[1549] | 1 | MODULE physiq_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[234] | 7 | SUBROUTINE physiq( |
---|
[226] | 8 | $ ngrid,nlayer,nq |
---|
| 9 | $ ,firstcall,lastcall |
---|
| 10 | $ ,pday,ptime,ptimestep |
---|
| 11 | $ ,pplev,pplay,pphi |
---|
| 12 | $ ,pu,pv,pt,pq |
---|
[1312] | 13 | $ ,flxw |
---|
[1576] | 14 | $ ,pdu,pdv,pdt,pdq,pdpsrf) |
---|
[42] | 15 | |
---|
[2162] | 16 | use watercloud_mod, only: watercloud, zdqcloud, zdqscloud |
---|
[2164] | 17 | use calchim_mod, only: calchim, ichemistry, zdqchim, zdqschim |
---|
[1996] | 18 | use watersat_mod, only: watersat |
---|
[2009] | 19 | use co2condens_mod, only: co2condens |
---|
[2562] | 20 | use co2cloud_mod, only: co2cloud |
---|
[1974] | 21 | use callradite_mod, only: callradite |
---|
| 22 | use callsedim_mod, only: callsedim |
---|
| 23 | use rocketduststorm_mod, only: rocketduststorm, dustliftday |
---|
| 24 | use calcstormfract_mod, only: calcstormfract |
---|
[2628] | 25 | use topmons_mod, only: topmons,topmons_setup |
---|
[1617] | 26 | use tracer_mod, only: noms, mmol, igcm_co2, igcm_n2, igcm_co2_ice, |
---|
[1036] | 27 | & igcm_co, igcm_o, igcm_h2o_vap, igcm_h2o_ice, |
---|
[2312] | 28 | & igcm_hdo_vap, igcm_hdo_ice, |
---|
[1036] | 29 | & igcm_ccn_mass, igcm_ccn_number, |
---|
[1617] | 30 | & igcm_ccnco2_mass, igcm_ccnco2_number, |
---|
[2562] | 31 | & igcm_ccnco2_h2o_mass_ice, |
---|
| 32 | & igcm_ccnco2_h2o_mass_ccn, |
---|
| 33 | & igcm_ccnco2_h2o_number, |
---|
[2589] | 34 | & igcm_ccnco2_meteor_mass, |
---|
| 35 | & igcm_ccnco2_meteor_number, |
---|
[1617] | 36 | & rho_ice_co2,nuiceco2_sed,nuiceco2_ref, |
---|
[1036] | 37 | & igcm_dust_mass, igcm_dust_number, igcm_h2o2, |
---|
[1660] | 38 | & nuice_ref, rho_ice, rho_dust, ref_r0, |
---|
[1974] | 39 | & igcm_he, igcm_stormdust_mass, |
---|
[2199] | 40 | & igcm_stormdust_number, igcm_topdust_mass, |
---|
[2324] | 41 | & igcm_topdust_number, |
---|
| 42 | & qperemin |
---|
[1047] | 43 | use comsoil_h, only: inertiedat, ! soil thermal inertia |
---|
[2285] | 44 | & tsoil, nsoilmx,!number of subsurface layers |
---|
| 45 | & mlayer,layer ! soil mid layer depths |
---|
[1974] | 46 | use geometry_mod, only: longitude, latitude, cell_area, |
---|
| 47 | & longitude_deg |
---|
[1541] | 48 | use comgeomfi_h, only: sinlon, coslon, sinlat, coslat |
---|
[1047] | 49 | use surfdat_h, only: phisfi, albedodat, zmea, zstd, zsig, zgam, |
---|
[2508] | 50 | & zthe, z0, albedo_h2o_cap,albedo_h2o_frost, |
---|
[2561] | 51 | & frost_albedo_threshold,frost_metam_threshold, |
---|
[2826] | 52 | & tsurf, emis, |
---|
[1974] | 53 | & capcal, fluxgrd, qsurf, |
---|
[2512] | 54 | & hmons,summit,base,watercap,watercaptag |
---|
[2597] | 55 | use comsaison_h, only: dist_sol, declin, zls, |
---|
| 56 | & mu0, fract, local_time |
---|
[1047] | 57 | use slope_mod, only: theta_sl, psi_sl |
---|
| 58 | use conc_mod, only: rnew, cpnew, mmean |
---|
[1525] | 59 | use time_phylmdz_mod, only: iphysiq, day_step, ecritstart, daysec |
---|
[2409] | 60 | use dimradmars_mod, only: aerosol, totcloudfrac, |
---|
[1246] | 61 | & dtrad, fluxrad_sky, fluxrad, albedo, |
---|
[2081] | 62 | & naerkind, iaer_dust_doubleq, |
---|
[2678] | 63 | & iaer_stormdust_doubleq, iaer_h2o_ice, |
---|
| 64 | & flux_1AU |
---|
[2409] | 65 | use dust_param_mod, only: doubleq, lifting, callddevil, |
---|
[2417] | 66 | & tauscaling, odpref, dustbin, |
---|
[2442] | 67 | & dustscaling_mode, dust_rad_adjust, |
---|
[2643] | 68 | & freedust, reff_driven_IRtoVIS_scenario |
---|
[1236] | 69 | use turb_mod, only: q2, wstar, ustar, sensibFlux, |
---|
| 70 | & zmax_th, hfmax_th, turb_resolved |
---|
[1229] | 71 | use planete_h, only: aphelie, periheli, year_day, peri_day, |
---|
| 72 | & obliquit |
---|
[1974] | 73 | USE comcstfi_h, only: r, cpp, mugaz, g, rcp, pi, rad |
---|
[1912] | 74 | USE calldrag_noro_mod, ONLY: calldrag_noro |
---|
[1969] | 75 | USE vdifc_mod, ONLY: vdifc |
---|
[1266] | 76 | use param_v4_h, only: nreact,n_avog, |
---|
| 77 | & fill_data_thermos, allocate_param_thermos |
---|
| 78 | use iono_h, only: allocate_param_iono |
---|
[1974] | 79 | use compute_dtau_mod, only: compute_dtau |
---|
[2149] | 80 | use nonoro_gwd_ran_mod, only: nonoro_gwd_ran |
---|
[2551] | 81 | use check_fields_mod, only: check_physics_fields |
---|
[1112] | 82 | #ifdef MESOSCALE |
---|
| 83 | use comsoil_h, only: mlayer,layer |
---|
| 84 | use surfdat_h, only: z0_default |
---|
[1236] | 85 | use comm_wrf |
---|
[1212] | 86 | #else |
---|
[2223] | 87 | USE planetwide_mod, ONLY: planetwide_maxval, planetwide_minval, |
---|
| 88 | & planetwide_sumval |
---|
[1212] | 89 | use phyredem, only: physdem0, physdem1 |
---|
[2545] | 90 | use phyetat0_mod, only: phyetat0, tab_cntrl_mod |
---|
[2559] | 91 | use wstats_mod, only: callstats, wstats, mkstats |
---|
[2916] | 92 | use writediagsoil_mod, only: writediagsoil |
---|
[1212] | 93 | use eofdump_mod, only: eofdump |
---|
[2223] | 94 | USE vertical_layers_mod, ONLY: ap,bp,aps,bps,presnivs,pseudoalt |
---|
| 95 | USE mod_phys_lmdz_omp_data, ONLY: is_omp_master |
---|
[2511] | 96 | USE time_phylmdz_mod, ONLY: day_end |
---|
[1112] | 97 | #endif |
---|
| 98 | |
---|
[2223] | 99 | #ifdef CPP_XIOS |
---|
| 100 | use xios_output_mod, only: initialize_xios_output, |
---|
| 101 | & update_xios_timestep, |
---|
| 102 | & send_xios_field |
---|
| 103 | use wxios, only: wxios_context_init, xios_context_finalize |
---|
| 104 | #endif |
---|
[2501] | 105 | USE mod_grid_phy_lmdz, ONLY: grid_type, unstructured |
---|
[2551] | 106 | use ioipsl_getin_p_mod, only: getin_p |
---|
[2896] | 107 | use comslope_mod, ONLY: nslope,def_slope,def_slope_mean, |
---|
| 108 | & subslope_dist,iflat,sky_slope, |
---|
| 109 | & major_slope,compute_meshgridavg, |
---|
| 110 | & ini_comslope_h |
---|
[1922] | 111 | |
---|
[42] | 112 | IMPLICIT NONE |
---|
| 113 | c======================================================================= |
---|
| 114 | c |
---|
| 115 | c subject: |
---|
| 116 | c -------- |
---|
| 117 | c |
---|
| 118 | c Organisation of the physical parametrisations of the LMD |
---|
| 119 | c martian atmospheric general circulation model. |
---|
| 120 | c |
---|
| 121 | c The GCM can be run without or with tracer transport |
---|
| 122 | c depending on the value of Logical "tracer" in file "callphys.def" |
---|
| 123 | c Tracers may be water vapor, ice OR chemical species OR dust particles |
---|
| 124 | c |
---|
| 125 | c SEE comments in initracer.F about numbering of tracer species... |
---|
| 126 | c |
---|
| 127 | c It includes: |
---|
| 128 | c |
---|
| 129 | c 1. Initialization: |
---|
| 130 | c 1.1 First call initializations |
---|
| 131 | c 1.2 Initialization for every call to physiq |
---|
| 132 | c 1.2.5 Compute mean mass and cp, R and thermal conduction coeff. |
---|
| 133 | c 2. Compute radiative transfer tendencies |
---|
| 134 | c (longwave and shortwave) for CO2 and aerosols. |
---|
| 135 | c 3. Gravity wave and subgrid scale topography drag : |
---|
| 136 | c 4. Vertical diffusion (turbulent mixing): |
---|
| 137 | c 5. Convective adjustment |
---|
| 138 | c 6. Condensation and sublimation of carbon dioxide. |
---|
| 139 | c 7. TRACERS : |
---|
[1617] | 140 | c 7a. water, water ice, co2 ice (clouds) |
---|
[42] | 141 | c 7b. call for photochemistry when tracers are chemical species |
---|
| 142 | c 7c. other scheme for tracer (dust) transport (lifting, sedimentation) |
---|
| 143 | c 7d. updates (CO2 pressure variations, surface budget) |
---|
| 144 | c 8. Contribution to tendencies due to thermosphere |
---|
| 145 | c 9. Surface and sub-surface temperature calculations |
---|
| 146 | c 10. Write outputs : |
---|
| 147 | c - "startfi", "histfi" (if it's time) |
---|
| 148 | c - Saving statistics (if "callstats = .true.") |
---|
| 149 | c - Dumping eof (if "calleofdump = .true.") |
---|
| 150 | c - Output any needed variables in "diagfi" |
---|
| 151 | c 11. Diagnostic: mass conservation of tracers |
---|
| 152 | c |
---|
| 153 | c author: |
---|
| 154 | c ------- |
---|
| 155 | c Frederic Hourdin 15/10/93 |
---|
| 156 | c Francois Forget 1994 |
---|
| 157 | c Christophe Hourdin 02/1997 |
---|
| 158 | c Subroutine completly rewritten by F.Forget (01/2000) |
---|
| 159 | c Introduction of the photochemical module: S. Lebonnois (11/2002) |
---|
| 160 | c Introduction of the thermosphere module: M. Angelats i Coll (2002) |
---|
| 161 | c Water ice clouds: Franck Montmessin (update 06/2003) |
---|
| 162 | c Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
---|
| 163 | c Nb: See callradite.F for more information. |
---|
[234] | 164 | c Mesoscale lines: Aymeric Spiga (2007 - 2011) -- check MESOSCALE flags |
---|
[414] | 165 | c jul 2011 malv+fgg: Modified calls to NIR heating routine and 15 um cooling parameterization |
---|
[1617] | 166 | c |
---|
| 167 | c 10/16 J. Audouard: modifications for CO2 clouds scheme |
---|
| 168 | |
---|
[42] | 169 | c arguments: |
---|
| 170 | c ---------- |
---|
| 171 | c |
---|
| 172 | c input: |
---|
| 173 | c ------ |
---|
| 174 | c ecri period (in dynamical timestep) to write output |
---|
| 175 | c ngrid Size of the horizontal grid. |
---|
| 176 | c All internal loops are performed on that grid. |
---|
| 177 | c nlayer Number of vertical layers. |
---|
| 178 | c nq Number of advected fields |
---|
| 179 | c firstcall True at the first call |
---|
| 180 | c lastcall True at the last call |
---|
| 181 | c pday Number of days counted from the North. Spring |
---|
| 182 | c equinoxe. |
---|
| 183 | c ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT |
---|
| 184 | c ptimestep timestep (s) |
---|
| 185 | c pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa) |
---|
| 186 | c pplev(ngrid,nlayer+1) intermediate pressure levels (pa) |
---|
| 187 | c pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2s-2) |
---|
| 188 | c pu(ngrid,nlayer) u component of the wind (ms-1) |
---|
| 189 | c pv(ngrid,nlayer) v component of the wind (ms-1) |
---|
| 190 | c pt(ngrid,nlayer) Temperature (K) |
---|
| 191 | c pq(ngrid,nlayer,nq) Advected fields |
---|
[330] | 192 | c pudyn(ngrid,nlayer) | |
---|
| 193 | c pvdyn(ngrid,nlayer) | Dynamical temporal derivative for the |
---|
| 194 | c ptdyn(ngrid,nlayer) | corresponding variables |
---|
| 195 | c pqdyn(ngrid,nlayer,nq) | |
---|
[1312] | 196 | c flxw(ngrid,nlayer) vertical mass flux (kg/s) at layer lower boundary |
---|
[42] | 197 | c |
---|
| 198 | c output: |
---|
| 199 | c ------- |
---|
| 200 | c |
---|
[1047] | 201 | c pdu(ngrid,nlayer) | |
---|
| 202 | c pdv(ngrid,nlayer) | Temporal derivative of the corresponding |
---|
| 203 | c pdt(ngrid,nlayer) | variables due to physical processes. |
---|
| 204 | c pdq(ngrid,nlayer,nq) | |
---|
| 205 | c pdpsrf(ngrid) | |
---|
[42] | 206 | |
---|
| 207 | c |
---|
| 208 | c======================================================================= |
---|
| 209 | c |
---|
| 210 | c 0. Declarations : |
---|
| 211 | c ------------------ |
---|
| 212 | |
---|
[1922] | 213 | include "callkeys.h" |
---|
| 214 | include "comg1d.h" |
---|
| 215 | include "nlteparams.h" |
---|
| 216 | include "netcdf.inc" |
---|
[42] | 217 | |
---|
| 218 | c Arguments : |
---|
| 219 | c ----------- |
---|
| 220 | |
---|
| 221 | c inputs: |
---|
| 222 | c ------- |
---|
[1312] | 223 | INTEGER,INTENT(in) :: ngrid ! number of atmospheric columns |
---|
| 224 | INTEGER,INTENT(in) :: nlayer ! number of atmospheric layers |
---|
| 225 | INTEGER,INTENT(in) :: nq ! number of tracers |
---|
| 226 | LOGICAL,INTENT(in) :: firstcall ! signals first call to physics |
---|
| 227 | LOGICAL,INTENT(in) :: lastcall ! signals last call to physics |
---|
| 228 | REAL,INTENT(in) :: pday ! number of elapsed sols since reference Ls=0 |
---|
| 229 | REAL,INTENT(in) :: ptime ! "universal time", given as fraction of sol (e.g.: 0.5 for noon) |
---|
| 230 | REAL,INTENT(in) :: ptimestep ! physics timestep (s) |
---|
| 231 | REAL,INTENT(in) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
---|
| 232 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! mid-layer pressure (Pa) |
---|
| 233 | REAL,INTENT(IN) :: pphi(ngrid,nlayer) ! geopotential at mid-layer (m2s-2) |
---|
| 234 | REAL,INTENT(in) :: pu(ngrid,nlayer) ! zonal wind component (m/s) |
---|
| 235 | REAL,INTENT(in) :: pv(ngrid,nlayer) ! meridional wind component (m/s) |
---|
| 236 | REAL,INTENT(in) :: pt(ngrid,nlayer) ! temperature (K) |
---|
| 237 | REAL,INTENT(in) :: pq(ngrid,nlayer,nq) ! tracers (.../kg_of_air) |
---|
| 238 | REAL,INTENT(in) :: flxw(ngrid,nlayer) ! vertical mass flux (ks/s) |
---|
| 239 | ! at lower boundary of layer |
---|
[226] | 240 | |
---|
[42] | 241 | c outputs: |
---|
| 242 | c -------- |
---|
| 243 | c physical tendencies |
---|
[1312] | 244 | REAL,INTENT(out) :: pdu(ngrid,nlayer) ! zonal wind tendency (m/s/s) |
---|
| 245 | REAL,INTENT(out) :: pdv(ngrid,nlayer) ! meridional wind tendency (m/s/s) |
---|
| 246 | REAL,INTENT(out) :: pdt(ngrid,nlayer) ! temperature tendency (K/s) |
---|
| 247 | REAL,INTENT(out) :: pdq(ngrid,nlayer,nq) ! tracer tendencies (../kg/s) |
---|
| 248 | REAL,INTENT(out) :: pdpsrf(ngrid) ! surface pressure tendency (Pa/s) |
---|
[42] | 249 | |
---|
[1974] | 250 | |
---|
[42] | 251 | |
---|
| 252 | c Local saved variables: |
---|
| 253 | c ---------------------- |
---|
[1233] | 254 | INTEGER,SAVE :: day_ini ! Initial date of the run (sol since Ls=0) |
---|
[1047] | 255 | INTEGER,SAVE :: icount ! counter of calls to physiq during the run. |
---|
[2578] | 256 | REAL,SAVE :: time_phys |
---|
[1974] | 257 | |
---|
[2578] | 258 | !$OMP THREADPRIVATE(day_ini,icount,time_phys) |
---|
| 259 | |
---|
[1375] | 260 | #ifdef DUSTSTORM |
---|
| 261 | REAL pq_tmp(ngrid, nlayer, 2) ! To compute tendencies due the dust bomb |
---|
| 262 | #endif |
---|
[1974] | 263 | |
---|
[42] | 264 | c Variables used by the water ice microphysical scheme: |
---|
[1047] | 265 | REAL rice(ngrid,nlayer) ! Water ice geometric mean radius (m) |
---|
| 266 | REAL nuice(ngrid,nlayer) ! Estimated effective variance |
---|
[42] | 267 | ! of the size distribution |
---|
[1047] | 268 | real rsedcloud(ngrid,nlayer) ! Cloud sedimentation radius |
---|
| 269 | real rhocloud(ngrid,nlayer) ! Cloud density (kg.m-3) |
---|
[2447] | 270 | real rsedcloudco2(ngrid,nlayer) ! CO2 Cloud sedimentation radius |
---|
| 271 | real rhocloudco2(ngrid,nlayer) ! CO2 Cloud density (kg.m-3) |
---|
| 272 | real nuiceco2(ngrid,nlayer) ! Estimated effective variance of the |
---|
| 273 | ! size distribution |
---|
[2900] | 274 | REAL inertiesoil(ngrid,nsoilmx,nslope) ! Time varying subsurface |
---|
[1047] | 275 | ! thermal inertia (J.s-1/2.m-2.K-1) |
---|
| 276 | ! (used only when tifeedback=.true.) |
---|
[1617] | 277 | c Variables used by the CO2 clouds microphysical scheme: |
---|
[1934] | 278 | DOUBLE PRECISION riceco2(ngrid,nlayer) ! co2 ice geometric mean radius (m) |
---|
[1617] | 279 | real zdqssed_co2(ngrid) ! CO2 flux at the surface (kg.m-2.s-1) |
---|
[2562] | 280 | real zdqssed_ccn(ngrid,nq) ! CCN flux at the surface (kg.m-2.s-1) |
---|
[1996] | 281 | real zcondicea_co2microp(ngrid,nlayer) |
---|
[1495] | 282 | c Variables used by the photochemistry |
---|
| 283 | REAL surfdust(ngrid,nlayer) ! dust surface area (m2/m3, if photochemistry) |
---|
| 284 | REAL surfice(ngrid,nlayer) ! ice surface area (m2/m3, if photochemistry) |
---|
[234] | 285 | c Variables used by the slope model |
---|
| 286 | REAL sl_ls, sl_lct, sl_lat |
---|
| 287 | REAL sl_tau, sl_alb, sl_the, sl_psi |
---|
| 288 | REAL sl_fl0, sl_flu |
---|
| 289 | REAL sl_ra, sl_di0 |
---|
| 290 | REAL sky |
---|
[2685] | 291 | REAL fluxsurf_dir_dn_sw(ngrid) ! Incident direct solar flux on Mars at surface (W.m-2) |
---|
[234] | 292 | |
---|
[1047] | 293 | REAL,PARAMETER :: stephan = 5.67e-08 ! Stephan Boltzman constant |
---|
[42] | 294 | |
---|
| 295 | c Local variables : |
---|
| 296 | c ----------------- |
---|
| 297 | |
---|
| 298 | REAL CBRT |
---|
| 299 | EXTERNAL CBRT |
---|
| 300 | |
---|
[1036] | 301 | ! CHARACTER*80 fichier |
---|
[2281] | 302 | INTEGER l,ig,ierr,igout,iq,tapphys,isoil |
---|
[42] | 303 | |
---|
[2900] | 304 | REAL fluxsurf_lw(ngrid,nslope) !incident LW (IR) surface flux (W.m-2) |
---|
| 305 | REAL fluxsurf_dn_sw(ngrid,2,nslope) ! Incident SW (solar) surface flux (W.m-2) |
---|
[2685] | 306 | REAL fluxsurf_up_sw(ngrid,2) ! Reflected SW (solar) surface flux (W.m-2) |
---|
[1047] | 307 | REAL fluxtop_lw(ngrid) !Outgoing LW (IR) flux to space (W.m-2) |
---|
[2685] | 308 | REAL fluxtop_dn_sw(ngrid,2) ! Incoming SW (solar) flux from space (W.m-2) |
---|
| 309 | REAL fluxtop_up_sw(ngrid,2) ! Outgoing SW (solar) flux to space (W.m-2) |
---|
[2415] | 310 | REAL tau_pref_scenario(ngrid) ! prescribed dust column visible opacity |
---|
| 311 | ! at odpref |
---|
[2643] | 312 | REAL IRtoVIScoef(ngrid) ! conversion coefficient to apply on |
---|
| 313 | ! scenario absorption IR (9.3um) CDOD |
---|
| 314 | ! = tau_pref_gcm_VIS / tau_pref_gcm_IR |
---|
[2415] | 315 | REAL tau_pref_gcm(ngrid) ! dust column visible opacity at odpref in the GCM |
---|
[1974] | 316 | c rocket dust storm |
---|
| 317 | REAL totstormfract(ngrid) ! fraction of the mesh where the dust storm is contained |
---|
| 318 | logical clearatm ! clearatm used to calculate twice the radiative |
---|
| 319 | ! transfer when rdstorm is active : |
---|
| 320 | ! - in a mesh with stormdust and background dust (false) |
---|
| 321 | ! - in a mesh with background dust only (true) |
---|
[2628] | 322 | c entrainment by mountain top dust flows |
---|
[2199] | 323 | logical nohmons ! nohmons used to calculate twice the radiative |
---|
[2628] | 324 | ! transfer when topflows is active : |
---|
[2199] | 325 | ! - in a mesh with topdust and background dust (false) |
---|
| 326 | ! - in a mesh with background dust only (true) |
---|
[1974] | 327 | |
---|
[1047] | 328 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
[1246] | 329 | ! AS: TBD: this one should be in a module ! |
---|
[42] | 330 | REAL zday ! date (time since Ls=0, in martian days) |
---|
[1047] | 331 | REAL zzlay(ngrid,nlayer) ! altitude at the middle of the layers |
---|
| 332 | REAL zzlev(ngrid,nlayer+1) ! altitude at layer boundaries |
---|
[1036] | 333 | ! REAL latvl1,lonvl1 ! Viking Lander 1 point (for diagnostic) |
---|
[42] | 334 | |
---|
| 335 | c Tendancies due to various processes: |
---|
[2900] | 336 | REAL dqsurf(ngrid,nq,nslope) ! tendency for tracers on surface (Kg/m2/s) |
---|
[1047] | 337 | REAL zdtlw(ngrid,nlayer) ! (K/s) |
---|
| 338 | REAL zdtsw(ngrid,nlayer) ! (K/s) |
---|
[1974] | 339 | REAL pdqrds(ngrid,nlayer,nq) ! tendency for dust after rocketduststorm |
---|
| 340 | |
---|
[1047] | 341 | REAL zdtnirco2(ngrid,nlayer) ! (K/s) |
---|
| 342 | REAL zdtnlte(ngrid,nlayer) ! (K/s) |
---|
[2900] | 343 | REAL zdtsurf(ngrid,nslope) ! (K/s) |
---|
[1617] | 344 | REAL zdtcloud(ngrid,nlayer),zdtcloudco2(ngrid,nlayer) |
---|
[1047] | 345 | REAL zdvdif(ngrid,nlayer),zdudif(ngrid,nlayer) ! (m.s-2) |
---|
[2900] | 346 | REAL zdhdif(ngrid,nlayer), zdtsdif(ngrid,nslope) ! (K/s) |
---|
[1047] | 347 | REAL zdvadj(ngrid,nlayer),zduadj(ngrid,nlayer) ! (m.s-2) |
---|
| 348 | REAL zdhadj(ngrid,nlayer) ! (K/s) |
---|
| 349 | REAL zdtgw(ngrid,nlayer) ! (K/s) |
---|
| 350 | REAL zdugw(ngrid,nlayer),zdvgw(ngrid,nlayer) ! (m.s-2) |
---|
[2900] | 351 | REAL zdtc(ngrid,nlayer),zdtsurfc(ngrid,nslope) |
---|
[1047] | 352 | REAL zdvc(ngrid,nlayer),zduc(ngrid,nlayer) |
---|
[42] | 353 | |
---|
[2900] | 354 | REAL zdqdif(ngrid,nlayer,nq), zdqsdif(ngrid,nq,nslope) |
---|
[1047] | 355 | REAL zdqsed(ngrid,nlayer,nq), zdqssed(ngrid,nq) |
---|
| 356 | REAL zdqdev(ngrid,nlayer,nq), zdqsdev(ngrid,nq) |
---|
| 357 | REAL zdqadj(ngrid,nlayer,nq) |
---|
| 358 | REAL zdqc(ngrid,nlayer,nq) |
---|
[2162] | 359 | REAL zdqcloudco2(ngrid,nlayer,nq) |
---|
[2900] | 360 | REAL zdqsc(ngrid,nq,nslope) |
---|
[42] | 361 | |
---|
[1047] | 362 | REAL zdteuv(ngrid,nlayer) ! (K/s) |
---|
| 363 | REAL zdtconduc(ngrid,nlayer) ! (K/s) |
---|
| 364 | REAL zdumolvis(ngrid,nlayer) |
---|
| 365 | REAL zdvmolvis(ngrid,nlayer) |
---|
| 366 | real zdqmoldiff(ngrid,nlayer,nq) |
---|
[2467] | 367 | real*8 PhiEscH,PhiEscH2,PhiEscD |
---|
[42] | 368 | |
---|
[2900] | 369 | REAL dwatercap(ngrid,nslope), dwatercap_dif(ngrid,nslope) ! (kg/m-2) |
---|
[2260] | 370 | |
---|
[42] | 371 | c Local variable for local intermediate calcul: |
---|
[2900] | 372 | REAL zflubid(ngrid,nslope) |
---|
[1047] | 373 | REAL zplanck(ngrid),zpopsk(ngrid,nlayer) |
---|
| 374 | REAL zdum1(ngrid,nlayer) |
---|
| 375 | REAL zdum2(ngrid,nlayer) |
---|
[42] | 376 | REAL ztim1,ztim2,ztim3, z1,z2 |
---|
| 377 | REAL ztime_fin |
---|
[1047] | 378 | REAL zdh(ngrid,nlayer) |
---|
[1313] | 379 | REAL zh(ngrid,nlayer) ! potential temperature (K) |
---|
[1312] | 380 | REAL pw(ngrid,nlayer) ! vertical velocity (m/s) (>0 when downwards) |
---|
[42] | 381 | INTEGER length |
---|
| 382 | PARAMETER (length=100) |
---|
| 383 | |
---|
[1974] | 384 | c Variables for the total dust for diagnostics |
---|
| 385 | REAL qdusttotal(ngrid,nlayer) !it equals to dust + stormdust |
---|
| 386 | |
---|
| 387 | INTEGER iaer |
---|
| 388 | |
---|
[42] | 389 | c local variables only used for diagnostic (output in file "diagfi" or "stats") |
---|
| 390 | c ----------------------------------------------------------------------------- |
---|
[1047] | 391 | REAL ps(ngrid), zt(ngrid,nlayer) |
---|
| 392 | REAL zu(ngrid,nlayer),zv(ngrid,nlayer) |
---|
| 393 | REAL zq(ngrid,nlayer,nq) |
---|
[1974] | 394 | |
---|
[2685] | 395 | REAL fluxtop_dn_sw_tot(ngrid), fluxtop_up_sw_tot(ngrid) |
---|
[2900] | 396 | REAL fluxsurf_dn_sw_tot(ngrid,nslope), fluxsurf_up_sw_tot(ngrid) |
---|
[42] | 397 | character*2 str2 |
---|
[1036] | 398 | ! character*5 str5 |
---|
[1047] | 399 | real zdtdif(ngrid,nlayer), zdtadj(ngrid,nlayer) |
---|
| 400 | real rdust(ngrid,nlayer) ! dust geometric mean radius (m) |
---|
[1974] | 401 | real rstormdust(ngrid,nlayer) ! stormdust geometric mean radius (m) |
---|
[2199] | 402 | real rtopdust(ngrid,nlayer) ! topdust geometric mean radius (m) |
---|
[42] | 403 | integer igmin, lmin |
---|
| 404 | logical tdiag |
---|
| 405 | |
---|
[1047] | 406 | real co2col(ngrid) ! CO2 column |
---|
[883] | 407 | ! pplev and pplay are dynamical inputs and must not be modified in the physics. |
---|
| 408 | ! instead, use zplay and zplev : |
---|
[1047] | 409 | REAL zplev(ngrid,nlayer+1),zplay(ngrid,nlayer) |
---|
[1036] | 410 | ! REAL zstress(ngrid),cd |
---|
[1047] | 411 | real tmean, zlocal(nlayer) |
---|
| 412 | real rho(ngrid,nlayer) ! density |
---|
| 413 | real vmr(ngrid,nlayer) ! volume mixing ratio |
---|
| 414 | real rhopart(ngrid,nlayer) ! number density of a given species |
---|
| 415 | real colden(ngrid,nq) ! vertical column of tracers |
---|
[1464] | 416 | real mass(nq) ! global mass of tracers (g) |
---|
[1047] | 417 | REAL mtot(ngrid) ! Total mass of water vapor (kg/m2) |
---|
[1974] | 418 | REAL mstormdtot(ngrid) ! Total mass of stormdust tracer (kg/m2) |
---|
[2362] | 419 | REAL mdusttot(ngrid) ! Total mass of dust tracer (kg/m2) |
---|
[1047] | 420 | REAL icetot(ngrid) ! Total mass of water ice (kg/m2) |
---|
[2551] | 421 | REAL mtotco2(ngrid) ! Total mass of co2, including ice at the surface (kg/m2) |
---|
| 422 | REAL vaptotco2(ngrid) ! Total mass of co2 vapor (kg/m2) |
---|
| 423 | REAL icetotco2(ngrid) ! Total mass of co2 ice (kg/m2) |
---|
[1047] | 424 | REAL Nccntot(ngrid) ! Total number of ccn (nbr/m2) |
---|
[2362] | 425 | REAL NccnCO2tot(ngrid) ! Total number of ccnCO2 (nbr/m2) |
---|
[1047] | 426 | REAL Mccntot(ngrid) ! Total mass of ccn (kg/m2) |
---|
| 427 | REAL rave(ngrid) ! Mean water ice effective radius (m) |
---|
| 428 | REAL opTES(ngrid,nlayer) ! abs optical depth at 825 cm-1 |
---|
| 429 | REAL tauTES(ngrid) ! column optical depth at 825 cm-1 |
---|
[42] | 430 | REAL Qabsice ! Water ice absorption coefficient |
---|
[1047] | 431 | REAL taucloudtes(ngrid) ! Cloud opacity at infrared |
---|
[520] | 432 | ! reference wavelength using |
---|
| 433 | ! Qabs instead of Qext |
---|
| 434 | ! (direct comparison with TES) |
---|
[2312] | 435 | REAL mtotD(ngrid) ! Total mass of HDO vapor (kg/m2) |
---|
| 436 | REAL icetotD(ngrid) ! Total mass of HDO ice (kg/m2) |
---|
| 437 | REAL DoH_vap(ngrid,nlayer) !D/H ratio |
---|
| 438 | REAL DoH_ice(ngrid,nlayer) !D/H ratio |
---|
| 439 | REAL DoH_surf(ngrid) !D/H ratio surface |
---|
[2362] | 440 | |
---|
[1047] | 441 | REAL dqdustsurf(ngrid) ! surface q dust flux (kg/m2/s) |
---|
| 442 | REAL dndustsurf(ngrid) ! surface n dust flux (number/m2/s) |
---|
| 443 | REAL ndust(ngrid,nlayer) ! true n dust (kg/kg) |
---|
| 444 | REAL qdust(ngrid,nlayer) ! true q dust (kg/kg) |
---|
| 445 | REAL nccn(ngrid,nlayer) ! true n ccn (kg/kg) |
---|
| 446 | REAL qccn(ngrid,nlayer) ! true q ccn (kg/kg) |
---|
[1974] | 447 | c definition tendancies of stormdust tracers |
---|
| 448 | REAL rdsdqdustsurf(ngrid) ! surface q stormdust flux (kg/m2/s) |
---|
| 449 | REAL rdsdndustsurf(ngrid) ! surface n stormdust flux (number/m2/s) |
---|
| 450 | REAL rdsndust(ngrid,nlayer) ! true n stormdust (kg/kg) |
---|
| 451 | REAL rdsqdust(ngrid,nlayer) ! true q stormdust (kg/kg) |
---|
[2414] | 452 | REAL wspeed(ngrid,nlayer+1) ! vertical velocity stormdust tracer |
---|
| 453 | REAL wtop(ngrid,nlayer+1) ! vertical velocity topdust tracer |
---|
| 454 | |
---|
[2413] | 455 | REAL dsodust(ngrid,nlayer) ! density scaled opacity for background dust |
---|
| 456 | REAL dsords(ngrid,nlayer) ! density scaled opacity for stormdust |
---|
| 457 | REAL dsotop(ngrid,nlayer) ! density scaled opacity for topdust |
---|
[1974] | 458 | |
---|
[411] | 459 | c Test 1d/3d scavenging |
---|
[1047] | 460 | real h2otot(ngrid) |
---|
[2312] | 461 | real hdotot(ngrid) |
---|
[1047] | 462 | REAL satu(ngrid,nlayer) ! satu ratio for output |
---|
| 463 | REAL zqsat(ngrid,nlayer) ! saturation |
---|
[1617] | 464 | REAL satuco2(ngrid,nlayer) ! co2 satu ratio for output |
---|
| 465 | REAL zqsatco2(ngrid,nlayer) ! saturation co2 |
---|
[42] | 466 | |
---|
[2578] | 467 | |
---|
[414] | 468 | ! Added for new NLTE scheme |
---|
| 469 | |
---|
[1047] | 470 | real co2vmr_gcm(ngrid,nlayer) |
---|
| 471 | real n2vmr_gcm(ngrid,nlayer) |
---|
| 472 | real ovmr_gcm(ngrid,nlayer) |
---|
| 473 | real covmr_gcm(ngrid,nlayer) |
---|
[1124] | 474 | integer ierr_nlte |
---|
| 475 | real*8 varerr |
---|
[414] | 476 | |
---|
[2149] | 477 | C Non-oro GW drag & Calcul of Brunt-Vaisala freq. (BV2) |
---|
| 478 | REAL ztetalev(ngrid,nlayer) |
---|
| 479 | real zdtetalev(ngrid,nlayer), zdzlev(ngrid,nlayer) |
---|
| 480 | REAL bv2(ngrid,nlayer) ! BV2 at zlev |
---|
| 481 | c Non-oro GW tendencies |
---|
| 482 | REAL d_u_hin(ngrid,nlayer), d_v_hin(ngrid,nlayer) |
---|
| 483 | REAL d_t_hin(ngrid,nlayer) |
---|
| 484 | c Diagnostics 2D of gw_nonoro |
---|
| 485 | REAL zustrhi(ngrid), zvstrhi(ngrid) |
---|
[267] | 486 | c Variables for PBL |
---|
[1047] | 487 | REAL zz1(ngrid) |
---|
[1236] | 488 | REAL lmax_th_out(ngrid) |
---|
[1047] | 489 | REAL pdu_th(ngrid,nlayer),pdv_th(ngrid,nlayer) |
---|
| 490 | REAL pdt_th(ngrid,nlayer),pdq_th(ngrid,nlayer,nq) |
---|
| 491 | INTEGER lmax_th(ngrid),dimout,n_out,n |
---|
[566] | 492 | CHARACTER(50) zstring |
---|
[1047] | 493 | REAL dtke_th(ngrid,nlayer+1) |
---|
| 494 | REAL zcdv(ngrid), zcdh(ngrid) |
---|
[636] | 495 | REAL, ALLOCATABLE, DIMENSION(:,:) :: T_out |
---|
[566] | 496 | REAL, ALLOCATABLE, DIMENSION(:,:) :: u_out ! Interpolated teta and u at z_out |
---|
[1047] | 497 | REAL u_out1(ngrid) |
---|
| 498 | REAL T_out1(ngrid) |
---|
[566] | 499 | REAL, ALLOCATABLE, DIMENSION(:) :: z_out ! height of interpolation between z0 and z1 [meters] |
---|
[1236] | 500 | REAL tstar(ngrid) ! friction velocity and friction potential temp |
---|
[1047] | 501 | REAL L_mo(ngrid),vhf(ngrid),vvv(ngrid) |
---|
[1974] | 502 | real qdustrds0(ngrid,nlayer),qdustrds1(ngrid,nlayer) |
---|
| 503 | real qstormrds0(ngrid,nlayer),qstormrds1(ngrid,nlayer) |
---|
| 504 | real qdusttotal0(ngrid),qdusttotal1(ngrid) |
---|
[790] | 505 | |
---|
[1711] | 506 | c sub-grid scale water ice clouds (A. Pottier 2013) |
---|
| 507 | logical clearsky |
---|
| 508 | ! flux for the part without clouds |
---|
[1972] | 509 | real zdtswclf(ngrid,nlayer) |
---|
| 510 | real zdtlwclf(ngrid,nlayer) |
---|
| 511 | real fluxsurf_lwclf(ngrid) |
---|
[2685] | 512 | real fluxsurf_dn_swclf(ngrid,2),fluxsurf_up_swclf(ngrid,2) |
---|
[1972] | 513 | real fluxtop_lwclf(ngrid) |
---|
[2685] | 514 | real fluxtop_dn_swclf(ngrid,2),fluxtop_up_swclf(ngrid,2) |
---|
[1972] | 515 | real taucloudtesclf(ngrid) |
---|
[1973] | 516 | real tf_clf, ntf_clf ! tf: fraction of clouds, ntf: fraction without clouds |
---|
[1972] | 517 | real rave2(ngrid), totrave2(ngrid) ! Mean water ice mean radius (m) |
---|
[2362] | 518 | C test de conservation de la masse de CO2 |
---|
| 519 | REAL co2totA |
---|
| 520 | REAL co2totB |
---|
[2660] | 521 | REAL co2conservation |
---|
[1711] | 522 | |
---|
[2628] | 523 | c entrainment by mountain top dust flows above sub-grid scale topography |
---|
[2199] | 524 | REAL pdqtop(ngrid,nlayer,nq) ! tendency for dust after topmons |
---|
| 525 | |
---|
[2285] | 526 | c when no startfi file is asked for init |
---|
| 527 | real alpha,lay1 ! coefficients for building layers |
---|
| 528 | integer iloop |
---|
| 529 | |
---|
[2551] | 530 | ! flags to trigger extra sanity checks |
---|
| 531 | logical,save :: check_physics_inputs=.false. |
---|
| 532 | logical,save :: check_physics_outputs=.false. |
---|
[2616] | 533 | |
---|
| 534 | !$OMP THREADPRIVATE(check_physics_inputs,check_physics_outputs) |
---|
[2281] | 535 | |
---|
[2896] | 536 | c Sub-grid scale slopes |
---|
[2900] | 537 | real :: tsurf_meshavg(ngrid) ! Surface temperature grid box averaged [K] |
---|
| 538 | real :: albedo_meshavg(ngrid,2) ! albedo temperature grid box averaged [1] |
---|
| 539 | real :: emis_meshavg(ngrid,2) ! emis temperature grid box averaged [1] |
---|
| 540 | real :: qsurf_meshavg(ngrid,nq) ! surface tracer mesh averaged [kg/m^2] |
---|
| 541 | real :: qsurf_tmp(ngrid,nq) ! temporary qsurf for chimie |
---|
| 542 | real :: inertiedat_tmp(ngrid,nsoilmx,nslope) ! temporary inertiedat for soil.F |
---|
[2896] | 543 | integer :: islope |
---|
[2900] | 544 | real :: zdqsdif_meshavg_tmp(ngrid,nq) ! temporary for dust lifting |
---|
[2896] | 545 | |
---|
[2646] | 546 | logical :: write_restart |
---|
[2616] | 547 | |
---|
[42] | 548 | c======================================================================= |
---|
[2362] | 549 | pdq(:,:,:) = 0. |
---|
[42] | 550 | |
---|
| 551 | c 1. Initialisation: |
---|
| 552 | c ----------------- |
---|
| 553 | c 1.1 Initialisation only at first call |
---|
| 554 | c --------------------------------------- |
---|
[2507] | 555 | |
---|
[42] | 556 | IF (firstcall) THEN |
---|
| 557 | |
---|
[2551] | 558 | call getin_p("check_physics_inputs",check_physics_inputs) |
---|
| 559 | call getin_p("check_physics_outputs",check_physics_outputs) |
---|
| 560 | |
---|
[42] | 561 | c variables set to 0 |
---|
| 562 | c ~~~~~~~~~~~~~~~~~~ |
---|
[286] | 563 | aerosol(:,:,:)=0 |
---|
| 564 | dtrad(:,:)=0 |
---|
[674] | 565 | |
---|
| 566 | #ifndef MESOSCALE |
---|
[2900] | 567 | fluxrad(:,:)=0 |
---|
[528] | 568 | wstar(:)=0. |
---|
[674] | 569 | #endif |
---|
[268] | 570 | |
---|
[2223] | 571 | #ifdef CPP_XIOS |
---|
| 572 | ! Initialize XIOS context |
---|
| 573 | write(*,*) "physiq: call wxios_context_init" |
---|
| 574 | CALL wxios_context_init |
---|
| 575 | #endif |
---|
| 576 | |
---|
[42] | 577 | c read startfi |
---|
| 578 | c ~~~~~~~~~~~~ |
---|
[226] | 579 | #ifndef MESOSCALE |
---|
[2896] | 580 | |
---|
[1233] | 581 | ! GCM. Read netcdf initial physical parameters. |
---|
[226] | 582 | CALL phyetat0 ("startfi.nc",0,0, |
---|
[1047] | 583 | & nsoilmx,ngrid,nlayer,nq, |
---|
[226] | 584 | & day_ini,time_phys, |
---|
[1944] | 585 | & tsurf,tsoil,albedo,emis, |
---|
[2826] | 586 | & q2,qsurf,tauscaling,totcloudfrac,wstar, |
---|
[2896] | 587 | & watercap,def_slope,def_slope_mean,subslope_dist) |
---|
[185] | 588 | |
---|
[2896] | 589 | DO islope=1,nslope |
---|
| 590 | sky_slope(islope) = (1.+cos(pi*def_slope_mean(islope)/180.))/2. |
---|
| 591 | END DO |
---|
| 592 | |
---|
| 593 | ! Sky view: |
---|
| 594 | DO islope=1,nslope |
---|
| 595 | sky_slope(islope) = (1.+cos(pi*def_slope_mean(islope)/180.))/2. |
---|
| 596 | END DO |
---|
| 597 | ! Determine the 'flatest' slopes |
---|
| 598 | iflat = 1 |
---|
| 599 | DO islope=2,nslope |
---|
| 600 | IF(abs(def_slope_mean(islope)).lt. |
---|
| 601 | & abs(def_slope_mean(iflat)))THEN |
---|
| 602 | iflat = islope |
---|
| 603 | ENDIF |
---|
| 604 | ENDDO |
---|
| 605 | PRINT*,'Flat slope for islope = ',iflat |
---|
| 606 | PRINT*,'corresponding criterium = ',def_slope_mean(iflat) |
---|
| 607 | |
---|
[1233] | 608 | #else |
---|
| 609 | ! MESOSCALE. Supposedly everything is already set in modules. |
---|
[1579] | 610 | ! So we just check. And we fill day_ini |
---|
| 611 | print*,"check: --- in physiq.F" |
---|
[1233] | 612 | print*,"check: rad,cpp,g,r,rcp,daysec" |
---|
| 613 | print*,rad,cpp,g,r,rcp,daysec |
---|
[2900] | 614 | PRINT*,'check: tsurf ',tsurf(1,:),tsurf(ngrid,:) |
---|
| 615 | PRINT*,'check: tsoil ',tsoil(1,1,:),tsoil(ngrid,nsoilmx,:) |
---|
[1233] | 616 | PRINT*,'check: inert ',inertiedat(1,1),inertiedat(ngrid,nsoilmx) |
---|
| 617 | PRINT*,'check: midlayer,layer ', mlayer(:),layer(:) |
---|
| 618 | PRINT*,'check: tracernames ', noms |
---|
[2900] | 619 | PRINT*,'check: emis ',emis(1,:),emis(ngrid,:) |
---|
[1266] | 620 | PRINT*,'check: q2 ',q2(1,1),q2(ngrid,nlayer+1) |
---|
[2900] | 621 | PRINT*,'check: qsurf ',qsurf(1,1,:),qsurf(ngrid,nq,:) |
---|
| 622 | PRINT*,'check: co2ice ',qsurf(1,igcm_co2,:),qsurf(ngrid,igcm_co2,:) |
---|
[1579] | 623 | !!! |
---|
[1233] | 624 | day_ini = pday |
---|
[2491] | 625 | !!! a couple initializations (dummy for mesoscale) done in phyetat0 |
---|
| 626 | !!! --- maybe this should be done in update_inputs_physiq_mod |
---|
[2562] | 627 | |
---|
[2491] | 628 | tauscaling(:)=1.0 !! probably important |
---|
| 629 | totcloudfrac(:)=1.0 |
---|
| 630 | albedo(:,1)=albedodat(:) |
---|
| 631 | albedo(:,2)=albedo(:,1) |
---|
| 632 | watercap(:)=0.0 |
---|
[1233] | 633 | #endif |
---|
[2281] | 634 | #ifndef MESOSCALE |
---|
| 635 | if (.not.startphy_file) then |
---|
| 636 | ! starting without startfi.nc and with callsoil |
---|
| 637 | ! is not yet possible as soildepth default is not defined |
---|
[2362] | 638 | if (callsoil) then |
---|
[2285] | 639 | ! default mlayer distribution, following a power law: |
---|
| 640 | ! mlayer(k)=lay1*alpha**(k-1/2) |
---|
| 641 | lay1=2.e-4 |
---|
| 642 | alpha=2 |
---|
| 643 | do iloop=0,nsoilmx-1 |
---|
| 644 | mlayer(iloop)=lay1*(alpha**(iloop-0.5)) |
---|
| 645 | enddo |
---|
| 646 | lay1=sqrt(mlayer(0)*mlayer(1)) |
---|
| 647 | alpha=mlayer(1)/mlayer(0) |
---|
| 648 | do iloop=1,nsoilmx |
---|
| 649 | layer(iloop)=lay1*(alpha**(iloop-1)) |
---|
| 650 | enddo |
---|
[2281] | 651 | endif |
---|
| 652 | ! additionnal "academic" initialization of physics |
---|
[2900] | 653 | do islope = 1,nslope |
---|
| 654 | tsurf(:,islope)=pt(:,1) |
---|
| 655 | enddo |
---|
[2281] | 656 | write(*,*) "Physiq: initializing tsoil(:) to pt(:,1) !!" |
---|
| 657 | do isoil=1,nsoilmx |
---|
[2900] | 658 | tsoil(1:ngrid,isoil,:)=tsurf(1:ngrid,:) |
---|
[2281] | 659 | enddo |
---|
| 660 | write(*,*) "Physiq: initializing inertiedat !!" |
---|
| 661 | inertiedat(:,:)=400. |
---|
| 662 | write(*,*) "Physiq: initializing day_ini to pdat !" |
---|
| 663 | day_ini=pday |
---|
| 664 | endif |
---|
[2915] | 665 | DO islope = 1,nslope |
---|
| 666 | inertiedat_tmp(:,:,islope) = inertiedat(:,:) |
---|
| 667 | ENDDO |
---|
[2281] | 668 | #endif |
---|
| 669 | if (pday.ne.day_ini) then |
---|
| 670 | write(*,*) "PHYSIQ: ERROR: bad synchronization between ", |
---|
| 671 | & "physics and dynamics" |
---|
| 672 | write(*,*) "dynamics day [pday]: ",pday |
---|
| 673 | write(*,*) "physics day [day_ini]: ",day_ini |
---|
| 674 | call abort_physic("physiq","dynamics day /= physics day",1) |
---|
| 675 | endif |
---|
| 676 | |
---|
| 677 | write (*,*) 'In physiq day_ini =', day_ini |
---|
| 678 | |
---|
[286] | 679 | c initialize tracers |
---|
| 680 | c ~~~~~~~~~~~~~~~~~~ |
---|
[2826] | 681 | |
---|
[2823] | 682 | CALL initracer(ngrid,nq,qsurf) |
---|
[286] | 683 | |
---|
[42] | 684 | c Initialize albedo and orbital calculation |
---|
| 685 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2826] | 686 | CALL surfini(ngrid,qsurf) |
---|
[2896] | 687 | |
---|
[42] | 688 | CALL iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
---|
| 689 | |
---|
| 690 | c initialize soil |
---|
| 691 | c ~~~~~~~~~~~~~~~ |
---|
| 692 | IF (callsoil) THEN |
---|
[833] | 693 | c Thermal inertia feedback: |
---|
| 694 | IF (tifeedback) THEN |
---|
[2900] | 695 | DO islope = 1,nslope |
---|
| 696 | CALL soil_tifeedback(ngrid,nsoilmx, |
---|
| 697 | s qsurf(:,:,islope),inertiesoil(:,:,islope)) |
---|
| 698 | ENDDO |
---|
[833] | 699 | CALL soil(ngrid,nsoilmx,firstcall,inertiesoil, |
---|
| 700 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 701 | ELSE |
---|
[2900] | 702 | CALL soil(ngrid,nsoilmx,firstcall,inertiedat_tmp, |
---|
[833] | 703 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 704 | ENDIF ! of IF (tifeedback) |
---|
[42] | 705 | ELSE |
---|
| 706 | PRINT*, |
---|
| 707 | & 'PHYSIQ WARNING! Thermal conduction in the soil turned off' |
---|
| 708 | DO ig=1,ngrid |
---|
[2900] | 709 | capcal(ig,:)=1.e5 |
---|
| 710 | fluxgrd(ig,:)=0. |
---|
[42] | 711 | ENDDO |
---|
| 712 | ENDIF |
---|
| 713 | icount=1 |
---|
| 714 | |
---|
[226] | 715 | #ifndef MESOSCALE |
---|
| 716 | c Initialize thermospheric parameters |
---|
| 717 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[42] | 718 | |
---|
[705] | 719 | if (callthermos) then |
---|
[1266] | 720 | call fill_data_thermos |
---|
| 721 | call allocate_param_thermos(nlayer) |
---|
| 722 | call allocate_param_iono(nlayer,nreact) |
---|
[1684] | 723 | call param_read_e107 |
---|
[705] | 724 | endif |
---|
[226] | 725 | #endif |
---|
[42] | 726 | c Initialize R and Cp as constant |
---|
| 727 | |
---|
| 728 | if (.not.callthermos .and. .not.photochem) then |
---|
[1047] | 729 | do l=1,nlayer |
---|
| 730 | do ig=1,ngrid |
---|
[42] | 731 | rnew(ig,l)=r |
---|
| 732 | cpnew(ig,l)=cpp |
---|
| 733 | mmean(ig,l)=mugaz |
---|
| 734 | enddo |
---|
| 735 | enddo |
---|
| 736 | endif |
---|
| 737 | |
---|
[2383] | 738 | if(callnlte.and.nltemodel.eq.2) call nlte_setup |
---|
| 739 | if(callnirco2.and.nircorr.eq.1) call NIR_leedat |
---|
[414] | 740 | |
---|
[2383] | 741 | |
---|
[2823] | 742 | IF (water.AND.(ngrid.NE.1)) THEN |
---|
[2508] | 743 | write(*,*)"physiq: water_param Surface water frost albedo:", |
---|
| 744 | . albedo_h2o_frost |
---|
| 745 | write(*,*)"physiq: water_param Surface watercap albedo:", |
---|
| 746 | . albedo_h2o_cap |
---|
[42] | 747 | ENDIF |
---|
[900] | 748 | |
---|
| 749 | #ifndef MESOSCALE |
---|
[1130] | 750 | |
---|
[2224] | 751 | if (ngrid.ne.1) then |
---|
| 752 | ! no need to compute slopes when in 1D; it is an input |
---|
| 753 | if (callslope) call getslopes(ngrid,phisfi) |
---|
| 754 | ! no need to create a restart file in 1d |
---|
[2507] | 755 | if (ecritstart.GT.0) then |
---|
| 756 | call physdem0("restartfi.nc",longitude,latitude, |
---|
[2224] | 757 | & nsoilmx,ngrid,nlayer,nq, |
---|
[2544] | 758 | & ptimestep,pday,0.,cell_area, |
---|
[2896] | 759 | & albedodat,inertiedat,def_slope, |
---|
| 760 | & subslope_dist) |
---|
[2507] | 761 | else |
---|
| 762 | call physdem0("restartfi.nc",longitude,latitude, |
---|
| 763 | & nsoilmx,ngrid,nlayer,nq, |
---|
[2544] | 764 | & ptimestep,float(day_end),0.,cell_area, |
---|
[2896] | 765 | & albedodat,inertiedat,def_slope, |
---|
| 766 | & subslope_dist) |
---|
[2507] | 767 | endif |
---|
[1130] | 768 | endif |
---|
[2199] | 769 | |
---|
[2628] | 770 | c Initialize mountain mesh fraction for the entrainment by top flows param. |
---|
[2199] | 771 | c ~~~~~~~~~~~~~~~ |
---|
[2628] | 772 | if (topflows) call topmons_setup(ngrid) |
---|
[2212] | 773 | |
---|
| 774 | #endif |
---|
[2199] | 775 | |
---|
[2223] | 776 | #ifdef CPP_XIOS |
---|
| 777 | ! XIOS outputs |
---|
| 778 | write(*,*) "physiq firstcall: call initialize_xios_output" |
---|
| 779 | call initialize_xios_output(pday,ptime,ptimestep,daysec, |
---|
[2333] | 780 | & presnivs,pseudoalt,mlayer) |
---|
[2223] | 781 | #endif |
---|
[42] | 782 | ENDIF ! (end of "if firstcall") |
---|
| 783 | |
---|
[2551] | 784 | if (check_physics_inputs) then |
---|
| 785 | ! Check the validity of input fields coming from the dynamics |
---|
[2570] | 786 | call check_physics_fields("begin physiq:",pt,pu,pv,pplev,pq) |
---|
[2551] | 787 | endif |
---|
| 788 | |
---|
[42] | 789 | c --------------------------------------------------- |
---|
| 790 | c 1.2 Initializations done at every physical timestep: |
---|
| 791 | c --------------------------------------------------- |
---|
| 792 | c |
---|
| 793 | |
---|
[2223] | 794 | #ifdef CPP_XIOS |
---|
| 795 | ! update XIOS time/calendar |
---|
[2544] | 796 | call update_xios_timestep |
---|
| 797 | #endif |
---|
[2312] | 798 | |
---|
[2544] | 799 | |
---|
| 800 | |
---|
[2312] | 801 | c Initialize various variables |
---|
[42] | 802 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[286] | 803 | pdv(:,:)=0 |
---|
| 804 | pdu(:,:)=0 |
---|
| 805 | pdt(:,:)=0 |
---|
| 806 | pdq(:,:,:)=0 |
---|
| 807 | pdpsrf(:)=0 |
---|
[2900] | 808 | zflubid(:,:)=0 |
---|
| 809 | zdtsurf(:,:)=0 |
---|
| 810 | dqsurf(:,:,:)=0 |
---|
[2252] | 811 | dsodust(:,:)=0. |
---|
| 812 | dsords(:,:)=0. |
---|
| 813 | dsotop(:,:)=0. |
---|
[2900] | 814 | dwatercap(:,:)=0 |
---|
[2907] | 815 | |
---|
| 816 | call compute_meshgridavg(ngrid,nq,albedo,emis,tsurf,qsurf, |
---|
| 817 | & albedo_meshavg,emis_meshavg,tsurf_meshavg,qsurf_meshavg) |
---|
[2643] | 818 | |
---|
| 819 | ! Dust scenario conversion coefficient from IRabs to VISext |
---|
| 820 | IRtoVIScoef(1:ngrid)=2.6 ! initialized with former value from Montabone et al 2015 |
---|
| 821 | ! recomputed in aeropacity if reff_driven_IRtoVIS_scenario=.true. |
---|
[2362] | 822 | |
---|
[1377] | 823 | #ifdef DUSTSTORM |
---|
[1375] | 824 | pq_tmp(:,:,:)=0 |
---|
[1377] | 825 | #endif |
---|
[42] | 826 | igout=ngrid/2+1 |
---|
| 827 | |
---|
| 828 | |
---|
| 829 | zday=pday+ptime ! compute time, in sols (and fraction thereof) |
---|
[1974] | 830 | ! Compute local time at each grid point |
---|
| 831 | DO ig=1,ngrid |
---|
| 832 | local_time(ig)=modulo(1.+(zday-INT(zday)) |
---|
| 833 | & +(longitude_deg(ig)/15)/24,1.) |
---|
| 834 | ENDDO |
---|
[42] | 835 | c Compute Solar Longitude (Ls) : |
---|
| 836 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 837 | if (season) then |
---|
| 838 | call solarlong(zday,zls) |
---|
| 839 | else |
---|
| 840 | call solarlong(float(day_ini),zls) |
---|
| 841 | end if |
---|
| 842 | |
---|
[883] | 843 | c Initialize pressure levels |
---|
| 844 | c ~~~~~~~~~~~~~~~~~~ |
---|
| 845 | zplev(:,:) = pplev(:,:) |
---|
| 846 | zplay(:,:) = pplay(:,:) |
---|
| 847 | ps(:) = pplev(:,1) |
---|
| 848 | |
---|
[42] | 849 | c Compute geopotential at interlayers |
---|
| 850 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 851 | c ponderation des altitudes au niveau des couches en dp/p |
---|
| 852 | |
---|
| 853 | DO l=1,nlayer |
---|
| 854 | DO ig=1,ngrid |
---|
| 855 | zzlay(ig,l)=pphi(ig,l)/g |
---|
| 856 | ENDDO |
---|
| 857 | ENDDO |
---|
| 858 | DO ig=1,ngrid |
---|
| 859 | zzlev(ig,1)=0. |
---|
| 860 | zzlev(ig,nlayer+1)=1.e7 ! dummy top of last layer above 10000 km... |
---|
| 861 | ENDDO |
---|
| 862 | DO l=2,nlayer |
---|
| 863 | DO ig=1,ngrid |
---|
[883] | 864 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
---|
| 865 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
---|
[42] | 866 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
| 867 | ENDDO |
---|
| 868 | ENDDO |
---|
| 869 | |
---|
| 870 | |
---|
| 871 | ! Potential temperature calculation not the same in physiq and dynamic |
---|
| 872 | |
---|
| 873 | c Compute potential temperature |
---|
| 874 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 875 | DO l=1,nlayer |
---|
| 876 | DO ig=1,ngrid |
---|
[883] | 877 | zpopsk(ig,l)=(zplay(ig,l)/zplev(ig,1))**rcp |
---|
[42] | 878 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
---|
| 879 | ENDDO |
---|
| 880 | ENDDO |
---|
[2312] | 881 | |
---|
[226] | 882 | #ifndef MESOSCALE |
---|
| 883 | c----------------------------------------------------------------------- |
---|
| 884 | c 1.2.5 Compute mean mass, cp, and R |
---|
| 885 | c -------------------------------- |
---|
[42] | 886 | |
---|
[226] | 887 | if(photochem.or.callthermos) then |
---|
[1047] | 888 | call concentrations(ngrid,nlayer,nq, |
---|
| 889 | & zplay,pt,pdt,pq,pdq,ptimestep) |
---|
[226] | 890 | endif |
---|
| 891 | #endif |
---|
[1312] | 892 | |
---|
[1313] | 893 | ! Compute vertical velocity (m/s) from vertical mass flux |
---|
[1346] | 894 | ! w = F / (rho*area) and rho = P/(r*T) |
---|
[1313] | 895 | ! but first linearly interpolate mass flux to mid-layers |
---|
| 896 | do l=1,nlayer-1 |
---|
[1312] | 897 | pw(1:ngrid,l)=0.5*(flxw(1:ngrid,l)+flxw(1:ngrid,l+1)) |
---|
[1313] | 898 | enddo |
---|
| 899 | pw(1:ngrid,nlayer)=0.5*flxw(1:ngrid,nlayer) ! since flxw(nlayer+1)=0 |
---|
| 900 | do l=1,nlayer |
---|
[1346] | 901 | pw(1:ngrid,l)=(pw(1:ngrid,l)*r*pt(1:ngrid,l)) / |
---|
[1541] | 902 | & (pplay(1:ngrid,l)*cell_area(1:ngrid)) |
---|
[1346] | 903 | ! NB: here we use r and not rnew since this diagnostic comes |
---|
[1312] | 904 | ! from the dynamics |
---|
[1313] | 905 | enddo |
---|
[1312] | 906 | |
---|
[2374] | 907 | ! test for co2 conservation with co2 microphysics |
---|
| 908 | if (igcm_co2_ice.ne.0) then |
---|
| 909 | ! calculates the amount of co2 at the beginning of physics |
---|
| 910 | co2totA = 0. |
---|
| 911 | do ig=1,ngrid |
---|
| 912 | do l=1,nlayer |
---|
| 913 | co2totA = co2totA + (zplev(ig,l)-zplev(ig,l+1))/g* |
---|
| 914 | & (pq(ig,l,igcm_co2)+pq(ig,l,igcm_co2_ice) |
---|
| 915 | & +(pdq(ig,l,igcm_co2)+pdq(ig,l,igcm_co2_ice))*ptimestep) |
---|
| 916 | end do |
---|
[2900] | 917 | do islope = 1,nslope |
---|
| 918 | co2totA = co2totA + qsurf(ig,igcm_co2,islope)* |
---|
| 919 | & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
---|
| 920 | enddo |
---|
[2362] | 921 | end do |
---|
[2599] | 922 | else |
---|
| 923 | co2totA = 0. |
---|
| 924 | do ig=1,ngrid |
---|
| 925 | do l=1,nlayer |
---|
| 926 | co2totA = co2totA + (zplev(ig,l)-zplev(ig,l+1))/g* |
---|
| 927 | & (pq(ig,l,igcm_co2) |
---|
| 928 | & +pdq(ig,l,igcm_co2)*ptimestep) |
---|
| 929 | end do |
---|
[2900] | 930 | do islope = 1,nslope |
---|
| 931 | co2totA = co2totA + qsurf(ig,igcm_co2,islope)* |
---|
| 932 | & subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
---|
| 933 | enddo |
---|
[2599] | 934 | end do |
---|
[2374] | 935 | endif ! of if (igcm_co2_ice.ne.0) |
---|
[42] | 936 | c----------------------------------------------------------------------- |
---|
| 937 | c 2. Compute radiative tendencies : |
---|
| 938 | c------------------------------------ |
---|
| 939 | |
---|
| 940 | IF (callrad) THEN |
---|
| 941 | |
---|
[2162] | 942 | c Local Solar zenith angle |
---|
| 943 | c ~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2880] | 944 | |
---|
[2162] | 945 | CALL orbite(zls,dist_sol,declin) |
---|
[2880] | 946 | |
---|
[2162] | 947 | IF (diurnal) THEN |
---|
| 948 | ztim1=SIN(declin) |
---|
| 949 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
---|
| 950 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
---|
[42] | 951 | |
---|
[2162] | 952 | CALL solang(ngrid,sinlon,coslon,sinlat,coslat, |
---|
| 953 | & ztim1,ztim2,ztim3, mu0,fract) |
---|
[42] | 954 | |
---|
[2162] | 955 | ELSE |
---|
| 956 | CALL mucorr(ngrid,declin,latitude,mu0,fract,10000.,rad) |
---|
| 957 | ENDIF ! of IF (diurnal) |
---|
[2880] | 958 | |
---|
[2162] | 959 | IF( MOD(icount-1,iradia).EQ.0) THEN |
---|
| 960 | |
---|
[42] | 961 | c NLTE cooling from CO2 emission |
---|
| 962 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[414] | 963 | IF(callnlte) then |
---|
| 964 | if(nltemodel.eq.0.or.nltemodel.eq.1) then |
---|
[2447] | 965 | CALL nltecool(ngrid,nlayer,nq,zplay,pt,pq,zdtnlte) |
---|
[414] | 966 | else if(nltemodel.eq.2) then |
---|
[705] | 967 | co2vmr_gcm(1:ngrid,1:nlayer)= |
---|
| 968 | & pq(1:ngrid,1:nlayer,igcm_co2)* |
---|
| 969 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co2) |
---|
| 970 | n2vmr_gcm(1:ngrid,1:nlayer)= |
---|
| 971 | & pq(1:ngrid,1:nlayer,igcm_n2)* |
---|
| 972 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_n2) |
---|
| 973 | covmr_gcm(1:ngrid,1:nlayer)= |
---|
| 974 | & pq(1:ngrid,1:nlayer,igcm_co)* |
---|
| 975 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co) |
---|
| 976 | ovmr_gcm(1:ngrid,1:nlayer)= |
---|
| 977 | & pq(1:ngrid,1:nlayer,igcm_o)* |
---|
| 978 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_o) |
---|
[2362] | 979 | |
---|
[883] | 980 | CALL nlte_tcool(ngrid,nlayer,zplay*9.869e-6, |
---|
[414] | 981 | $ pt,zzlay,co2vmr_gcm, n2vmr_gcm, covmr_gcm, |
---|
[1124] | 982 | $ ovmr_gcm, zdtnlte,ierr_nlte,varerr ) |
---|
| 983 | if(ierr_nlte.gt.0) then |
---|
| 984 | write(*,*) |
---|
| 985 | $ 'WARNING: nlte_tcool output with error message', |
---|
| 986 | $ 'ierr_nlte=',ierr_nlte,'varerr=',varerr |
---|
| 987 | write(*,*)'I will continue anyway' |
---|
| 988 | endif |
---|
[42] | 989 | |
---|
[705] | 990 | zdtnlte(1:ngrid,1:nlayer)= |
---|
| 991 | & zdtnlte(1:ngrid,1:nlayer)/86400. |
---|
[414] | 992 | endif |
---|
[1974] | 993 | ELSE |
---|
[528] | 994 | zdtnlte(:,:)=0. |
---|
[1974] | 995 | ENDIF !end callnlte |
---|
[42] | 996 | |
---|
| 997 | c Find number of layers for LTE radiation calculations |
---|
| 998 | IF(MOD(iphysiq*(icount-1),day_step).EQ.0) |
---|
[883] | 999 | & CALL nlthermeq(ngrid,nlayer,zplev,zplay) |
---|
[42] | 1000 | |
---|
[1974] | 1001 | c rocketstorm : compute dust storm mesh fraction |
---|
| 1002 | IF (rdstorm) THEN |
---|
| 1003 | CALL calcstormfract(ngrid,nlayer,nq,pq, |
---|
| 1004 | & totstormfract) |
---|
| 1005 | ENDIF |
---|
| 1006 | |
---|
[42] | 1007 | c Note: Dustopacity.F has been transferred to callradite.F |
---|
[1410] | 1008 | |
---|
| 1009 | #ifdef DUSTSTORM |
---|
| 1010 | !! specific case: save the quantity of dust before adding perturbation |
---|
[2616] | 1011 | |
---|
[1410] | 1012 | if (firstcall) then |
---|
| 1013 | pq_tmp(1:ngrid,1:nlayer,1)=pq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 1014 | pq_tmp(1:ngrid,1:nlayer,2)=pq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 1015 | endif |
---|
| 1016 | #endif |
---|
[42] | 1017 | |
---|
| 1018 | c Call main radiative transfer scheme |
---|
| 1019 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1020 | c Transfer through CO2 (except NIR CO2 absorption) |
---|
| 1021 | c and aerosols (dust and water ice) |
---|
[2628] | 1022 | ! callradite for background dust (out of the rdstorm fraction) |
---|
[1974] | 1023 | clearatm=.true. |
---|
[2628] | 1024 | !! callradite for background dust (out of the topflows fraction) |
---|
[2199] | 1025 | nohmons=.true. |
---|
[2312] | 1026 | |
---|
[42] | 1027 | c Radiative transfer |
---|
| 1028 | c ------------------ |
---|
[1711] | 1029 | ! callradite for the part with clouds |
---|
[2362] | 1030 | clearsky=.false. ! part with clouds for both cases CLFvarying true/false |
---|
[2900] | 1031 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq, |
---|
[2907] | 1032 | & albedo_meshavg,emis_meshavg, |
---|
[2908] | 1033 | & mu0,zplev,zplay,pt,tsurf_meshavg,fract,dist_sol,igout, |
---|
[2900] | 1034 | & zdtlw,zdtsw,fluxsurf_lw(:,iflat),fluxsurf_dn_sw(:,:,iflat), |
---|
| 1035 | & fluxsurf_up_sw, |
---|
[2685] | 1036 | & fluxtop_lw,fluxtop_dn_sw,fluxtop_up_sw, |
---|
| 1037 | & tau_pref_scenario,tau_pref_gcm, |
---|
[2643] | 1038 | & tau,aerosol,dsodust,tauscaling,dust_rad_adjust,IRtoVIScoef, |
---|
[2826] | 1039 | & taucloudtes,rdust,rice,nuice,riceco2,nuiceco2, |
---|
[2907] | 1040 | & qsurf_meshavg(:,igcm_co2),rstormdust,rtopdust,totstormfract, |
---|
[2826] | 1041 | & clearatm,dsords,dsotop,nohmons,clearsky,totcloudfrac) |
---|
[2616] | 1042 | |
---|
[2900] | 1043 | DO islope=1,nslope |
---|
| 1044 | fluxsurf_lw(:,islope) =fluxsurf_lw(:,iflat) |
---|
| 1045 | fluxsurf_dn_sw(:,:,islope) =fluxsurf_dn_sw(:,:,iflat) |
---|
| 1046 | ENDDO |
---|
| 1047 | |
---|
[1711] | 1048 | ! case of sub-grid water ice clouds: callradite for the clear case |
---|
| 1049 | IF (CLFvarying) THEN |
---|
| 1050 | ! ---> PROBLEMS WITH ALLOCATED ARRAYS |
---|
| 1051 | ! (temporary solution in callcorrk: do not deallocate |
---|
| 1052 | ! if |
---|
| 1053 | ! CLFvarying ...) ?? AP ?? |
---|
[2447] | 1054 | clearsky=.true. |
---|
[1711] | 1055 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq, |
---|
[2907] | 1056 | & albedo_meshavg,emis_meshavg,mu0,zplev,zplay,pt, |
---|
[2908] | 1057 | & tsurf_meshavg,fract, |
---|
[2685] | 1058 | & dist_sol,igout,zdtlwclf,zdtswclf, |
---|
| 1059 | & fluxsurf_lwclf,fluxsurf_dn_swclf,fluxsurf_up_swclf, |
---|
| 1060 | & fluxtop_lwclf,fluxtop_dn_swclf,fluxtop_up_swclf, |
---|
[2643] | 1061 | & tau_pref_scenario,tau_pref_gcm,tau,aerosol, |
---|
| 1062 | & dsodust,tauscaling,dust_rad_adjust,IRtoVIScoef, |
---|
[2417] | 1063 | & taucloudtesclf,rdust, |
---|
[2907] | 1064 | & rice,nuice,riceco2, nuiceco2, |
---|
| 1065 | & qsurf_meshavg(:,igcm_co2), |
---|
[2826] | 1066 | & rstormdust,rtopdust,totstormfract, |
---|
[2628] | 1067 | & clearatm,dsords,dsotop, |
---|
| 1068 | & nohmons,clearsky,totcloudfrac) |
---|
[1711] | 1069 | clearsky = .false. ! just in case. |
---|
| 1070 | ! Sum the fluxes and heating rates from cloudy/clear |
---|
| 1071 | ! cases |
---|
| 1072 | DO ig=1,ngrid |
---|
[1973] | 1073 | tf_clf=totcloudfrac(ig) |
---|
| 1074 | ntf_clf=1.-tf_clf |
---|
[2900] | 1075 | DO islope=1,nslope |
---|
| 1076 | fluxsurf_lw(ig,islope) = ntf_clf*fluxsurf_lwclf(ig) |
---|
| 1077 | & + tf_clf*fluxsurf_lw(ig,islope) |
---|
| 1078 | fluxsurf_dn_sw(ig,1:2,islope) = |
---|
[2685] | 1079 | & ntf_clf*fluxsurf_dn_swclf(ig,1:2) |
---|
[2900] | 1080 | & + tf_clf*fluxsurf_dn_sw(ig,1:2,islope) |
---|
| 1081 | ENDDO |
---|
[2685] | 1082 | fluxsurf_up_sw(ig,1:2) = |
---|
| 1083 | & ntf_clf*fluxsurf_up_swclf(ig,1:2) |
---|
| 1084 | & + tf_clf*fluxsurf_up_sw(ig,1:2) |
---|
[1973] | 1085 | fluxtop_lw(ig) = ntf_clf*fluxtop_lwclf(ig) |
---|
| 1086 | & + tf_clf*fluxtop_lw(ig) |
---|
[2685] | 1087 | fluxtop_dn_sw(ig,1:2)=ntf_clf*fluxtop_dn_swclf(ig,1:2) |
---|
| 1088 | & + tf_clf*fluxtop_dn_sw(ig,1:2) |
---|
| 1089 | fluxtop_up_sw(ig,1:2)=ntf_clf*fluxtop_up_swclf(ig,1:2) |
---|
| 1090 | & + tf_clf*fluxtop_up_sw(ig,1:2) |
---|
[1973] | 1091 | taucloudtes(ig) = ntf_clf*taucloudtesclf(ig) |
---|
| 1092 | & + tf_clf*taucloudtes(ig) |
---|
| 1093 | zdtlw(ig,1:nlayer) = ntf_clf*zdtlwclf(ig,1:nlayer) |
---|
| 1094 | & + tf_clf*zdtlw(ig,1:nlayer) |
---|
| 1095 | zdtsw(ig,1:nlayer) = ntf_clf*zdtswclf(ig,1:nlayer) |
---|
| 1096 | & + tf_clf*zdtsw(ig,1:nlayer) |
---|
[1711] | 1097 | ENDDO |
---|
[42] | 1098 | |
---|
[1711] | 1099 | ENDIF ! (CLFvarying) |
---|
[1974] | 1100 | |
---|
[2265] | 1101 | !============================================================================ |
---|
[1974] | 1102 | |
---|
[1375] | 1103 | #ifdef DUSTSTORM |
---|
[1410] | 1104 | !! specific case: compute the added quantity of dust for perturbation |
---|
| 1105 | if (firstcall) then |
---|
| 1106 | pdq(1:ngrid,1:nlayer,igcm_dust_mass)= |
---|
[1974] | 1107 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
[1410] | 1108 | & - pq_tmp(1:ngrid,1:nlayer,1) |
---|
| 1109 | & + pq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 1110 | pdq(1:ngrid,1:nlayer,igcm_dust_number)= |
---|
| 1111 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 1112 | & - pq_tmp(1:ngrid,1:nlayer,2) |
---|
| 1113 | & + pq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 1114 | endif |
---|
[1375] | 1115 | #endif |
---|
| 1116 | |
---|
[234] | 1117 | c Outputs for basic check (middle of domain) |
---|
| 1118 | c ------------------------------------------ |
---|
[627] | 1119 | write(*,'("Ls =",f11.6," check lat =",f10.6, |
---|
| 1120 | & " lon =",f11.6)') |
---|
[1541] | 1121 | & zls*180./pi,latitude(igout)*180/pi, |
---|
| 1122 | & longitude(igout)*180/pi |
---|
[2281] | 1123 | |
---|
[2415] | 1124 | write(*,'(" tau_pref_gcm(",f4.0," Pa) =",f9.6, |
---|
[627] | 1125 | & " tau(",f4.0," Pa) =",f9.6)') |
---|
[2415] | 1126 | & odpref,tau_pref_gcm(igout), |
---|
[883] | 1127 | & odpref,tau(igout,1)*odpref/zplev(igout,1) |
---|
[2616] | 1128 | |
---|
| 1129 | |
---|
[234] | 1130 | c --------------------------------------------------------- |
---|
| 1131 | c Call slope parameterization for direct and scattered flux |
---|
| 1132 | c --------------------------------------------------------- |
---|
| 1133 | IF(callslope) THEN |
---|
[2900] | 1134 | ! assume that in this case, nslope = 1 |
---|
| 1135 | if(nslope.ne.1) then |
---|
| 1136 | call abort_physic( |
---|
| 1137 | & "physiq","callslope=true but nslope.ne.1",1) |
---|
| 1138 | endif |
---|
[234] | 1139 | print *, 'Slope scheme is on and computing...' |
---|
| 1140 | DO ig=1,ngrid |
---|
| 1141 | sl_the = theta_sl(ig) |
---|
| 1142 | IF (sl_the .ne. 0.) THEN |
---|
[2900] | 1143 | ztim1=fluxsurf_dn_sw(ig,1,1)+fluxsurf_dn_sw(ig,2,1) |
---|
[234] | 1144 | DO l=1,2 |
---|
[1541] | 1145 | sl_lct = ptime*24. + 180.*longitude(ig)/pi/15. |
---|
[234] | 1146 | sl_ra = pi*(1.0-sl_lct/12.) |
---|
[1541] | 1147 | sl_lat = 180.*latitude(ig)/pi |
---|
[577] | 1148 | sl_tau = tau(ig,1) !il faudrait iaerdust(iaer) |
---|
[2900] | 1149 | sl_alb = albedo(ig,l,1) |
---|
[234] | 1150 | sl_psi = psi_sl(ig) |
---|
[2900] | 1151 | sl_fl0 = fluxsurf_dn_sw(ig,l,1) |
---|
[234] | 1152 | sl_di0 = 0. |
---|
[2879] | 1153 | if ((mu0(ig) .gt. 0.).and.(ztim1.gt.0.)) then |
---|
[2678] | 1154 | sl_di0 = mu0(ig)*(exp(-sl_tau/mu0(ig))) |
---|
| 1155 | sl_di0 = sl_di0*flux_1AU/dist_sol/dist_sol |
---|
[234] | 1156 | sl_di0 = sl_di0/ztim1 |
---|
[2900] | 1157 | sl_di0 = fluxsurf_dn_sw(ig,l,1)*sl_di0 |
---|
[234] | 1158 | endif |
---|
| 1159 | ! you never know (roundup concern...) |
---|
| 1160 | if (sl_fl0 .lt. sl_di0) sl_di0=sl_fl0 |
---|
| 1161 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 1162 | CALL param_slope( mu0(ig), declin, sl_ra, sl_lat, |
---|
| 1163 | & sl_tau, sl_alb, sl_the, sl_psi, |
---|
| 1164 | & sl_di0, sl_fl0, sl_flu ) |
---|
| 1165 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[2900] | 1166 | fluxsurf_dn_sw(ig,l,1) = sl_flu |
---|
[234] | 1167 | ENDDO |
---|
| 1168 | !!! compute correction on IR flux as well |
---|
| 1169 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
---|
[2900] | 1170 | fluxsurf_lw(ig,:)= fluxsurf_lw(ig,:)*sky |
---|
[234] | 1171 | ENDIF |
---|
| 1172 | ENDDO |
---|
[2900] | 1173 | c ELSE ! not calling subslope, nslope might be > 1 |
---|
| 1174 | c DO islope = 1,nslope |
---|
| 1175 | c IF(def_slope_mean(islope).ge.0.) THEN |
---|
| 1176 | c sl_psi = 0. !Northward slope |
---|
| 1177 | c ELSE |
---|
| 1178 | c sl_psi = 180. !Southward slope |
---|
| 1179 | c ENDIF |
---|
| 1180 | c sl_the=abs(def_slope_mean(islope)) |
---|
| 1181 | c IF (sl_the .gt. 1e-6) THEN |
---|
| 1182 | c DO ig=1,ngrid |
---|
| 1183 | c ztim1=fluxsurf_dn_sw(ig,1,islope) |
---|
| 1184 | c s +fluxsurf_dn_sw(ig,2,islope) |
---|
| 1185 | c DO l=1,2 |
---|
| 1186 | c sl_lct = ptime*24. + 180.*longitude(ig)/pi/15. |
---|
| 1187 | c sl_ra = pi*(1.0-sl_lct/12.) |
---|
| 1188 | c sl_lat = 180.*latitude(ig)/pi |
---|
| 1189 | c sl_tau = tau(ig,1) !il faudrait iaerdust(iaer) |
---|
| 1190 | c sl_alb = albedo(ig,l,islope) |
---|
| 1191 | c sl_psi = psi_sl(ig) |
---|
| 1192 | c sl_fl0 = fluxsurf_dn_sw(ig,l,islope) |
---|
| 1193 | c sl_di0 = 0. |
---|
| 1194 | c if (mu0(ig) .gt. 0.) then |
---|
| 1195 | c sl_di0 = mu0(ig)*(exp(-sl_tau/mu0(ig))) |
---|
| 1196 | c sl_di0 = sl_di0*flux_1AU/dist_sol/dist_sol |
---|
| 1197 | c sl_di0 = sl_di0/ztim1 |
---|
| 1198 | c sl_di0 = fluxsurf_dn_sw(ig,l,islope)*sl_di0 |
---|
| 1199 | c endif |
---|
| 1200 | c ! you never know (roundup concern...) |
---|
| 1201 | c if (sl_fl0 .lt. sl_di0) sl_di0=sl_fl0 |
---|
| 1202 | c !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 1203 | c CALL param_slope( mu0(ig), declin, sl_ra, sl_lat, |
---|
| 1204 | c & sl_tau, sl_alb, sl_the, sl_psi, |
---|
| 1205 | c & sl_di0, sl_fl0, sl_flu ) |
---|
| 1206 | c !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 1207 | c fluxsurf_dn_sw(ig,l,islope) = sl_flu |
---|
| 1208 | c ENDDO |
---|
| 1209 | c !!! compute correction on IR flux as well |
---|
| 1210 | c |
---|
| 1211 | c fluxsurf_lw(ig,islope)= fluxsurf_lw(ig,islope) |
---|
| 1212 | c & *sky_slope(islope) |
---|
| 1213 | c ENDDO |
---|
| 1214 | c ENDIF |
---|
| 1215 | c ENDDO ! islope = 1,nslope |
---|
| 1216 | ENDIF ! callslope |
---|
[234] | 1217 | |
---|
[42] | 1218 | c CO2 near infrared absorption |
---|
| 1219 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[286] | 1220 | zdtnirco2(:,:)=0 |
---|
[42] | 1221 | if (callnirco2) then |
---|
[883] | 1222 | call nirco2abs (ngrid,nlayer,zplay,dist_sol,nq,pq, |
---|
[42] | 1223 | . mu0,fract,declin, zdtnirco2) |
---|
| 1224 | endif |
---|
| 1225 | |
---|
| 1226 | c Radiative flux from the sky absorbed by the surface (W.m-2) |
---|
| 1227 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1228 | DO ig=1,ngrid |
---|
[2900] | 1229 | DO islope = 1,nslope |
---|
| 1230 | fluxrad_sky(ig,islope) = |
---|
| 1231 | $ emis(ig,islope)*fluxsurf_lw(ig,islope) |
---|
| 1232 | $ +fluxsurf_dn_sw(ig,1,islope)*(1.-albedo(ig,1,islope)) |
---|
| 1233 | $ +fluxsurf_dn_sw(ig,2,islope)*(1.-albedo(ig,2,islope)) |
---|
| 1234 | ENDDO |
---|
[42] | 1235 | ENDDO |
---|
| 1236 | |
---|
| 1237 | |
---|
| 1238 | c Net atmospheric radiative heating rate (K.s-1) |
---|
| 1239 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1240 | IF(callnlte) THEN |
---|
[883] | 1241 | CALL blendrad(ngrid, nlayer, zplay, |
---|
[42] | 1242 | & zdtsw, zdtlw, zdtnirco2, zdtnlte, dtrad) |
---|
| 1243 | ELSE |
---|
| 1244 | DO l=1,nlayer |
---|
| 1245 | DO ig=1,ngrid |
---|
| 1246 | dtrad(ig,l)=zdtsw(ig,l)+zdtlw(ig,l) |
---|
| 1247 | & +zdtnirco2(ig,l) |
---|
| 1248 | ENDDO |
---|
| 1249 | ENDDO |
---|
| 1250 | ENDIF |
---|
| 1251 | |
---|
| 1252 | ENDIF ! of if(mod(icount-1,iradia).eq.0) |
---|
| 1253 | |
---|
| 1254 | c Transformation of the radiative tendencies: |
---|
| 1255 | c ------------------------------------------- |
---|
| 1256 | |
---|
| 1257 | c Net radiative surface flux (W.m-2) |
---|
| 1258 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1259 | c |
---|
| 1260 | DO ig=1,ngrid |
---|
[2900] | 1261 | DO islope = 1,nslope |
---|
| 1262 | zplanck(ig)=tsurf(ig,islope)*tsurf(ig,islope) |
---|
| 1263 | zplanck(ig)=emis(ig,islope)* |
---|
[42] | 1264 | $ stephan*zplanck(ig)*zplanck(ig) |
---|
[2900] | 1265 | fluxrad(ig,islope)=fluxrad_sky(ig,islope)-zplanck(ig) |
---|
[234] | 1266 | IF(callslope) THEN |
---|
| 1267 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
---|
[2900] | 1268 | fluxrad(ig,nslope)=fluxrad(ig,nslope)+ |
---|
| 1269 | $ (1.-sky)*zplanck(ig) |
---|
| 1270 | ELSE |
---|
| 1271 | fluxrad(ig,islope)=fluxrad(ig,islope) + |
---|
| 1272 | $ (1.-sky_slope(iflat))*emis(ig,iflat)* |
---|
| 1273 | $ stephan*tsurf(ig,iflat)**4 |
---|
[234] | 1274 | ENDIF |
---|
[42] | 1275 | ENDDO |
---|
[2900] | 1276 | ENDDO |
---|
[42] | 1277 | |
---|
| 1278 | DO l=1,nlayer |
---|
| 1279 | DO ig=1,ngrid |
---|
| 1280 | pdt(ig,l)=pdt(ig,l)+dtrad(ig,l) |
---|
| 1281 | ENDDO |
---|
| 1282 | ENDDO |
---|
| 1283 | |
---|
| 1284 | ENDIF ! of IF (callrad) |
---|
| 1285 | |
---|
[2199] | 1286 | c 3.1 Rocket dust storm |
---|
[1974] | 1287 | c ------------------------------------------- |
---|
| 1288 | IF (rdstorm) THEN |
---|
| 1289 | clearatm=.false. |
---|
| 1290 | pdqrds(:,:,:)=0. |
---|
| 1291 | qdusttotal0(:)=0. |
---|
| 1292 | qdusttotal1(:)=0. |
---|
| 1293 | do ig=1,ngrid |
---|
| 1294 | do l=1,nlayer |
---|
| 1295 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) ! updated potential |
---|
| 1296 | ! temperature tendency |
---|
| 1297 | ! for diagnostics |
---|
| 1298 | qdustrds0(ig,l)=pq(ig,l,igcm_dust_mass)+ |
---|
| 1299 | & pdq(ig,l,igcm_dust_mass)*ptimestep |
---|
| 1300 | qstormrds0(ig,l)=pq(ig,l,igcm_stormdust_mass)+ |
---|
| 1301 | & pdq(ig,l,igcm_stormdust_mass)*ptimestep |
---|
| 1302 | qdusttotal0(ig)=qdusttotal0(ig)+(qdustrds0(ig,l)+ |
---|
| 1303 | & qstormrds0(ig,l))*(zplev(ig,l)- |
---|
| 1304 | & zplev(ig,l+1))/g |
---|
| 1305 | enddo |
---|
| 1306 | enddo |
---|
| 1307 | call writediagfi(ngrid,'qdustrds0','qdust before rds', |
---|
| 1308 | & 'kg/kg ',3,qdustrds0) |
---|
| 1309 | call writediagfi(ngrid,'qstormrds0','qstorm before rds', |
---|
| 1310 | & 'kg/kg ',3,qstormrds0) |
---|
| 1311 | |
---|
| 1312 | CALL rocketduststorm(ngrid,nlayer,nq,ptime,ptimestep, |
---|
| 1313 | & pq,pdq,pt,pdt,zplev,zplay,zzlev, |
---|
| 1314 | & zzlay,zdtsw,zdtlw, |
---|
| 1315 | c for radiative transfer |
---|
| 1316 | & clearatm,icount,zday,zls, |
---|
[2907] | 1317 | & tsurf,qsurf_meshavg(:,igcm_co2),igout, |
---|
[2826] | 1318 | & totstormfract,tauscaling, |
---|
| 1319 | & dust_rad_adjust,IRtoVIScoef, |
---|
[1974] | 1320 | c input sub-grid scale cloud |
---|
| 1321 | & clearsky,totcloudfrac, |
---|
[2199] | 1322 | c input sub-grid scale topography |
---|
[2628] | 1323 | & nohmons, |
---|
[1974] | 1324 | c output |
---|
[2246] | 1325 | & pdqrds,wspeed,dsodust,dsords,dsotop, |
---|
[2415] | 1326 | & tau_pref_scenario,tau_pref_gcm) |
---|
[2362] | 1327 | |
---|
[1974] | 1328 | c update the tendencies of both dust after vertical transport |
---|
| 1329 | DO l=1,nlayer |
---|
| 1330 | DO ig=1,ngrid |
---|
| 1331 | pdq(ig,l,igcm_stormdust_mass)= |
---|
| 1332 | & pdq(ig,l,igcm_stormdust_mass)+ |
---|
| 1333 | & pdqrds(ig,l,igcm_stormdust_mass) |
---|
| 1334 | pdq(ig,l,igcm_stormdust_number)= |
---|
| 1335 | & pdq(ig,l,igcm_stormdust_number)+ |
---|
| 1336 | & pdqrds(ig,l,igcm_stormdust_number) |
---|
| 1337 | |
---|
| 1338 | pdq(ig,l,igcm_dust_mass)= |
---|
| 1339 | & pdq(ig,l,igcm_dust_mass)+ pdqrds(ig,l,igcm_dust_mass) |
---|
| 1340 | pdq(ig,l,igcm_dust_number)= |
---|
| 1341 | & pdq(ig,l,igcm_dust_number)+ |
---|
| 1342 | & pdqrds(ig,l,igcm_dust_number) |
---|
| 1343 | |
---|
| 1344 | ENDDO |
---|
| 1345 | ENDDO |
---|
| 1346 | do l=1,nlayer |
---|
| 1347 | do ig=1,ngrid |
---|
| 1348 | qdustrds1(ig,l)=pq(ig,l,igcm_dust_mass)+ |
---|
| 1349 | & pdq(ig,l,igcm_dust_mass)*ptimestep |
---|
| 1350 | qstormrds1(ig,l)=pq(ig,l,igcm_stormdust_mass)+ |
---|
| 1351 | & pdq(ig,l,igcm_stormdust_mass)*ptimestep |
---|
| 1352 | qdusttotal1(ig)=qdusttotal1(ig)+(qdustrds1(ig,l)+ |
---|
| 1353 | & qstormrds1(ig,l))*(zplev(ig,l)- |
---|
| 1354 | & zplev(ig,l+1))/g |
---|
| 1355 | enddo |
---|
| 1356 | enddo |
---|
| 1357 | |
---|
| 1358 | c for diagnostics |
---|
| 1359 | call writediagfi(ngrid,'qdustrds1','qdust after rds', |
---|
| 1360 | & 'kg/kg ',3,qdustrds1) |
---|
| 1361 | call writediagfi(ngrid,'qstormrds1','qstorm after rds', |
---|
| 1362 | & 'kg/kg ',3,qstormrds1) |
---|
| 1363 | |
---|
| 1364 | call writediagfi(ngrid,'qdusttotal0','q sum before rds', |
---|
[2414] | 1365 | & 'kg/m2 ',2,qdusttotal0) |
---|
[1974] | 1366 | call writediagfi(ngrid,'qdusttotal1','q sum after rds', |
---|
[2414] | 1367 | & 'kg/m2 ',2,qdusttotal1) |
---|
[1974] | 1368 | |
---|
| 1369 | ENDIF ! end of if(rdstorm) |
---|
| 1370 | |
---|
[2199] | 1371 | c 3.2 Dust entrained from the PBL up to the top of sub-grid scale topography |
---|
| 1372 | c ------------------------------------------- |
---|
[2628] | 1373 | IF (topflows) THEN |
---|
[2362] | 1374 | clearatm=.true. ! stormdust is not accounted in the extra heating on top of the mountains |
---|
[2199] | 1375 | nohmons=.false. |
---|
[2362] | 1376 | pdqtop(:,:,:)=0. |
---|
[2199] | 1377 | CALL topmons(ngrid,nlayer,nq,ptime,ptimestep, |
---|
| 1378 | & pq,pdq,pt,pdt,zplev,zplay,zzlev, |
---|
| 1379 | & zzlay,zdtsw,zdtlw, |
---|
[2900] | 1380 | & icount,zday,zls,tsurf(:,iflat), |
---|
[2907] | 1381 | & qsurf_meshavg(:,igcm_co2), |
---|
[2826] | 1382 | & igout,aerosol,tauscaling,dust_rad_adjust, |
---|
| 1383 | & IRtoVIScoef,totstormfract,clearatm, |
---|
[2199] | 1384 | & clearsky,totcloudfrac, |
---|
[2628] | 1385 | & nohmons, |
---|
[2246] | 1386 | & pdqtop,wtop,dsodust,dsords,dsotop, |
---|
[2415] | 1387 | & tau_pref_scenario,tau_pref_gcm) |
---|
[2199] | 1388 | |
---|
| 1389 | c update the tendencies of both dust after vertical transport |
---|
| 1390 | DO l=1,nlayer |
---|
| 1391 | DO ig=1,ngrid |
---|
| 1392 | pdq(ig,l,igcm_topdust_mass)= |
---|
| 1393 | & pdq(ig,l,igcm_topdust_mass)+ |
---|
| 1394 | & pdqtop(ig,l,igcm_topdust_mass) |
---|
| 1395 | pdq(ig,l,igcm_topdust_number)= |
---|
| 1396 | & pdq(ig,l,igcm_topdust_number)+ |
---|
| 1397 | & pdqtop(ig,l,igcm_topdust_number) |
---|
| 1398 | pdq(ig,l,igcm_dust_mass)= |
---|
| 1399 | & pdq(ig,l,igcm_dust_mass)+ pdqtop(ig,l,igcm_dust_mass) |
---|
| 1400 | pdq(ig,l,igcm_dust_number)= |
---|
| 1401 | & pdq(ig,l,igcm_dust_number)+pdqtop(ig,l,igcm_dust_number) |
---|
| 1402 | |
---|
| 1403 | ENDDO |
---|
| 1404 | ENDDO |
---|
| 1405 | |
---|
[2628] | 1406 | ENDIF ! end of if (topflows) |
---|
[2199] | 1407 | |
---|
| 1408 | c 3.3 Dust injection from the surface |
---|
| 1409 | c ------------------------------------------- |
---|
| 1410 | if (dustinjection.gt.0) then |
---|
[2281] | 1411 | |
---|
[2199] | 1412 | CALL compute_dtau(ngrid,nlayer, |
---|
[2415] | 1413 | & zday,pplev,tau_pref_gcm, |
---|
[2643] | 1414 | & ptimestep,local_time,IRtoVIScoef, |
---|
| 1415 | & dustliftday) |
---|
[2199] | 1416 | endif ! end of if (dustinjection.gt.0) |
---|
| 1417 | |
---|
[2312] | 1418 | |
---|
[226] | 1419 | c----------------------------------------------------------------------- |
---|
[1974] | 1420 | c 4. Gravity wave and subgrid scale topography drag : |
---|
[226] | 1421 | c ------------------------------------------------- |
---|
[42] | 1422 | |
---|
[226] | 1423 | |
---|
| 1424 | IF(calllott)THEN |
---|
| 1425 | CALL calldrag_noro(ngrid,nlayer,ptimestep, |
---|
[883] | 1426 | & zplay,zplev,pt,pu,pv,zdtgw,zdugw,zdvgw) |
---|
[2362] | 1427 | |
---|
[226] | 1428 | DO l=1,nlayer |
---|
| 1429 | DO ig=1,ngrid |
---|
| 1430 | pdv(ig,l)=pdv(ig,l)+zdvgw(ig,l) |
---|
| 1431 | pdu(ig,l)=pdu(ig,l)+zdugw(ig,l) |
---|
| 1432 | pdt(ig,l)=pdt(ig,l)+zdtgw(ig,l) |
---|
| 1433 | ENDDO |
---|
| 1434 | ENDDO |
---|
| 1435 | ENDIF |
---|
[234] | 1436 | |
---|
[42] | 1437 | c----------------------------------------------------------------------- |
---|
[1974] | 1438 | c 5. Vertical diffusion (turbulent mixing): |
---|
[42] | 1439 | c ----------------------------------------- |
---|
[226] | 1440 | |
---|
[42] | 1441 | IF (calldifv) THEN |
---|
| 1442 | DO ig=1,ngrid |
---|
[2900] | 1443 | DO islope = 1,nslope |
---|
| 1444 | zflubid(ig,islope)=fluxrad(ig,islope) |
---|
| 1445 | & +fluxgrd(ig,islope) |
---|
| 1446 | ENDDO |
---|
[42] | 1447 | ENDDO |
---|
[286] | 1448 | zdum1(:,:)=0 |
---|
| 1449 | zdum2(:,:)=0 |
---|
[42] | 1450 | do l=1,nlayer |
---|
| 1451 | do ig=1,ngrid |
---|
| 1452 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
---|
| 1453 | enddo |
---|
| 1454 | enddo |
---|
[226] | 1455 | |
---|
[288] | 1456 | c ---------------------- |
---|
[284] | 1457 | c Treatment of a special case : using new surface layer (Richardson based) |
---|
| 1458 | c without using the thermals in gcm and mesoscale can yield problems in |
---|
| 1459 | c weakly unstable situations when winds are near to 0. For those cases, we add |
---|
| 1460 | c a unit subgrid gustiness. Remember that thermals should be used we using the |
---|
| 1461 | c Richardson based surface layer model. |
---|
[1236] | 1462 | IF ( .not.calltherm |
---|
| 1463 | . .and. callrichsl |
---|
| 1464 | . .and. .not.turb_resolved) THEN |
---|
[2616] | 1465 | |
---|
[1047] | 1466 | DO ig=1, ngrid |
---|
[2908] | 1467 | IF (zh(ig,1) .lt. tsurf_meshavg(ig)) THEN |
---|
[528] | 1468 | wstar(ig)=1. |
---|
| 1469 | hfmax_th(ig)=0.2 |
---|
| 1470 | ELSE |
---|
| 1471 | wstar(ig)=0. |
---|
| 1472 | hfmax_th(ig)=0. |
---|
| 1473 | ENDIF |
---|
[284] | 1474 | ENDDO |
---|
| 1475 | ENDIF |
---|
[288] | 1476 | c ---------------------- |
---|
[284] | 1477 | |
---|
[544] | 1478 | IF (tke_heat_flux .ne. 0.) THEN |
---|
[2616] | 1479 | |
---|
[544] | 1480 | zz1(:)=(pt(:,1)+pdt(:,1)*ptimestep)*(r/g)* |
---|
[883] | 1481 | & (-alog(zplay(:,1)/zplev(:,1))) |
---|
[544] | 1482 | pdt(:,1)=pdt(:,1) + (tke_heat_flux/zz1(:))*zpopsk(:,1) |
---|
| 1483 | ENDIF |
---|
[2312] | 1484 | |
---|
[42] | 1485 | c Calling vdif (Martian version WITH CO2 condensation) |
---|
[2900] | 1486 | dwatercap_dif(:,:) = 0. |
---|
[2494] | 1487 | zcdh(:) = 0. |
---|
| 1488 | zcdv(:) = 0. |
---|
[2896] | 1489 | |
---|
[2826] | 1490 | CALL vdifc(ngrid,nlayer,nq,zpopsk, |
---|
[42] | 1491 | $ ptimestep,capcal,lwrite, |
---|
[883] | 1492 | $ zplay,zplev,zzlay,zzlev,z0, |
---|
[42] | 1493 | $ pu,pv,zh,pq,tsurf,emis,qsurf, |
---|
| 1494 | $ zdum1,zdum2,zdh,pdq,zflubid, |
---|
| 1495 | $ zdudif,zdvdif,zdhdif,zdtsdif,q2, |
---|
[1996] | 1496 | & zdqdif,zdqsdif,wstar,zcdv,zcdh,hfmax_th, |
---|
| 1497 | & zcondicea_co2microp,sensibFlux, |
---|
[2260] | 1498 | & dustliftday,local_time,watercap,dwatercap_dif) |
---|
[2896] | 1499 | |
---|
[1236] | 1500 | DO ig=1,ngrid |
---|
[2900] | 1501 | zdtsurf(ig,:)=zdtsurf(ig,:)+zdtsdif(ig,:) |
---|
| 1502 | dwatercap(ig,:)=dwatercap(ig,:)+dwatercap_dif(ig,:) |
---|
[1236] | 1503 | ENDDO |
---|
[2907] | 1504 | call compute_meshgridavg(ngrid,nq,albedo,emis,tsurf,zdqsdif, |
---|
| 1505 | & albedo_meshavg,emis_meshavg,tsurf_meshavg,zdqsdif_meshavg_tmp) |
---|
[1236] | 1506 | IF (.not.turb_resolved) THEN |
---|
| 1507 | DO l=1,nlayer |
---|
[42] | 1508 | DO ig=1,ngrid |
---|
| 1509 | pdv(ig,l)=pdv(ig,l)+zdvdif(ig,l) |
---|
| 1510 | pdu(ig,l)=pdu(ig,l)+zdudif(ig,l) |
---|
| 1511 | pdt(ig,l)=pdt(ig,l)+zdhdif(ig,l)*zpopsk(ig,l) |
---|
| 1512 | |
---|
| 1513 | zdtdif(ig,l)=zdhdif(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
| 1514 | ENDDO |
---|
[226] | 1515 | ENDDO |
---|
[2312] | 1516 | |
---|
[42] | 1517 | DO iq=1, nq |
---|
| 1518 | DO l=1,nlayer |
---|
| 1519 | DO ig=1,ngrid |
---|
[2362] | 1520 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
---|
[42] | 1521 | ENDDO |
---|
| 1522 | ENDDO |
---|
| 1523 | ENDDO |
---|
| 1524 | DO iq=1, nq |
---|
| 1525 | DO ig=1,ngrid |
---|
[2900] | 1526 | dqsurf(ig,iq,:)=dqsurf(ig,iq,:) + zdqsdif(ig,iq,:) |
---|
[42] | 1527 | ENDDO |
---|
| 1528 | ENDDO |
---|
[2823] | 1529 | |
---|
[1242] | 1530 | ELSE |
---|
| 1531 | write (*,*) '******************************************' |
---|
| 1532 | write (*,*) '** LES mode: the difv part is only used to' |
---|
| 1533 | write (*,*) '** - provide HFX and UST to the dynamics' |
---|
| 1534 | write (*,*) '** - update TSURF' |
---|
| 1535 | write (*,*) '******************************************' |
---|
| 1536 | !! Specific treatment for lifting in turbulent-resolving mode (AC) |
---|
| 1537 | IF (lifting .and. doubleq) THEN |
---|
| 1538 | !! lifted dust is injected in the first layer. |
---|
| 1539 | !! Sedimentation must be called after turbulent mixing, i.e. on next step, after WRF. |
---|
| 1540 | !! => lifted dust is not incremented before the sedimentation step. |
---|
| 1541 | zdqdif(1:ngrid,1,1:nq)=0. |
---|
| 1542 | zdqdif(1:ngrid,1,igcm_dust_number) = |
---|
[2907] | 1543 | . -zdqsdif_meshavg_tmp(1:ngrid,igcm_dust_number) |
---|
[1242] | 1544 | zdqdif(1:ngrid,1,igcm_dust_mass) = |
---|
[2907] | 1545 | . -zdqsdif_meshavg_tmp(1:ngrid,igcm_dust_mass) |
---|
[1266] | 1546 | zdqdif(1:ngrid,2:nlayer,1:nq) = 0. |
---|
[1242] | 1547 | DO iq=1, nq |
---|
[1974] | 1548 | IF ((iq .ne. igcm_dust_mass) |
---|
| 1549 | & .and. (iq .ne. igcm_dust_number)) THEN |
---|
[2900] | 1550 | zdqsdif(:,iq,:)=0. |
---|
[1974] | 1551 | ENDIF |
---|
[1242] | 1552 | ENDDO |
---|
| 1553 | ELSE |
---|
| 1554 | zdqdif(1:ngrid,1:nlayer,1:nq) = 0. |
---|
[2900] | 1555 | zdqsdif(1:ngrid,1:nq,1:nslope) = 0. |
---|
[1242] | 1556 | ENDIF |
---|
[790] | 1557 | ENDIF |
---|
[42] | 1558 | ELSE |
---|
| 1559 | DO ig=1,ngrid |
---|
[2900] | 1560 | DO islope=1,nslope |
---|
| 1561 | zdtsurf(ig,islope)=zdtsurf(ig,islope)+ |
---|
| 1562 | s (fluxrad(ig,islope)+fluxgrd(ig,islope))/capcal(ig,islope) |
---|
| 1563 | ENDDO |
---|
[42] | 1564 | ENDDO |
---|
[1236] | 1565 | IF (turb_resolved) THEN |
---|
| 1566 | write(*,*) 'Turbulent-resolving mode !' |
---|
[42] | 1567 | write(*,*) 'Please set calldifv to T in callphys.def' |
---|
[2214] | 1568 | call abort_physic("physiq","turbulent-resolving mode",1) |
---|
[42] | 1569 | ENDIF |
---|
| 1570 | ENDIF ! of IF (calldifv) |
---|
| 1571 | |
---|
[162] | 1572 | c----------------------------------------------------------------------- |
---|
[1974] | 1573 | c 6. Thermals : |
---|
[162] | 1574 | c ----------------------------- |
---|
[566] | 1575 | |
---|
[1236] | 1576 | if(calltherm .and. .not.turb_resolved) then |
---|
[2362] | 1577 | |
---|
[2823] | 1578 | call calltherm_interface(ngrid,nlayer,nq,igcm_co2, |
---|
[652] | 1579 | $ zzlev,zzlay, |
---|
[162] | 1580 | $ ptimestep,pu,pv,pt,pq,pdu,pdv,pdt,pdq,q2, |
---|
[883] | 1581 | $ zplay,zplev,pphi,zpopsk, |
---|
[185] | 1582 | $ pdu_th,pdv_th,pdt_th,pdq_th,lmax_th,zmax_th, |
---|
[660] | 1583 | $ dtke_th,zdhdif,hfmax_th,wstar,sensibFlux) |
---|
[2362] | 1584 | |
---|
[162] | 1585 | DO l=1,nlayer |
---|
| 1586 | DO ig=1,ngrid |
---|
| 1587 | pdu(ig,l)=pdu(ig,l)+pdu_th(ig,l) |
---|
| 1588 | pdv(ig,l)=pdv(ig,l)+pdv_th(ig,l) |
---|
| 1589 | pdt(ig,l)=pdt(ig,l)+pdt_th(ig,l) |
---|
| 1590 | q2(ig,l)=q2(ig,l)+dtke_th(ig,l)*ptimestep |
---|
| 1591 | ENDDO |
---|
| 1592 | ENDDO |
---|
[2362] | 1593 | |
---|
[162] | 1594 | DO ig=1,ngrid |
---|
| 1595 | q2(ig,nlayer+1)=q2(ig,nlayer+1)+dtke_th(ig,nlayer+1)*ptimestep |
---|
[2362] | 1596 | ENDDO |
---|
[2312] | 1597 | |
---|
[162] | 1598 | DO iq=1,nq |
---|
| 1599 | DO l=1,nlayer |
---|
| 1600 | DO ig=1,ngrid |
---|
| 1601 | pdq(ig,l,iq)=pdq(ig,l,iq)+pdq_th(ig,l,iq) |
---|
| 1602 | ENDDO |
---|
| 1603 | ENDDO |
---|
| 1604 | ENDDO |
---|
[42] | 1605 | |
---|
[277] | 1606 | lmax_th_out(:)=real(lmax_th(:)) |
---|
| 1607 | |
---|
[1236] | 1608 | else !of if calltherm |
---|
[162] | 1609 | lmax_th(:)=0 |
---|
[528] | 1610 | wstar(:)=0. |
---|
| 1611 | hfmax_th(:)=0. |
---|
[277] | 1612 | lmax_th_out(:)=0. |
---|
[1236] | 1613 | end if |
---|
[2312] | 1614 | |
---|
[42] | 1615 | c----------------------------------------------------------------------- |
---|
[1974] | 1616 | c 7. Dry convective adjustment: |
---|
[42] | 1617 | c ----------------------------- |
---|
| 1618 | |
---|
| 1619 | IF(calladj) THEN |
---|
| 1620 | |
---|
| 1621 | DO l=1,nlayer |
---|
| 1622 | DO ig=1,ngrid |
---|
| 1623 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
---|
| 1624 | ENDDO |
---|
| 1625 | ENDDO |
---|
[286] | 1626 | zduadj(:,:)=0 |
---|
| 1627 | zdvadj(:,:)=0 |
---|
| 1628 | zdhadj(:,:)=0 |
---|
[42] | 1629 | |
---|
| 1630 | CALL convadj(ngrid,nlayer,nq,ptimestep, |
---|
[883] | 1631 | $ zplay,zplev,zpopsk,lmax_th, |
---|
[42] | 1632 | $ pu,pv,zh,pq, |
---|
| 1633 | $ pdu,pdv,zdh,pdq, |
---|
| 1634 | $ zduadj,zdvadj,zdhadj, |
---|
| 1635 | $ zdqadj) |
---|
| 1636 | |
---|
| 1637 | DO l=1,nlayer |
---|
| 1638 | DO ig=1,ngrid |
---|
| 1639 | pdu(ig,l)=pdu(ig,l)+zduadj(ig,l) |
---|
| 1640 | pdv(ig,l)=pdv(ig,l)+zdvadj(ig,l) |
---|
| 1641 | pdt(ig,l)=pdt(ig,l)+zdhadj(ig,l)*zpopsk(ig,l) |
---|
| 1642 | |
---|
| 1643 | zdtadj(ig,l)=zdhadj(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
| 1644 | ENDDO |
---|
| 1645 | ENDDO |
---|
| 1646 | |
---|
| 1647 | DO iq=1, nq |
---|
| 1648 | DO l=1,nlayer |
---|
| 1649 | DO ig=1,ngrid |
---|
| 1650 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqadj(ig,l,iq) |
---|
| 1651 | ENDDO |
---|
| 1652 | ENDDO |
---|
| 1653 | ENDDO |
---|
| 1654 | ENDIF ! of IF(calladj) |
---|
| 1655 | |
---|
[2149] | 1656 | c----------------------------------------------------- |
---|
| 1657 | c 8. Non orographic Gravity waves : |
---|
| 1658 | c ------------------------------------------------- |
---|
[42] | 1659 | |
---|
[2149] | 1660 | IF (calllott_nonoro) THEN |
---|
| 1661 | |
---|
[2594] | 1662 | CALL nonoro_gwd_ran(ngrid,nlayer,ptimestep, |
---|
| 1663 | & cpnew,rnew, |
---|
| 1664 | & zplay, |
---|
[2149] | 1665 | & zmax_th, ! max altitude reached by thermals (m) |
---|
| 1666 | & pt, pu, pv, |
---|
| 1667 | & pdt, pdu, pdv, |
---|
| 1668 | & zustrhi,zvstrhi, |
---|
[2225] | 1669 | & d_t_hin, d_u_hin, d_v_hin) |
---|
[2149] | 1670 | |
---|
| 1671 | ! Update tendencies |
---|
| 1672 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer) |
---|
| 1673 | & +d_t_hin(1:ngrid,1:nlayer) |
---|
| 1674 | pdu(1:ngrid,1:nlayer)=pdu(1:ngrid,1:nlayer) |
---|
| 1675 | & +d_u_hin(1:ngrid,1:nlayer) |
---|
| 1676 | pdv(1:ngrid,1:nlayer)=pdv(1:ngrid,1:nlayer) |
---|
| 1677 | & +d_v_hin(1:ngrid,1:nlayer) |
---|
| 1678 | |
---|
| 1679 | ENDIF ! of IF (calllott_nonoro) |
---|
| 1680 | |
---|
[42] | 1681 | c----------------------------------------------------------------------- |
---|
[2149] | 1682 | c 9. Specific parameterizations for tracers |
---|
[42] | 1683 | c: ----------------------------------------- |
---|
| 1684 | |
---|
| 1685 | |
---|
[2149] | 1686 | c 9a. Water and ice |
---|
[42] | 1687 | c --------------- |
---|
| 1688 | |
---|
| 1689 | c --------------------------------------- |
---|
| 1690 | c Water ice condensation in the atmosphere |
---|
| 1691 | c ---------------------------------------- |
---|
| 1692 | IF (water) THEN |
---|
| 1693 | |
---|
| 1694 | call watercloud(ngrid,nlayer,ptimestep, |
---|
[883] | 1695 | & zplev,zplay,pdpsrf,zzlay, pt,pdt, |
---|
[626] | 1696 | & pq,pdq,zdqcloud,zdtcloud, |
---|
[358] | 1697 | & nq,tau,tauscaling,rdust,rice,nuice, |
---|
[1711] | 1698 | & rsedcloud,rhocloud,totcloudfrac) |
---|
[633] | 1699 | c Temperature variation due to latent heat release |
---|
[42] | 1700 | if (activice) then |
---|
[2362] | 1701 | pdt(1:ngrid,1:nlayer) = |
---|
| 1702 | & pdt(1:ngrid,1:nlayer) + |
---|
[633] | 1703 | & zdtcloud(1:ngrid,1:nlayer) |
---|
[42] | 1704 | endif |
---|
[2312] | 1705 | |
---|
[42] | 1706 | ! increment water vapour and ice atmospheric tracers tendencies |
---|
[706] | 1707 | pdq(1:ngrid,1:nlayer,igcm_h2o_vap) = |
---|
| 1708 | & pdq(1:ngrid,1:nlayer,igcm_h2o_vap) + |
---|
| 1709 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_vap) |
---|
| 1710 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = |
---|
| 1711 | & pdq(1:ngrid,1:nlayer,igcm_h2o_ice) + |
---|
| 1712 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 1713 | |
---|
[2312] | 1714 | if (hdo) then |
---|
| 1715 | ! increment HDO vapour and ice atmospheric tracers tendencies |
---|
[2362] | 1716 | pdq(1:ngrid,1:nlayer,igcm_hdo_vap) = |
---|
| 1717 | & pdq(1:ngrid,1:nlayer,igcm_hdo_vap) + |
---|
[2312] | 1718 | & zdqcloud(1:ngrid,1:nlayer,igcm_hdo_vap) |
---|
[2362] | 1719 | pdq(1:ngrid,1:nlayer,igcm_hdo_ice) = |
---|
| 1720 | & pdq(1:ngrid,1:nlayer,igcm_hdo_ice) + |
---|
[2312] | 1721 | & zdqcloud(1:ngrid,1:nlayer,igcm_hdo_ice) |
---|
| 1722 | endif !hdo |
---|
| 1723 | |
---|
[706] | 1724 | ! increment dust and ccn masses and numbers |
---|
[883] | 1725 | ! We need to check that we have Nccn & Ndust > 0 |
---|
| 1726 | ! This is due to single precision rounding problems |
---|
[706] | 1727 | if (microphys) then |
---|
| 1728 | pdq(1:ngrid,1:nlayer,igcm_ccn_mass) = |
---|
| 1729 | & pdq(1:ngrid,1:nlayer,igcm_ccn_mass) + |
---|
| 1730 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_mass) |
---|
| 1731 | pdq(1:ngrid,1:nlayer,igcm_ccn_number) = |
---|
| 1732 | & pdq(1:ngrid,1:nlayer,igcm_ccn_number) + |
---|
| 1733 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_number) |
---|
[883] | 1734 | where (pq(:,:,igcm_ccn_mass) + |
---|
| 1735 | & ptimestep*pdq(:,:,igcm_ccn_mass) < 0.) |
---|
| 1736 | pdq(:,:,igcm_ccn_mass) = |
---|
| 1737 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
| 1738 | pdq(:,:,igcm_ccn_number) = |
---|
| 1739 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
| 1740 | end where |
---|
| 1741 | where (pq(:,:,igcm_ccn_number) + |
---|
| 1742 | & ptimestep*pdq(:,:,igcm_ccn_number) < 0.) |
---|
| 1743 | pdq(:,:,igcm_ccn_mass) = |
---|
| 1744 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
| 1745 | pdq(:,:,igcm_ccn_number) = |
---|
| 1746 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
| 1747 | end where |
---|
[706] | 1748 | endif |
---|
| 1749 | |
---|
[883] | 1750 | if (scavenging) then |
---|
| 1751 | pdq(1:ngrid,1:nlayer,igcm_dust_mass) = |
---|
| 1752 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) + |
---|
| 1753 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 1754 | pdq(1:ngrid,1:nlayer,igcm_dust_number) = |
---|
| 1755 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) + |
---|
| 1756 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 1757 | where (pq(:,:,igcm_dust_mass) + |
---|
| 1758 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
---|
| 1759 | pdq(:,:,igcm_dust_mass) = |
---|
| 1760 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
| 1761 | pdq(:,:,igcm_dust_number) = |
---|
| 1762 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 1763 | end where |
---|
| 1764 | where (pq(:,:,igcm_dust_number) + |
---|
| 1765 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
---|
| 1766 | pdq(:,:,igcm_dust_mass) = |
---|
| 1767 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
| 1768 | pdq(:,:,igcm_dust_number) = |
---|
| 1769 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 1770 | end where |
---|
| 1771 | endif ! of if scavenging |
---|
[633] | 1772 | |
---|
[42] | 1773 | END IF ! of IF (water) |
---|
| 1774 | |
---|
[2149] | 1775 | c 9a bis. CO2 clouds (CL & JA) |
---|
[1617] | 1776 | c --------------------------------------- |
---|
| 1777 | c CO2 ice cloud condensation in the atmosphere |
---|
| 1778 | c ---------------------------------------- |
---|
[1818] | 1779 | c flag needed in callphys.def: |
---|
| 1780 | c co2clouds=.true. is mandatory (default is .false.) |
---|
| 1781 | c co2useh2o=.true. if you want to allow co2 condensation |
---|
| 1782 | c on water ice particles |
---|
| 1783 | c meteo_flux=.true. if you want to add a meteoritic |
---|
| 1784 | c supply of CCN |
---|
| 1785 | c CLFvaryingCO2=.true. if you want to have a sub-grid |
---|
| 1786 | c temperature distribution |
---|
| 1787 | c spantCO2=integer (i.e. 3) amplitude of the sub-grid T disti |
---|
| 1788 | c nuiceco2_sed=0.2 variance of the size distribution for the |
---|
| 1789 | c sedimentation |
---|
| 1790 | c nuiceco2_ref=0.2 variance of the size distribution for the |
---|
| 1791 | c nucleation |
---|
| 1792 | c imicroco2=50 micro-timestep is 1/50 of physical timestep |
---|
[2362] | 1793 | zdqssed_co2(:) = 0. |
---|
[2562] | 1794 | zdqssed_ccn(:,:) = 0. |
---|
[1922] | 1795 | |
---|
[2362] | 1796 | IF (co2clouds) THEN |
---|
| 1797 | call co2cloud(ngrid,nlayer,ptimestep, |
---|
[1617] | 1798 | & zplev,zplay,pdpsrf,zzlay,pt,pdt, |
---|
| 1799 | & pq,pdq,zdqcloudco2,zdtcloudco2, |
---|
| 1800 | & nq,tau,tauscaling,rdust,rice,riceco2,nuice, |
---|
[2447] | 1801 | & rhocloud, rsedcloudco2,rhocloudco2,zzlev,zdqssed_co2, |
---|
[2826] | 1802 | & zdqssed_ccn,pdu,pu,zcondicea_co2microp) |
---|
[1617] | 1803 | |
---|
[2562] | 1804 | DO iq=1, nq |
---|
| 1805 | DO ig=1,ngrid |
---|
[2900] | 1806 | DO islope = 1,nslope |
---|
| 1807 | dqsurf(ig,iq,islope)=dqsurf(ig,iq,islope)+ |
---|
| 1808 | & zdqssed_ccn(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
---|
| 1809 | ENDDO !(islope) |
---|
[2562] | 1810 | ENDDO ! (ig) |
---|
[2900] | 1811 | ENDDO ! (iq)q) |
---|
[1617] | 1812 | c Temperature variation due to latent heat release |
---|
[2562] | 1813 | pdt(1:ngrid,1:nlayer) = |
---|
[1617] | 1814 | & pdt(1:ngrid,1:nlayer) + |
---|
[2551] | 1815 | & zdtcloudco2(1:ngrid,1:nlayer) |
---|
[1617] | 1816 | |
---|
| 1817 | ! increment dust and ccn masses and numbers |
---|
| 1818 | ! We need to check that we have Nccn & Ndust > 0 |
---|
| 1819 | ! This is due to single precision rounding problems |
---|
[1816] | 1820 | ! increment dust tracers tendancies |
---|
[2362] | 1821 | pdq(:,:,igcm_dust_mass) = pdq(:,:,igcm_dust_mass) |
---|
| 1822 | & + zdqcloudco2(:,:,igcm_dust_mass) |
---|
| 1823 | |
---|
| 1824 | pdq(:,:,igcm_dust_number) = pdq(:,:,igcm_dust_number) |
---|
| 1825 | & + zdqcloudco2(:,:,igcm_dust_number) |
---|
| 1826 | |
---|
| 1827 | pdq(:,:,igcm_co2) = pdq(:,:,igcm_co2) |
---|
| 1828 | & + zdqcloudco2(:,:,igcm_co2) |
---|
| 1829 | |
---|
| 1830 | pdq(:,:,igcm_co2_ice) = pdq(:,:,igcm_co2_ice) |
---|
| 1831 | & + zdqcloudco2(:,:,igcm_co2_ice) |
---|
| 1832 | |
---|
| 1833 | pdq(:,:,igcm_ccnco2_mass) = pdq(:,:,igcm_ccnco2_mass) |
---|
| 1834 | & + zdqcloudco2(:,:,igcm_ccnco2_mass) |
---|
| 1835 | |
---|
| 1836 | pdq(:,:,igcm_ccnco2_number) = pdq(:,:,igcm_ccnco2_number) |
---|
| 1837 | & + zdqcloudco2(:,:,igcm_ccnco2_number) |
---|
| 1838 | |
---|
[2589] | 1839 | if (meteo_flux) then |
---|
| 1840 | pdq(:,:,igcm_ccnco2_meteor_mass) = |
---|
| 1841 | & pdq(:,:,igcm_ccnco2_meteor_mass) + |
---|
| 1842 | & zdqcloudco2(:,:,igcm_ccnco2_meteor_mass) |
---|
| 1843 | |
---|
| 1844 | pdq(:,:,igcm_ccnco2_meteor_number) = |
---|
| 1845 | & pdq(:,:,igcm_ccnco2_meteor_number) |
---|
| 1846 | & + zdqcloudco2(:,:,igcm_ccnco2_meteor_number) |
---|
| 1847 | end if |
---|
[1816] | 1848 | !Update water ice clouds values as well |
---|
| 1849 | if (co2useh2o) then |
---|
| 1850 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = |
---|
| 1851 | & pdq(1:ngrid,1:nlayer,igcm_h2o_ice) + |
---|
| 1852 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 1853 | pdq(1:ngrid,1:nlayer,igcm_ccn_mass) = |
---|
| 1854 | & pdq(1:ngrid,1:nlayer,igcm_ccn_mass) + |
---|
| 1855 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccn_mass) |
---|
| 1856 | pdq(1:ngrid,1:nlayer,igcm_ccn_number) = |
---|
| 1857 | & pdq(1:ngrid,1:nlayer,igcm_ccn_number) + |
---|
| 1858 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccn_number) |
---|
[2362] | 1859 | |
---|
[2562] | 1860 | pdq(:,:,igcm_ccnco2_h2o_mass_ice) = |
---|
| 1861 | & pdq(:,:,igcm_ccnco2_h2o_mass_ice) + |
---|
| 1862 | & zdqcloudco2(:,:,igcm_ccnco2_h2o_mass_ice) |
---|
| 1863 | |
---|
| 1864 | pdq(:,:,igcm_ccnco2_h2o_mass_ccn) = |
---|
| 1865 | & pdq(:,:,igcm_ccnco2_h2o_mass_ccn) + |
---|
| 1866 | & zdqcloudco2(:,:,igcm_ccnco2_h2o_mass_ccn) |
---|
| 1867 | |
---|
| 1868 | pdq(:,:,igcm_ccnco2_h2o_number) = |
---|
| 1869 | & pdq(:,:,igcm_ccnco2_h2o_number) + |
---|
| 1870 | & zdqcloudco2(:,:,igcm_ccnco2_h2o_number) |
---|
| 1871 | |
---|
[2362] | 1872 | c Negative values? |
---|
| 1873 | where (pq(:,:,igcm_ccn_mass) + |
---|
[1921] | 1874 | & ptimestep*pdq(:,:,igcm_ccn_mass) < 0.) |
---|
| 1875 | pdq(:,:,igcm_ccn_mass) = |
---|
[1816] | 1876 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
[1921] | 1877 | pdq(:,:,igcm_ccn_number) = |
---|
[1816] | 1878 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
[1921] | 1879 | end where |
---|
[2362] | 1880 | c Negative values? |
---|
| 1881 | where (pq(:,:,igcm_ccn_number) + |
---|
[1921] | 1882 | & ptimestep*pdq(:,:,igcm_ccn_number) < 0.) |
---|
| 1883 | pdq(:,:,igcm_ccn_mass) = |
---|
| 1884 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
| 1885 | pdq(:,:,igcm_ccn_number) = |
---|
| 1886 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
| 1887 | end where |
---|
[2562] | 1888 | where (pq(:,:,igcm_ccnco2_h2o_mass_ice) + |
---|
| 1889 | & pq(:,:,igcm_ccnco2_h2o_mass_ccn) + |
---|
| 1890 | & (pdq(:,:,igcm_ccnco2_h2o_mass_ice) + |
---|
| 1891 | & pdq(:,:,igcm_ccnco2_h2o_mass_ccn) |
---|
| 1892 | & )*ptimestep < 0.) |
---|
| 1893 | pdq(:,:,igcm_ccnco2_h2o_mass_ice) = |
---|
| 1894 | & - pq(:,:,igcm_ccnco2_h2o_mass_ice) |
---|
| 1895 | & /ptimestep + 1.e-30 |
---|
| 1896 | pdq(:,:,igcm_ccnco2_h2o_mass_ccn) = |
---|
| 1897 | & - pq(:,:,igcm_ccnco2_h2o_mass_ccn) |
---|
| 1898 | & /ptimestep + 1.e-30 |
---|
| 1899 | pdq(:,:,igcm_ccnco2_h2o_number) = |
---|
| 1900 | & - pq(:,:,igcm_ccnco2_h2o_number) |
---|
| 1901 | & /ptimestep + 1.e-30 |
---|
| 1902 | end where |
---|
| 1903 | |
---|
| 1904 | where (pq(:,:,igcm_ccnco2_h2o_number) + |
---|
| 1905 | & (pdq(:,:,igcm_ccnco2_h2o_number) |
---|
| 1906 | & )*ptimestep < 0.) |
---|
| 1907 | pdq(:,:,igcm_ccnco2_h2o_mass_ice) = |
---|
| 1908 | & - pq(:,:,igcm_ccnco2_h2o_mass_ice) |
---|
| 1909 | & /ptimestep + 1.e-30 |
---|
| 1910 | pdq(:,:,igcm_ccnco2_h2o_mass_ccn) = |
---|
| 1911 | & - pq(:,:,igcm_ccnco2_h2o_mass_ccn) |
---|
| 1912 | & /ptimestep + 1.e-30 |
---|
| 1913 | pdq(:,:,igcm_ccnco2_h2o_number) = |
---|
| 1914 | & - pq(:,:,igcm_ccnco2_h2o_number) |
---|
| 1915 | & /ptimestep + 1.e-30 |
---|
| 1916 | end where |
---|
[1921] | 1917 | endif ! of if (co2useh2o) |
---|
[1720] | 1918 | c Negative values? |
---|
[1617] | 1919 | where (pq(:,:,igcm_ccnco2_mass) + |
---|
[1921] | 1920 | & ptimestep*pdq(:,:,igcm_ccnco2_mass) < 0.) |
---|
[1922] | 1921 | pdq(:,:,igcm_ccnco2_mass) = |
---|
[1617] | 1922 | & - pq(:,:,igcm_ccnco2_mass)/ptimestep + 1.e-30 |
---|
[1922] | 1923 | pdq(:,:,igcm_ccnco2_number) = |
---|
[1617] | 1924 | & - pq(:,:,igcm_ccnco2_number)/ptimestep + 1.e-30 |
---|
[1720] | 1925 | end where |
---|
| 1926 | where (pq(:,:,igcm_ccnco2_number) + |
---|
[1921] | 1927 | & ptimestep*pdq(:,:,igcm_ccnco2_number) < 0.) |
---|
[1922] | 1928 | pdq(:,:,igcm_ccnco2_mass) = |
---|
[1720] | 1929 | & - pq(:,:,igcm_ccnco2_mass)/ptimestep + 1.e-30 |
---|
[1922] | 1930 | pdq(:,:,igcm_ccnco2_number) = |
---|
[1720] | 1931 | & - pq(:,:,igcm_ccnco2_number)/ptimestep + 1.e-30 |
---|
[1921] | 1932 | end where |
---|
[1720] | 1933 | |
---|
[1617] | 1934 | c Negative values? |
---|
[1921] | 1935 | where (pq(:,:,igcm_dust_mass) + |
---|
| 1936 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
---|
[1922] | 1937 | pdq(:,:,igcm_dust_mass) = |
---|
| 1938 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
| 1939 | pdq(:,:,igcm_dust_number) = |
---|
| 1940 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
[1921] | 1941 | end where |
---|
| 1942 | where (pq(:,:,igcm_dust_number) + |
---|
| 1943 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
---|
[1922] | 1944 | pdq(:,:,igcm_dust_mass) = |
---|
| 1945 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
| 1946 | pdq(:,:,igcm_dust_number) = |
---|
| 1947 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
[1921] | 1948 | end where |
---|
[2589] | 1949 | if (meteo_flux) then |
---|
| 1950 | where (pq(:,:,igcm_ccnco2_meteor_mass) + |
---|
| 1951 | & ptimestep*pdq(:,:,igcm_ccnco2_meteor_mass) < 0.) |
---|
| 1952 | pdq(:,:,igcm_ccnco2_meteor_mass) = |
---|
| 1953 | & - pq(:,:,igcm_ccnco2_meteor_mass)/ptimestep + 1.e-30 |
---|
| 1954 | pdq(:,:,igcm_ccnco2_meteor_number) = |
---|
| 1955 | & - pq(:,:,igcm_ccnco2_meteor_number)/ptimestep + 1.e-30 |
---|
| 1956 | end where |
---|
| 1957 | where (pq(:,:,igcm_ccnco2_meteor_number) + |
---|
| 1958 | & ptimestep*pdq(:,:,igcm_ccnco2_meteor_number) < 0.) |
---|
| 1959 | pdq(:,:,igcm_ccnco2_meteor_mass) = |
---|
| 1960 | & - pq(:,:,igcm_ccnco2_meteor_mass)/ptimestep + 1.e-30 |
---|
| 1961 | pdq(:,:,igcm_ccnco2_meteor_number) = |
---|
| 1962 | & - pq(:,:,igcm_ccnco2_meteor_number)/ptimestep + 1.e-30 |
---|
| 1963 | end where |
---|
| 1964 | end if |
---|
[2362] | 1965 | END IF ! of IF (co2clouds) |
---|
[1617] | 1966 | |
---|
[2149] | 1967 | c 9b. Aerosol particles |
---|
[42] | 1968 | c ------------------- |
---|
| 1969 | c ---------- |
---|
| 1970 | c Dust devil : |
---|
| 1971 | c ---------- |
---|
| 1972 | IF(callddevil) then |
---|
[883] | 1973 | call dustdevil(ngrid,nlayer,nq, zplev,pu,pv,pt, tsurf,q2, |
---|
[42] | 1974 | & zdqdev,zdqsdev) |
---|
[2896] | 1975 | |
---|
[42] | 1976 | if (dustbin.ge.1) then |
---|
| 1977 | do iq=1,nq |
---|
| 1978 | DO l=1,nlayer |
---|
| 1979 | DO ig=1,ngrid |
---|
| 1980 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdev(ig,l,iq) |
---|
| 1981 | ENDDO |
---|
| 1982 | ENDDO |
---|
| 1983 | enddo |
---|
| 1984 | do iq=1,nq |
---|
| 1985 | DO ig=1,ngrid |
---|
[2900] | 1986 | DO islope = 1,nslope |
---|
| 1987 | dqsurf(ig,iq,islope)= dqsurf(ig,iq,islope) + |
---|
| 1988 | & zdqsdev(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
---|
| 1989 | ENDDO |
---|
[42] | 1990 | ENDDO |
---|
| 1991 | enddo |
---|
| 1992 | endif ! of if (dustbin.ge.1) |
---|
| 1993 | |
---|
| 1994 | END IF ! of IF (callddevil) |
---|
| 1995 | |
---|
| 1996 | c ------------- |
---|
| 1997 | c Sedimentation : acts also on water ice |
---|
[1974] | 1998 | c ------------- |
---|
[42] | 1999 | IF (sedimentation) THEN |
---|
| 2000 | zdqsed(1:ngrid,1:nlayer,1:nq)=0 |
---|
| 2001 | zdqssed(1:ngrid,1:nq)=0 |
---|
| 2002 | |
---|
[1921] | 2003 | c Sedimentation for co2 clouds tracers are inside co2cloud microtimestep |
---|
| 2004 | c Zdqssed isn't |
---|
[1974] | 2005 | call callsedim(ngrid,nlayer,ptimestep, |
---|
[2199] | 2006 | & zplev,zzlev,zzlay,pt,pdt, |
---|
| 2007 | & rdust,rstormdust,rtopdust, |
---|
[1974] | 2008 | & rice,rsedcloud,rhocloud, |
---|
| 2009 | & pq,pdq,zdqsed,zdqssed,nq, |
---|
[411] | 2010 | & tau,tauscaling) |
---|
[2896] | 2011 | |
---|
[1921] | 2012 | c Flux at the surface of co2 ice computed in co2cloud microtimestep |
---|
[1974] | 2013 | IF (rdstorm) THEN |
---|
| 2014 | c Storm dust cannot sediment to the surface |
---|
| 2015 | DO ig=1,ngrid |
---|
| 2016 | zdqsed(ig,1,igcm_stormdust_mass)= |
---|
| 2017 | & zdqsed(ig,1,igcm_stormdust_mass)+ |
---|
| 2018 | & zdqssed(ig,igcm_stormdust_mass) / |
---|
| 2019 | & ((pplev(ig,1)-pplev(ig,2))/g) |
---|
| 2020 | zdqsed(ig,1,igcm_stormdust_number)= |
---|
| 2021 | & zdqsed(ig,1,igcm_stormdust_number)+ |
---|
| 2022 | & zdqssed(ig,igcm_stormdust_number) / |
---|
| 2023 | & ((pplev(ig,1)-pplev(ig,2))/g) |
---|
| 2024 | zdqssed(ig,igcm_stormdust_mass)=0. |
---|
| 2025 | zdqssed(ig,igcm_stormdust_number)=0. |
---|
| 2026 | ENDDO |
---|
| 2027 | ENDIF !rdstorm |
---|
| 2028 | |
---|
[42] | 2029 | DO iq=1, nq |
---|
| 2030 | DO l=1,nlayer |
---|
| 2031 | DO ig=1,ngrid |
---|
| 2032 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqsed(ig,l,iq) |
---|
| 2033 | ENDDO |
---|
| 2034 | ENDDO |
---|
| 2035 | ENDDO |
---|
| 2036 | DO iq=1, nq |
---|
| 2037 | DO ig=1,ngrid |
---|
[2900] | 2038 | DO islope = 1,nslope |
---|
| 2039 | dqsurf(ig,iq,islope)= dqsurf(ig,iq,islope) + |
---|
| 2040 | & zdqssed(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
---|
| 2041 | ENDDO |
---|
[42] | 2042 | ENDDO |
---|
| 2043 | ENDDO |
---|
[1974] | 2044 | |
---|
[42] | 2045 | END IF ! of IF (sedimentation) |
---|
[1974] | 2046 | |
---|
[1236] | 2047 | c Add lifted dust to tendancies after sedimentation in the LES (AC) |
---|
| 2048 | IF (turb_resolved) THEN |
---|
| 2049 | DO iq=1, nq |
---|
| 2050 | DO l=1,nlayer |
---|
| 2051 | DO ig=1,ngrid |
---|
| 2052 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
---|
| 2053 | ENDDO |
---|
| 2054 | ENDDO |
---|
| 2055 | ENDDO |
---|
| 2056 | DO iq=1, nq |
---|
| 2057 | DO ig=1,ngrid |
---|
[2900] | 2058 | dqsurf(ig,iq,:)=dqsurf(ig,iq,:) + zdqsdif(ig,iq,:) |
---|
[1236] | 2059 | ENDDO |
---|
| 2060 | ENDDO |
---|
| 2061 | ENDIF |
---|
[556] | 2062 | c |
---|
[2149] | 2063 | c 9c. Chemical species |
---|
[556] | 2064 | c ------------------ |
---|
[42] | 2065 | |
---|
[556] | 2066 | #ifndef MESOSCALE |
---|
| 2067 | c -------------- |
---|
| 2068 | c photochemistry : |
---|
| 2069 | c -------------- |
---|
[2158] | 2070 | IF (photochem) then |
---|
[411] | 2071 | |
---|
[2164] | 2072 | if (modulo(icount-1,ichemistry).eq.0) then |
---|
| 2073 | ! compute chemistry every ichemistry physics step |
---|
| 2074 | |
---|
[556] | 2075 | ! dust and ice surface area |
---|
[1246] | 2076 | call surfacearea(ngrid, nlayer, naerkind, |
---|
| 2077 | $ ptimestep, zplay, zzlay, |
---|
[556] | 2078 | $ pt, pq, pdq, nq, |
---|
| 2079 | $ rdust, rice, tau, tauscaling, |
---|
| 2080 | $ surfdust, surfice) |
---|
| 2081 | ! call photochemistry |
---|
[2900] | 2082 | DO ig = 1,ngrid |
---|
| 2083 | qsurf_tmp(ig,:) = qsurf(ig,:,major_slope(ig)) |
---|
| 2084 | ENDDO |
---|
[1047] | 2085 | call calchim(ngrid,nlayer,nq, |
---|
[1036] | 2086 | & ptimestep,zplay,zplev,pt,pdt,dist_sol,mu0, |
---|
[556] | 2087 | $ zzlev,zzlay,zday,pq,pdq,zdqchim,zdqschim, |
---|
[2900] | 2088 | $ zdqcloud,zdqscloud,tau(:,1), |
---|
| 2089 | $ qsurf_tmp(:,igcm_co2), |
---|
[556] | 2090 | $ pu,pdu,pv,pdv,surfdust,surfice) |
---|
[2896] | 2091 | |
---|
[2164] | 2092 | endif ! of if (modulo(icount-1,ichemistry).eq.0) |
---|
| 2093 | |
---|
[556] | 2094 | ! increment values of tracers: |
---|
| 2095 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
---|
| 2096 | ! tracers is zero anyways |
---|
| 2097 | DO l=1,nlayer |
---|
| 2098 | DO ig=1,ngrid |
---|
| 2099 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqchim(ig,l,iq) |
---|
| 2100 | ENDDO |
---|
| 2101 | ENDDO |
---|
| 2102 | ENDDO ! of DO iq=1,nq |
---|
| 2103 | |
---|
| 2104 | ! add condensation tendency for H2O2 |
---|
| 2105 | if (igcm_h2o2.ne.0) then |
---|
| 2106 | DO l=1,nlayer |
---|
| 2107 | DO ig=1,ngrid |
---|
| 2108 | pdq(ig,l,igcm_h2o2)=pdq(ig,l,igcm_h2o2) |
---|
| 2109 | & +zdqcloud(ig,l,igcm_h2o2) |
---|
| 2110 | ENDDO |
---|
| 2111 | ENDDO |
---|
| 2112 | endif |
---|
| 2113 | |
---|
| 2114 | ! increment surface values of tracers: |
---|
| 2115 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
---|
| 2116 | ! tracers is zero anyways |
---|
| 2117 | DO ig=1,ngrid |
---|
[2900] | 2118 | DO islope = 1,nslope |
---|
| 2119 | dqsurf(ig,iq,islope)=dqsurf(ig,iq,islope) + |
---|
| 2120 | & zdqschim(ig,iq)*cos(pi*def_slope_mean(islope)/180.) |
---|
| 2121 | ENDDO |
---|
[556] | 2122 | ENDDO |
---|
| 2123 | ENDDO ! of DO iq=1,nq |
---|
| 2124 | |
---|
| 2125 | ! add condensation tendency for H2O2 |
---|
| 2126 | if (igcm_h2o2.ne.0) then |
---|
| 2127 | DO ig=1,ngrid |
---|
[2900] | 2128 | DO islope = 1,nslope |
---|
| 2129 | dqsurf(ig,igcm_h2o2,islope)=dqsurf(ig,igcm_h2o2,islope)+ |
---|
| 2130 | & zdqscloud(ig,igcm_h2o2)*cos(pi*def_slope_mean(islope)/180.) |
---|
| 2131 | ENDDO |
---|
[556] | 2132 | ENDDO |
---|
| 2133 | endif |
---|
| 2134 | |
---|
[2158] | 2135 | END IF ! of IF (photochem) |
---|
[556] | 2136 | #endif |
---|
| 2137 | |
---|
[42] | 2138 | |
---|
[226] | 2139 | #ifndef MESOSCALE |
---|
| 2140 | c----------------------------------------------------------------------- |
---|
[2149] | 2141 | c 10. THERMOSPHERE CALCULATION |
---|
[226] | 2142 | c----------------------------------------------------------------------- |
---|
[42] | 2143 | |
---|
[226] | 2144 | if (callthermos) then |
---|
[1047] | 2145 | call thermosphere(ngrid,nlayer,nq,zplev,zplay,dist_sol, |
---|
[2908] | 2146 | $ mu0,ptimestep,ptime,zday,tsurf_meshavg,zzlev,zzlay, |
---|
[226] | 2147 | & pt,pq,pu,pv,pdt,pdq, |
---|
[2467] | 2148 | $ zdteuv,zdtconduc,zdumolvis,zdvmolvis,zdqmoldiff, |
---|
| 2149 | $ PhiEscH,PhiEscH2,PhiEscD) |
---|
[226] | 2150 | |
---|
| 2151 | DO l=1,nlayer |
---|
| 2152 | DO ig=1,ngrid |
---|
| 2153 | dtrad(ig,l)=dtrad(ig,l)+zdteuv(ig,l) |
---|
[2362] | 2154 | pdt(ig,l)=pdt(ig,l)+zdtconduc(ig,l)+zdteuv(ig,l) |
---|
[226] | 2155 | pdv(ig,l)=pdv(ig,l)+zdvmolvis(ig,l) |
---|
| 2156 | pdu(ig,l)=pdu(ig,l)+zdumolvis(ig,l) |
---|
| 2157 | DO iq=1, nq |
---|
| 2158 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqmoldiff(ig,l,iq) |
---|
| 2159 | ENDDO |
---|
| 2160 | ENDDO |
---|
| 2161 | ENDDO |
---|
| 2162 | |
---|
| 2163 | endif ! of if (callthermos) |
---|
| 2164 | #endif |
---|
[42] | 2165 | c----------------------------------------------------------------------- |
---|
[2149] | 2166 | c 11. Carbon dioxide condensation-sublimation: |
---|
[1114] | 2167 | c (should be the last atmospherical physical process to be computed) |
---|
| 2168 | c ------------------------------------------- |
---|
| 2169 | IF (tituscap) THEN |
---|
| 2170 | !!! get the actual co2 seasonal cap from Titus observations |
---|
[2362] | 2171 | CALL geticecover(ngrid, 180.*zls/pi, |
---|
[2826] | 2172 | . 180.*longitude/pi, 180.*latitude/pi, |
---|
[2900] | 2173 | . qsurf_tmp(:,igcm_co2) ) |
---|
| 2174 | qsurf_tmp(:,igcm_co2) = qsurf_tmp(:,igcm_co2) * 10000. |
---|
[1114] | 2175 | ENDIF |
---|
| 2176 | |
---|
| 2177 | |
---|
| 2178 | IF (callcond) THEN |
---|
[2362] | 2179 | zdtc(:,:) = 0. |
---|
[2900] | 2180 | zdtsurfc(:,:) = 0. |
---|
[2362] | 2181 | zduc(:,:) = 0. |
---|
| 2182 | zdvc(:,:) = 0. |
---|
| 2183 | zdqc(:,:,:) = 0. |
---|
[2900] | 2184 | zdqsc(:,:,:) = 0. |
---|
[2566] | 2185 | CALL co2condens(ngrid,nlayer,nq,ptimestep, |
---|
[1114] | 2186 | $ capcal,zplay,zplev,tsurf,pt, |
---|
| 2187 | $ pphi,pdt,pdu,pdv,zdtsurf,pu,pv,pq,pdq, |
---|
[2900] | 2188 | $ qsurf(:,igcm_co2,:),albedo,emis,rdust, |
---|
[1114] | 2189 | $ zdtc,zdtsurfc,pdpsrf,zduc,zdvc,zdqc, |
---|
[2685] | 2190 | $ fluxsurf_dn_sw,zls, |
---|
[1996] | 2191 | $ zdqssed_co2,zcondicea_co2microp, |
---|
[2551] | 2192 | & zdqsc) |
---|
[2896] | 2193 | |
---|
[2566] | 2194 | DO iq=1, nq |
---|
[1114] | 2195 | DO ig=1,ngrid |
---|
[2900] | 2196 | dqsurf(ig,iq,:)=dqsurf(ig,iq,:)+zdqsc(ig,iq,:) |
---|
[2362] | 2197 | ENDDO ! (ig) |
---|
[2566] | 2198 | ENDDO ! (iq) |
---|
| 2199 | DO l=1,nlayer |
---|
[2362] | 2200 | DO ig=1,ngrid |
---|
[1114] | 2201 | pdt(ig,l)=pdt(ig,l)+zdtc(ig,l) |
---|
| 2202 | pdv(ig,l)=pdv(ig,l)+zdvc(ig,l) |
---|
| 2203 | pdu(ig,l)=pdu(ig,l)+zduc(ig,l) |
---|
| 2204 | ENDDO |
---|
[2566] | 2205 | ENDDO |
---|
| 2206 | DO ig=1,ngrid |
---|
[2900] | 2207 | zdtsurf(ig,:) = zdtsurf(ig,:) + zdtsurfc(ig,:) |
---|
[2566] | 2208 | ENDDO |
---|
[1114] | 2209 | |
---|
| 2210 | DO iq=1, nq |
---|
| 2211 | DO l=1,nlayer |
---|
| 2212 | DO ig=1,ngrid |
---|
[2362] | 2213 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqc(ig,l,iq) |
---|
[1114] | 2214 | ENDDO |
---|
| 2215 | ENDDO |
---|
| 2216 | ENDDO |
---|
| 2217 | |
---|
| 2218 | #ifndef MESOSCALE |
---|
| 2219 | ! update surface pressure |
---|
| 2220 | DO ig=1,ngrid |
---|
| 2221 | ps(ig) = zplev(ig,1) + pdpsrf(ig)*ptimestep |
---|
| 2222 | ENDDO |
---|
| 2223 | ! update pressure levels |
---|
| 2224 | DO l=1,nlayer |
---|
| 2225 | DO ig=1,ngrid |
---|
| 2226 | zplay(ig,l) = aps(l) + bps(l)*ps(ig) |
---|
| 2227 | zplev(ig,l) = ap(l) + bp(l)*ps(ig) |
---|
| 2228 | ENDDO |
---|
| 2229 | ENDDO |
---|
| 2230 | zplev(:,nlayer+1) = 0. |
---|
| 2231 | ! update layers altitude |
---|
| 2232 | DO l=2,nlayer |
---|
| 2233 | DO ig=1,ngrid |
---|
| 2234 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
---|
| 2235 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
---|
| 2236 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
| 2237 | ENDDO |
---|
| 2238 | ENDDO |
---|
| 2239 | #endif |
---|
[1996] | 2240 | ENDIF ! of IF (callcond) |
---|
| 2241 | |
---|
[1114] | 2242 | c----------------------------------------------------------------------- |
---|
[2184] | 2243 | c Updating tracer budget on surface |
---|
| 2244 | c----------------------------------------------------------------------- |
---|
| 2245 | DO iq=1, nq |
---|
| 2246 | DO ig=1,ngrid |
---|
[2900] | 2247 | DO islope = 1,nslope |
---|
| 2248 | qsurf(ig,iq,islope)=qsurf(ig,iq,islope)+ |
---|
| 2249 | & ptimestep*dqsurf(ig,iq,islope) |
---|
| 2250 | ENDDO |
---|
[2184] | 2251 | ENDDO ! (ig) |
---|
| 2252 | ENDDO ! (iq) |
---|
| 2253 | c----------------------------------------------------------------------- |
---|
[2149] | 2254 | c 12. Surface and sub-surface soil temperature |
---|
[42] | 2255 | c----------------------------------------------------------------------- |
---|
| 2256 | c |
---|
| 2257 | c |
---|
[2149] | 2258 | c 12.1 Increment Surface temperature: |
---|
[42] | 2259 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 2260 | |
---|
| 2261 | DO ig=1,ngrid |
---|
[2900] | 2262 | DO islope = 1,nslope |
---|
| 2263 | tsurf(ig,islope)=tsurf(ig,islope)+ |
---|
| 2264 | & ptimestep*zdtsurf(ig,islope) |
---|
| 2265 | ENDDO |
---|
[42] | 2266 | ENDDO |
---|
| 2267 | |
---|
| 2268 | c Prescribe a cold trap at south pole (except at high obliquity !!) |
---|
| 2269 | c Temperature at the surface is set there to be the temperature |
---|
| 2270 | c corresponding to equilibrium temperature between phases of CO2 |
---|
| 2271 | |
---|
[411] | 2272 | |
---|
[2823] | 2273 | IF (water) THEN |
---|
[1114] | 2274 | !#ifndef MESOSCALE |
---|
[2009] | 2275 | ! if (caps.and.(obliquit.lt.27.)) then => now done in co2condens |
---|
[226] | 2276 | ! NB: Updated surface pressure, at grid point 'ngrid', is |
---|
[883] | 2277 | ! ps(ngrid)=zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep |
---|
[1114] | 2278 | ! tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095* |
---|
| 2279 | ! & (zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep))) |
---|
| 2280 | ! tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095*ps(ngrid))) |
---|
| 2281 | ! endif |
---|
| 2282 | !#endif |
---|
[42] | 2283 | c ------------------------------------------------------------- |
---|
[283] | 2284 | c Change of surface albedo in case of ground frost |
---|
[42] | 2285 | c everywhere except on the north permanent cap and in regions |
---|
| 2286 | c covered by dry ice. |
---|
[2009] | 2287 | c ALWAYS PLACE these lines after co2condens !!! |
---|
[42] | 2288 | c ------------------------------------------------------------- |
---|
| 2289 | do ig=1,ngrid |
---|
[2900] | 2290 | do islope = 1,nslope |
---|
| 2291 | if ((qsurf(ig,igcm_co2,islope).eq.0).and. |
---|
| 2292 | & (qsurf(ig,igcm_h2o_ice,islope) |
---|
| 2293 | & .gt.frost_albedo_threshold)) then |
---|
[2561] | 2294 | if ((watercaptag(ig)).and.(cst_cap_albedo)) then |
---|
[2900] | 2295 | albedo(ig,1,islope) = albedo_h2o_cap |
---|
| 2296 | albedo(ig,2,islope) = albedo_h2o_cap |
---|
[2512] | 2297 | else |
---|
[2900] | 2298 | albedo(ig,1,islope) = albedo_h2o_frost |
---|
| 2299 | albedo(ig,2,islope) = albedo_h2o_frost |
---|
[2561] | 2300 | endif !((watercaptag(ig)).and.(cst_cap_albedo)) then |
---|
[283] | 2301 | c write(*,*) "frost thickness", qsurf(ig,igcm_h2o_ice) |
---|
| 2302 | c write(*,*) "physiq.F frost :" |
---|
[1541] | 2303 | c & ,latitude(ig)*180./pi, longitude(ig)*180./pi |
---|
[42] | 2304 | endif |
---|
[2900] | 2305 | enddo ! islope |
---|
[42] | 2306 | enddo ! of do ig=1,ngrid |
---|
[2823] | 2307 | ENDIF ! of IF (water) |
---|
[42] | 2308 | |
---|
[528] | 2309 | c |
---|
[2149] | 2310 | c 12.2 Compute soil temperatures and subsurface heat flux: |
---|
[42] | 2311 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 2312 | IF (callsoil) THEN |
---|
[833] | 2313 | c Thermal inertia feedback |
---|
| 2314 | IF (tifeedback) THEN |
---|
[2900] | 2315 | DO islope = 1,nslope |
---|
| 2316 | CALL soil_tifeedback(ngrid,nsoilmx, |
---|
| 2317 | s qsurf(:,:,islope),inertiesoil(:,:,islope)) |
---|
| 2318 | ENDDO |
---|
[833] | 2319 | CALL soil(ngrid,nsoilmx,.false.,inertiesoil, |
---|
| 2320 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 2321 | ELSE |
---|
[2900] | 2322 | CALL soil(ngrid,nsoilmx,.false.,inertiedat_tmp, |
---|
[833] | 2323 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 2324 | ENDIF |
---|
[42] | 2325 | ENDIF |
---|
| 2326 | |
---|
[1974] | 2327 | c To avoid negative values |
---|
| 2328 | IF (rdstorm) THEN |
---|
| 2329 | where (pq(:,:,igcm_stormdust_mass) + |
---|
| 2330 | & ptimestep*pdq(:,:,igcm_stormdust_mass) < 0.) |
---|
| 2331 | pdq(:,:,igcm_stormdust_mass) = |
---|
| 2332 | & - pq(:,:,igcm_stormdust_mass)/ptimestep + 1.e-30 |
---|
| 2333 | pdq(:,:,igcm_stormdust_number) = |
---|
| 2334 | & - pq(:,:,igcm_stormdust_number)/ptimestep + 1.e-30 |
---|
| 2335 | end where |
---|
| 2336 | where (pq(:,:,igcm_stormdust_number) + |
---|
| 2337 | & ptimestep*pdq(:,:,igcm_stormdust_number) < 0.) |
---|
| 2338 | pdq(:,:,igcm_stormdust_mass) = |
---|
| 2339 | & - pq(:,:,igcm_stormdust_mass)/ptimestep + 1.e-30 |
---|
| 2340 | pdq(:,:,igcm_stormdust_number) = |
---|
| 2341 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 2342 | end where |
---|
| 2343 | |
---|
| 2344 | where (pq(:,:,igcm_dust_mass) + |
---|
| 2345 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
---|
| 2346 | pdq(:,:,igcm_dust_mass) = |
---|
| 2347 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
| 2348 | pdq(:,:,igcm_dust_number) = |
---|
| 2349 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 2350 | end where |
---|
| 2351 | where (pq(:,:,igcm_dust_number) + |
---|
| 2352 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
---|
| 2353 | pdq(:,:,igcm_dust_mass) = |
---|
| 2354 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
| 2355 | pdq(:,:,igcm_dust_number) = |
---|
| 2356 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 2357 | end where |
---|
| 2358 | ENDIF !(rdstorm) |
---|
| 2359 | |
---|
[42] | 2360 | c----------------------------------------------------------------------- |
---|
[2260] | 2361 | c J. Naar : Surface and sub-surface water ice |
---|
| 2362 | c----------------------------------------------------------------------- |
---|
| 2363 | c |
---|
| 2364 | c |
---|
| 2365 | c Increment Watercap (surface h2o reservoirs): |
---|
| 2366 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 2367 | |
---|
| 2368 | DO ig=1,ngrid |
---|
[2900] | 2369 | DO islope = 1,nslope |
---|
| 2370 | watercap(ig,islope)=watercap(ig,islope)+ |
---|
| 2371 | s ptimestep*dwatercap(ig,islope) |
---|
| 2372 | ENDDO |
---|
[2260] | 2373 | ENDDO |
---|
| 2374 | |
---|
[2561] | 2375 | IF (refill_watercap) THEN |
---|
| 2376 | |
---|
| 2377 | DO ig=1,ngrid |
---|
[2900] | 2378 | DO islope = 1,nslope |
---|
| 2379 | if (watercaptag(ig).and. (qsurf(ig,igcm_h2o_ice,islope) |
---|
| 2380 | & .gt.frost_metam_threshold)) then |
---|
[2561] | 2381 | |
---|
[2900] | 2382 | watercap(ig,islope)=watercap(ig,islope) |
---|
| 2383 | & +qsurf(ig,igcm_h2o_ice,islope) |
---|
| 2384 | & - frost_metam_threshold |
---|
| 2385 | qsurf(ig,igcm_h2o_ice,islope) = frost_metam_threshold |
---|
[2561] | 2386 | endif ! (watercaptag(ig).and. |
---|
[2900] | 2387 | ENDDO |
---|
[2561] | 2388 | ENDDO |
---|
| 2389 | |
---|
| 2390 | ENDIF ! (refill_watercap) THEN |
---|
| 2391 | |
---|
| 2392 | |
---|
[2260] | 2393 | c----------------------------------------------------------------------- |
---|
[2149] | 2394 | c 13. Write output files |
---|
[42] | 2395 | c ---------------------- |
---|
| 2396 | |
---|
[2900] | 2397 | call compute_meshgridavg(ngrid,nq,albedo,emis,tsurf,qsurf, |
---|
| 2398 | & albedo_meshavg,emis_meshavg,tsurf_meshavg,qsurf_meshavg) |
---|
| 2399 | |
---|
[42] | 2400 | c ------------------------------- |
---|
| 2401 | c Dynamical fields incrementation |
---|
| 2402 | c ------------------------------- |
---|
| 2403 | c (FOR OUTPUT ONLY : the actual model integration is performed in the dynamics) |
---|
| 2404 | ! temperature, zonal and meridional wind |
---|
| 2405 | DO l=1,nlayer |
---|
| 2406 | DO ig=1,ngrid |
---|
| 2407 | zt(ig,l)=pt(ig,l) + pdt(ig,l)*ptimestep |
---|
| 2408 | zu(ig,l)=pu(ig,l) + pdu(ig,l)*ptimestep |
---|
| 2409 | zv(ig,l)=pv(ig,l) + pdv(ig,l)*ptimestep |
---|
| 2410 | ENDDO |
---|
| 2411 | ENDDO |
---|
| 2412 | |
---|
| 2413 | ! tracers |
---|
| 2414 | DO iq=1, nq |
---|
| 2415 | DO l=1,nlayer |
---|
| 2416 | DO ig=1,ngrid |
---|
| 2417 | zq(ig,l,iq)=pq(ig,l,iq) +pdq(ig,l,iq)*ptimestep |
---|
| 2418 | ENDDO |
---|
| 2419 | ENDDO |
---|
| 2420 | ENDDO |
---|
| 2421 | |
---|
[2362] | 2422 | ! Density |
---|
[42] | 2423 | DO l=1,nlayer |
---|
| 2424 | DO ig=1,ngrid |
---|
| 2425 | rho(ig,l) = zplay(ig,l)/(rnew(ig,l)*zt(ig,l)) |
---|
| 2426 | ENDDO |
---|
| 2427 | ENDDO |
---|
| 2428 | |
---|
[269] | 2429 | ! Potential Temperature |
---|
| 2430 | |
---|
[1047] | 2431 | DO ig=1,ngrid |
---|
| 2432 | DO l=1,nlayer |
---|
[528] | 2433 | zh(ig,l) = zt(ig,l)*(zplev(ig,1)/zplay(ig,l))**rcp |
---|
[269] | 2434 | ENDDO |
---|
| 2435 | ENDDO |
---|
| 2436 | |
---|
[226] | 2437 | c Compute surface stress : (NB: z0 is a common in surfdat.h) |
---|
[42] | 2438 | c DO ig=1,ngrid |
---|
[226] | 2439 | c cd = (0.4/log(zzlay(ig,1)/z0(ig)))**2 |
---|
[42] | 2440 | c zstress(ig) = rho(ig,1)*cd*(zu(ig,1)**2 + zv(ig,1)**2) |
---|
| 2441 | c ENDDO |
---|
| 2442 | |
---|
| 2443 | c Sum of fluxes in solar spectral bands (for output only) |
---|
[2685] | 2444 | fluxtop_dn_sw_tot(1:ngrid)=fluxtop_dn_sw(1:ngrid,1) + |
---|
| 2445 | & fluxtop_dn_sw(1:ngrid,2) |
---|
| 2446 | fluxtop_up_sw_tot(1:ngrid)=fluxtop_up_sw(1:ngrid,1) + |
---|
| 2447 | & fluxtop_up_sw(1:ngrid,2) |
---|
[2900] | 2448 | fluxsurf_dn_sw_tot(1:ngrid,1:nslope)= |
---|
| 2449 | & fluxsurf_dn_sw(1:ngrid,1,1:nslope) + |
---|
| 2450 | & fluxsurf_dn_sw(1:ngrid,2,1:nslope) |
---|
[2685] | 2451 | fluxsurf_up_sw_tot(1:ngrid)=fluxsurf_up_sw(1:ngrid,1) + |
---|
| 2452 | & fluxsurf_up_sw(1:ngrid,2) |
---|
| 2453 | |
---|
[42] | 2454 | c ******* TEST ****************************************************** |
---|
[835] | 2455 | ztim1 = 999 |
---|
| 2456 | DO l=1,nlayer |
---|
| 2457 | DO ig=1,ngrid |
---|
| 2458 | if (pt(ig,l).lt.ztim1) then |
---|
| 2459 | ztim1 = pt(ig,l) |
---|
| 2460 | igmin = ig |
---|
| 2461 | lmin = l |
---|
| 2462 | end if |
---|
| 2463 | ENDDO |
---|
| 2464 | ENDDO |
---|
| 2465 | if(min(pt(igmin,lmin),zt(igmin,lmin)).lt.70.) then |
---|
| 2466 | write(*,*) 'PHYSIQ: stability WARNING :' |
---|
| 2467 | write(*,*) 'pt, zt Tmin = ', pt(igmin,lmin), zt(igmin,lmin), |
---|
| 2468 | & 'ig l =', igmin, lmin |
---|
| 2469 | end if |
---|
[42] | 2470 | c ******************************************************************* |
---|
| 2471 | |
---|
| 2472 | c --------------------- |
---|
| 2473 | c Outputs to the screen |
---|
| 2474 | c --------------------- |
---|
| 2475 | |
---|
| 2476 | IF (lwrite) THEN |
---|
| 2477 | PRINT*,'Global diagnostics for the physics' |
---|
| 2478 | PRINT*,'Variables and their increments x and dx/dt * dt' |
---|
| 2479 | WRITE(*,'(a6,a10,2a15)') 'Ts','dTs','ps','dps' |
---|
| 2480 | WRITE(*,'(2f10.5,2f15.5)') |
---|
[2900] | 2481 | s tsurf(igout,:),zdtsurf(igout,:)*ptimestep, |
---|
[883] | 2482 | s zplev(igout,1),pdpsrf(igout)*ptimestep |
---|
[42] | 2483 | WRITE(*,'(a4,a6,5a10)') 'l','u','du','v','dv','T','dT' |
---|
| 2484 | WRITE(*,'(i4,6f10.5)') (l, |
---|
| 2485 | s pu(igout,l),pdu(igout,l)*ptimestep, |
---|
| 2486 | s pv(igout,l),pdv(igout,l)*ptimestep, |
---|
| 2487 | s pt(igout,l),pdt(igout,l)*ptimestep, |
---|
| 2488 | s l=1,nlayer) |
---|
| 2489 | ENDIF ! of IF (lwrite) |
---|
| 2490 | |
---|
[566] | 2491 | c ---------------------------------------------------------- |
---|
| 2492 | c ---------------------------------------------------------- |
---|
| 2493 | c INTERPOLATIONS IN THE SURFACE-LAYER |
---|
| 2494 | c ---------------------------------------------------------- |
---|
| 2495 | c ---------------------------------------------------------- |
---|
| 2496 | |
---|
[657] | 2497 | n_out=0 ! number of elements in the z_out array. |
---|
[636] | 2498 | ! for z_out=[3.,2.,1.,0.5,0.1], n_out must be set |
---|
| 2499 | ! to 5 |
---|
| 2500 | IF (n_out .ne. 0) THEN |
---|
[566] | 2501 | |
---|
[636] | 2502 | IF(.NOT. ALLOCATED(z_out)) ALLOCATE(z_out(n_out)) |
---|
| 2503 | IF(.NOT. ALLOCATED(T_out)) ALLOCATE(T_out(ngrid,n_out)) |
---|
| 2504 | IF(.NOT. ALLOCATED(u_out)) ALLOCATE(u_out(ngrid,n_out)) |
---|
[566] | 2505 | |
---|
[636] | 2506 | z_out(:)=[3.,2.,1.,0.5,0.1] |
---|
| 2507 | u_out(:,:)=0. |
---|
| 2508 | T_out(:,:)=0. |
---|
[566] | 2509 | |
---|
[636] | 2510 | call pbl_parameters(ngrid,nlayer,ps,zplay,z0, |
---|
[2900] | 2511 | & g,zzlay,zzlev,zu,zv,wstar,hfmax_th,zmax_th,tsurf(:,iflat), |
---|
| 2512 | & zh,z_out,n_out,T_out,u_out,ustar,tstar,L_mo,vhf,vvv) |
---|
[1242] | 2513 | ! pourquoi ustar recalcule ici? fait dans vdifc. |
---|
[566] | 2514 | |
---|
| 2515 | #ifndef MESOSCALE |
---|
| 2516 | IF (ngrid .eq. 1) THEN |
---|
| 2517 | dimout=0 |
---|
| 2518 | ELSE |
---|
| 2519 | dimout=2 |
---|
| 2520 | ENDIF |
---|
| 2521 | DO n=1,n_out |
---|
[636] | 2522 | write(zstring, '(F8.6)') z_out(n) |
---|
| 2523 | call WRITEDIAGFI(ngrid,'T_out_'//trim(zstring), |
---|
| 2524 | & 'potential temperature at z_out','K',dimout,T_out(:,n)) |
---|
[566] | 2525 | call WRITEDIAGFI(ngrid,'u_out_'//trim(zstring), |
---|
| 2526 | & 'horizontal velocity norm at z_out','m/s',dimout,u_out(:,n)) |
---|
[636] | 2527 | ENDDO |
---|
[566] | 2528 | call WRITEDIAGFI(ngrid,'u_star', |
---|
| 2529 | & 'friction velocity','m/s',dimout,ustar) |
---|
| 2530 | call WRITEDIAGFI(ngrid,'teta_star', |
---|
| 2531 | & 'friction potential temperature','K',dimout,tstar) |
---|
[1377] | 2532 | ! call WRITEDIAGFI(ngrid,'L', |
---|
| 2533 | ! & 'Monin Obukhov length','m',dimout,L_mo) |
---|
[566] | 2534 | call WRITEDIAGFI(ngrid,'vvv', |
---|
| 2535 | & 'Vertical velocity variance at zout','m',dimout,vvv) |
---|
| 2536 | call WRITEDIAGFI(ngrid,'vhf', |
---|
| 2537 | & 'Vertical heat flux at zout','m',dimout,vhf) |
---|
[636] | 2538 | #else |
---|
| 2539 | T_out1(:)=T_out(:,1) |
---|
| 2540 | u_out1(:)=u_out(:,1) |
---|
[566] | 2541 | #endif |
---|
| 2542 | |
---|
| 2543 | ENDIF |
---|
| 2544 | |
---|
| 2545 | c ---------------------------------------------------------- |
---|
| 2546 | c ---------------------------------------------------------- |
---|
| 2547 | c END OF SURFACE LAYER INTERPOLATIONS |
---|
| 2548 | c ---------------------------------------------------------- |
---|
| 2549 | c ---------------------------------------------------------- |
---|
| 2550 | |
---|
[42] | 2551 | IF (ngrid.NE.1) THEN |
---|
| 2552 | |
---|
[226] | 2553 | #ifndef MESOSCALE |
---|
[42] | 2554 | c ------------------------------------------------------------------- |
---|
| 2555 | c Writing NetCDF file "RESTARTFI" at the end of the run |
---|
| 2556 | c ------------------------------------------------------------------- |
---|
| 2557 | c Note: 'restartfi' is stored just before dynamics are stored |
---|
| 2558 | c in 'restart'. Between now and the writting of 'restart', |
---|
| 2559 | c there will have been the itau=itau+1 instruction and |
---|
| 2560 | c a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
---|
| 2561 | c thus we store for time=time+dtvr |
---|
| 2562 | |
---|
[2646] | 2563 | ! default: not writing a restart file at this time step |
---|
| 2564 | write_restart=.false. |
---|
| 2565 | IF (ecritstart.GT.0) THEN |
---|
| 2566 | ! For when we store multiple time steps in the restart file |
---|
| 2567 | IF (MODULO(icount*iphysiq,ecritstart).EQ.0) THEN |
---|
| 2568 | write_restart=.true. |
---|
| 2569 | ENDIF |
---|
| 2570 | ENDIF |
---|
| 2571 | IF (lastcall) THEN |
---|
| 2572 | ! Always write a restart at the end of the simulation |
---|
| 2573 | write_restart=.true. |
---|
| 2574 | ENDIF |
---|
[999] | 2575 | |
---|
[2646] | 2576 | IF (write_restart) THEN |
---|
| 2577 | IF (grid_type==unstructured) THEN !IF DYNAMICO |
---|
[2507] | 2578 | |
---|
[2501] | 2579 | ! When running Dynamico, no need to add a dynamics time step to ztime_fin |
---|
| 2580 | IF (ptime.LE. 1.E-10) THEN |
---|
| 2581 | ! Residual ptime occurs with Dynamico |
---|
| 2582 | ztime_fin = pday !+ ptime + ptimestep/(float(iphysiq)*daysec) |
---|
| 2583 | . - day_ini - time_phys |
---|
| 2584 | ELSE |
---|
| 2585 | ztime_fin = pday + ptime !+ ptimestep/(float(iphysiq)*daysec) |
---|
| 2586 | . - day_ini - time_phys |
---|
| 2587 | ENDIF |
---|
[2514] | 2588 | if (ecritstart==0) then |
---|
| 2589 | ztime_fin = ztime_fin-(day_end-day_ini) |
---|
| 2590 | endif |
---|
[2507] | 2591 | |
---|
[2646] | 2592 | ELSE ! IF LMDZ |
---|
[2507] | 2593 | |
---|
| 2594 | if (ecritstart.GT.0) then !IF MULTIPLE RESTARTS nothing change |
---|
[2544] | 2595 | ztime_fin = pday - day_ini + ptime |
---|
| 2596 | . + ptimestep/(float(iphysiq)*daysec) |
---|
[2507] | 2597 | else !IF ONE RESTART final time in top of day_end |
---|
[2544] | 2598 | ztime_fin = pday - day_ini-(day_end-day_ini) |
---|
| 2599 | . + ptime + ptimestep/(float(iphysiq)*daysec) |
---|
[2507] | 2600 | endif |
---|
| 2601 | |
---|
[2646] | 2602 | ENDIF ! of IF (grid_type==unstructured) |
---|
[999] | 2603 | write(*,'(A,I7,A,F12.5)') |
---|
[2646] | 2604 | . 'PHYSIQ: writing in restartfi ; icount=', |
---|
[999] | 2605 | . icount,' date=',ztime_fin |
---|
| 2606 | |
---|
[1047] | 2607 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq, |
---|
[999] | 2608 | . ptimestep,ztime_fin, |
---|
[2907] | 2609 | . tsurf,tsoil,albedo, |
---|
| 2610 | . emis,q2,qsurf,tauscaling,totcloudfrac,wstar, |
---|
| 2611 | . watercap) |
---|
[999] | 2612 | |
---|
[2646] | 2613 | ENDIF ! of IF (write_restart) |
---|
[226] | 2614 | #endif |
---|
[42] | 2615 | |
---|
| 2616 | c ------------------------------------------------------------------- |
---|
| 2617 | c Calculation of diagnostic variables written in both stats and |
---|
| 2618 | c diagfi files |
---|
| 2619 | c ------------------------------------------------------------------- |
---|
| 2620 | |
---|
[2678] | 2621 | |
---|
| 2622 | do ig=1,ngrid |
---|
| 2623 | if(mu0(ig).le.0.01) then |
---|
[2685] | 2624 | fluxsurf_dir_dn_sw(ig) = 0. |
---|
[2678] | 2625 | else |
---|
[2685] | 2626 | fluxsurf_dir_dn_sw(ig) = flux_1AU/dist_sol/dist_sol*mu0(ig)* |
---|
[2678] | 2627 | & exp(-(tau(ig,iaer_dust_doubleq)+ |
---|
| 2628 | & tau(ig,iaer_h2o_ice))/mu0(ig)) |
---|
| 2629 | endif |
---|
| 2630 | enddo |
---|
| 2631 | |
---|
[2282] | 2632 | ! Density-scaled opacities |
---|
[2362] | 2633 | do ig=1,ngrid |
---|
| 2634 | dsodust(ig,:) = |
---|
[2282] | 2635 | & dsodust(ig,:)*tauscaling(ig) |
---|
[2362] | 2636 | dsords(ig,:) = |
---|
[2282] | 2637 | & dsords(ig,:)*tauscaling(ig) |
---|
| 2638 | dsotop(ig,:) = |
---|
| 2639 | & dsotop(ig,:)*tauscaling(ig) |
---|
| 2640 | enddo |
---|
[2362] | 2641 | |
---|
[719] | 2642 | if(doubleq) then |
---|
| 2643 | do ig=1,ngrid |
---|
| 2644 | dqdustsurf(ig) = |
---|
[756] | 2645 | & zdqssed(ig,igcm_dust_mass)*tauscaling(ig) |
---|
[719] | 2646 | dndustsurf(ig) = |
---|
[756] | 2647 | & zdqssed(ig,igcm_dust_number)*tauscaling(ig) |
---|
| 2648 | ndust(ig,:) = |
---|
[1720] | 2649 | & zq(ig,:,igcm_dust_number)*tauscaling(ig) |
---|
[756] | 2650 | qdust(ig,:) = |
---|
[1720] | 2651 | & zq(ig,:,igcm_dust_mass)*tauscaling(ig) |
---|
[719] | 2652 | enddo |
---|
| 2653 | if (scavenging) then |
---|
| 2654 | do ig=1,ngrid |
---|
| 2655 | dqdustsurf(ig) = dqdustsurf(ig) + |
---|
[756] | 2656 | & zdqssed(ig,igcm_ccn_mass)*tauscaling(ig) |
---|
[719] | 2657 | dndustsurf(ig) = dndustsurf(ig) + |
---|
[756] | 2658 | & zdqssed(ig,igcm_ccn_number)*tauscaling(ig) |
---|
| 2659 | nccn(ig,:) = |
---|
[1720] | 2660 | & zq(ig,:,igcm_ccn_number)*tauscaling(ig) |
---|
[756] | 2661 | qccn(ig,:) = |
---|
[1720] | 2662 | & zq(ig,:,igcm_ccn_mass)*tauscaling(ig) |
---|
[719] | 2663 | enddo |
---|
| 2664 | endif |
---|
[1921] | 2665 | endif ! of (doubleq) |
---|
[1974] | 2666 | |
---|
| 2667 | if (rdstorm) then ! diagnostics of stormdust tendancies for 1D and 3D |
---|
| 2668 | mstormdtot(:)=0 |
---|
| 2669 | mdusttot(:)=0 |
---|
| 2670 | qdusttotal(:,:)=0 |
---|
| 2671 | do ig=1,ngrid |
---|
| 2672 | rdsdqdustsurf(ig) = |
---|
| 2673 | & zdqssed(ig,igcm_stormdust_mass)*tauscaling(ig) |
---|
| 2674 | rdsdndustsurf(ig) = |
---|
| 2675 | & zdqssed(ig,igcm_stormdust_number)*tauscaling(ig) |
---|
| 2676 | rdsndust(ig,:) = |
---|
| 2677 | & pq(ig,:,igcm_stormdust_number)*tauscaling(ig) |
---|
| 2678 | rdsqdust(ig,:) = |
---|
| 2679 | & pq(ig,:,igcm_stormdust_mass)*tauscaling(ig) |
---|
| 2680 | do l=1,nlayer |
---|
| 2681 | mstormdtot(ig) = mstormdtot(ig) + |
---|
| 2682 | & zq(ig,l,igcm_stormdust_mass) * |
---|
| 2683 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
| 2684 | mdusttot(ig) = mdusttot(ig) + |
---|
| 2685 | & zq(ig,l,igcm_dust_mass) * |
---|
| 2686 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
| 2687 | qdusttotal(ig,l) = qdust(ig,l)+rdsqdust(ig,l) !calculate total dust |
---|
| 2688 | enddo |
---|
| 2689 | enddo |
---|
| 2690 | endif !(rdstorm) |
---|
| 2691 | |
---|
[42] | 2692 | if (water) then |
---|
[286] | 2693 | mtot(:)=0 |
---|
| 2694 | icetot(:)=0 |
---|
| 2695 | rave(:)=0 |
---|
| 2696 | tauTES(:)=0 |
---|
[2312] | 2697 | |
---|
| 2698 | IF (hdo) then |
---|
| 2699 | mtotD(:)=0 |
---|
| 2700 | icetotD(:)=0 |
---|
| 2701 | ENDIF !hdo |
---|
| 2702 | |
---|
[2362] | 2703 | do ig=1,ngrid |
---|
[1047] | 2704 | do l=1,nlayer |
---|
[42] | 2705 | mtot(ig) = mtot(ig) + |
---|
| 2706 | & zq(ig,l,igcm_h2o_vap) * |
---|
[883] | 2707 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[42] | 2708 | icetot(ig) = icetot(ig) + |
---|
| 2709 | & zq(ig,l,igcm_h2o_ice) * |
---|
[883] | 2710 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[2312] | 2711 | IF (hdo) then |
---|
[2362] | 2712 | mtotD(ig) = mtotD(ig) + |
---|
| 2713 | & zq(ig,l,igcm_hdo_vap) * |
---|
[2312] | 2714 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[2362] | 2715 | icetotD(ig) = icetotD(ig) + |
---|
| 2716 | & zq(ig,l,igcm_hdo_ice) * |
---|
[2312] | 2717 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
| 2718 | ENDIF !hdo |
---|
| 2719 | |
---|
[42] | 2720 | c Computing abs optical depth at 825 cm-1 in each |
---|
| 2721 | c layer to simulate NEW TES retrieval |
---|
| 2722 | Qabsice = min( |
---|
| 2723 | & max(0.4e6*rice(ig,l)*(1.+nuice_ref)-0.05 ,0.),1.2 |
---|
| 2724 | & ) |
---|
| 2725 | opTES(ig,l)= 0.75 * Qabsice * |
---|
| 2726 | & zq(ig,l,igcm_h2o_ice) * |
---|
[883] | 2727 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[42] | 2728 | & / (rho_ice * rice(ig,l) * (1.+nuice_ref)) |
---|
| 2729 | tauTES(ig)=tauTES(ig)+ opTES(ig,l) |
---|
| 2730 | enddo |
---|
[669] | 2731 | c rave(ig)=rave(ig)/max(icetot(ig),1.e-30) ! mass weight |
---|
| 2732 | c if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
---|
[42] | 2733 | enddo |
---|
[1047] | 2734 | call watersat(ngrid*nlayer,zt,zplay,zqsat) |
---|
[669] | 2735 | satu(:,:) = zq(:,:,igcm_h2o_vap)/zqsat(:,:) |
---|
[42] | 2736 | |
---|
[669] | 2737 | if (scavenging) then |
---|
| 2738 | Nccntot(:)= 0 |
---|
| 2739 | Mccntot(:)= 0 |
---|
| 2740 | rave(:)=0 |
---|
| 2741 | do ig=1,ngrid |
---|
[1047] | 2742 | do l=1,nlayer |
---|
[669] | 2743 | Nccntot(ig) = Nccntot(ig) + |
---|
| 2744 | & zq(ig,l,igcm_ccn_number)*tauscaling(ig) |
---|
[883] | 2745 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[669] | 2746 | Mccntot(ig) = Mccntot(ig) + |
---|
| 2747 | & zq(ig,l,igcm_ccn_mass)*tauscaling(ig) |
---|
[883] | 2748 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[669] | 2749 | cccc Column integrated effective ice radius |
---|
| 2750 | cccc is weighted by total ice surface area (BETTER than total ice mass) |
---|
| 2751 | rave(ig) = rave(ig) + |
---|
| 2752 | & tauscaling(ig) * |
---|
| 2753 | & zq(ig,l,igcm_ccn_number) * |
---|
[883] | 2754 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
---|
[669] | 2755 | & rice(ig,l) * rice(ig,l)* (1.+nuice_ref) |
---|
| 2756 | enddo |
---|
| 2757 | rave(ig)=(icetot(ig)/rho_ice+Mccntot(ig)/rho_dust)*0.75 |
---|
| 2758 | & /max(pi*rave(ig),1.e-30) ! surface weight |
---|
| 2759 | if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
---|
| 2760 | enddo |
---|
[833] | 2761 | else ! of if (scavenging) |
---|
| 2762 | rave(:)=0 |
---|
| 2763 | do ig=1,ngrid |
---|
[1047] | 2764 | do l=1,nlayer |
---|
[833] | 2765 | rave(ig) = rave(ig) + |
---|
| 2766 | & zq(ig,l,igcm_h2o_ice) * |
---|
[883] | 2767 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
---|
[833] | 2768 | & rice(ig,l) * (1.+nuice_ref) |
---|
| 2769 | enddo |
---|
| 2770 | rave(ig) = max(rave(ig) / |
---|
| 2771 | & max(icetot(ig),1.e-30),1.e-30) ! mass weight |
---|
| 2772 | enddo |
---|
[669] | 2773 | endif ! of if (scavenging) |
---|
| 2774 | |
---|
[1711] | 2775 | !Alternative A. Pottier weighting |
---|
| 2776 | rave2(:) = 0. |
---|
| 2777 | totrave2(:) = 0. |
---|
| 2778 | do ig=1,ngrid |
---|
| 2779 | do l=1,nlayer |
---|
| 2780 | rave2(ig) =rave2(ig)+ zq(ig,l,igcm_h2o_ice)*rice(ig,l) |
---|
| 2781 | totrave2(ig) = totrave2(ig) + zq(ig,l,igcm_h2o_ice) |
---|
| 2782 | end do |
---|
| 2783 | rave2(ig)=max(rave2(ig)/max(totrave2(ig),1.e-30),1.e-30) |
---|
| 2784 | end do |
---|
| 2785 | |
---|
[42] | 2786 | endif ! of if (water) |
---|
[2551] | 2787 | |
---|
| 2788 | if (co2clouds) then |
---|
| 2789 | mtotco2(1:ngrid) = 0. |
---|
| 2790 | icetotco2(1:ngrid) = 0. |
---|
| 2791 | vaptotco2(1:ngrid) = 0. |
---|
| 2792 | do ig=1,ngrid |
---|
| 2793 | do l=1,nlayer |
---|
| 2794 | vaptotco2(ig) = vaptotco2(ig) + |
---|
| 2795 | & zq(ig,l,igcm_co2) * |
---|
| 2796 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
| 2797 | icetotco2(ig) = icetot(ig) + |
---|
| 2798 | & zq(ig,l,igcm_co2_ice) * |
---|
| 2799 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
| 2800 | end do |
---|
| 2801 | mtotco2(ig) = icetotco2(ig) + vaptotco2(ig) |
---|
| 2802 | end do |
---|
| 2803 | end if |
---|
[2823] | 2804 | |
---|
[1212] | 2805 | #ifndef MESOSCALE |
---|
[42] | 2806 | c ----------------------------------------------------------------- |
---|
| 2807 | c WSTATS: Saving statistics |
---|
| 2808 | c ----------------------------------------------------------------- |
---|
[2563] | 2809 | c ("stats" stores and accumulates key variables in file "stats.nc" |
---|
[42] | 2810 | c which can later be used to make the statistic files of the run: |
---|
[2563] | 2811 | c if flag "callstats" from callphys.def is .true.) |
---|
[42] | 2812 | |
---|
[695] | 2813 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
[2900] | 2814 | call wstats(ngrid,"tsurf","Surface temperature","K",2 |
---|
| 2815 | & ,tsurf(:,iflat)) |
---|
[695] | 2816 | call wstats(ngrid,"co2ice","CO2 ice cover", |
---|
[2900] | 2817 | & "kg.m-2",2,qsurf(:,igcm_co2,iflat)) |
---|
[2260] | 2818 | call wstats(ngrid,"watercap","H2O ice cover", |
---|
[2900] | 2819 | & "kg.m-2",2,watercap(:,iflat)) |
---|
[2415] | 2820 | call wstats(ngrid,"tau_pref_scenario", |
---|
| 2821 | & "prescribed visible dod at 610 Pa","NU", |
---|
| 2822 | & 2,tau_pref_scenario) |
---|
| 2823 | call wstats(ngrid,"tau_pref_gcm", |
---|
| 2824 | & "visible dod at 610 Pa in the GCM","NU", |
---|
| 2825 | & 2,tau_pref_gcm) |
---|
[695] | 2826 | call wstats(ngrid,"fluxsurf_lw", |
---|
[575] | 2827 | & "Thermal IR radiative flux to surface","W.m-2",2, |
---|
[2900] | 2828 | & fluxsurf_lw(:,iflat)) |
---|
[2685] | 2829 | call wstats(ngrid,"fluxsurf_dn_sw", |
---|
| 2830 | & "Incoming Solar radiative flux to surface","W.m-2",2, |
---|
[2900] | 2831 | & fluxsurf_dn_sw_tot(:,iflat)) |
---|
[2685] | 2832 | call wstats(ngrid,"fluxsurf_up_sw", |
---|
| 2833 | & "Reflected Solar radiative flux from surface","W.m-2",2, |
---|
| 2834 | & fluxsurf_up_sw_tot) |
---|
[695] | 2835 | call wstats(ngrid,"fluxtop_lw", |
---|
[575] | 2836 | & "Thermal IR radiative flux to space","W.m-2",2, |
---|
| 2837 | & fluxtop_lw) |
---|
[2685] | 2838 | call wstats(ngrid,"fluxtop_dn_sw", |
---|
| 2839 | & "Incoming Solar radiative flux from space","W.m-2",2, |
---|
| 2840 | & fluxtop_dn_sw_tot) |
---|
| 2841 | call wstats(ngrid,"fluxtop_up_sw", |
---|
| 2842 | & "Outgoing Solar radiative flux to space","W.m-2",2, |
---|
| 2843 | & fluxtop_up_sw_tot) |
---|
[695] | 2844 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
---|
| 2845 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
---|
| 2846 | call wstats(ngrid,"v","Meridional (North-South) wind", |
---|
[575] | 2847 | & "m.s-1",3,zv) |
---|
[705] | 2848 | call wstats(ngrid,"w","Vertical (down-up) wind", |
---|
| 2849 | & "m.s-1",3,pw) |
---|
[695] | 2850 | call wstats(ngrid,"rho","Atmospheric density","kg/m3",3,rho) |
---|
[883] | 2851 | call wstats(ngrid,"pressure","Pressure","Pa",3,zplay) |
---|
[758] | 2852 | call wstats(ngrid,"q2", |
---|
| 2853 | & "Boundary layer eddy kinetic energy", |
---|
| 2854 | & "m2.s-2",3,q2) |
---|
| 2855 | call wstats(ngrid,"emis","Surface emissivity","w.m-1",2, |
---|
[2900] | 2856 | & emis(:,iflat)) |
---|
[226] | 2857 | c call wstats(ngrid,"ssurf","Surface stress","N.m-2", |
---|
| 2858 | c & 2,zstress) |
---|
| 2859 | c call wstats(ngrid,"sw_htrt","sw heat.rate", |
---|
| 2860 | c & "W.m-2",3,zdtsw) |
---|
| 2861 | c call wstats(ngrid,"lw_htrt","lw heat.rate", |
---|
| 2862 | c & "W.m-2",3,zdtlw) |
---|
[2685] | 2863 | call wstats(ngrid,"fluxsurf_dir_dn_sw", |
---|
| 2864 | & "Direct incoming SW flux at surface", |
---|
| 2865 | & "W.m-2",2,fluxsurf_dir_dn_sw) |
---|
[42] | 2866 | |
---|
[758] | 2867 | if (calltherm) then |
---|
| 2868 | call wstats(ngrid,"zmax_th","Height of thermals", |
---|
| 2869 | & "m",2,zmax_th) |
---|
| 2870 | call wstats(ngrid,"hfmax_th","Max thermals heat flux", |
---|
| 2871 | & "K.m/s",2,hfmax_th) |
---|
| 2872 | call wstats(ngrid,"wstar", |
---|
| 2873 | & "Max vertical velocity in thermals", |
---|
| 2874 | & "m/s",2,wstar) |
---|
| 2875 | endif |
---|
| 2876 | |
---|
[226] | 2877 | if (water) then |
---|
[1047] | 2878 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
---|
| 2879 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
---|
[719] | 2880 | call wstats(ngrid,"vmr_h2ovap", |
---|
[520] | 2881 | & "H2O vapor volume mixing ratio","mol/mol", |
---|
| 2882 | & 3,vmr) |
---|
[1047] | 2883 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 2884 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
---|
[520] | 2885 | call wstats(ngrid,"vmr_h2oice", |
---|
| 2886 | & "H2O ice volume mixing ratio","mol/mol", |
---|
| 2887 | & 3,vmr) |
---|
[1278] | 2888 | ! also store vmr_ice*rice for better diagnostics of rice |
---|
| 2889 | vmr(1:ngrid,1:nlayer)=vmr(1:ngrid,1:nlayer)* |
---|
[1502] | 2890 | & rice(1:ngrid,1:nlayer) |
---|
[1278] | 2891 | call wstats(ngrid,"vmr_h2oice_rice", |
---|
| 2892 | & "H2O ice mixing ratio times ice particule size", |
---|
| 2893 | & "(mol/mol)*m", |
---|
| 2894 | & 3,vmr) |
---|
[1047] | 2895 | vmr=zqsat(1:ngrid,1:nlayer) |
---|
| 2896 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
---|
[669] | 2897 | call wstats(ngrid,"vmr_h2osat", |
---|
| 2898 | & "saturation volume mixing ratio","mol/mol", |
---|
| 2899 | & 3,vmr) |
---|
[226] | 2900 | call wstats(ngrid,"h2o_ice_s", |
---|
| 2901 | & "surface h2o_ice","kg/m2", |
---|
[2900] | 2902 | & 2,qsurf(1,igcm_h2o_ice,iflat)) |
---|
[758] | 2903 | call wstats(ngrid,'albedo', |
---|
| 2904 | & 'albedo', |
---|
[2900] | 2905 | & '',2,albedo(1,1,iflat)) |
---|
[226] | 2906 | call wstats(ngrid,"mtot", |
---|
| 2907 | & "total mass of water vapor","kg/m2", |
---|
| 2908 | & 2,mtot) |
---|
| 2909 | call wstats(ngrid,"icetot", |
---|
| 2910 | & "total mass of water ice","kg/m2", |
---|
| 2911 | & 2,icetot) |
---|
[520] | 2912 | call wstats(ngrid,"reffice", |
---|
| 2913 | & "Mean reff","m", |
---|
| 2914 | & 2,rave) |
---|
[669] | 2915 | call wstats(ngrid,"Nccntot", |
---|
[520] | 2916 | & "condensation nuclei","Nbr/m2", |
---|
[669] | 2917 | & 2,Nccntot) |
---|
| 2918 | call wstats(ngrid,"Mccntot", |
---|
| 2919 | & "condensation nuclei mass","kg/m2", |
---|
| 2920 | & 2,Mccntot) |
---|
[520] | 2921 | call wstats(ngrid,"rice", |
---|
| 2922 | & "Ice particle size","m", |
---|
| 2923 | & 3,rice) |
---|
[226] | 2924 | if (.not.activice) then |
---|
| 2925 | call wstats(ngrid,"tauTESap", |
---|
| 2926 | & "tau abs 825 cm-1","", |
---|
| 2927 | & 2,tauTES) |
---|
[520] | 2928 | else |
---|
[1047] | 2929 | call wstats(ngrid,'tauTES', |
---|
[520] | 2930 | & 'tau abs 825 cm-1', |
---|
| 2931 | & '',2,taucloudtes) |
---|
[226] | 2932 | endif |
---|
| 2933 | |
---|
| 2934 | endif ! of if (water) |
---|
[2551] | 2935 | |
---|
| 2936 | if (co2clouds) then |
---|
| 2937 | call wstats(ngrid,"mtotco2", |
---|
| 2938 | & "total mass atm of co2","kg/m2", |
---|
| 2939 | & 2,mtotco2) |
---|
| 2940 | call wstats(ngrid,"icetotco2", |
---|
| 2941 | & "total mass atm of co2 ice","kg/m2", |
---|
| 2942 | & 2,icetotco2) |
---|
| 2943 | call wstats(ngrid,"vaptotco2", |
---|
| 2944 | & "total mass atm of co2 vapor","kg/m2", |
---|
| 2945 | & 2,icetotco2) |
---|
| 2946 | end if |
---|
[719] | 2947 | |
---|
[2545] | 2948 | |
---|
[719] | 2949 | if (dustbin.ne.0) then |
---|
| 2950 | |
---|
[1047] | 2951 | call wstats(ngrid,'tau','taudust','SI',2,tau(1,1)) |
---|
[719] | 2952 | |
---|
| 2953 | if (doubleq) then |
---|
[1047] | 2954 | c call wstats(ngrid,'qsurf','qsurf', |
---|
[719] | 2955 | c & 'kg.m-2',2,qsurf(1,igcm_dust_mass)) |
---|
[1047] | 2956 | c call wstats(ngrid,'Nsurf','N particles', |
---|
[719] | 2957 | c & 'N.m-2',2,qsurf(1,igcm_dust_number)) |
---|
[1047] | 2958 | c call wstats(ngrid,'dqsdev','ddevil lift', |
---|
[719] | 2959 | c & 'kg.m-2.s-1',2,zdqsdev(1,1)) |
---|
[1047] | 2960 | c call wstats(ngrid,'dqssed','sedimentation', |
---|
[719] | 2961 | c & 'kg.m-2.s-1',2,zdqssed(1,1)) |
---|
[1047] | 2962 | c call wstats(ngrid,'dqsdif','diffusion', |
---|
[719] | 2963 | c & 'kg.m-2.s-1',2,zdqsdif(1,1)) |
---|
[1047] | 2964 | call wstats(ngrid,'dqsdust', |
---|
[719] | 2965 | & 'deposited surface dust mass', |
---|
| 2966 | & 'kg.m-2.s-1',2,dqdustsurf) |
---|
[1047] | 2967 | call wstats(ngrid,'dqndust', |
---|
[719] | 2968 | & 'deposited surface dust number', |
---|
| 2969 | & 'number.m-2.s-1',2,dndustsurf) |
---|
[1047] | 2970 | call wstats(ngrid,'reffdust','reffdust', |
---|
[719] | 2971 | & 'm',3,rdust*ref_r0) |
---|
[1047] | 2972 | call wstats(ngrid,'dustq','Dust mass mr', |
---|
[756] | 2973 | & 'kg/kg',3,qdust) |
---|
[1047] | 2974 | call wstats(ngrid,'dustN','Dust number', |
---|
[756] | 2975 | & 'part/kg',3,ndust) |
---|
[1974] | 2976 | if (rdstorm) then |
---|
| 2977 | call wstats(ngrid,'reffstormdust','reffdust', |
---|
| 2978 | & 'm',3,rstormdust*ref_r0) |
---|
| 2979 | call wstats(ngrid,'rdsdustq','Dust mass mr', |
---|
| 2980 | & 'kg/kg',3,rdsqdust) |
---|
| 2981 | call wstats(ngrid,'rdsdustN','Dust number', |
---|
| 2982 | & 'part/kg',3,rdsndust) |
---|
| 2983 | end if |
---|
[719] | 2984 | else |
---|
| 2985 | do iq=1,dustbin |
---|
| 2986 | write(str2(1:2),'(i2.2)') iq |
---|
[1047] | 2987 | call wstats(ngrid,'q'//str2,'mix. ratio', |
---|
[719] | 2988 | & 'kg/kg',3,zq(1,1,iq)) |
---|
[1047] | 2989 | call wstats(ngrid,'qsurf'//str2,'qsurf', |
---|
[2900] | 2990 | & 'kg.m-2',2,qsurf(1,iq,iflat)) |
---|
[719] | 2991 | end do |
---|
| 2992 | endif ! (doubleq) |
---|
[226] | 2993 | |
---|
[719] | 2994 | if (scavenging) then |
---|
[1047] | 2995 | call wstats(ngrid,'ccnq','CCN mass mr', |
---|
[756] | 2996 | & 'kg/kg',3,qccn) |
---|
[1047] | 2997 | call wstats(ngrid,'ccnN','CCN number', |
---|
[756] | 2998 | & 'part/kg',3,nccn) |
---|
[719] | 2999 | endif ! (scavenging) |
---|
| 3000 | |
---|
[1464] | 3001 | endif ! (dustbin.ne.0) |
---|
[719] | 3002 | |
---|
[2158] | 3003 | if (photochem) then |
---|
[1464] | 3004 | do iq=1,nq |
---|
| 3005 | if (noms(iq) .ne. "dust_mass" .and. |
---|
| 3006 | $ noms(iq) .ne. "dust_number" .and. |
---|
| 3007 | $ noms(iq) .ne. "ccn_mass" .and. |
---|
[1617] | 3008 | $ noms(iq) .ne. "ccn_number" .and. |
---|
| 3009 | $ noms(iq) .ne. "ccnco2_mass" .and. |
---|
[2825] | 3010 | $ noms(iq) .ne. "ccnco2_number" .and. |
---|
| 3011 | $ noms(iq) .ne. "stormdust_mass" .and. |
---|
| 3012 | $ noms(iq) .ne. "stormdust_number" .and. |
---|
| 3013 | $ noms(iq) .ne. "topdust_mass" .and. |
---|
| 3014 | $ noms(iq) .ne. "topdust_number") then |
---|
[1464] | 3015 | ! volume mixing ratio |
---|
| 3016 | |
---|
[705] | 3017 | vmr(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
---|
[1464] | 3018 | & *mmean(1:ngrid,1:nlayer)/mmol(iq) |
---|
| 3019 | |
---|
| 3020 | call wstats(ngrid,"vmr_"//trim(noms(iq)), |
---|
| 3021 | $ "Volume mixing ratio","mol/mol",3,vmr) |
---|
| 3022 | if ((noms(iq).eq."o") |
---|
| 3023 | $ .or. (noms(iq).eq."co2") |
---|
| 3024 | $ .or. (noms(iq).eq."o3") |
---|
| 3025 | $ .or. (noms(iq).eq."ar") |
---|
| 3026 | $ .or. (noms(iq).eq."o2") |
---|
| 3027 | $ .or. (noms(iq).eq."h2o_vap") ) then |
---|
| 3028 | call writediagfi(ngrid,"vmr_"//trim(noms(iq)), |
---|
| 3029 | $ "Volume mixing ratio","mol/mol",3,vmr) |
---|
| 3030 | end if |
---|
| 3031 | |
---|
| 3032 | ! number density (molecule.cm-3) |
---|
| 3033 | |
---|
[705] | 3034 | rhopart(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
---|
| 3035 | & *rho(1:ngrid,1:nlayer)*n_avog/ |
---|
| 3036 | & (1000*mmol(iq)) |
---|
[1464] | 3037 | |
---|
[2481] | 3038 | call wstats(ngrid,"num_"//trim(noms(iq)), |
---|
[2158] | 3039 | $ "Number density","cm-3",3,rhopart) |
---|
[2481] | 3040 | call writediagfi(ngrid,"num_"//trim(noms(iq)), |
---|
[2158] | 3041 | $ "Number density","cm-3",3,rhopart) |
---|
[226] | 3042 | |
---|
[1464] | 3043 | ! vertical column (molecule.cm-2) |
---|
| 3044 | |
---|
| 3045 | do ig = 1,ngrid |
---|
| 3046 | colden(ig,iq) = 0. |
---|
| 3047 | end do |
---|
| 3048 | do l=1,nlayer |
---|
| 3049 | do ig=1,ngrid |
---|
| 3050 | colden(ig,iq) = colden(ig,iq) + zq(ig,l,iq) |
---|
| 3051 | $ *(zplev(ig,l)-zplev(ig,l+1)) |
---|
| 3052 | $ *6.022e22/(mmol(iq)*g) |
---|
| 3053 | end do |
---|
| 3054 | end do |
---|
| 3055 | |
---|
| 3056 | call wstats(ngrid,"c_"//trim(noms(iq)), |
---|
| 3057 | $ "column","mol cm-2",2,colden(1,iq)) |
---|
| 3058 | call writediagfi(ngrid,"c_"//trim(noms(iq)), |
---|
| 3059 | $ "column","mol cm-2",2,colden(1,iq)) |
---|
| 3060 | |
---|
| 3061 | ! global mass (g) |
---|
| 3062 | |
---|
| 3063 | call planetwide_sumval(colden(:,iq)/6.022e23 |
---|
[1541] | 3064 | $ *mmol(iq)*1.e4*cell_area(:),mass(iq)) |
---|
[1464] | 3065 | |
---|
| 3066 | call writediagfi(ngrid,"mass_"//trim(noms(iq)), |
---|
| 3067 | $ "global mass","g",0,mass(iq)) |
---|
| 3068 | |
---|
| 3069 | end if ! of if (noms(iq) .ne. "dust_mass" ...) |
---|
| 3070 | end do ! of do iq=1,nq |
---|
[2158] | 3071 | end if ! of if (photochem) |
---|
[1464] | 3072 | |
---|
[226] | 3073 | |
---|
[2563] | 3074 | IF(lastcall.and.callstats) THEN |
---|
[226] | 3075 | write (*,*) "Writing stats..." |
---|
| 3076 | call mkstats(ierr) |
---|
| 3077 | ENDIF |
---|
| 3078 | |
---|
[42] | 3079 | |
---|
| 3080 | c (Store EOF for Mars Climate database software) |
---|
| 3081 | IF (calleofdump) THEN |
---|
| 3082 | CALL eofdump(ngrid, nlayer, zu, zv, zt, rho, ps) |
---|
| 3083 | ENDIF |
---|
[1212] | 3084 | #endif |
---|
| 3085 | !endif of ifndef MESOSCALE |
---|
[42] | 3086 | |
---|
[1236] | 3087 | #ifdef MESOSCALE |
---|
| 3088 | |
---|
| 3089 | !! see comm_wrf. |
---|
| 3090 | !! not needed when an array is already in a shared module. |
---|
| 3091 | !! --> example : hfmax_th, zmax_th |
---|
[234] | 3092 | |
---|
[1590] | 3093 | CALL allocate_comm_wrf(ngrid,nlayer) |
---|
| 3094 | |
---|
[1236] | 3095 | !state real HR_SW ikj misc 1 - h "HR_SW" "HEATING RATE SW" "K/s" |
---|
| 3096 | comm_HR_SW(1:ngrid,1:nlayer) = zdtsw(1:ngrid,1:nlayer) |
---|
| 3097 | !state real HR_LW ikj misc 1 - h "HR_LW" "HEATING RATE LW" "K/s" |
---|
| 3098 | comm_HR_LW(1:ngrid,1:nlayer) = zdtlw(1:ngrid,1:nlayer) |
---|
| 3099 | !state real SWDOWNZ ij misc 1 - h "SWDOWNZ" "DOWNWARD SW FLUX AT SURFACE" "W m-2" |
---|
[2685] | 3100 | comm_SWDOWNZ(1:ngrid) = fluxsurf_dn_sw_tot(1:ngrid) |
---|
[1236] | 3101 | !state real TAU_DUST ij misc 1 - h "TAU_DUST" "REFERENCE VISIBLE DUST OPACITY" "" |
---|
[2415] | 3102 | comm_TAU_DUST(1:ngrid) = tau_pref_gcm(1:ngrid) |
---|
[1236] | 3103 | !state real RDUST ikj misc 1 - h "RDUST" "DUST RADIUS" "m" |
---|
| 3104 | comm_RDUST(1:ngrid,1:nlayer) = rdust(1:ngrid,1:nlayer) |
---|
| 3105 | !state real QSURFDUST ij misc 1 - h "QSURFDUST" "DUST MASS AT SURFACE" "kg m-2" |
---|
[308] | 3106 | IF (igcm_dust_mass .ne. 0) THEN |
---|
[1236] | 3107 | comm_QSURFDUST(1:ngrid) = qsurf(1:ngrid,igcm_dust_mass) |
---|
| 3108 | ELSE |
---|
| 3109 | comm_QSURFDUST(1:ngrid) = 0. |
---|
[308] | 3110 | ENDIF |
---|
[1236] | 3111 | !state real MTOT ij misc 1 - h "MTOT" "TOTAL MASS WATER VAPOR in pmic" "pmic" |
---|
| 3112 | comm_MTOT(1:ngrid) = mtot(1:ngrid) * 1.e6 / rho_ice |
---|
| 3113 | !state real ICETOT ij misc 1 - h "ICETOT" "TOTAL MASS WATER ICE" "kg m-2" |
---|
| 3114 | comm_ICETOT(1:ngrid) = icetot(1:ngrid) * 1.e6 / rho_ice |
---|
| 3115 | !state real VMR_ICE ikj misc 1 - h "VMR_ICE" "VOL. MIXING RATIO ICE" "ppm" |
---|
| 3116 | IF (igcm_h2o_ice .ne. 0) THEN |
---|
| 3117 | comm_VMR_ICE(1:ngrid,1:nlayer) = 1.e6 |
---|
| 3118 | . * zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 3119 | . * mmean(1:ngrid,1:nlayer) / mmol(igcm_h2o_ice) |
---|
| 3120 | ELSE |
---|
| 3121 | comm_VMR_ICE(1:ngrid,1:nlayer) = 0. |
---|
[81] | 3122 | ENDIF |
---|
[1236] | 3123 | !state real TAU_ICE ij misc 1 - h "TAU_ICE" "CLOUD OD at 825 cm-1 TES" "" |
---|
[1292] | 3124 | if (activice) then |
---|
| 3125 | comm_TAU_ICE(1:ngrid) = taucloudtes(1:ngrid) |
---|
| 3126 | else |
---|
| 3127 | comm_TAU_ICE(1:ngrid) = tauTES(1:ngrid) |
---|
| 3128 | endif |
---|
[1236] | 3129 | !state real RICE ikj misc 1 - h "RICE" "ICE RADIUS" "m" |
---|
| 3130 | comm_RICE(1:ngrid,1:nlayer) = rice(1:ngrid,1:nlayer) |
---|
[1242] | 3131 | |
---|
| 3132 | !! calculate sensible heat flux in W/m2 for outputs |
---|
| 3133 | !! -- the one computed in vdifc is not the real one |
---|
| 3134 | !! -- vdifc must have been called |
---|
| 3135 | if (.not.callrichsl) then |
---|
| 3136 | sensibFlux(1:ngrid) = zflubid(1:ngrid) |
---|
| 3137 | . - capcal(1:ngrid)*zdtsdif(1:ngrid) |
---|
| 3138 | else |
---|
| 3139 | sensibFlux(1:ngrid) = |
---|
| 3140 | & (pplay(1:ngrid,1)/(r*pt(1:ngrid,1)))*cpp |
---|
| 3141 | & *sqrt(pu(1:ngrid,1)*pu(1:ngrid,1)+pv(1:ngrid,1)*pv(1:ngrid,1) |
---|
| 3142 | & +(log(1.+0.7*wstar(1:ngrid) + 2.3*wstar(1:ngrid)**2))**2) |
---|
| 3143 | & *zcdh(1:ngrid)*(tsurf(1:ngrid)-zh(1:ngrid,1)) |
---|
| 3144 | endif |
---|
| 3145 | |
---|
[226] | 3146 | #else |
---|
[528] | 3147 | #ifndef MESOINI |
---|
[42] | 3148 | |
---|
[226] | 3149 | c ========================================================== |
---|
| 3150 | c WRITEDIAGFI: Outputs in netcdf file "DIAGFI", containing |
---|
| 3151 | c any variable for diagnostic (output with period |
---|
| 3152 | c "ecritphy", set in "run.def") |
---|
| 3153 | c ========================================================== |
---|
| 3154 | c WRITEDIAGFI can ALSO be called from any other subroutines |
---|
| 3155 | c for any variables !! |
---|
[2494] | 3156 | call WRITEDIAGFI(ngrid,"emis","Surface emissivity","w.m-1",2, |
---|
[2900] | 3157 | & emis(:,iflat)) |
---|
[2907] | 3158 | do islope=1,nslope |
---|
| 3159 | write(str2(1:2),'(i2.2)') islope |
---|
| 3160 | call WRITEDIAGFI(ngrid,"emis_slope"//str2, |
---|
| 3161 | & "Surface emissivity","w.m-1",2, emis(:,islope)) |
---|
| 3162 | ENDDO |
---|
[835] | 3163 | c call WRITEDIAGFI(ngrid,"pplay","Pressure","Pa",3,zplay) |
---|
| 3164 | c call WRITEDIAGFI(ngrid,"pplev","Pressure","Pa",3,zplev) |
---|
[2830] | 3165 | call WRITEDIAGFI(ngrid,"zzlev","Interlayer altitude", |
---|
| 3166 | & "m",3,zzlev(:,1:nlayer)) |
---|
[2808] | 3167 | call writediagfi(ngrid,"pphi","Geopotential","m2s-2",3, |
---|
| 3168 | & pphi) |
---|
| 3169 | call writediagfi(ngrid,"phisfi","Surface geopotential", |
---|
| 3170 | & "m2s-2",2,phisfi) |
---|
[226] | 3171 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",2, |
---|
[2900] | 3172 | & tsurf(:,iflat)) |
---|
[2907] | 3173 | do islope=1,nslope |
---|
| 3174 | write(str2(1:2),'(i2.2)') islope |
---|
| 3175 | call WRITEDIAGFI(ngrid,"tsurf_slope"//str2, |
---|
| 3176 | & "Surface temperature","K",2, |
---|
| 3177 | & tsurf(:,islope)) |
---|
| 3178 | ENDDO |
---|
[226] | 3179 | call WRITEDIAGFI(ngrid,"ps","surface pressure","Pa",2,ps) |
---|
[769] | 3180 | call WRITEDIAGFI(ngrid,"co2ice","co2 ice thickness" |
---|
[2900] | 3181 | & ,"kg.m-2",2,qsurf(:,igcm_co2,iflat)) |
---|
[2907] | 3182 | do islope=1,nslope |
---|
| 3183 | write(str2(1:2),'(i2.2)') islope |
---|
| 3184 | call WRITEDIAGFI(ngrid,"co2ice_slope"//str2,"co2 ice thickness" |
---|
| 3185 | & ,"kg.m-2",2,qsurf(:,igcm_co2,islope)) |
---|
| 3186 | ENDDO |
---|
[2260] | 3187 | call WRITEDIAGFI(ngrid,"watercap","Water ice thickness" |
---|
[2900] | 3188 | & ,"kg.m-2",2,watercap(:,iflat)) |
---|
[2907] | 3189 | do islope=1,nslope |
---|
| 3190 | write(str2(1:2),'(i2.2)') islope |
---|
| 3191 | call WRITEDIAGFI(ngrid,"watercap_slope"//str2, |
---|
| 3192 | & "Water ice thickness" |
---|
| 3193 | & ,"kg.m-2",2,watercap(:,islope)) |
---|
| 3194 | ENDDO |
---|
[2481] | 3195 | call WRITEDIAGFI(ngrid,"temp_layer1","temperature in layer 1", |
---|
| 3196 | & "K",2,zt(1,1)) |
---|
[719] | 3197 | call WRITEDIAGFI(ngrid,"temp7","temperature in layer 7", |
---|
| 3198 | & "K",2,zt(1,7)) |
---|
| 3199 | call WRITEDIAGFI(ngrid,"fluxsurf_lw","fluxsurf_lw","W.m-2",2, |
---|
[2900] | 3200 | & fluxsurf_lw(:,iflat)) |
---|
[2907] | 3201 | do islope=1,nslope |
---|
| 3202 | write(str2(1:2),'(i2.2)') islope |
---|
| 3203 | call WRITEDIAGFI(ngrid,"fluxsurf_lw_slope"//str2, |
---|
| 3204 | & "fluxsurf_lw","W.m-2",2, |
---|
| 3205 | & fluxsurf_lw(:,islope)) |
---|
| 3206 | ENDDO |
---|
[2685] | 3207 | call WRITEDIAGFI(ngrid,"fluxsurf_dn_sw","fluxsurf_dn_sw", |
---|
[2900] | 3208 | & "W.m-2",2,fluxsurf_dn_sw_tot(:,iflat)) |
---|
[2907] | 3209 | do islope=1,nslope |
---|
| 3210 | write(str2(1:2),'(i2.2)') islope |
---|
| 3211 | call WRITEDIAGFI(ngrid,"fluxsurf_dn_sw_slope"//str2, |
---|
| 3212 | & "fluxsurf_dn_sw", |
---|
| 3213 | & "W.m-2",2,fluxsurf_dn_sw_tot(:,islope)) |
---|
| 3214 | ENDDO |
---|
[719] | 3215 | call WRITEDIAGFI(ngrid,"fluxtop_lw","fluxtop_lw","W.m-2",2, |
---|
| 3216 | & fluxtop_lw) |
---|
[2685] | 3217 | call WRITEDIAGFI(ngrid,"fluxtop_up_sw","fluxtop_up_sw","W.m-2", |
---|
| 3218 | & 2,fluxtop_up_sw_tot) |
---|
[1640] | 3219 | call WRITEDIAGFI(ngrid,"temp","temperature","K",3,zt) |
---|
[2573] | 3220 | call WRITEDIAGFI(ngrid,"Sols","Time","sols",0,[zday]) |
---|
[2141] | 3221 | call WRITEDIAGFI(ngrid,"Ls","Solar longitude","deg", |
---|
[2573] | 3222 | & 0,[zls*180./pi]) |
---|
[719] | 3223 | call WRITEDIAGFI(ngrid,"u","Zonal wind","m.s-1",3,zu) |
---|
| 3224 | call WRITEDIAGFI(ngrid,"v","Meridional wind","m.s-1",3,zv) |
---|
| 3225 | call WRITEDIAGFI(ngrid,"w","Vertical wind","m.s-1",3,pw) |
---|
[2149] | 3226 | call WRITEDIAGFI(ngrid,"rho","density","kg.m-3",3,rho) |
---|
[226] | 3227 | c call WRITEDIAGFI(ngrid,"q2","q2","kg.m-3",3,q2) |
---|
[520] | 3228 | c call WRITEDIAGFI(ngrid,'Teta','T potentielle','K',3,zh) |
---|
[758] | 3229 | call WRITEDIAGFI(ngrid,"pressure","Pressure","Pa",3,zplay) |
---|
[226] | 3230 | c call WRITEDIAGFI(ngrid,"ssurf","Surface stress","N.m-2",2, |
---|
| 3231 | c & zstress) |
---|
[2406] | 3232 | call WRITEDIAGFI(ngrid,'sw_htrt','sw heat. rate', |
---|
[2840] | 3233 | & 'K/s',3,zdtsw) |
---|
[2406] | 3234 | call WRITEDIAGFI(ngrid,'lw_htrt','lw heat. rate', |
---|
[2840] | 3235 | & 'K/s',3,zdtlw) |
---|
[2417] | 3236 | call writediagfi(ngrid,"local_time","Local time", |
---|
| 3237 | & 'sol',2,local_time) |
---|
[520] | 3238 | if (.not.activice) then |
---|
[1047] | 3239 | CALL WRITEDIAGFI(ngrid,'tauTESap', |
---|
[520] | 3240 | & 'tau abs 825 cm-1', |
---|
| 3241 | & '',2,tauTES) |
---|
| 3242 | else |
---|
[1047] | 3243 | CALL WRITEDIAGFI(ngrid,'tauTES', |
---|
[520] | 3244 | & 'tau abs 825 cm-1', |
---|
| 3245 | & '',2,taucloudtes) |
---|
| 3246 | endif |
---|
[528] | 3247 | #else |
---|
[2362] | 3248 | !!! this is to ensure correct initialisation of mesoscale model |
---|
| 3249 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",2, |
---|
[2900] | 3250 | & tsurf(:,iflat)) |
---|
[2362] | 3251 | call WRITEDIAGFI(ngrid,"ps","surface pressure","Pa",2,ps) |
---|
| 3252 | call WRITEDIAGFI(ngrid,"co2ice","co2 ice thickness","kg.m-2",2, |
---|
[2900] | 3253 | & qsurf(:,igcm_co2,iflat)) |
---|
[2362] | 3254 | call WRITEDIAGFI(ngrid,"temp","temperature","K",3,zt) |
---|
| 3255 | call WRITEDIAGFI(ngrid,"u","Zonal wind","m.s-1",3,zu) |
---|
| 3256 | call WRITEDIAGFI(ngrid,"v","Meridional wind","m.s-1",3,zv) |
---|
| 3257 | call WRITEDIAGFI(ngrid,"emis","Surface emissivity","w.m-1",2, |
---|
| 3258 | & emis) |
---|
| 3259 | call WRITEDIAGFI(ngrid,"tsoil","Soil temperature", |
---|
[2900] | 3260 | & "K",3,tsoil(:,:,iflat)) |
---|
[2362] | 3261 | call WRITEDIAGFI(ngrid,"inertiedat","Soil inertia", |
---|
| 3262 | & "K",3,inertiedat) |
---|
[299] | 3263 | #endif |
---|
[42] | 3264 | |
---|
[226] | 3265 | c ---------------------------------------------------------- |
---|
| 3266 | c Outputs of the CO2 cycle |
---|
| 3267 | c ---------------------------------------------------------- |
---|
[1921] | 3268 | |
---|
[2823] | 3269 | if (igcm_co2.ne.0) then |
---|
[2362] | 3270 | call WRITEDIAGFI(ngrid,"co2","co2 mass mixing ratio", |
---|
[2551] | 3271 | & "kg.kg-1",3,zq(:,:,igcm_co2)) |
---|
[2362] | 3272 | |
---|
| 3273 | if (co2clouds) then |
---|
[2551] | 3274 | call WRITEDIAGFI(ngrid,'ccnqco2','CCNco2 mmr', |
---|
| 3275 | & 'kg.kg-1',3,zq(:,:,igcm_ccnco2_mass)) |
---|
[1660] | 3276 | |
---|
[2362] | 3277 | call WRITEDIAGFI(ngrid,'ccnNco2','CCNco2 number', |
---|
[2551] | 3278 | & 'part.kg-1',3,zq(:,:,igcm_ccnco2_number)) |
---|
[2362] | 3279 | |
---|
[2551] | 3280 | call WRITEDIAGFI(ngrid,'co2_ice','co2_ice mmr in atm', |
---|
| 3281 | & 'kg.kg-1', 3, zq(:,:,igcm_co2_ice)) |
---|
[2362] | 3282 | |
---|
[2551] | 3283 | call WRITEDIAGFI(ngrid,"mtotco2","total mass atm of co2", |
---|
| 3284 | & "kg.m-2",2, mtotco2) |
---|
| 3285 | call WRITEDIAGFI(ngrid,"icetotco2","total mass atm of co2 ice", |
---|
| 3286 | & "kg.m-2", 2, icetotco2) |
---|
[2823] | 3287 | call WRITEDIAGFI(ngrid,"vaptotco2","total mass atm of co2 "// |
---|
| 3288 | & "vapor","kg.m-2", 2, vaptotco2) |
---|
[2551] | 3289 | call WRITEDIAGFI(ngrid,"emis","Surface emissivity","w.m-1",2, |
---|
| 3290 | & emis) |
---|
[2589] | 3291 | if (co2useh2o) then |
---|
| 3292 | call WRITEDIAGFI(ngrid,'ccnqco2_h2o_m_ice', |
---|
| 3293 | & 'CCNco2_h2o_mass_ice mmr', |
---|
| 3294 | & 'kg.kg-1',3,zq(:,:,igcm_ccnco2_h2o_mass_ice)) |
---|
| 3295 | |
---|
| 3296 | call WRITEDIAGFI(ngrid,'ccnqco2_h2o_m_ccn', |
---|
| 3297 | & 'CCNco2_h2o_mass_ccn mmr', |
---|
| 3298 | & 'kg.kg-1',3,zq(:,:,igcm_ccnco2_h2o_mass_ccn)) |
---|
| 3299 | |
---|
| 3300 | call WRITEDIAGFI(ngrid,'ccnNco2_h2o','CCNco2_h2o number', |
---|
| 3301 | & 'part.kg-1',3,zq(:,:,igcm_ccnco2_h2o_number)) |
---|
| 3302 | end if |
---|
| 3303 | |
---|
| 3304 | if (meteo_flux) then |
---|
| 3305 | call WRITEDIAGFI(ngrid,'ccnqco2_meteor','CCNco2_meteor mmr', |
---|
| 3306 | & 'kg.kg-1',3,zq(:,:,igcm_ccnco2_meteor_mass)) |
---|
| 3307 | |
---|
| 3308 | call WRITEDIAGFI(ngrid,'ccnNco2_meteor','CCNco2_meteor number', |
---|
| 3309 | & 'part.kg-1',3,zq(:,:,igcm_ccnco2_meteor_number)) |
---|
| 3310 | end if |
---|
| 3311 | |
---|
[2362] | 3312 | end if ! of if (co2clouds) |
---|
[2823] | 3313 | end if ! of if (igcm_co2.ne.0) |
---|
[2362] | 3314 | |
---|
| 3315 | ! Output He tracer, if there is one |
---|
[2823] | 3316 | if (igcm_he.ne.0) then |
---|
[2362] | 3317 | call WRITEDIAGFI(ngrid,"he","helium mass mixing ratio", |
---|
| 3318 | & "kg/kg",3,zq(1,1,igcm_he)) |
---|
| 3319 | vmr = zq(1:ngrid,1:nlayer,igcm_he) |
---|
| 3320 | & * mmean(1:ngrid,1:nlayer)/mmol(igcm_he) |
---|
| 3321 | call WRITEDIAGFI(ngrid,'vmr_he','helium vol. mixing ratio', |
---|
| 3322 | & 'mol/mol',3,vmr) |
---|
| 3323 | end if |
---|
| 3324 | |
---|
[226] | 3325 | c ---------------------------------------------------------- |
---|
| 3326 | c Outputs of the water cycle |
---|
| 3327 | c ---------------------------------------------------------- |
---|
[2362] | 3328 | if (water) then |
---|
[299] | 3329 | #ifdef MESOINI |
---|
| 3330 | !!!! waterice = q01, voir readmeteo.F90 |
---|
[2362] | 3331 | call WRITEDIAGFI(ngrid,'q01',noms(igcm_h2o_ice), |
---|
| 3332 | & 'kg/kg',3, |
---|
| 3333 | & zq(1:ngrid,1:nlayer,igcm_h2o_ice)) |
---|
[299] | 3334 | !!!! watervapor = q02, voir readmeteo.F90 |
---|
[2362] | 3335 | call WRITEDIAGFI(ngrid,'q02',noms(igcm_h2o_vap), |
---|
| 3336 | & 'kg/kg',3, |
---|
| 3337 | & zq(1:ngrid,1:nlayer,igcm_h2o_vap)) |
---|
[299] | 3338 | !!!! surface waterice qsurf02 (voir readmeteo) |
---|
[2362] | 3339 | call WRITEDIAGFI(ngrid,'qsurf02','surface tracer', |
---|
| 3340 | & 'kg.m-2',2, |
---|
[2900] | 3341 | & qsurf(1:ngrid,igcm_h2o_ice,iflat)) |
---|
[2907] | 3342 | do islope=1,nslope |
---|
| 3343 | write(str2(1:2),'(i2.2)') islope |
---|
| 3344 | call WRITEDIAGFI(ngrid,'qsurf02_slope'//str2, |
---|
| 3345 | & 'surface tracer','kg.m-2',2, |
---|
| 3346 | & qsurf(1:ngrid,igcm_h2o_ice,islope)) |
---|
| 3347 | ENDDO |
---|
[299] | 3348 | #endif |
---|
[2362] | 3349 | call WRITEDIAGFI(ngrid,'mtot', |
---|
| 3350 | & 'total mass of water vapor', |
---|
| 3351 | & 'kg/m2',2,mtot) |
---|
| 3352 | call WRITEDIAGFI(ngrid,'icetot', |
---|
| 3353 | & 'total mass of water ice', |
---|
| 3354 | & 'kg/m2',2,icetot) |
---|
| 3355 | vmr = zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 3356 | & * mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
---|
| 3357 | call WRITEDIAGFI(ngrid,'vmr_h2oice','h2o ice vmr', |
---|
| 3358 | & 'mol/mol',3,vmr) |
---|
| 3359 | vmr = zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
---|
| 3360 | & * mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
---|
| 3361 | call WRITEDIAGFI(ngrid,'vmr_h2ovap','h2o vap vmr', |
---|
| 3362 | & 'mol/mol',3,vmr) |
---|
| 3363 | call WRITEDIAGFI(ngrid,'reffice', |
---|
| 3364 | & 'Mean reff', |
---|
| 3365 | & 'm',2,rave) |
---|
| 3366 | call WRITEDIAGFI(ngrid,'h2o_ice','h2o_ice','kg/kg', |
---|
| 3367 | & 3,zq(:,:,igcm_h2o_ice)) |
---|
| 3368 | call WRITEDIAGFI(ngrid,'h2o_vap','h2o_vap','kg/kg', |
---|
| 3369 | & 3,zq(:,:,igcm_h2o_vap)) |
---|
[1922] | 3370 | |
---|
[2312] | 3371 | if (hdo) then |
---|
| 3372 | vmr=zq(1:ngrid,1:nlayer,igcm_hdo_ice) |
---|
| 3373 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_hdo_ice) |
---|
| 3374 | CALL WRITEDIAGFI(ngrid,'vmr_hdoice','hdo ice vmr', |
---|
| 3375 | & 'mol/mol',3,vmr) |
---|
| 3376 | vmr=zq(1:ngrid,1:nlayer,igcm_hdo_vap) |
---|
| 3377 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_hdo_vap) |
---|
| 3378 | CALL WRITEDIAGFI(ngrid,'vmr_hdovap','hdo vap vmr', |
---|
| 3379 | & 'mol/mol',3,vmr) |
---|
| 3380 | call WRITEDIAGFI(ngrid,'hdo_ice','hdo_ice','kg/kg', |
---|
| 3381 | & 3,zq(:,:,igcm_hdo_ice)) |
---|
| 3382 | call WRITEDIAGFI(ngrid,'hdo_vap','hdo_vap','kg/kg', |
---|
| 3383 | & 3,zq(:,:,igcm_hdo_vap)) |
---|
[1922] | 3384 | |
---|
[2312] | 3385 | CALL WRITEDIAGFI(ngrid,'mtotD', |
---|
| 3386 | & 'total mass of HDO vapor', |
---|
| 3387 | & 'kg/m2',2,mtotD) |
---|
| 3388 | CALL WRITEDIAGFI(ngrid,'icetotD', |
---|
| 3389 | & 'total mass of HDO ice', |
---|
| 3390 | & 'kg/m2',2,icetotD) |
---|
| 3391 | |
---|
| 3392 | C Calculation of the D/H ratio |
---|
| 3393 | do l=1,nlayer |
---|
| 3394 | do ig=1,ngrid |
---|
[2362] | 3395 | if (zq(ig,l,igcm_h2o_vap).gt.qperemin) then |
---|
[2312] | 3396 | DoH_vap(ig,l) = ( zq(ig,l,igcm_hdo_vap)/ |
---|
| 3397 | & zq(ig,l,igcm_h2o_vap) )*1./(2.*155.76e-6) |
---|
| 3398 | else |
---|
| 3399 | DoH_vap(ig,l) = 0. |
---|
| 3400 | endif |
---|
| 3401 | enddo |
---|
| 3402 | enddo |
---|
| 3403 | |
---|
| 3404 | do l=1,nlayer |
---|
| 3405 | do ig=1,ngrid |
---|
[2324] | 3406 | if (zq(ig,l,igcm_h2o_ice).gt.qperemin) then |
---|
[2312] | 3407 | DoH_ice(ig,l) = ( zq(ig,l,igcm_hdo_ice)/ |
---|
| 3408 | & zq(ig,l,igcm_h2o_ice) )/(2.*155.76e-6) |
---|
| 3409 | else |
---|
| 3410 | DoH_ice(ig,l) = 0. |
---|
| 3411 | endif |
---|
| 3412 | enddo |
---|
| 3413 | enddo |
---|
| 3414 | |
---|
| 3415 | CALL WRITEDIAGFI(ngrid,'DoH_vap', |
---|
| 3416 | & 'D/H ratio in vapor', |
---|
[2362] | 3417 | & ' ',3,DoH_vap) |
---|
[2312] | 3418 | CALL WRITEDIAGFI(ngrid,'DoH_ice', |
---|
| 3419 | & 'D/H ratio in ice', |
---|
| 3420 | & '',3,DoH_ice) |
---|
| 3421 | |
---|
| 3422 | endif !hdo |
---|
| 3423 | |
---|
[1711] | 3424 | !A. Pottier |
---|
| 3425 | CALL WRITEDIAGFI(ngrid,'rmoym', |
---|
| 3426 | & 'alternative reffice', |
---|
| 3427 | & 'm',2,rave2) |
---|
[1467] | 3428 | call WRITEDIAGFI(ngrid,'saturation', |
---|
| 3429 | & 'h2o vap saturation ratio','dimless',3,satu) |
---|
[1130] | 3430 | if (scavenging) then |
---|
| 3431 | CALL WRITEDIAGFI(ngrid,"Nccntot", |
---|
[669] | 3432 | & "condensation nuclei","Nbr/m2", |
---|
| 3433 | & 2,Nccntot) |
---|
[1130] | 3434 | CALL WRITEDIAGFI(ngrid,"Mccntot", |
---|
[719] | 3435 | & "mass condensation nuclei","kg/m2", |
---|
| 3436 | & 2,Mccntot) |
---|
[1130] | 3437 | endif |
---|
[1047] | 3438 | call WRITEDIAGFI(ngrid,'rice','Ice particle size', |
---|
[719] | 3439 | & 'm',3,rice) |
---|
[1047] | 3440 | call WRITEDIAGFI(ngrid,'h2o_ice_s', |
---|
[226] | 3441 | & 'surface h2o_ice', |
---|
[2907] | 3442 | & 'kg.m-2',2,qsurf(1,igcm_h2o_ice,iflat)) |
---|
| 3443 | do islope=1,nslope |
---|
| 3444 | write(str2(1:2),'(i2.2)') islope |
---|
| 3445 | call WRITEDIAGFI(ngrid,'h2o_ice_s_slope'//str2, |
---|
| 3446 | & 'surface h2o_ice', |
---|
| 3447 | & 'kg.m-2',2,qsurf(1,igcm_h2o_ice,islope)) |
---|
| 3448 | ENDDO |
---|
[2312] | 3449 | if (hdo) then |
---|
| 3450 | call WRITEDIAGFI(ngrid,'hdo_ice_s', |
---|
| 3451 | & 'surface hdo_ice', |
---|
[2907] | 3452 | & 'kg.m-2',2,qsurf(1,igcm_hdo_ice,iflat)) |
---|
| 3453 | do islope=1,nslope |
---|
| 3454 | write(str2(1:2),'(i2.2)') islope |
---|
| 3455 | call WRITEDIAGFI(ngrid,'hdo_ice_s_slope'//str2, |
---|
| 3456 | & 'surface hdo_ice', |
---|
| 3457 | & 'kg.m-2',2,qsurf(1,igcm_hdo_ice,islope)) |
---|
| 3458 | ENDDO |
---|
[2312] | 3459 | |
---|
| 3460 | do ig=1,ngrid |
---|
[2900] | 3461 | if (qsurf_meshavg(ig,igcm_h2o_ice).gt.qperemin) then |
---|
| 3462 | DoH_surf(ig) = 0.5*( qsurf_meshavg(ig,igcm_hdo_ice)/ |
---|
| 3463 | & qsurf_meshavg(ig,igcm_h2o_ice) )/155.76e-6 |
---|
[2312] | 3464 | else |
---|
| 3465 | DoH_surf(ig) = 0. |
---|
| 3466 | endif |
---|
| 3467 | enddo |
---|
| 3468 | |
---|
| 3469 | call WRITEDIAGFI(ngrid,'DoH_surf', |
---|
| 3470 | & 'surface D/H', |
---|
| 3471 | & '',2,DoH_surf) |
---|
| 3472 | endif ! hdo |
---|
| 3473 | |
---|
[1047] | 3474 | CALL WRITEDIAGFI(ngrid,'albedo', |
---|
[833] | 3475 | & 'albedo', |
---|
[2900] | 3476 | & '',2,albedo(1,1,iflat)) |
---|
[2907] | 3477 | do islope=1,nslope |
---|
| 3478 | write(str2(1:2),'(i2.2)') islope |
---|
| 3479 | CALL WRITEDIAGFI(ngrid,'albedo_slope'//str2, |
---|
| 3480 | & 'albedo', |
---|
| 3481 | & '',2,albedo(1,1,islope)) |
---|
| 3482 | ENDDO |
---|
[833] | 3483 | if (tifeedback) then |
---|
[1047] | 3484 | call WRITEDIAGSOIL(ngrid,"soiltemp", |
---|
[833] | 3485 | & "Soil temperature","K", |
---|
| 3486 | & 3,tsoil) |
---|
[1047] | 3487 | call WRITEDIAGSOIL(ngrid,'soilti', |
---|
[833] | 3488 | & 'Soil Thermal Inertia', |
---|
[2907] | 3489 | & 'J.s-1/2.m-2.K-1',3,inertiesoil(:,:,iflat)) |
---|
| 3490 | do islope=1,nslope |
---|
| 3491 | write(str2(1:2),'(i2.2)') islope |
---|
| 3492 | call WRITEDIAGSOIL(ngrid,'soilti_slope'//str2, |
---|
| 3493 | & 'Soil Thermal Inertia', |
---|
| 3494 | & 'J.s-1/2.m-2.K-1',3,inertiesoil(:,:,islope)) |
---|
| 3495 | ENDDO |
---|
[833] | 3496 | endif |
---|
[1711] | 3497 | !A. Pottier |
---|
[2362] | 3498 | if (CLFvarying) then !AP14 nebulosity |
---|
| 3499 | call WRITEDIAGFI(ngrid,'totcloudfrac', |
---|
| 3500 | & 'Total cloud fraction', |
---|
[1711] | 3501 | & ' ',2,totcloudfrac) |
---|
[2362] | 3502 | end if !clf varying |
---|
| 3503 | end if !(water) |
---|
[1711] | 3504 | |
---|
[2362] | 3505 | if (water.and..not.photochem) then |
---|
| 3506 | iq = nq |
---|
| 3507 | c write(str2(1:2),'(i2.2)') iq |
---|
| 3508 | c call WRITEDIAGFI(ngrid,'dqs'//str2,'dqscloud', |
---|
| 3509 | c & 'kg.m-2',2,zdqscloud(1,iq)) |
---|
| 3510 | c call WRITEDIAGFI(ngrid,'dqch'//str2,'var chim', |
---|
| 3511 | c & 'kg/kg',3,zdqchim(1,1,iq)) |
---|
| 3512 | c call WRITEDIAGFI(ngrid,'dqd'//str2,'var dif', |
---|
| 3513 | c & 'kg/kg',3,zdqdif(1,1,iq)) |
---|
| 3514 | c call WRITEDIAGFI(ngrid,'dqa'//str2,'var adj', |
---|
| 3515 | c & 'kg/kg',3,zdqadj(1,1,iq)) |
---|
| 3516 | c call WRITEDIAGFI(ngrid,'dqc'//str2,'var c', |
---|
| 3517 | c & 'kg/kg',3,zdqc(1,1,iq)) |
---|
| 3518 | end if !(water.and..not.photochem) |
---|
[226] | 3519 | |
---|
| 3520 | c ---------------------------------------------------------- |
---|
| 3521 | c Outputs of the dust cycle |
---|
| 3522 | c ---------------------------------------------------------- |
---|
| 3523 | |
---|
[2415] | 3524 | call WRITEDIAGFI(ngrid,'tau_pref_scenario', |
---|
| 3525 | & 'Prescribed visible dust optical depth at 610Pa', |
---|
| 3526 | & 'NU',2,tau_pref_scenario) |
---|
[226] | 3527 | |
---|
[2415] | 3528 | call WRITEDIAGFI(ngrid,'tau_pref_gcm', |
---|
| 3529 | & 'Visible dust optical depth at 610Pa in the GCM', |
---|
| 3530 | & 'NU',2,tau_pref_gcm) |
---|
[2643] | 3531 | |
---|
| 3532 | if (reff_driven_IRtoVIS_scenario) then |
---|
| 3533 | call WRITEDIAGFI(ngrid,'IRtoVIScoef', |
---|
| 3534 | & 'conversion coeff for dust tau from abs9.3um to ext0.67um', |
---|
| 3535 | & '/',2,IRtoVIScoef) |
---|
| 3536 | endif |
---|
[2415] | 3537 | |
---|
[2823] | 3538 | if (dustbin.ne.0) then |
---|
[1264] | 3539 | |
---|
[2362] | 3540 | call WRITEDIAGFI(ngrid,'tau','taudust','SI',2,tau(1,1)) |
---|
[1264] | 3541 | |
---|
| 3542 | #ifndef MESOINI |
---|
[226] | 3543 | if (doubleq) then |
---|
[1047] | 3544 | c call WRITEDIAGFI(ngrid,'qsurf','qsurf', |
---|
[411] | 3545 | c & 'kg.m-2',2,qsurf(1,igcm_dust_mass)) |
---|
[1047] | 3546 | c call WRITEDIAGFI(ngrid,'Nsurf','N particles', |
---|
[411] | 3547 | c & 'N.m-2',2,qsurf(1,igcm_dust_number)) |
---|
[1047] | 3548 | c call WRITEDIAGFI(ngrid,'dqsdev','ddevil lift', |
---|
[226] | 3549 | c & 'kg.m-2.s-1',2,zdqsdev(1,1)) |
---|
[1047] | 3550 | c call WRITEDIAGFI(ngrid,'dqssed','sedimentation', |
---|
[411] | 3551 | c & 'kg.m-2.s-1',2,zdqssed(1,1)) |
---|
[1047] | 3552 | c call WRITEDIAGFI(ngrid,'dqsdif','diffusion', |
---|
[411] | 3553 | c & 'kg.m-2.s-1',2,zdqsdif(1,1)) |
---|
[1208] | 3554 | c call WRITEDIAGFI(ngrid,'sedice','sedimented ice', |
---|
| 3555 | c & 'kg.m-2.s-1',2,zdqssed(:,igcm_h2o_ice)) |
---|
| 3556 | c call WRITEDIAGFI(ngrid,'subice','sublimated ice', |
---|
| 3557 | c & 'kg.m-2.s-1',2,zdqsdif(:,igcm_h2o_ice)) |
---|
[1047] | 3558 | call WRITEDIAGFI(ngrid,'dqsdust', |
---|
[719] | 3559 | & 'deposited surface dust mass', |
---|
| 3560 | & 'kg.m-2.s-1',2,dqdustsurf) |
---|
[1047] | 3561 | call WRITEDIAGFI(ngrid,'dqndust', |
---|
[719] | 3562 | & 'deposited surface dust number', |
---|
| 3563 | & 'number.m-2.s-1',2,dndustsurf) |
---|
[1047] | 3564 | call WRITEDIAGFI(ngrid,'reffdust','reffdust', |
---|
[719] | 3565 | & 'm',3,rdust*ref_r0) |
---|
[1047] | 3566 | call WRITEDIAGFI(ngrid,'dustq','Dust mass mr', |
---|
[756] | 3567 | & 'kg/kg',3,qdust) |
---|
[1047] | 3568 | call WRITEDIAGFI(ngrid,'dustN','Dust number', |
---|
[756] | 3569 | & 'part/kg',3,ndust) |
---|
[2362] | 3570 | |
---|
[2247] | 3571 | select case (trim(dustiropacity)) |
---|
| 3572 | case ("tes") |
---|
| 3573 | call WRITEDIAGFI(ngrid,'dsodust', |
---|
| 3574 | & 'density scaled extinction opacity of std dust at 9.3um(TES)', |
---|
| 3575 | & 'm2.kg-1',3,dsodust) |
---|
| 3576 | call WRITEDIAGFI(ngrid,'dso', |
---|
| 3577 | & 'density scaled extinction opacity of all dust at 9.3um(TES)', |
---|
| 3578 | & 'm2.kg-1',3,dsodust+dsords+dsotop) |
---|
| 3579 | case ("mcs") |
---|
| 3580 | call WRITEDIAGFI(ngrid,'dsodust', |
---|
| 3581 | & 'density scaled extinction opacity of std dust at 21.6um(MCS)', |
---|
| 3582 | & 'm2.kg-1',3,dsodust) |
---|
| 3583 | call WRITEDIAGFI(ngrid,'dso', |
---|
| 3584 | & 'density scaled extinction opacity of all dust at 21.6um(MCS)', |
---|
| 3585 | & 'm2.kg-1',3,dsodust+dsords+dsotop) |
---|
| 3586 | end select |
---|
[2246] | 3587 | else ! (doubleq=.false.) |
---|
[226] | 3588 | do iq=1,dustbin |
---|
| 3589 | write(str2(1:2),'(i2.2)') iq |
---|
[1047] | 3590 | call WRITEDIAGFI(ngrid,'q'//str2,'mix. ratio', |
---|
[226] | 3591 | & 'kg/kg',3,zq(1,1,iq)) |
---|
[1047] | 3592 | call WRITEDIAGFI(ngrid,'qsurf'//str2,'qsurf', |
---|
[2900] | 3593 | & 'kg.m-2',2,qsurf(1,iq,iflat)) |
---|
[2907] | 3594 | do islope=1,nslope |
---|
| 3595 | write(str2(1:2),'(i2.2)') islope |
---|
| 3596 | call WRITEDIAGFI(ngrid,'qsurf_slope'//str2,'qsurf', |
---|
| 3597 | & 'kg.m-2',2,qsurf(1,iq,islope)) |
---|
| 3598 | ENDDO |
---|
[226] | 3599 | end do |
---|
| 3600 | endif ! (doubleq) |
---|
[358] | 3601 | |
---|
[1974] | 3602 | if (rdstorm) then ! writediagfi tendencies stormdust tracers |
---|
| 3603 | call WRITEDIAGFI(ngrid,'reffstormdust','reffstormdust', |
---|
| 3604 | & 'm',3,rstormdust*ref_r0) |
---|
| 3605 | call WRITEDIAGFI(ngrid,'mstormdtot', |
---|
| 3606 | & 'total mass of stormdust only', |
---|
| 3607 | & 'kg.m-2',2,mstormdtot) |
---|
| 3608 | call WRITEDIAGFI(ngrid,'mdusttot', |
---|
| 3609 | & 'total mass of dust only', |
---|
| 3610 | & 'kg.m-2',2,mdusttot) |
---|
| 3611 | call WRITEDIAGFI(ngrid,'rdsdqsdust', |
---|
| 3612 | & 'deposited surface stormdust mass', |
---|
| 3613 | & 'kg.m-2.s-1',2,rdsdqdustsurf) |
---|
| 3614 | call WRITEDIAGFI(ngrid,'rdsdustq','storm Dust mass mr', |
---|
| 3615 | & 'kg/kg',3,rdsqdust) |
---|
| 3616 | call WRITEDIAGFI(ngrid,'rdsdustqmodel','storm Dust massmr', |
---|
| 3617 | & 'kg/kg',3,pq(:,:,igcm_stormdust_mass)) |
---|
| 3618 | call WRITEDIAGFI(ngrid,'rdsdustN','storm Dust number', |
---|
| 3619 | & 'part/kg',3,rdsndust) |
---|
| 3620 | call WRITEDIAGFI(ngrid,"stormfract", |
---|
| 3621 | & "fraction of the mesh, with stormdust","none", |
---|
| 3622 | & 2,totstormfract) |
---|
| 3623 | call WRITEDIAGFI(ngrid,'qsurf', |
---|
| 3624 | & 'stormdust injection', |
---|
[2900] | 3625 | & 'kg.m-2',2,qsurf(:,igcm_stormdust_mass,iflat)) |
---|
[2907] | 3626 | do islope=1,nslope |
---|
| 3627 | write(str2(1:2),'(i2.2)') islope |
---|
| 3628 | call WRITEDIAGFI(ngrid,'qsurf_slope'//str2, |
---|
| 3629 | & 'stormdust injection', |
---|
| 3630 | & 'kg.m-2',2,qsurf(:,igcm_stormdust_mass,islope)) |
---|
| 3631 | ENDDO |
---|
[1974] | 3632 | call WRITEDIAGFI(ngrid,'pdqsurf', |
---|
| 3633 | & 'tendancy stormdust mass at surface', |
---|
[2907] | 3634 | & 'kg.m-2',2,dqsurf(:,igcm_stormdust_mass,iflat)) |
---|
| 3635 | do islope=1,nslope |
---|
| 3636 | write(str2(1:2),'(i2.2)') islope |
---|
| 3637 | call WRITEDIAGFI(ngrid,'pdqsurf_slope'//str2, |
---|
| 3638 | & 'tendancy stormdust mass at surface', |
---|
| 3639 | & 'kg.m-2',2,dqsurf(:,igcm_stormdust_mass,islope)) |
---|
| 3640 | ENDDO |
---|
[1974] | 3641 | call WRITEDIAGFI(ngrid,'wspeed','vertical speed stormdust', |
---|
| 3642 | & 'm/s',3,wspeed(:,1:nlayer)) |
---|
| 3643 | call WRITEDIAGFI(ngrid,'zdqsed_dustq' |
---|
| 3644 | & ,'sedimentation q','kg.m-2.s-1',3, |
---|
| 3645 | & zdqsed(:,:,igcm_dust_mass)) |
---|
| 3646 | call WRITEDIAGFI(ngrid,'zdqssed_dustq' |
---|
| 3647 | & ,'sedimentation q','kg.m-2.s-1',2, |
---|
| 3648 | & zdqssed(:,igcm_dust_mass)) |
---|
| 3649 | call WRITEDIAGFI(ngrid,'zdqsed_rdsq' |
---|
| 3650 | & ,'sedimentation q','kg.m-2.s-1',3, |
---|
| 3651 | & zdqsed(:,:,igcm_stormdust_mass)) |
---|
| 3652 | call WRITEDIAGFI(ngrid,'rdust','rdust', |
---|
| 3653 | & 'm',3,rdust) |
---|
| 3654 | call WRITEDIAGFI(ngrid,'rstormdust','rstormdust', |
---|
| 3655 | & 'm',3,rstormdust) |
---|
| 3656 | call WRITEDIAGFI(ngrid,'totaldustq','total dust mass', |
---|
| 3657 | & 'kg/kg',3,qdusttotal) |
---|
[2362] | 3658 | |
---|
[2247] | 3659 | select case (trim(dustiropacity)) |
---|
| 3660 | case ("tes") |
---|
| 3661 | call WRITEDIAGFI(ngrid,'dsords', |
---|
| 3662 | & 'density scaled extinction opacity of stormdust at 9.3um(TES)', |
---|
| 3663 | & 'm2.kg-1',3,dsords) |
---|
| 3664 | case ("mcs") |
---|
| 3665 | call WRITEDIAGFI(ngrid,'dsords', |
---|
| 3666 | & 'density scaled extinction opacity of stormdust at 21.6um(MCS)', |
---|
| 3667 | & 'm2.kg-1',3,dsords) |
---|
| 3668 | end select |
---|
[1974] | 3669 | endif ! (rdstorm) |
---|
| 3670 | |
---|
[2628] | 3671 | if (topflows) then |
---|
[2443] | 3672 | call WRITEDIAGFI(ngrid,'refftopdust','refftopdust', |
---|
| 3673 | & 'm',3,rtopdust*ref_r0) |
---|
| 3674 | call WRITEDIAGFI(ngrid,'topdustq','top Dust mass mr', |
---|
| 3675 | & 'kg/kg',3,pq(:,:,igcm_topdust_mass)) |
---|
| 3676 | call WRITEDIAGFI(ngrid,'topdustN','top Dust number', |
---|
| 3677 | & 'part/kg',3,pq(:,:,igcm_topdust_number)) |
---|
[2247] | 3678 | select case (trim(dustiropacity)) |
---|
| 3679 | case ("tes") |
---|
| 3680 | call WRITEDIAGFI(ngrid,'dsotop', |
---|
| 3681 | & 'density scaled extinction opacity of topdust at 9.3um(TES)', |
---|
| 3682 | & 'm2.kg-1',3,dsotop) |
---|
| 3683 | case ("mcs") |
---|
| 3684 | call WRITEDIAGFI(ngrid,'dsotop', |
---|
| 3685 | & 'density scaled extinction opacity of topdust at 21.6um(MCS)', |
---|
| 3686 | & 'm2.kg-1',3,dsotop) |
---|
| 3687 | end select |
---|
[2628] | 3688 | endif ! (topflows) |
---|
[2362] | 3689 | |
---|
[2417] | 3690 | if (dustscaling_mode==2) then |
---|
| 3691 | call writediagfi(ngrid,"dust_rad_adjust", |
---|
| 3692 | & "radiative adjustment coefficient for dust", |
---|
| 3693 | & "",2,dust_rad_adjust) |
---|
| 3694 | endif |
---|
| 3695 | |
---|
[358] | 3696 | if (scavenging) then |
---|
[1047] | 3697 | call WRITEDIAGFI(ngrid,'ccnq','CCN mass mr', |
---|
[756] | 3698 | & 'kg/kg',3,qccn) |
---|
[1047] | 3699 | call WRITEDIAGFI(ngrid,'ccnN','CCN number', |
---|
[756] | 3700 | & 'part/kg',3,nccn) |
---|
[1974] | 3701 | call WRITEDIAGFI(ngrid,'surfccnq','Surf nuclei mass mr', |
---|
[2900] | 3702 | & 'kg.m-2',2,qsurf(1,igcm_ccn_mass,iflat)) |
---|
[2907] | 3703 | do islope=1,nslope |
---|
| 3704 | write(str2(1:2),'(i2.2)') islope |
---|
| 3705 | call WRITEDIAGFI(ngrid,'surfccnq_slope'//str2, |
---|
| 3706 | & 'Surf nuclei mass mr', |
---|
| 3707 | & 'kg.m-2',2,qsurf(1,igcm_ccn_mass,islope)) |
---|
| 3708 | ENDDO |
---|
[1974] | 3709 | call WRITEDIAGFI(ngrid,'surfccnN','Surf nuclei number', |
---|
[2900] | 3710 | & 'kg.m-2',2,qsurf(1,igcm_ccn_number,iflat)) |
---|
[2907] | 3711 | do islope=1,nslope |
---|
| 3712 | write(str2(1:2),'(i2.2)') islope |
---|
| 3713 | call WRITEDIAGFI(ngrid,'surfccnN_slope'//str2, |
---|
| 3714 | & 'Surf nuclei number', |
---|
| 3715 | & 'kg.m-2',2,qsurf(1,igcm_ccn_number,islope)) |
---|
| 3716 | ENDDO |
---|
[358] | 3717 | endif ! (scavenging) |
---|
| 3718 | |
---|
[226] | 3719 | c if (submicron) then |
---|
[1047] | 3720 | c call WRITEDIAGFI(ngrid,'dustsubm','subm mass mr', |
---|
[226] | 3721 | c & 'kg/kg',3,pq(1,1,igcm_dust_submicron)) |
---|
| 3722 | c endif ! (submicron) |
---|
[1264] | 3723 | |
---|
| 3724 | #else |
---|
| 3725 | ! !!! to initialize mesoscale we need scaled variables |
---|
| 3726 | ! !!! because this must correspond to starting point for tracers |
---|
| 3727 | ! call WRITEDIAGFI(ngrid,'dustq','Dust mass mr', |
---|
| 3728 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_mass)) |
---|
| 3729 | ! call WRITEDIAGFI(ngrid,'dustN','Dust number', |
---|
| 3730 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_number)) |
---|
| 3731 | ! call WRITEDIAGFI(ngrid,'ccn','Nuclei mass mr', |
---|
| 3732 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_mass)) |
---|
| 3733 | ! call WRITEDIAGFI(ngrid,'ccnN','Nuclei number', |
---|
| 3734 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_number)) |
---|
| 3735 | if (freedust) then |
---|
| 3736 | call WRITEDIAGFI(ngrid,'dustq','Dust mass mr', |
---|
| 3737 | & 'kg/kg',3,qdust) |
---|
| 3738 | call WRITEDIAGFI(ngrid,'dustN','Dust number', |
---|
| 3739 | & 'part/kg',3,ndust) |
---|
| 3740 | call WRITEDIAGFI(ngrid,'ccn','CCN mass mr', |
---|
| 3741 | & 'kg/kg',3,qccn) |
---|
| 3742 | call WRITEDIAGFI(ngrid,'ccnN','CCN number', |
---|
| 3743 | & 'part/kg',3,nccn) |
---|
| 3744 | else |
---|
| 3745 | call WRITEDIAGFI(ngrid,'dustq','Dust mass mr', |
---|
| 3746 | & 'kg/kg',3,pq(1,1,igcm_dust_mass)) |
---|
| 3747 | call WRITEDIAGFI(ngrid,'dustN','Dust number', |
---|
| 3748 | & 'part/kg',3,pq(1,1,igcm_dust_number)) |
---|
| 3749 | call WRITEDIAGFI(ngrid,'ccn','Nuclei mass mr', |
---|
| 3750 | & 'kg/kg',3,pq(1,1,igcm_ccn_mass)) |
---|
| 3751 | call WRITEDIAGFI(ngrid,'ccnN','Nuclei number', |
---|
| 3752 | & 'part/kg',3,pq(1,1,igcm_ccn_number)) |
---|
| 3753 | endif |
---|
| 3754 | #endif |
---|
| 3755 | |
---|
[2823] | 3756 | end if ! (dustbin.ne.0) |
---|
[226] | 3757 | |
---|
[2149] | 3758 | c ---------------------------------------------------------- |
---|
| 3759 | c GW non-oro outputs |
---|
| 3760 | c ---------------------------------------------------------- |
---|
[705] | 3761 | |
---|
[2149] | 3762 | if(calllott_nonoro) then |
---|
| 3763 | call WRITEDIAGFI(ngrid,"dugwno","GW non-oro dU","m/s2", |
---|
| 3764 | $ 3,d_u_hin/ptimestep) |
---|
| 3765 | call WRITEDIAGFI(ngrid,"dvgwno","GW non-oro dV","m/s2", |
---|
| 3766 | $ 3,d_v_hin/ptimestep) |
---|
| 3767 | endif !(calllott_nonoro) |
---|
| 3768 | |
---|
[226] | 3769 | c ---------------------------------------------------------- |
---|
[705] | 3770 | c Thermospheric outputs |
---|
[267] | 3771 | c ---------------------------------------------------------- |
---|
[705] | 3772 | |
---|
[2362] | 3773 | if(callthermos) then |
---|
[705] | 3774 | |
---|
[1047] | 3775 | call WRITEDIAGFI(ngrid,"q15um","15 um cooling","K/s", |
---|
[705] | 3776 | $ 3,zdtnlte) |
---|
[1047] | 3777 | call WRITEDIAGFI(ngrid,"quv","UV heating","K/s", |
---|
[705] | 3778 | $ 3,zdteuv) |
---|
[1047] | 3779 | call WRITEDIAGFI(ngrid,"cond","Thermal conduction","K/s", |
---|
[705] | 3780 | $ 3,zdtconduc) |
---|
[1047] | 3781 | call WRITEDIAGFI(ngrid,"qnir","NIR heating","K/s", |
---|
[705] | 3782 | $ 3,zdtnirco2) |
---|
| 3783 | |
---|
[2467] | 3784 | !H, H2 and D escape fluxes |
---|
| 3785 | |
---|
| 3786 | call WRITEDIAGFI(ngrid,"PhiH","H escape flux","s-1", |
---|
[2573] | 3787 | $ 0,[PhiEscH]) |
---|
[2467] | 3788 | call WRITEDIAGFI(ngrid,"PhiH2","H2 escape flux","s-1", |
---|
[2573] | 3789 | $ 0,[PhiEscH2]) |
---|
[2467] | 3790 | call WRITEDIAGFI(ngrid,"PhiD","D escape flux","s-1", |
---|
[2573] | 3791 | $ 0,[PhiEscD]) |
---|
[2467] | 3792 | |
---|
| 3793 | ! call wstats(ngrid,"PhiH","H escape flux","s-1", |
---|
[2573] | 3794 | ! $ 0,[PhiEscH]) |
---|
[2467] | 3795 | ! call wstats(ngrid,"PhiH2","H2 escape flux","s-1", |
---|
[2573] | 3796 | ! $ 0,[PhiEscH2]) |
---|
[2467] | 3797 | ! call wstats(ngrid,"PhiD","D escape flux","s-1", |
---|
[2573] | 3798 | ! $ 0,[PhiEscD]) |
---|
[2467] | 3799 | |
---|
[2158] | 3800 | ! call wstats(ngrid,"q15um","15 um cooling","K/s", |
---|
| 3801 | ! $ 3,zdtnlte) |
---|
| 3802 | ! call wstats(ngrid,"quv","UV heating","K/s", |
---|
| 3803 | ! $ 3,zdteuv) |
---|
| 3804 | ! call wstats(ngrid,"cond","Thermal conduction","K/s", |
---|
| 3805 | ! $ 3,zdtconduc) |
---|
| 3806 | ! call wstats(ngrid,"qnir","NIR heating","K/s", |
---|
| 3807 | ! $ 3,zdtnirco2) |
---|
| 3808 | |
---|
[705] | 3809 | endif !(callthermos) |
---|
| 3810 | |
---|
[2362] | 3811 | call WRITEDIAGFI(ngrid,"q15um","15 um cooling","K/s", |
---|
| 3812 | $ 3,zdtnlte) |
---|
| 3813 | call WRITEDIAGFI(ngrid,"qnir","NIR heating","K/s", |
---|
| 3814 | $ 3,zdtnirco2) |
---|
| 3815 | |
---|
[705] | 3816 | c ---------------------------------------------------------- |
---|
| 3817 | c ---------------------------------------------------------- |
---|
[267] | 3818 | c PBL OUTPUS |
---|
| 3819 | c ---------------------------------------------------------- |
---|
| 3820 | c ---------------------------------------------------------- |
---|
| 3821 | |
---|
| 3822 | c ---------------------------------------------------------- |
---|
[226] | 3823 | c Outputs of thermals |
---|
| 3824 | c ---------------------------------------------------------- |
---|
[2362] | 3825 | if (calltherm) then |
---|
[226] | 3826 | ! call WRITEDIAGFI(ngrid,'dtke', |
---|
[2362] | 3827 | ! & 'tendance tke thermiques','m**2/s**2', |
---|
| 3828 | ! & 3,dtke_th) |
---|
[226] | 3829 | ! call WRITEDIAGFI(ngrid,'d_u_ajs', |
---|
[2362] | 3830 | ! & 'tendance u thermiques','m/s', |
---|
| 3831 | ! & 3,pdu_th*ptimestep) |
---|
[226] | 3832 | ! call WRITEDIAGFI(ngrid,'d_v_ajs', |
---|
[2362] | 3833 | ! & 'tendance v thermiques','m/s', |
---|
| 3834 | ! & 3,pdv_th*ptimestep) |
---|
| 3835 | ! if (nq .eq. 2) then |
---|
| 3836 | ! call WRITEDIAGFI(ngrid,'deltaq_th', |
---|
| 3837 | ! & 'delta q thermiques','kg/kg', |
---|
| 3838 | ! & 3,ptimestep*pdq_th(:,:,2)) |
---|
| 3839 | ! end if |
---|
[226] | 3840 | |
---|
[1047] | 3841 | call WRITEDIAGFI(ngrid,'zmax_th', |
---|
[2362] | 3842 | & 'hauteur du thermique','m', |
---|
| 3843 | & 2,zmax_th) |
---|
[1047] | 3844 | call WRITEDIAGFI(ngrid,'hfmax_th', |
---|
[2362] | 3845 | & 'maximum TH heat flux','K.m/s', |
---|
| 3846 | & 2,hfmax_th) |
---|
[1047] | 3847 | call WRITEDIAGFI(ngrid,'wstar', |
---|
[2362] | 3848 | & 'maximum TH vertical velocity','m/s', |
---|
| 3849 | & 2,wstar) |
---|
| 3850 | end if |
---|
[226] | 3851 | |
---|
| 3852 | c ---------------------------------------------------------- |
---|
[267] | 3853 | c ---------------------------------------------------------- |
---|
| 3854 | c END OF PBL OUTPUS |
---|
| 3855 | c ---------------------------------------------------------- |
---|
| 3856 | c ---------------------------------------------------------- |
---|
| 3857 | |
---|
| 3858 | |
---|
| 3859 | c ---------------------------------------------------------- |
---|
[226] | 3860 | c Output in netcdf file "diagsoil.nc" for subterranean |
---|
| 3861 | c variables (output every "ecritphy", as for writediagfi) |
---|
| 3862 | c ---------------------------------------------------------- |
---|
| 3863 | |
---|
| 3864 | ! Write soil temperature |
---|
[2887] | 3865 | call writediagsoil(ngrid,"soiltemp","Soil temperature","K", |
---|
[2900] | 3866 | & 3,tsoil(:,:,iflat)) |
---|
[2907] | 3867 | do islope=1,nslope |
---|
| 3868 | write(str2(1:2),'(i2.2)') islope |
---|
| 3869 | call writediagsoil(ngrid,"soiltemp_slope"//str2, |
---|
| 3870 | & "Soil temperature","K", |
---|
| 3871 | & 3,tsoil(:,:,islope)) |
---|
| 3872 | ENDDO |
---|
[226] | 3873 | ! Write surface temperature |
---|
| 3874 | ! call writediagsoil(ngrid,"tsurf","Surface temperature","K", |
---|
| 3875 | ! & 2,tsurf) |
---|
| 3876 | |
---|
| 3877 | c ========================================================== |
---|
| 3878 | c END OF WRITEDIAGFI |
---|
| 3879 | c ========================================================== |
---|
| 3880 | #endif |
---|
[1212] | 3881 | ! of ifdef MESOSCALE |
---|
[226] | 3882 | |
---|
[42] | 3883 | ELSE ! if(ngrid.eq.1) |
---|
| 3884 | |
---|
[1212] | 3885 | #ifndef MESOSCALE |
---|
[2415] | 3886 | write(*, |
---|
| 3887 | & '("Ls =",f11.6," tau_pref_scenario(",f4.0," Pa) =",f9.6)') |
---|
| 3888 | & zls*180./pi,odpref,tau_pref_scenario |
---|
[42] | 3889 | c ---------------------------------------------------------------------- |
---|
| 3890 | c Output in grads file "g1d" (ONLY when using testphys1d) |
---|
| 3891 | c (output at every X physical timestep) |
---|
| 3892 | c ---------------------------------------------------------------------- |
---|
| 3893 | c |
---|
| 3894 | c CALL writeg1d(ngrid,1,fluxsurf_lw,'Fs_ir','W.m-2') |
---|
[2362] | 3895 | c CALL writeg1d(ngrid,1,tsurf,'tsurf','K') |
---|
| 3896 | c CALL writeg1d(ngrid,1,ps,'ps','Pa') |
---|
| 3897 | c CALL writeg1d(ngrid,nlayer,zt,'T','K') |
---|
[42] | 3898 | c CALL writeg1d(ngrid,nlayer,pu,'u','m.s-1') |
---|
| 3899 | c CALL writeg1d(ngrid,nlayer,pv,'v','m.s-1') |
---|
| 3900 | c CALL writeg1d(ngrid,nlayer,pw,'w','m.s-1') |
---|
[2887] | 3901 | call writediagsoil(ngrid,"soiltemp","Soil temperature","K", |
---|
[2900] | 3902 | & 3,tsoil(:,:,iflat)) |
---|
[2907] | 3903 | do islope=1,nslope |
---|
| 3904 | write(str2(1:2),'(i2.2)') islope |
---|
| 3905 | call writediagsoil(ngrid,"soiltemp_slope"//str2, |
---|
| 3906 | & "Soil temperature","K", |
---|
| 3907 | & 3,tsoil(:,:,islope)) |
---|
| 3908 | ENDDO |
---|
[42] | 3909 | |
---|
[226] | 3910 | ! THERMALS STUFF 1D |
---|
| 3911 | if(calltherm) then |
---|
| 3912 | |
---|
[1047] | 3913 | call WRITEDIAGFI(ngrid,'lmax_th', |
---|
[226] | 3914 | & 'hauteur du thermique','point', |
---|
| 3915 | & 0,lmax_th_out) |
---|
[1047] | 3916 | call WRITEDIAGFI(ngrid,'zmax_th', |
---|
[528] | 3917 | & 'hauteur du thermique','m', |
---|
| 3918 | & 0,zmax_th) |
---|
[1047] | 3919 | call WRITEDIAGFI(ngrid,'hfmax_th', |
---|
[226] | 3920 | & 'maximum TH heat flux','K.m/s', |
---|
| 3921 | & 0,hfmax_th) |
---|
[1047] | 3922 | call WRITEDIAGFI(ngrid,'wstar', |
---|
[226] | 3923 | & 'maximum TH vertical velocity','m/s', |
---|
[528] | 3924 | & 0,wstar) |
---|
[226] | 3925 | |
---|
[2362] | 3926 | end if ! of if (calltherm) |
---|
[226] | 3927 | |
---|
[2362] | 3928 | call WRITEDIAGFI(ngrid,'w','vertical velocity' |
---|
[226] | 3929 | & ,'m/s',1,pw) |
---|
| 3930 | call WRITEDIAGFI(ngrid,"q2","q2","kg.m-3",1,q2) |
---|
| 3931 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",0, |
---|
[2900] | 3932 | & tsurf(:,iflat)) |
---|
[2907] | 3933 | do islope=1,nslope |
---|
| 3934 | write(str2(1:2),'(i2.2)') islope |
---|
| 3935 | call WRITEDIAGFI(ngrid,"tsurf_slope"//str2, |
---|
| 3936 | & "Surface temperature","K",0, |
---|
| 3937 | & tsurf(:,islope)) |
---|
| 3938 | ENDDO |
---|
[277] | 3939 | call WRITEDIAGFI(ngrid,"u","u wind","m/s",1,zu) |
---|
| 3940 | call WRITEDIAGFI(ngrid,"v","v wind","m/s",1,zv) |
---|
[226] | 3941 | |
---|
| 3942 | call WRITEDIAGFI(ngrid,"pplay","Pressure","Pa",1,zplay) |
---|
| 3943 | call WRITEDIAGFI(ngrid,"pplev","Pressure","Pa",1,zplev) |
---|
[358] | 3944 | call WRITEDIAGFI(ngrid,"rho","rho","kg.m-3",1,rho) |
---|
[2362] | 3945 | call WRITEDIAGFI(ngrid,"dtrad","rad. heat. rate", |
---|
[1380] | 3946 | & "K.s-1",1,dtrad) |
---|
[2362] | 3947 | call WRITEDIAGFI(ngrid,'sw_htrt','sw heat. rate', |
---|
[1380] | 3948 | & 'w.m-2',1,zdtsw) |
---|
[2362] | 3949 | call WRITEDIAGFI(ngrid,'lw_htrt','lw heat. rate', |
---|
[1380] | 3950 | & 'w.m-2',1,zdtlw) |
---|
[769] | 3951 | call WRITEDIAGFI(ngrid,"co2ice","co2 ice thickness" |
---|
[2900] | 3952 | & ,"kg.m-2",0,qsurf(:,igcm_co2,iflat)) |
---|
[2907] | 3953 | do islope=1,nslope |
---|
| 3954 | write(str2(1:2),'(i2.2)') islope |
---|
| 3955 | call WRITEDIAGFI(ngrid,"co2ice_slope"//str2, |
---|
| 3956 | & "co2 ice thickness" |
---|
| 3957 | & ,"kg.m-2",0,qsurf(:,igcm_co2,islope)) |
---|
| 3958 | ENDDO |
---|
[544] | 3959 | |
---|
[2182] | 3960 | if (igcm_co2.ne.0) then |
---|
[2362] | 3961 | call co2sat(ngrid*nlayer,zt,zqsatco2) |
---|
[2182] | 3962 | do ig=1,ngrid |
---|
[1617] | 3963 | do l=1,nlayer |
---|
| 3964 | satuco2(ig,l) = zq(ig,l,igcm_co2)* |
---|
| 3965 | & (mmean(ig,l)/44.01)*zplay(ig,l)/zqsatco2(ig,l) |
---|
| 3966 | |
---|
| 3967 | c write(*,*) "In PHYSIQMOD, pt,zt,time ",pt(ig,l) |
---|
| 3968 | c & ,zt(ig,l),ptime |
---|
| 3969 | enddo |
---|
[2182] | 3970 | enddo |
---|
| 3971 | endif |
---|
[1617] | 3972 | |
---|
[1047] | 3973 | call WRITEDIAGFI(ngrid,'ps','Surface pressure','Pa',0,ps) |
---|
[1617] | 3974 | call WRITEDIAGFI(ngrid,'temp','Temperature ', |
---|
[1629] | 3975 | & 'K JA',1,zt) |
---|
[1617] | 3976 | c call WRITEDIAGFI(ngrid,'temp2','Temperature ', |
---|
| 3977 | c & 'K JA2',1,pt) |
---|
| 3978 | |
---|
[226] | 3979 | c CALL writeg1d(ngrid,1,tau,'tau','SI') |
---|
| 3980 | do iq=1,nq |
---|
| 3981 | c CALL writeg1d(ngrid,nlayer,zq(1,1,iq),noms(iq),'kg/kg') |
---|
[1047] | 3982 | call WRITEDIAGFI(ngrid,trim(noms(iq)), |
---|
[226] | 3983 | & trim(noms(iq)),'kg/kg',1,zq(1,1,iq)) |
---|
| 3984 | end do |
---|
[358] | 3985 | if (doubleq) then |
---|
[1047] | 3986 | call WRITEDIAGFI(ngrid,'rdust','rdust', |
---|
[358] | 3987 | & 'm',1,rdust) |
---|
[1974] | 3988 | endif ! doubleq 1D |
---|
| 3989 | if (rdstorm) then |
---|
| 3990 | call writediagfi(1,'aerosol_dust','opacity of env. dust','' |
---|
[2081] | 3991 | & ,1,aerosol(:,:,iaer_dust_doubleq)) |
---|
[1974] | 3992 | call writediagfi(1,'aerosol_stormdust', |
---|
| 3993 | & 'opacity of storm dust','' |
---|
[2081] | 3994 | & ,1,aerosol(:,:,iaer_stormdust_doubleq)) |
---|
[1974] | 3995 | call WRITEDIAGFI(ngrid,'dqsdifdustq','diffusion', |
---|
[2900] | 3996 | & 'kg.m-2.s-1',0,zdqsdif(1,igcm_dust_mass,iflat)) |
---|
[2907] | 3997 | do islope=1,nslope |
---|
| 3998 | write(str2(1:2),'(i2.2)') islope |
---|
| 3999 | call WRITEDIAGFI(ngrid,'dqsdifdustq_slope'//str2, |
---|
| 4000 | & 'diffusion', |
---|
| 4001 | & 'kg.m-2.s-1',0,zdqsdif(1,igcm_dust_mass,islope)) |
---|
| 4002 | ENDDO |
---|
[1974] | 4003 | call WRITEDIAGFI(ngrid,'dqsdifrdsq','diffusion', |
---|
[2900] | 4004 | & 'kg.m-2.s-1',0,zdqsdif(1,igcm_stormdust_mass,iflat)) |
---|
[2907] | 4005 | do islope=1,nslope |
---|
| 4006 | write(str2(1:2),'(i2.2)') islope |
---|
| 4007 | call WRITEDIAGFI(ngrid,'dqsdifrdsq_slope'//str2, |
---|
| 4008 | & 'diffusion', |
---|
| 4009 | & 'kg.m-2.s-1',0,zdqsdif(1,igcm_stormdust_mass,islope)) |
---|
| 4010 | ENDDO |
---|
[1974] | 4011 | call WRITEDIAGFI(ngrid,'mstormdtot', |
---|
| 4012 | & 'total mass of stormdust only', |
---|
| 4013 | & 'kg.m-2',0,mstormdtot) |
---|
| 4014 | call WRITEDIAGFI(ngrid,'mdusttot', |
---|
| 4015 | & 'total mass of dust only', |
---|
| 4016 | & 'kg.m-2',0,mdusttot) |
---|
[2415] | 4017 | call WRITEDIAGFI(ngrid,'tau_pref_scenario', |
---|
| 4018 | & 'Prescribed dust ref opt depth at 610 Pa', |
---|
| 4019 | & 'NU',0,tau_pref_scenario) |
---|
| 4020 | call WRITEDIAGFI(ngrid,'tau_pref_gcm', |
---|
| 4021 | & 'Dust ref opt depth at 610 Pa in the GCM', |
---|
| 4022 | & 'NU',0,tau_pref_gcm) |
---|
[1974] | 4023 | call WRITEDIAGFI(ngrid,'rdsdqsdust', |
---|
| 4024 | & 'deposited surface stormdust mass', |
---|
| 4025 | & 'kg.m-2.s-1',0,rdsdqdustsurf) |
---|
| 4026 | call WRITEDIAGFI(ngrid,'rdsdustq','storm Dust mass mr', |
---|
| 4027 | & 'kg/kg',1,rdsqdust) |
---|
| 4028 | call WRITEDIAGFI(ngrid,"stormfract", |
---|
| 4029 | & "fraction of the mesh,with stormdust", |
---|
| 4030 | & "none",0,totstormfract) |
---|
| 4031 | call WRITEDIAGFI(ngrid,'rdsqsurf', |
---|
| 4032 | & 'stormdust at surface', |
---|
[2900] | 4033 | & 'kg.m-2',0,qsurf(:,igcm_stormdust_mass,iflat)) |
---|
[2907] | 4034 | do islope=1,nslope |
---|
| 4035 | write(str2(1:2),'(i2.2)') islope |
---|
| 4036 | call WRITEDIAGFI(ngrid,'rdsqsurf_slope'//str2, |
---|
| 4037 | & 'stormdust at surface', |
---|
| 4038 | & 'kg.m-2',0,qsurf(:,igcm_stormdust_mass,islope)) |
---|
| 4039 | ENDDO |
---|
[1974] | 4040 | call WRITEDIAGFI(ngrid,'qsurf', |
---|
| 4041 | & 'dust mass at surface', |
---|
[2900] | 4042 | & 'kg.m-2',0,qsurf(:,igcm_dust_mass,iflat)) |
---|
[2907] | 4043 | do islope=1,nslope |
---|
| 4044 | write(str2(1:2),'(i2.2)') islope |
---|
| 4045 | call WRITEDIAGFI(ngrid,'qsurf_slope'//str2, |
---|
| 4046 | & 'dust mass at surface', |
---|
| 4047 | & 'kg.m-2',0,qsurf(:,igcm_dust_mass,islope)) |
---|
| 4048 | ENDDO |
---|
[1974] | 4049 | call WRITEDIAGFI(ngrid,'wspeed','vertical speed stormdust', |
---|
| 4050 | & 'm/s',1,wspeed) |
---|
| 4051 | call WRITEDIAGFI(ngrid,'totaldustq','total dust mass', |
---|
| 4052 | & 'kg/kg',1,qdusttotal) |
---|
| 4053 | call WRITEDIAGFI(ngrid,'dsords', |
---|
| 4054 | & 'density scaled opacity of stormdust', |
---|
| 4055 | & 'm2.kg-1',1,dsords) |
---|
| 4056 | call WRITEDIAGFI(ngrid,'zdqsed_dustq' |
---|
| 4057 | & ,'sedimentation q','kg.m-2.s-1',1, |
---|
| 4058 | & zdqsed(1,:,igcm_dust_mass)) |
---|
| 4059 | call WRITEDIAGFI(ngrid,'zdqsed_rdsq' |
---|
| 4060 | & ,'sedimentation q','kg.m-2.s-1',1, |
---|
| 4061 | & zdqsed(1,:,igcm_stormdust_mass)) |
---|
| 4062 | endif !(rdstorm 1D) |
---|
| 4063 | |
---|
[833] | 4064 | if (water.AND.tifeedback) then |
---|
[1047] | 4065 | call WRITEDIAGFI(ngrid,"soiltemp", |
---|
[833] | 4066 | & "Soil temperature","K", |
---|
| 4067 | & 1,tsoil) |
---|
[1047] | 4068 | call WRITEDIAGFI(ngrid,'soilti', |
---|
[833] | 4069 | & 'Soil Thermal Inertia', |
---|
| 4070 | & 'J.s-1/2.m-2.K-1',1,inertiesoil) |
---|
| 4071 | endif |
---|
[358] | 4072 | |
---|
[520] | 4073 | cccccccccccccccccc scavenging & water outputs 1D TN ccccccccccccccc |
---|
[358] | 4074 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
[520] | 4075 | IF (water) THEN |
---|
[722] | 4076 | |
---|
| 4077 | if (.not.activice) then |
---|
| 4078 | |
---|
| 4079 | tauTES=0 |
---|
[1047] | 4080 | do l=1,nlayer |
---|
[722] | 4081 | Qabsice = min( |
---|
| 4082 | & max(0.4e6*rice(1,l)*(1.+nuice_ref)-0.05 ,0.),1.2 |
---|
| 4083 | & ) |
---|
| 4084 | opTES(1,l)= 0.75 * Qabsice * |
---|
| 4085 | & zq(1,l,igcm_h2o_ice) * |
---|
[883] | 4086 | & (zplev(1,l) - zplev(1,l+1)) / g |
---|
[722] | 4087 | & / (rho_ice * rice(1,l) * (1.+nuice_ref)) |
---|
| 4088 | tauTES=tauTES+ opTES(1,l) |
---|
| 4089 | enddo |
---|
[1047] | 4090 | CALL WRITEDIAGFI(ngrid,'tauTESap', |
---|
[358] | 4091 | & 'tau abs 825 cm-1', |
---|
[520] | 4092 | & '',0,tauTES) |
---|
[722] | 4093 | else |
---|
| 4094 | |
---|
[1047] | 4095 | CALL WRITEDIAGFI(ngrid,'tauTES', |
---|
[520] | 4096 | & 'tau abs 825 cm-1', |
---|
| 4097 | & '',0,taucloudtes) |
---|
[722] | 4098 | endif |
---|
[520] | 4099 | |
---|
| 4100 | mtot = 0 |
---|
| 4101 | icetot = 0 |
---|
[2900] | 4102 | h2otot = qsurf(1,igcm_h2o_ice,iflat) |
---|
[2312] | 4103 | if (hdo) THEN |
---|
| 4104 | mtotD = 0 |
---|
| 4105 | icetotD = 0 |
---|
[2900] | 4106 | hdotot = qsurf(1,igcm_hdo_ice,iflat) |
---|
[2312] | 4107 | ENDIF !hdo |
---|
[722] | 4108 | |
---|
[358] | 4109 | do l=1,nlayer |
---|
[520] | 4110 | mtot = mtot + zq(1,l,igcm_h2o_vap) |
---|
[883] | 4111 | & * (zplev(1,l) - zplev(1,l+1)) / g |
---|
[520] | 4112 | icetot = icetot + zq(1,l,igcm_h2o_ice) |
---|
[883] | 4113 | & * (zplev(1,l) - zplev(1,l+1)) / g |
---|
[2312] | 4114 | if (hdo) THEN |
---|
[2362] | 4115 | mtotD = mtotD + zq(1,l,igcm_hdo_vap) |
---|
[2312] | 4116 | & * (zplev(1,l) - zplev(1,l+1)) / g |
---|
[2362] | 4117 | icetotD = icetotD + zq(1,l,igcm_hdo_ice) |
---|
[2312] | 4118 | & * (zplev(1,l) - zplev(1,l+1)) / g |
---|
| 4119 | ENDIF !hdo |
---|
[722] | 4120 | end do |
---|
| 4121 | h2otot = h2otot+mtot+icetot |
---|
[2312] | 4122 | IF (hdo) then |
---|
| 4123 | hdotot = hdotot+mtotD+icetotD |
---|
| 4124 | ENDIF ! hdo |
---|
[722] | 4125 | |
---|
[2362] | 4126 | |
---|
[1047] | 4127 | CALL WRITEDIAGFI(ngrid,'h2otot', |
---|
[722] | 4128 | & 'h2otot', |
---|
| 4129 | & 'kg/m2',0,h2otot) |
---|
[1047] | 4130 | CALL WRITEDIAGFI(ngrid,'mtot', |
---|
[722] | 4131 | & 'mtot', |
---|
| 4132 | & 'kg/m2',0,mtot) |
---|
[1047] | 4133 | CALL WRITEDIAGFI(ngrid,'icetot', |
---|
[722] | 4134 | & 'icetot', |
---|
| 4135 | & 'kg/m2',0,icetot) |
---|
[2819] | 4136 | CALL WRITEDIAGFI(ngrid,'albedo', |
---|
| 4137 | & 'albedo', |
---|
[2900] | 4138 | & '',2,albedo(1,1,iflat)) |
---|
[2907] | 4139 | do islope=1,nslope |
---|
| 4140 | write(str2(1:2),'(i2.2)') islope |
---|
| 4141 | CALL WRITEDIAGFI(ngrid,'albedo_slope'//str2, |
---|
| 4142 | & 'albedo', |
---|
| 4143 | & '',2,albedo(1,1,islope)) |
---|
| 4144 | ENDDO |
---|
[2312] | 4145 | IF (hdo) THEN |
---|
| 4146 | CALL WRITEDIAGFI(ngrid,'mtotD', |
---|
| 4147 | & 'mtotD', |
---|
| 4148 | & 'kg/m2',0,mtotD) |
---|
| 4149 | CALL WRITEDIAGFI(ngrid,'icetotD', |
---|
| 4150 | & 'icetotD', |
---|
| 4151 | & 'kg/m2',0,icetotD) |
---|
| 4152 | CALL WRITEDIAGFI(ngrid,'hdotot', |
---|
| 4153 | & 'hdotot', |
---|
| 4154 | & 'kg/m2',0,hdotot) |
---|
| 4155 | |
---|
| 4156 | C Calculation of the D/H ratio |
---|
| 4157 | do l=1,nlayer |
---|
[2324] | 4158 | if (zq(1,l,igcm_h2o_vap).gt.qperemin) then |
---|
[2312] | 4159 | DoH_vap(1,l) = 0.5*( zq(1,l,igcm_hdo_vap)/ |
---|
| 4160 | & zq(1,l,igcm_h2o_vap) )/155.76e-6 |
---|
| 4161 | else |
---|
| 4162 | DoH_vap(1,l) = 0. |
---|
| 4163 | endif |
---|
| 4164 | enddo |
---|
| 4165 | |
---|
| 4166 | do l=1,nlayer |
---|
[2324] | 4167 | if (zq(1,l,igcm_h2o_ice).gt.qperemin) then |
---|
[2312] | 4168 | DoH_ice(1,l) = 0.5*( zq(1,l,igcm_hdo_ice)/ |
---|
| 4169 | & zq(1,l,igcm_h2o_ice) )/155.76e-6 |
---|
| 4170 | else |
---|
| 4171 | DoH_ice(1,l) = 0. |
---|
| 4172 | endif |
---|
| 4173 | enddo |
---|
| 4174 | |
---|
| 4175 | CALL WRITEDIAGFI(ngrid,'DoH_vap', |
---|
| 4176 | & 'D/H ratio in vapor', |
---|
[2362] | 4177 | & ' ',1,DoH_vap) |
---|
[2312] | 4178 | CALL WRITEDIAGFI(ngrid,'DoH_ice', |
---|
| 4179 | & 'D/H ratio in ice', |
---|
| 4180 | & '',1,DoH_ice) |
---|
| 4181 | |
---|
| 4182 | ENDIF !Hdo |
---|
| 4183 | |
---|
| 4184 | |
---|
[722] | 4185 | if (scavenging) then |
---|
| 4186 | |
---|
| 4187 | rave = 0 |
---|
| 4188 | do l=1,nlayer |
---|
[669] | 4189 | cccc Column integrated effective ice radius |
---|
| 4190 | cccc is weighted by total ice surface area (BETTER) |
---|
[722] | 4191 | rave = rave + tauscaling(1) * |
---|
| 4192 | & zq(1,l,igcm_ccn_number) * |
---|
[883] | 4193 | & (zplev(1,l) - zplev(1,l+1)) / g * |
---|
[722] | 4194 | & rice(1,l) * rice(1,l)* (1.+nuice_ref) |
---|
| 4195 | enddo |
---|
| 4196 | rave=icetot*0.75/max(rave*pi*rho_ice,1.e-30) ! surface weight |
---|
| 4197 | |
---|
| 4198 | Nccntot= 0 |
---|
[1047] | 4199 | call watersat(ngrid*nlayer,zt,zplay,zqsat) |
---|
| 4200 | do l=1,nlayer |
---|
[669] | 4201 | Nccntot = Nccntot + |
---|
[520] | 4202 | & zq(1,l,igcm_ccn_number)*tauscaling(1) |
---|
[883] | 4203 | & *(zplev(1,l) - zplev(1,l+1)) / g |
---|
[520] | 4204 | satu(1,l) = zq(1,l,igcm_h2o_vap)/zqsat(1,l) |
---|
| 4205 | satu(1,l) = (max(satu(1,l),float(1))-1) |
---|
| 4206 | ! & * zq(1,l,igcm_h2o_vap) * |
---|
[883] | 4207 | ! & (zplev(1,l) - zplev(1,l+1)) / g |
---|
[520] | 4208 | enddo |
---|
[722] | 4209 | call WRITEDIAGFI(ngrid,"satu","vap in satu","kg/kg",1, |
---|
| 4210 | & satu) |
---|
[1047] | 4211 | CALL WRITEDIAGFI(ngrid,'Nccntot', |
---|
[669] | 4212 | & 'Nccntot', |
---|
| 4213 | & 'nbr/m2',0,Nccntot) |
---|
[411] | 4214 | |
---|
[1047] | 4215 | call WRITEDIAGFI(ngrid,'zdqsed_dustq' |
---|
[769] | 4216 | & ,'sedimentation q','kg.m-2.s-1',1,zdqsed(1,:,igcm_dust_mass)) |
---|
[1047] | 4217 | call WRITEDIAGFI(ngrid,'zdqsed_dustN' |
---|
[769] | 4218 | &,'sedimentation N','Nbr.m-2.s-1',1, |
---|
| 4219 | & zdqsed(1,:,igcm_dust_number)) |
---|
[722] | 4220 | |
---|
| 4221 | else ! of if (scavenging) |
---|
| 4222 | |
---|
| 4223 | cccc Column integrated effective ice radius |
---|
| 4224 | cccc is weighted by total ice mass (LESS GOOD) |
---|
| 4225 | rave = 0 |
---|
| 4226 | do l=1,nlayer |
---|
| 4227 | rave = rave + zq(1,l,igcm_h2o_ice) |
---|
[883] | 4228 | & * (zplev(1,l) - zplev(1,l+1)) / g |
---|
[722] | 4229 | & * rice(1,l) * (1.+nuice_ref) |
---|
| 4230 | enddo |
---|
| 4231 | rave=max(rave/max(icetot,1.e-30),1.e-30) ! mass weight |
---|
| 4232 | endif ! of if (scavenging) |
---|
| 4233 | |
---|
[1617] | 4234 | |
---|
[1047] | 4235 | CALL WRITEDIAGFI(ngrid,'reffice', |
---|
[722] | 4236 | & 'reffice', |
---|
| 4237 | & 'm',0,rave) |
---|
| 4238 | |
---|
[1711] | 4239 | !Alternative A. Pottier weighting |
---|
| 4240 | rave2 = 0. |
---|
| 4241 | totrave2 = 0. |
---|
| 4242 | do l=1,nlayer |
---|
| 4243 | rave2 =rave2+ zq(1,l,igcm_h2o_ice)*rice(1,l) |
---|
| 4244 | totrave2 = totrave2 + zq(1,l,igcm_h2o_ice) |
---|
| 4245 | end do |
---|
| 4246 | rave2=max(rave2/max(totrave2,1.e-30),1.e-30) |
---|
| 4247 | CALL WRITEDIAGFI(ngrid,'rmoym', |
---|
[2545] | 4248 | & 'reffice', |
---|
[1711] | 4249 | & 'm',0,rave2) |
---|
| 4250 | |
---|
[722] | 4251 | do iq=1,nq |
---|
[1047] | 4252 | call WRITEDIAGFI(ngrid,trim(noms(iq))//'_s', |
---|
[2900] | 4253 | & trim(noms(iq))//'_s','kg/kg',0,qsurf(1,iq,iflat)) |
---|
[722] | 4254 | end do |
---|
[358] | 4255 | |
---|
[2316] | 4256 | call WRITEDIAGFI(ngrid,"watercap","Water ice thickness" |
---|
| 4257 | & ,"kg.m-2",0,watercap) |
---|
[1047] | 4258 | call WRITEDIAGFI(ngrid,'zdqcloud_ice','cloud ice', |
---|
[633] | 4259 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_h2o_ice)) |
---|
[1047] | 4260 | call WRITEDIAGFI(ngrid,'zdqcloud_vap','cloud vap', |
---|
[633] | 4261 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_h2o_vap)) |
---|
[1047] | 4262 | call WRITEDIAGFI(ngrid,'zdqcloud','cloud ice', |
---|
[633] | 4263 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_h2o_ice) |
---|
| 4264 | & +zdqcloud(1,:,igcm_h2o_vap)) |
---|
[2312] | 4265 | IF (hdo) THEN |
---|
| 4266 | call WRITEDIAGFI(ngrid,'zdqcloud_iceD','cloud ice hdo', |
---|
| 4267 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_hdo_ice)) |
---|
| 4268 | call WRITEDIAGFI(ngrid,'zdqcloud_vapD','cloud vap hdo', |
---|
| 4269 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_hdo_vap)) |
---|
| 4270 | |
---|
| 4271 | ENDIF ! hdo |
---|
[2383] | 4272 | |
---|
[1711] | 4273 | call WRITEDIAGFI(ngrid,"rice","ice radius","m",1, |
---|
[411] | 4274 | & rice) |
---|
[1711] | 4275 | |
---|
| 4276 | if (CLFvarying) then |
---|
| 4277 | call WRITEDIAGFI(ngrid,'totcloudfrac', |
---|
| 4278 | & 'Total cloud fraction', |
---|
| 4279 | & ' ',0,totcloudfrac) |
---|
| 4280 | endif !clfvarying |
---|
| 4281 | |
---|
[2362] | 4282 | ENDIF ! of IF (water) |
---|
[2545] | 4283 | |
---|
[358] | 4284 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 4285 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 4286 | |
---|
[883] | 4287 | zlocal(1)=-log(zplay(1,1)/zplev(1,1))* Rnew(1,1)*zt(1,1)/g |
---|
[226] | 4288 | |
---|
| 4289 | do l=2,nlayer-1 |
---|
| 4290 | tmean=zt(1,l) |
---|
| 4291 | if(zt(1,l).ne.zt(1,l-1)) |
---|
| 4292 | & tmean=(zt(1,l)-zt(1,l-1))/log(zt(1,l)/zt(1,l-1)) |
---|
| 4293 | zlocal(l)= zlocal(l-1) |
---|
[883] | 4294 | & -log(zplay(1,l)/zplay(1,l-1))*rnew(1,l)*tmean/g |
---|
[226] | 4295 | enddo |
---|
| 4296 | zlocal(nlayer)= zlocal(nlayer-1)- |
---|
[883] | 4297 | & log(zplay(1,nlayer)/zplay(1,nlayer-1))* |
---|
[226] | 4298 | & rnew(1,nlayer)*tmean/g |
---|
[2887] | 4299 | |
---|
| 4300 | |
---|
[1212] | 4301 | #endif |
---|
[226] | 4302 | |
---|
[42] | 4303 | END IF ! if(ngrid.ne.1) |
---|
[2374] | 4304 | ! test for co2 conservation with co2 microphysics |
---|
| 4305 | if (igcm_co2_ice.ne.0) then |
---|
| 4306 | co2totB = 0. ! added by C.M. |
---|
| 4307 | do ig=1,ngrid |
---|
| 4308 | do l=1,nlayer |
---|
| 4309 | co2totB = co2totB + (zplev(ig,l)-zplev(ig,l+1))/g* |
---|
| 4310 | & (pq(ig,l,igcm_co2)+pq(ig,l,igcm_co2_ice) |
---|
| 4311 | & +(pdq(ig,l,igcm_co2)+pdq(ig,l,igcm_co2_ice))*ptimestep) |
---|
| 4312 | enddo |
---|
[2900] | 4313 | co2totB = co2totB + qsurf(ig,igcm_co2,iflat) |
---|
[2362] | 4314 | enddo |
---|
[2599] | 4315 | else |
---|
| 4316 | co2totB = 0. ! added by C.M. |
---|
| 4317 | do ig=1,ngrid |
---|
| 4318 | do l=1,nlayer |
---|
| 4319 | co2totB = co2totB + (zplev(ig,l)-zplev(ig,l+1))/g* |
---|
| 4320 | & (pq(ig,l,igcm_co2)+pdq(ig,l,igcm_co2)*ptimestep) |
---|
| 4321 | enddo |
---|
[2900] | 4322 | co2totB = co2totB + qsurf(ig,igcm_co2,iflat) |
---|
[2599] | 4323 | enddo |
---|
| 4324 | endif ! of if (igcm_co2_ice.ne.0) |
---|
[2660] | 4325 | co2conservation = (co2totA-co2totB)/co2totA |
---|
| 4326 | call WRITEDIAGFI(ngrid, 'co2conservation', |
---|
[2374] | 4327 | & 'Total CO2 mass conservation in physic', |
---|
[2660] | 4328 | & ' ', 0, co2conservation) |
---|
[2223] | 4329 | ! XIOS outputs |
---|
| 4330 | #ifdef CPP_XIOS |
---|
| 4331 | ! Send fields to XIOS: (NB these fields must also be defined as |
---|
| 4332 | ! <field id="..." /> in context_lmdz_physics.xml to be correctly used) |
---|
| 4333 | CALL send_xios_field("ls",zls*180./pi) |
---|
[2545] | 4334 | |
---|
| 4335 | CALL send_xios_field("controle",tab_cntrl_mod,1) |
---|
| 4336 | |
---|
| 4337 | CALL send_xios_field("ap",ap,1) |
---|
| 4338 | CALL send_xios_field("bp",bp,1) |
---|
| 4339 | CALL send_xios_field("aps",aps,1) |
---|
| 4340 | CALL send_xios_field("bps",bps,1) |
---|
| 4341 | |
---|
| 4342 | CALL send_xios_field("phisinit",phisfi) |
---|
[2223] | 4343 | |
---|
| 4344 | CALL send_xios_field("ps",ps) |
---|
| 4345 | CALL send_xios_field("area",cell_area) |
---|
[2333] | 4346 | |
---|
[2685] | 4347 | ! CALL send_xios_field("ISR",fluxtop_dn_sw_tot) |
---|
[2333] | 4348 | CALL send_xios_field("OLR",fluxtop_lw) |
---|
| 4349 | |
---|
[2911] | 4350 | CALL send_xios_field("tsurf",tsurf(:,iflat)) |
---|
[2551] | 4351 | ! CALL send_xios_field("inertiedat",inertiedat) |
---|
[2911] | 4352 | CALL send_xios_field("tsoil",tsoil(:,:,iflat)) |
---|
| 4353 | CALL send_xios_field("co2ice",qsurf(:,igcm_co2,iflat)) |
---|
[2223] | 4354 | |
---|
[2551] | 4355 | ! CALL send_xios_field("temp",zt) |
---|
[2223] | 4356 | CALL send_xios_field("u",zu) |
---|
| 4357 | CALL send_xios_field("v",zv) |
---|
[2544] | 4358 | |
---|
[2551] | 4359 | ! CALL send_xios_field("rho",rho) |
---|
[2545] | 4360 | ! Orographic Gravity waves tendencies |
---|
[2551] | 4361 | ! if (calllott) then |
---|
| 4362 | ! CALL send_xios_field("dugw",zdugw/ptimestep) |
---|
| 4363 | ! CALL send_xios_field("dvgw",zdvgw/ptimestep) |
---|
| 4364 | ! CALL send_xios_field("dtgw",zdtgw/ptimestep) |
---|
| 4365 | ! endif |
---|
[2333] | 4366 | !CREATE IF CO2CYCLE |
---|
[2823] | 4367 | ! if (igcm_co2.ne.0) then |
---|
[2551] | 4368 | ! CALL send_xios_field("co2",zq(:,:,igcm_co2)) |
---|
| 4369 | ! endif |
---|
[2545] | 4370 | ! Water cycle |
---|
[2551] | 4371 | ! if (water) then |
---|
| 4372 | ! CALL send_xios_field("watercap",watercap) |
---|
[2545] | 4373 | !CALL send_xios_field("watercaptag",watercaptag) |
---|
[2551] | 4374 | ! CALL send_xios_field("mtot",mtot) |
---|
| 4375 | ! CALL send_xios_field("icetot",icetot) |
---|
| 4376 | ! if (igcm_h2o_vap.ne.0 .and. igcm_h2o_ice.ne.0) then |
---|
| 4377 | ! CALL send_xios_field("h2o_vap",zq(:,:,igcm_h2o_vap)) |
---|
| 4378 | ! CALL send_xios_field("h2o_ice",zq(:,:,igcm_h2o_ice)) |
---|
| 4379 | ! endif |
---|
| 4380 | ! endif |
---|
| 4381 | ! if (.not.activice) then |
---|
[2545] | 4382 | ! CALL send_xios_field("tauTESap",tauTES) |
---|
[2551] | 4383 | ! else |
---|
| 4384 | ! CALL send_xios_field("tauTES",taucloudtes) |
---|
| 4385 | ! endif |
---|
[2223] | 4386 | |
---|
[2551] | 4387 | ! CALL send_xios_field("h2o_ice_s",qsurf(:,igcm_h2o_ice)) |
---|
[2545] | 4388 | |
---|
| 4389 | |
---|
[2223] | 4390 | if (lastcall.and.is_omp_master) then |
---|
| 4391 | write(*,*) "physiq lastcall: call xios_context_finalize" |
---|
| 4392 | call xios_context_finalize |
---|
| 4393 | endif |
---|
| 4394 | #endif |
---|
| 4395 | |
---|
[2551] | 4396 | if (check_physics_outputs) then |
---|
| 4397 | ! Check the validity of updated fields at the end of the physics step |
---|
[2570] | 4398 | call check_physics_fields("end of physiq:",zt,zu,zv,zplev,zq) |
---|
[2551] | 4399 | endif |
---|
[2223] | 4400 | |
---|
[42] | 4401 | icount=icount+1 |
---|
[1549] | 4402 | |
---|
| 4403 | END SUBROUTINE physiq |
---|
| 4404 | |
---|
| 4405 | END MODULE physiq_mod |
---|