 3709 | & 'density scaled extinction opacity of stormdust at 9.3um(TES)', |
---|
[2932] | 3710 | & 'm2.kg-1',dsords(:,:)) |
---|
[2247] | 3711 | case ("mcs") |
---|
[2932] | 3712 | call write_output('dsords', |
---|
[2247] | 3713 | & 'density scaled extinction opacity of stormdust at 21.6um(MCS)', |
---|
[2932] | 3714 | & 'm2.kg-1',dsords(:,:)) |
---|
[2247] | 3715 | end select |
---|
[1974] | 3716 | endif ! (rdstorm) |
---|
| 3717 | |
---|
[2628] | 3718 | if (topflows) then |
---|
[2934] | 3719 | call write_output('refftopdust', |
---|
| 3720 | & 'Topdust dust effective radius', |
---|
| 3721 | & 'm',rtopdust(:,:)*ref_r0) |
---|
[2932] | 3722 | call write_output('topdustq','top Dust mass mr', |
---|
| 3723 | & 'kg/kg',pq(:,:,igcm_topdust_mass)) |
---|
| 3724 | call write_output('topdustN','top Dust number', |
---|
| 3725 | & 'part/kg',pq(:,:,igcm_topdust_number)) |
---|
[3203] | 3726 | select case (trim(dustiropacity)) |
---|
[2247] | 3727 | case ("tes") |
---|
[2934] | 3728 | call write_output('dsotop_TES', |
---|
[2247] | 3729 | & 'density scaled extinction opacity of topdust at 9.3um(TES)', |
---|
[2932] | 3730 | & 'm2.kg-1',dsotop(:,:)) |
---|
[2247] | 3731 | case ("mcs") |
---|
[2932] | 3732 | call write_output('dsotop', |
---|
[2247] | 3733 | & 'density scaled extinction opacity of topdust at 21.6um(MCS)', |
---|
[2932] | 3734 | & 'm2.kg-1',dsotop(:,:)) |
---|
[2247] | 3735 | end select |
---|
[2628] | 3736 | endif ! (topflows) |
---|
[2362] | 3737 | |
---|
[2417] | 3738 | if (dustscaling_mode==2) then |
---|
[2932] | 3739 | call write_output("dust_rad_adjust", |
---|
[2417] | 3740 | & "radiative adjustment coefficient for dust", |
---|
[2932] | 3741 | & "",dust_rad_adjust(:)) |
---|
[2417] | 3742 | endif |
---|
| 3743 | |
---|
[2934] | 3744 | ! if (scavenging) then ! these outputs should be in the scavenging routine |
---|
| 3745 | ! call write_output('ccnq','CCN mass mr', |
---|
| 3746 | ! & 'kg/kg',qccn(:,:)) |
---|
| 3747 | ! call write_output('ccnN','CCN number', |
---|
| 3748 | ! & 'part/kg',nccn(:,:)) |
---|
| 3749 | ! call write_output('surfccnq','Surf nuclei mass mr', |
---|
| 3750 | ! & 'kg.m-2',qsurf(:,igcm_ccn_mass,iflat)) |
---|
| 3751 | ! do islope=1,nslope |
---|
| 3752 | ! write(str2(1:2),'(i2.2)') islope |
---|
| 3753 | ! call write_output('surfccnq_slope'//str2, |
---|
| 3754 | ! & 'Surf nuclei mass mr', |
---|
| 3755 | ! & 'kg.m-2',qsurf(:,igcm_ccn_mass,islope)) |
---|
| 3756 | ! ENDDO |
---|
| 3757 | ! call write_output('surfccnN','Surf nuclei number', |
---|
| 3758 | ! & 'kg.m-2',qsurf(:,igcm_ccn_number,iflat)) |
---|
| 3759 | ! do islope=1,nslope |
---|
| 3760 | ! write(str2(1:2),'(i2.2)') islope |
---|
| 3761 | ! call write_output('surfccnN_slope'//str2, |
---|
| 3762 | ! & 'Surf nuclei number', |
---|
| 3763 | ! & 'kg.m-2',qsurf(:,igcm_ccn_number,islope)) |
---|
| 3764 | ! ENDDO |
---|
| 3765 | ! endif ! (scavenging) |
---|
[358] | 3766 | |
---|
[1264] | 3767 | #else |
---|
| 3768 | ! !!! to initialize mesoscale we need scaled variables |
---|
| 3769 | ! !!! because this must correspond to starting point for tracers |
---|
[2932] | 3770 | ! call write_output('dustq','Dust mass mr', |
---|
[1264] | 3771 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_mass)) |
---|
[2932] | 3772 | ! call write_output('dustN','Dust number', |
---|
[1264] | 3773 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_number)) |
---|
[2932] | 3774 | ! call write_output('ccn','Nuclei mass mr', |
---|
[1264] | 3775 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_mass)) |
---|
[2932] | 3776 | ! call write_output('ccnN','Nuclei number', |
---|
[1264] | 3777 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_number)) |
---|
| 3778 | if (freedust) then |
---|
[2932] | 3779 | call write_output('dustq','Dust mass mr', |
---|
| 3780 | & 'kg/kg',qdust) |
---|
| 3781 | call write_output('dustN','Dust number', |
---|
| 3782 | & 'part/kg',ndust) |
---|
| 3783 | call write_output('ccn','CCN mass mr', |
---|
| 3784 | & 'kg/kg',qccn) |
---|
| 3785 | call write_output('ccnN','CCN number', |
---|
| 3786 | & 'part/kg',nccn) |
---|
[1264] | 3787 | else |
---|
[2932] | 3788 | call write_output('dustq','Dust mass mr', |
---|
| 3789 | & 'kg/kg',pq(:,:,igcm_dust_mass)) |
---|
| 3790 | call write_output('dustN','Dust number', |
---|
| 3791 | & 'part/kg',pq(:,:,igcm_dust_number)) |
---|
| 3792 | call write_output('ccn','Nuclei mass mr', |
---|
| 3793 | & 'kg/kg',pq(:,:,igcm_ccn_mass)) |
---|
| 3794 | call write_output('ccnN','Nuclei number', |
---|
| 3795 | & 'part/kg',pq(:,:,igcm_ccn_number)) |
---|
[1264] | 3796 | endif |
---|
| 3797 | #endif |
---|
| 3798 | |
---|
[2823] | 3799 | end if ! (dustbin.ne.0) |
---|
[226] | 3800 | |
---|
[2149] | 3801 | c ---------------------------------------------------------- |
---|
[705] | 3802 | c Thermospheric outputs |
---|
[267] | 3803 | c ---------------------------------------------------------- |
---|
[2362] | 3804 | if(callthermos) then |
---|
[705] | 3805 | |
---|
[2932] | 3806 | call write_output("quv","UV heating","K/s", |
---|
| 3807 | $ zdteuv(:,:)) |
---|
| 3808 | call write_output("cond","Thermal conduction","K/s", |
---|
| 3809 | $ zdtconduc(:,:)) |
---|
[705] | 3810 | |
---|
[2467] | 3811 | !H, H2 and D escape fluxes |
---|
| 3812 | |
---|
[2932] | 3813 | call write_output("PhiH","H escape flux","s-1", |
---|
| 3814 | $ PhiEscH) |
---|
| 3815 | call write_output("PhiH2","H2 escape flux","s-1", |
---|
| 3816 | $ PhiEscH2) |
---|
| 3817 | call write_output("PhiD","D escape flux","s-1", |
---|
| 3818 | $ PhiEscD) |
---|
[2467] | 3819 | |
---|
[705] | 3820 | endif !(callthermos) |
---|
| 3821 | |
---|
[2932] | 3822 | call write_output("q15um","15 um cooling","K/s", |
---|
| 3823 | $ zdtnlte(:,:)) |
---|
| 3824 | call write_output("qnir","NIR heating","K/s", |
---|
| 3825 | $ zdtnirco2(:,:)) |
---|
[2362] | 3826 | |
---|
[705] | 3827 | c ---------------------------------------------------------- |
---|
| 3828 | c ---------------------------------------------------------- |
---|
[267] | 3829 | c PBL OUTPUS |
---|
| 3830 | c ---------------------------------------------------------- |
---|
| 3831 | c ---------------------------------------------------------- |
---|
| 3832 | |
---|
| 3833 | c ---------------------------------------------------------- |
---|
[226] | 3834 | c Outputs of thermals |
---|
| 3835 | c ---------------------------------------------------------- |
---|
[2362] | 3836 | if (calltherm) then |
---|
[2932] | 3837 | call write_output('lmax_th', |
---|
[2934] | 3838 | & 'index of vertical extension of thermals', |
---|
| 3839 | & 'grid level',lmax_th_out(:)) |
---|
[2932] | 3840 | call write_output('zmax_th', |
---|
[2934] | 3841 | & 'vertical extension of thermals','m', |
---|
[2932] | 3842 | & zmax_th(:)) |
---|
| 3843 | call write_output('hfmax_th', |
---|
[2934] | 3844 | & 'maximum heat flux in thermals','K.m/s', |
---|
[2932] | 3845 | & hfmax_th(:)) |
---|
| 3846 | call write_output('wstar', |
---|
[2934] | 3847 | & 'maximum thermals vertical velocity','m/s', |
---|
[2932] | 3848 | & wstar(:)) |
---|
[2362] | 3849 | end if |
---|
[226] | 3850 | |
---|
| 3851 | c ---------------------------------------------------------- |
---|
[267] | 3852 | c ---------------------------------------------------------- |
---|
| 3853 | c END OF PBL OUTPUS |
---|
| 3854 | c ---------------------------------------------------------- |
---|
| 3855 | c ---------------------------------------------------------- |
---|
| 3856 | |
---|
| 3857 | c ---------------------------------------------------------- |
---|
[226] | 3858 | c Output in netcdf file "diagsoil.nc" for subterranean |
---|
| 3859 | c variables (output every "ecritphy", as for writediagfi) |
---|
| 3860 | c ---------------------------------------------------------- |
---|
| 3861 | ! Write soil temperature |
---|
[2932] | 3862 | call write_output("soiltemp","Soil temperature","K", |
---|
| 3863 | & tsoil(:,:,iflat)) |
---|
[2907] | 3864 | do islope=1,nslope |
---|
| 3865 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3866 | call write_output("soiltemp_slope"//str2, |
---|
[2907] | 3867 | & "Soil temperature","K", |
---|
[2932] | 3868 | & tsoil(:,:,islope)) |
---|
[2907] | 3869 | ENDDO |
---|
[226] | 3870 | |
---|
[2931] | 3871 | !PREVIOUSLY IN 1D ONLY |
---|
[2932] | 3872 | call write_output("dtrad","rad. heat. rate", |
---|
| 3873 | & "K.s-1",dtrad(:,:)) |
---|
[544] | 3874 | |
---|
[1974] | 3875 | if (rdstorm) then |
---|
[2932] | 3876 | call write_output('aerosol_dust','opacity of env. dust','' |
---|
| 3877 | & ,aerosol(:,:,iaer_dust_doubleq)) |
---|
| 3878 | call write_output('aerosol_stormdust', |
---|
[1974] | 3879 | & 'opacity of storm dust','' |
---|
[2932] | 3880 | & ,aerosol(:,:,iaer_stormdust_doubleq)) |
---|
[2934] | 3881 | call write_output('dqsdifdustq', |
---|
| 3882 | &'tendency due to vertical diffusion of background dust on surface' |
---|
| 3883 | & ,'kg.m-2.s-1',zdqsdif(:,igcm_dust_mass,iflat)) |
---|
[2907] | 3884 | do islope=1,nslope |
---|
| 3885 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3886 | call write_output('dqsdifdustq_slope'//str2, |
---|
[2934] | 3887 | &'tendency due to vertical diffusion of background dust on surface' |
---|
| 3888 | & ,'kg.m-2.s-1',zdqsdif(:,igcm_dust_mass,islope)) |
---|
[2907] | 3889 | ENDDO |
---|
[2934] | 3890 | call write_output('dqsdifrdsq', |
---|
| 3891 | & 'tendency due to vertical diffusion of stormdust on surface', |
---|
[2932] | 3892 | & 'kg.m-2.s-1',zdqsdif(:,igcm_stormdust_mass,iflat)) |
---|
[2907] | 3893 | do islope=1,nslope |
---|
| 3894 | write(str2(1:2),'(i2.2)') islope |
---|
[2932] | 3895 | call write_output('dqsdifrdsq_slope'//str2, |
---|
[2934] | 3896 | & 'tendency due to vertical diffusion of stormdust on surface', |
---|
[2932] | 3897 | & 'kg.m-2.s-1',zdqsdif(:,igcm_stormdust_mass,islope)) |
---|
[2907] | 3898 | ENDDO |
---|
[2931] | 3899 | endif !(rdstorm) |
---|
[1974] | 3900 | |
---|
[2931] | 3901 | if(water) then |
---|
| 3902 | if (.not.scavenging) then |
---|
[2932] | 3903 | call write_output('zdqcloud_ice','cloud ice', |
---|
| 3904 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_h2o_ice)) |
---|
| 3905 | call write_output('zdqcloud_vap','cloud vap', |
---|
| 3906 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_h2o_vap)) |
---|
[3000] | 3907 | call write_output('zdqcloud','cloud', |
---|
[2932] | 3908 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_h2o_ice) |
---|
| 3909 | & +zdqcloud(:,:,igcm_h2o_vap)) |
---|
[2312] | 3910 | IF (hdo) THEN |
---|
[2932] | 3911 | call write_output('zdqcloud_iceD','cloud ice hdo', |
---|
| 3912 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_hdo_ice)) |
---|
| 3913 | call write_output('zdqcloud_vapD','cloud vap hdo', |
---|
| 3914 | & 'kg.m-2.s-1',zdqcloud(:,:,igcm_hdo_vap)) |
---|
[2312] | 3915 | ENDIF ! hdo |
---|
[2931] | 3916 | endif !not.scavenging |
---|
[2963] | 3917 | |
---|
| 3918 | ! Output needed by the PEM |
---|
| 3919 | DO ig = 1,ngrid |
---|
| 3920 | ztmp1 =(1/m_co2 - 1/m_noco2) |
---|
| 3921 | ztmp2=1/m_noco2 |
---|
| 3922 | pvap_surf(ig) = 1/(ztmp1*zq(ig,1,igcm_co2)+ztmp2) |
---|
| 3923 | & * zq(ig,1,igcm_h2o_vap)/(mmol(igcm_h2o_vap)*1.e-3)*ps(ig) |
---|
| 3924 | |
---|
| 3925 | DO islope = 1,nslope |
---|
[3203] | 3926 | ! Clapeyron law for psat (psat = exp(beta/Th2o+alpha)),following Murphy and Koop 2005 |
---|
[2963] | 3927 | rhowater_surf_sat(ig,islope) = |
---|
[2965] | 3928 | & exp(beta_clap_h2o/tsurf(ig,islope)+alpha_clap_h2o) |
---|
[2963] | 3929 | & / tsurf(ig,islope) |
---|
[2965] | 3930 | & * mmol(igcm_h2o_vap)/(mugaz*r) |
---|
[3203] | 3931 | |
---|
[2963] | 3932 | if(qsurf(ig,igcm_h2o_ice,islope).gt.(1.e-4)) then |
---|
[3203] | 3933 | ! we consider to be at saturation above 1.e-4 kg.m-2 |
---|
[2965] | 3934 | rhowater_surf(ig,islope) = rhowater_surf_sat(ig,islope) |
---|
[2963] | 3935 | else |
---|
[3203] | 3936 | ! otherwise, use vapor partial pressure |
---|
[2963] | 3937 | rhowater_surf(ig,islope) = pvap_surf(ig) |
---|
| 3938 | & / tsurf(ig,islope) |
---|
[2965] | 3939 | & * mmol(igcm_h2o_vap)/(mugaz*r) |
---|
[2963] | 3940 | endif |
---|
| 3941 | DO isoil = 1,nsoilmx |
---|
| 3942 | rhowater_soil(ig,isoil,islope) = |
---|
[2965] | 3943 | & exp(beta_clap_h2o/tsoil(ig,isoil,islope)+alpha_clap_h2o) |
---|
[2963] | 3944 | & / tsoil(ig,isoil,islope) |
---|
[2965] | 3945 | & * mmol(igcm_h2o_vap)/(mugaz*r) |
---|
[2963] | 3946 | ENDDO |
---|
| 3947 | ENDDO |
---|
| 3948 | ENDDO |
---|
| 3949 | |
---|
[3122] | 3950 | CALL write_output("waterdensity_soil", |
---|
[3106] | 3951 | & "rhowater_soil",'kg.m-3', |
---|
| 3952 | & rhowater_soil(:,:,iflat)) |
---|
[3122] | 3953 | CALL write_output("waterdensity_surface", |
---|
[3106] | 3954 | & "rhowater_surface",'kg.m-3', |
---|
| 3955 | & rhowater_surf(:,iflat)) |
---|
[2963] | 3956 | DO islope = 1,nslope |
---|
| 3957 | write(str2(1:2),'(i2.2)') islope |
---|
[3122] | 3958 | CALL write_output("waterdensity_soil_slope"//str2, |
---|
[2965] | 3959 | & "rhowater_soil_slope"//str2,'kg.m-3', |
---|
[2963] | 3960 | & rhowater_soil(:,:,islope)) |
---|
[3122] | 3961 | CALL write_output("waterdensity_surface"//str2, |
---|
[2965] | 3962 | & "rhowater_surface"//str2,'kg.m-3', |
---|
[2963] | 3963 | & rhowater_surf(:,islope)) |
---|
| 3964 | ENDDO |
---|
| 3965 | |
---|
[2965] | 3966 | CALL write_output("h2o_layer1","h2o mass mr in the first layer", |
---|
| 3967 | & 'kg/kg',zq(:,1,igcm_h2o_vap)) |
---|
| 3968 | CALL write_output("co2_layer1","co2 mass mr in the first layer", |
---|
| 3969 | & 'kg/kg',zq(:,1,igcm_co2)) |
---|
[3027] | 3970 | ENDIF ! of IF (water) |
---|
[2963] | 3971 | |
---|
[2931] | 3972 | !PREVIOUSLY IN 1D ONLY |
---|
[2383] | 3973 | |
---|
[2931] | 3974 | c ========================================================== |
---|
| 3975 | c END OF WRITEDIAGFI |
---|
| 3976 | c ========================================================== |
---|
| 3977 | #endif |
---|
| 3978 | ! of ifdef MESOSCALE |
---|
[1711] | 3979 | |
---|
[2931] | 3980 | c ELSE ! if(ngrid.eq.1) |
---|
[358] | 3981 | |
---|
[2931] | 3982 | c#ifndef MESOSCALE |
---|
| 3983 | c write(*, |
---|
| 3984 | c & '("Ls =",f11.6," tau_pref_scenario(",f4.0," Pa) =",f9.6)') |
---|
| 3985 | c & zls*180./pi,odpref,tau_pref_scenario |
---|
| 3986 | c#endif |
---|
[226] | 3987 | |
---|
[2931] | 3988 | c END IF ! if(ngrid.ne.1) |
---|
[2887] | 3989 | |
---|
[2374] | 3990 | ! test for co2 conservation with co2 microphysics |
---|
| 3991 | if (igcm_co2_ice.ne.0) then |
---|
| 3992 | co2totB = 0. ! added by C.M. |
---|
| 3993 | do ig=1,ngrid |
---|
| 3994 | do l=1,nlayer |
---|
| 3995 | co2totB = co2totB + (zplev(ig,l)-zplev(ig,l+1))/g* |
---|
| 3996 | & (pq(ig,l,igcm_co2)+pq(ig,l,igcm_co2_ice) |
---|
| 3997 | & +(pdq(ig,l,igcm_co2)+pdq(ig,l,igcm_co2_ice))*ptimestep) |
---|
| 3998 | enddo |
---|
[2900] | 3999 | co2totB = co2totB + qsurf(ig,igcm_co2,iflat) |
---|
[2362] | 4000 | enddo |
---|
[2599] | 4001 | else |
---|
| 4002 | co2totB = 0. ! added by C.M. |
---|
| 4003 | do ig=1,ngrid |
---|
| 4004 | do l=1,nlayer |
---|
| 4005 | co2totB = co2totB + (zplev(ig,l)-zplev(ig,l+1))/g* |
---|
| 4006 | & (pq(ig,l,igcm_co2)+pdq(ig,l,igcm_co2)*ptimestep) |
---|
| 4007 | enddo |
---|
[2900] | 4008 | co2totB = co2totB + qsurf(ig,igcm_co2,iflat) |
---|
[2599] | 4009 | enddo |
---|
| 4010 | endif ! of if (igcm_co2_ice.ne.0) |
---|
[2660] | 4011 | co2conservation = (co2totA-co2totB)/co2totA |
---|
[2932] | 4012 | call write_output( 'co2conservation', |
---|
[2374] | 4013 | & 'Total CO2 mass conservation in physic', |
---|
[2934] | 4014 | & 'kg', co2conservation) |
---|
[2223] | 4015 | ! XIOS outputs |
---|
[3203] | 4016 | #ifdef CPP_XIOS |
---|
[2223] | 4017 | ! Send fields to XIOS: (NB these fields must also be defined as |
---|
| 4018 | ! <field id="..." /> in context_lmdz_physics.xml to be correctly used) |
---|
[2545] | 4019 | |
---|
| 4020 | CALL send_xios_field("controle",tab_cntrl_mod,1) |
---|
| 4021 | |
---|
| 4022 | CALL send_xios_field("ap",ap,1) |
---|
| 4023 | CALL send_xios_field("bp",bp,1) |
---|
| 4024 | CALL send_xios_field("aps",aps,1) |
---|
| 4025 | CALL send_xios_field("bps",bps,1) |
---|
| 4026 | |
---|
[2223] | 4027 | if (lastcall.and.is_omp_master) then |
---|
| 4028 | write(*,*) "physiq lastcall: call xios_context_finalize" |
---|
| 4029 | call xios_context_finalize |
---|
| 4030 | endif |
---|
| 4031 | #endif |
---|
| 4032 | |
---|
[2551] | 4033 | if (check_physics_outputs) then |
---|
| 4034 | ! Check the validity of updated fields at the end of the physics step |
---|
[2570] | 4035 | call check_physics_fields("end of physiq:",zt,zu,zv,zplev,zq) |
---|
[2551] | 4036 | endif |
---|
[2223] | 4037 | |
---|
[42] | 4038 | icount=icount+1 |
---|
[1549] | 4039 | |
---|
| 4040 | END SUBROUTINE physiq |
---|
| 4041 | |
---|
| 4042 | END MODULE physiq_mod |
---|