[1549] | 1 | MODULE physiq_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[234] | 7 | SUBROUTINE physiq( |
---|
[226] | 8 | $ ngrid,nlayer,nq |
---|
| 9 | $ ,firstcall,lastcall |
---|
| 10 | $ ,pday,ptime,ptimestep |
---|
| 11 | $ ,pplev,pplay,pphi |
---|
| 12 | $ ,pu,pv,pt,pq |
---|
[1312] | 13 | $ ,flxw |
---|
[1576] | 14 | $ ,pdu,pdv,pdt,pdq,pdpsrf) |
---|
[42] | 15 | |
---|
[1996] | 16 | use watercloud_mod, only: watercloud |
---|
| 17 | use watersat_mod, only: watersat |
---|
[2009] | 18 | use co2condens_mod, only: co2condens |
---|
[1922] | 19 | use co2cloud_mod, only: co2cloud, mem_Mccn_co2, mem_Mh2o_co2, |
---|
| 20 | & mem_Nccn_co2 |
---|
[1974] | 21 | use callradite_mod, only: callradite |
---|
| 22 | use callsedim_mod, only: callsedim |
---|
| 23 | use rocketduststorm_mod, only: rocketduststorm, dustliftday |
---|
| 24 | use calcstormfract_mod, only: calcstormfract |
---|
[1617] | 25 | use tracer_mod, only: noms, mmol, igcm_co2, igcm_n2, igcm_co2_ice, |
---|
[1036] | 26 | & igcm_co, igcm_o, igcm_h2o_vap, igcm_h2o_ice, |
---|
| 27 | & igcm_ccn_mass, igcm_ccn_number, |
---|
[1617] | 28 | & igcm_ccnco2_mass, igcm_ccnco2_number, |
---|
| 29 | & rho_ice_co2,nuiceco2_sed,nuiceco2_ref, |
---|
[1036] | 30 | & igcm_dust_mass, igcm_dust_number, igcm_h2o2, |
---|
[1660] | 31 | & nuice_ref, rho_ice, rho_dust, ref_r0, |
---|
[1974] | 32 | & igcm_he, igcm_stormdust_mass, |
---|
| 33 | & igcm_stormdust_number |
---|
[1047] | 34 | use comsoil_h, only: inertiedat, ! soil thermal inertia |
---|
[1224] | 35 | & tsoil, nsoilmx ! number of subsurface layers |
---|
[1974] | 36 | use geometry_mod, only: longitude, latitude, cell_area, |
---|
| 37 | & longitude_deg |
---|
[1541] | 38 | use comgeomfi_h, only: sinlon, coslon, sinlat, coslat |
---|
[1047] | 39 | use surfdat_h, only: phisfi, albedodat, zmea, zstd, zsig, zgam, |
---|
| 40 | & zthe, z0, albedo_h2o_ice, |
---|
[1224] | 41 | & frost_albedo_threshold, |
---|
| 42 | & tsurf, co2ice, emis, |
---|
[1974] | 43 | & capcal, fluxgrd, qsurf, |
---|
[2079] | 44 | & hmons,summit,base |
---|
[1974] | 45 | use comsaison_h, only: dist_sol, declin, mu0, fract, local_time |
---|
[1047] | 46 | use slope_mod, only: theta_sl, psi_sl |
---|
| 47 | use conc_mod, only: rnew, cpnew, mmean |
---|
[1525] | 48 | use time_phylmdz_mod, only: iphysiq, day_step, ecritstart, daysec |
---|
[1771] | 49 | use dimradmars_mod, only: tauscaling, aerosol, totcloudfrac, |
---|
[1246] | 50 | & dtrad, fluxrad_sky, fluxrad, albedo, |
---|
[2081] | 51 | & naerkind, iaer_dust_doubleq, |
---|
| 52 | & iaer_stormdust_doubleq |
---|
[1236] | 53 | use turb_mod, only: q2, wstar, ustar, sensibFlux, |
---|
| 54 | & zmax_th, hfmax_th, turb_resolved |
---|
[1229] | 55 | use planete_h, only: aphelie, periheli, year_day, peri_day, |
---|
| 56 | & obliquit |
---|
[1974] | 57 | USE comcstfi_h, only: r, cpp, mugaz, g, rcp, pi, rad |
---|
[1912] | 58 | USE calldrag_noro_mod, ONLY: calldrag_noro |
---|
[1969] | 59 | USE vdifc_mod, ONLY: vdifc |
---|
[1266] | 60 | use param_v4_h, only: nreact,n_avog, |
---|
| 61 | & fill_data_thermos, allocate_param_thermos |
---|
| 62 | use iono_h, only: allocate_param_iono |
---|
[1974] | 63 | use compute_dtau_mod, only: compute_dtau |
---|
[2149] | 64 | use nonoro_gwd_ran_mod, only: nonoro_gwd_ran |
---|
[1112] | 65 | #ifdef MESOSCALE |
---|
| 66 | use comsoil_h, only: mlayer,layer |
---|
| 67 | use surfdat_h, only: z0_default |
---|
[1236] | 68 | use comm_wrf |
---|
[1212] | 69 | #else |
---|
[1465] | 70 | use planetwide_mod |
---|
[1212] | 71 | use phyredem, only: physdem0, physdem1 |
---|
[1944] | 72 | use phyetat0_mod, only: phyetat0 |
---|
[1212] | 73 | use eofdump_mod, only: eofdump |
---|
[1621] | 74 | USE vertical_layers_mod, ONLY: ap,bp,aps,bps |
---|
[1974] | 75 | |
---|
[1112] | 76 | #endif |
---|
| 77 | |
---|
[1922] | 78 | |
---|
| 79 | |
---|
[42] | 80 | IMPLICIT NONE |
---|
| 81 | c======================================================================= |
---|
| 82 | c |
---|
| 83 | c subject: |
---|
| 84 | c -------- |
---|
| 85 | c |
---|
| 86 | c Organisation of the physical parametrisations of the LMD |
---|
| 87 | c martian atmospheric general circulation model. |
---|
| 88 | c |
---|
| 89 | c The GCM can be run without or with tracer transport |
---|
| 90 | c depending on the value of Logical "tracer" in file "callphys.def" |
---|
| 91 | c Tracers may be water vapor, ice OR chemical species OR dust particles |
---|
| 92 | c |
---|
| 93 | c SEE comments in initracer.F about numbering of tracer species... |
---|
| 94 | c |
---|
| 95 | c It includes: |
---|
| 96 | c |
---|
| 97 | c 1. Initialization: |
---|
| 98 | c 1.1 First call initializations |
---|
| 99 | c 1.2 Initialization for every call to physiq |
---|
| 100 | c 1.2.5 Compute mean mass and cp, R and thermal conduction coeff. |
---|
| 101 | c 2. Compute radiative transfer tendencies |
---|
| 102 | c (longwave and shortwave) for CO2 and aerosols. |
---|
| 103 | c 3. Gravity wave and subgrid scale topography drag : |
---|
| 104 | c 4. Vertical diffusion (turbulent mixing): |
---|
| 105 | c 5. Convective adjustment |
---|
| 106 | c 6. Condensation and sublimation of carbon dioxide. |
---|
| 107 | c 7. TRACERS : |
---|
[1617] | 108 | c 7a. water, water ice, co2 ice (clouds) |
---|
[42] | 109 | c 7b. call for photochemistry when tracers are chemical species |
---|
| 110 | c 7c. other scheme for tracer (dust) transport (lifting, sedimentation) |
---|
| 111 | c 7d. updates (CO2 pressure variations, surface budget) |
---|
| 112 | c 8. Contribution to tendencies due to thermosphere |
---|
| 113 | c 9. Surface and sub-surface temperature calculations |
---|
| 114 | c 10. Write outputs : |
---|
| 115 | c - "startfi", "histfi" (if it's time) |
---|
| 116 | c - Saving statistics (if "callstats = .true.") |
---|
| 117 | c - Dumping eof (if "calleofdump = .true.") |
---|
| 118 | c - Output any needed variables in "diagfi" |
---|
| 119 | c 11. Diagnostic: mass conservation of tracers |
---|
| 120 | c |
---|
| 121 | c author: |
---|
| 122 | c ------- |
---|
| 123 | c Frederic Hourdin 15/10/93 |
---|
| 124 | c Francois Forget 1994 |
---|
| 125 | c Christophe Hourdin 02/1997 |
---|
| 126 | c Subroutine completly rewritten by F.Forget (01/2000) |
---|
| 127 | c Introduction of the photochemical module: S. Lebonnois (11/2002) |
---|
| 128 | c Introduction of the thermosphere module: M. Angelats i Coll (2002) |
---|
| 129 | c Water ice clouds: Franck Montmessin (update 06/2003) |
---|
| 130 | c Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
---|
| 131 | c Nb: See callradite.F for more information. |
---|
[234] | 132 | c Mesoscale lines: Aymeric Spiga (2007 - 2011) -- check MESOSCALE flags |
---|
[414] | 133 | c jul 2011 malv+fgg: Modified calls to NIR heating routine and 15 um cooling parameterization |
---|
[1617] | 134 | c |
---|
| 135 | c 10/16 J. Audouard: modifications for CO2 clouds scheme |
---|
| 136 | |
---|
[42] | 137 | c arguments: |
---|
| 138 | c ---------- |
---|
| 139 | c |
---|
| 140 | c input: |
---|
| 141 | c ------ |
---|
| 142 | c ecri period (in dynamical timestep) to write output |
---|
| 143 | c ngrid Size of the horizontal grid. |
---|
| 144 | c All internal loops are performed on that grid. |
---|
| 145 | c nlayer Number of vertical layers. |
---|
| 146 | c nq Number of advected fields |
---|
| 147 | c firstcall True at the first call |
---|
| 148 | c lastcall True at the last call |
---|
| 149 | c pday Number of days counted from the North. Spring |
---|
| 150 | c equinoxe. |
---|
| 151 | c ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT |
---|
| 152 | c ptimestep timestep (s) |
---|
| 153 | c pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa) |
---|
| 154 | c pplev(ngrid,nlayer+1) intermediate pressure levels (pa) |
---|
| 155 | c pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2s-2) |
---|
| 156 | c pu(ngrid,nlayer) u component of the wind (ms-1) |
---|
| 157 | c pv(ngrid,nlayer) v component of the wind (ms-1) |
---|
| 158 | c pt(ngrid,nlayer) Temperature (K) |
---|
| 159 | c pq(ngrid,nlayer,nq) Advected fields |
---|
[330] | 160 | c pudyn(ngrid,nlayer) | |
---|
| 161 | c pvdyn(ngrid,nlayer) | Dynamical temporal derivative for the |
---|
| 162 | c ptdyn(ngrid,nlayer) | corresponding variables |
---|
| 163 | c pqdyn(ngrid,nlayer,nq) | |
---|
[1312] | 164 | c flxw(ngrid,nlayer) vertical mass flux (kg/s) at layer lower boundary |
---|
[42] | 165 | c |
---|
| 166 | c output: |
---|
| 167 | c ------- |
---|
| 168 | c |
---|
[1047] | 169 | c pdu(ngrid,nlayer) | |
---|
| 170 | c pdv(ngrid,nlayer) | Temporal derivative of the corresponding |
---|
| 171 | c pdt(ngrid,nlayer) | variables due to physical processes. |
---|
| 172 | c pdq(ngrid,nlayer,nq) | |
---|
| 173 | c pdpsrf(ngrid) | |
---|
[42] | 174 | |
---|
| 175 | c |
---|
| 176 | c======================================================================= |
---|
| 177 | c |
---|
| 178 | c 0. Declarations : |
---|
| 179 | c ------------------ |
---|
| 180 | |
---|
[1922] | 181 | include "callkeys.h" |
---|
| 182 | include "comg1d.h" |
---|
| 183 | include "nlteparams.h" |
---|
| 184 | include "netcdf.inc" |
---|
[42] | 185 | |
---|
| 186 | c Arguments : |
---|
| 187 | c ----------- |
---|
| 188 | |
---|
| 189 | c inputs: |
---|
| 190 | c ------- |
---|
[1312] | 191 | INTEGER,INTENT(in) :: ngrid ! number of atmospheric columns |
---|
| 192 | INTEGER,INTENT(in) :: nlayer ! number of atmospheric layers |
---|
| 193 | INTEGER,INTENT(in) :: nq ! number of tracers |
---|
| 194 | LOGICAL,INTENT(in) :: firstcall ! signals first call to physics |
---|
| 195 | LOGICAL,INTENT(in) :: lastcall ! signals last call to physics |
---|
| 196 | REAL,INTENT(in) :: pday ! number of elapsed sols since reference Ls=0 |
---|
| 197 | REAL,INTENT(in) :: ptime ! "universal time", given as fraction of sol (e.g.: 0.5 for noon) |
---|
| 198 | REAL,INTENT(in) :: ptimestep ! physics timestep (s) |
---|
| 199 | REAL,INTENT(in) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
---|
| 200 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! mid-layer pressure (Pa) |
---|
| 201 | REAL,INTENT(IN) :: pphi(ngrid,nlayer) ! geopotential at mid-layer (m2s-2) |
---|
| 202 | REAL,INTENT(in) :: pu(ngrid,nlayer) ! zonal wind component (m/s) |
---|
| 203 | REAL,INTENT(in) :: pv(ngrid,nlayer) ! meridional wind component (m/s) |
---|
| 204 | REAL,INTENT(in) :: pt(ngrid,nlayer) ! temperature (K) |
---|
| 205 | REAL,INTENT(in) :: pq(ngrid,nlayer,nq) ! tracers (.../kg_of_air) |
---|
| 206 | REAL,INTENT(in) :: flxw(ngrid,nlayer) ! vertical mass flux (ks/s) |
---|
| 207 | ! at lower boundary of layer |
---|
[226] | 208 | |
---|
[42] | 209 | c outputs: |
---|
| 210 | c -------- |
---|
| 211 | c physical tendencies |
---|
[1312] | 212 | REAL,INTENT(out) :: pdu(ngrid,nlayer) ! zonal wind tendency (m/s/s) |
---|
| 213 | REAL,INTENT(out) :: pdv(ngrid,nlayer) ! meridional wind tendency (m/s/s) |
---|
| 214 | REAL,INTENT(out) :: pdt(ngrid,nlayer) ! temperature tendency (K/s) |
---|
| 215 | REAL,INTENT(out) :: pdq(ngrid,nlayer,nq) ! tracer tendencies (../kg/s) |
---|
| 216 | REAL,INTENT(out) :: pdpsrf(ngrid) ! surface pressure tendency (Pa/s) |
---|
[42] | 217 | |
---|
[1974] | 218 | |
---|
[42] | 219 | |
---|
| 220 | c Local saved variables: |
---|
| 221 | c ---------------------- |
---|
[1233] | 222 | INTEGER,SAVE :: day_ini ! Initial date of the run (sol since Ls=0) |
---|
[1047] | 223 | INTEGER,SAVE :: icount ! counter of calls to physiq during the run. |
---|
[1974] | 224 | |
---|
[1375] | 225 | #ifdef DUSTSTORM |
---|
| 226 | REAL pq_tmp(ngrid, nlayer, 2) ! To compute tendencies due the dust bomb |
---|
| 227 | #endif |
---|
[1974] | 228 | |
---|
[42] | 229 | c Variables used by the water ice microphysical scheme: |
---|
[1047] | 230 | REAL rice(ngrid,nlayer) ! Water ice geometric mean radius (m) |
---|
| 231 | REAL nuice(ngrid,nlayer) ! Estimated effective variance |
---|
[42] | 232 | ! of the size distribution |
---|
[1047] | 233 | real rsedcloud(ngrid,nlayer) ! Cloud sedimentation radius |
---|
| 234 | real rhocloud(ngrid,nlayer) ! Cloud density (kg.m-3) |
---|
| 235 | REAL inertiesoil(ngrid,nsoilmx) ! Time varying subsurface |
---|
| 236 | ! thermal inertia (J.s-1/2.m-2.K-1) |
---|
| 237 | ! (used only when tifeedback=.true.) |
---|
[1617] | 238 | c Variables used by the CO2 clouds microphysical scheme: |
---|
[1934] | 239 | DOUBLE PRECISION riceco2(ngrid,nlayer) ! co2 ice geometric mean radius (m) |
---|
[1617] | 240 | real rsedcloudco2(ngrid,nlayer) !CO2 Cloud sedimentation radius |
---|
| 241 | real rhocloudco2(ngrid,nlayer) !co2 Cloud density (kg.m-3) |
---|
| 242 | real zdqssed_co2(ngrid) ! CO2 flux at the surface (kg.m-2.s-1) |
---|
[1996] | 243 | real zcondicea_co2microp(ngrid,nlayer) |
---|
[1495] | 244 | c Variables used by the photochemistry |
---|
| 245 | REAL surfdust(ngrid,nlayer) ! dust surface area (m2/m3, if photochemistry) |
---|
| 246 | REAL surfice(ngrid,nlayer) ! ice surface area (m2/m3, if photochemistry) |
---|
[234] | 247 | c Variables used by the slope model |
---|
| 248 | REAL sl_ls, sl_lct, sl_lat |
---|
| 249 | REAL sl_tau, sl_alb, sl_the, sl_psi |
---|
| 250 | REAL sl_fl0, sl_flu |
---|
| 251 | REAL sl_ra, sl_di0 |
---|
| 252 | REAL sky |
---|
| 253 | |
---|
[1047] | 254 | REAL,PARAMETER :: stephan = 5.67e-08 ! Stephan Boltzman constant |
---|
[42] | 255 | |
---|
| 256 | c Local variables : |
---|
| 257 | c ----------------- |
---|
| 258 | |
---|
| 259 | REAL CBRT |
---|
| 260 | EXTERNAL CBRT |
---|
| 261 | |
---|
[1036] | 262 | ! CHARACTER*80 fichier |
---|
| 263 | INTEGER l,ig,ierr,igout,iq,tapphys |
---|
[42] | 264 | |
---|
[1047] | 265 | REAL fluxsurf_lw(ngrid) !incident LW (IR) surface flux (W.m-2) |
---|
| 266 | REAL fluxsurf_sw(ngrid,2) !incident SW (solar) surface flux (W.m-2) |
---|
| 267 | REAL fluxtop_lw(ngrid) !Outgoing LW (IR) flux to space (W.m-2) |
---|
| 268 | REAL fluxtop_sw(ngrid,2) !Outgoing SW (solar) flux to space (W.m-2) |
---|
| 269 | REAL tauref(ngrid) ! Reference column optical depth at odpref |
---|
[1974] | 270 | c rocket dust storm |
---|
| 271 | REAL totstormfract(ngrid) ! fraction of the mesh where the dust storm is contained |
---|
| 272 | logical clearatm ! clearatm used to calculate twice the radiative |
---|
| 273 | ! transfer when rdstorm is active : |
---|
| 274 | ! - in a mesh with stormdust and background dust (false) |
---|
| 275 | ! - in a mesh with background dust only (true) |
---|
| 276 | |
---|
[627] | 277 | real,parameter :: odpref=610. ! DOD reference pressure (Pa) |
---|
[1047] | 278 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
[1246] | 279 | ! AS: TBD: this one should be in a module ! |
---|
[42] | 280 | REAL zls ! solar longitude (rad) |
---|
| 281 | REAL zday ! date (time since Ls=0, in martian days) |
---|
[1047] | 282 | REAL zzlay(ngrid,nlayer) ! altitude at the middle of the layers |
---|
| 283 | REAL zzlev(ngrid,nlayer+1) ! altitude at layer boundaries |
---|
[1036] | 284 | ! REAL latvl1,lonvl1 ! Viking Lander 1 point (for diagnostic) |
---|
[42] | 285 | |
---|
| 286 | c Tendancies due to various processes: |
---|
[1047] | 287 | REAL dqsurf(ngrid,nq) |
---|
| 288 | REAL zdtlw(ngrid,nlayer) ! (K/s) |
---|
| 289 | REAL zdtsw(ngrid,nlayer) ! (K/s) |
---|
[1974] | 290 | REAL pdqrds(ngrid,nlayer,nq) ! tendency for dust after rocketduststorm |
---|
| 291 | |
---|
[1047] | 292 | REAL zdtnirco2(ngrid,nlayer) ! (K/s) |
---|
| 293 | REAL zdtnlte(ngrid,nlayer) ! (K/s) |
---|
| 294 | REAL zdtsurf(ngrid) ! (K/s) |
---|
[1617] | 295 | REAL zdtcloud(ngrid,nlayer),zdtcloudco2(ngrid,nlayer) |
---|
[1047] | 296 | REAL zdvdif(ngrid,nlayer),zdudif(ngrid,nlayer) ! (m.s-2) |
---|
| 297 | REAL zdhdif(ngrid,nlayer), zdtsdif(ngrid) ! (K/s) |
---|
| 298 | REAL zdvadj(ngrid,nlayer),zduadj(ngrid,nlayer) ! (m.s-2) |
---|
| 299 | REAL zdhadj(ngrid,nlayer) ! (K/s) |
---|
| 300 | REAL zdtgw(ngrid,nlayer) ! (K/s) |
---|
| 301 | REAL zdugw(ngrid,nlayer),zdvgw(ngrid,nlayer) ! (m.s-2) |
---|
| 302 | REAL zdtc(ngrid,nlayer),zdtsurfc(ngrid) |
---|
| 303 | REAL zdvc(ngrid,nlayer),zduc(ngrid,nlayer) |
---|
[42] | 304 | |
---|
[1047] | 305 | REAL zdqdif(ngrid,nlayer,nq), zdqsdif(ngrid,nq) |
---|
| 306 | REAL zdqsed(ngrid,nlayer,nq), zdqssed(ngrid,nq) |
---|
| 307 | REAL zdqdev(ngrid,nlayer,nq), zdqsdev(ngrid,nq) |
---|
| 308 | REAL zdqadj(ngrid,nlayer,nq) |
---|
| 309 | REAL zdqc(ngrid,nlayer,nq) |
---|
[1617] | 310 | REAL zdqcloud(ngrid,nlayer,nq),zdqcloudco2(ngrid,nlayer,nq) |
---|
[1047] | 311 | REAL zdqscloud(ngrid,nq) |
---|
| 312 | REAL zdqchim(ngrid,nlayer,nq) |
---|
| 313 | REAL zdqschim(ngrid,nq) |
---|
[42] | 314 | |
---|
[1047] | 315 | REAL zdteuv(ngrid,nlayer) ! (K/s) |
---|
| 316 | REAL zdtconduc(ngrid,nlayer) ! (K/s) |
---|
| 317 | REAL zdumolvis(ngrid,nlayer) |
---|
| 318 | REAL zdvmolvis(ngrid,nlayer) |
---|
| 319 | real zdqmoldiff(ngrid,nlayer,nq) |
---|
[42] | 320 | |
---|
| 321 | c Local variable for local intermediate calcul: |
---|
[1047] | 322 | REAL zflubid(ngrid) |
---|
| 323 | REAL zplanck(ngrid),zpopsk(ngrid,nlayer) |
---|
| 324 | REAL zdum1(ngrid,nlayer) |
---|
| 325 | REAL zdum2(ngrid,nlayer) |
---|
[42] | 326 | REAL ztim1,ztim2,ztim3, z1,z2 |
---|
| 327 | REAL ztime_fin |
---|
[1047] | 328 | REAL zdh(ngrid,nlayer) |
---|
[1313] | 329 | REAL zh(ngrid,nlayer) ! potential temperature (K) |
---|
[1312] | 330 | REAL pw(ngrid,nlayer) ! vertical velocity (m/s) (>0 when downwards) |
---|
[42] | 331 | INTEGER length |
---|
| 332 | PARAMETER (length=100) |
---|
| 333 | |
---|
[1974] | 334 | c Variables for the total dust for diagnostics |
---|
| 335 | REAL qdusttotal(ngrid,nlayer) !it equals to dust + stormdust |
---|
| 336 | |
---|
| 337 | INTEGER iaer |
---|
| 338 | |
---|
[42] | 339 | c local variables only used for diagnostic (output in file "diagfi" or "stats") |
---|
| 340 | c ----------------------------------------------------------------------------- |
---|
[1047] | 341 | REAL ps(ngrid), zt(ngrid,nlayer) |
---|
| 342 | REAL zu(ngrid,nlayer),zv(ngrid,nlayer) |
---|
| 343 | REAL zq(ngrid,nlayer,nq) |
---|
[1974] | 344 | |
---|
[1047] | 345 | REAL fluxtop_sw_tot(ngrid), fluxsurf_sw_tot(ngrid) |
---|
[42] | 346 | character*2 str2 |
---|
[1036] | 347 | ! character*5 str5 |
---|
[1047] | 348 | real zdtdif(ngrid,nlayer), zdtadj(ngrid,nlayer) |
---|
| 349 | real rdust(ngrid,nlayer) ! dust geometric mean radius (m) |
---|
[1974] | 350 | real rstormdust(ngrid,nlayer) ! stormdust geometric mean radius (m) |
---|
[42] | 351 | integer igmin, lmin |
---|
| 352 | logical tdiag |
---|
| 353 | |
---|
[1047] | 354 | real co2col(ngrid) ! CO2 column |
---|
[883] | 355 | ! pplev and pplay are dynamical inputs and must not be modified in the physics. |
---|
| 356 | ! instead, use zplay and zplev : |
---|
[1047] | 357 | REAL zplev(ngrid,nlayer+1),zplay(ngrid,nlayer) |
---|
[1036] | 358 | ! REAL zstress(ngrid),cd |
---|
[1047] | 359 | real tmean, zlocal(nlayer) |
---|
| 360 | real rho(ngrid,nlayer) ! density |
---|
| 361 | real vmr(ngrid,nlayer) ! volume mixing ratio |
---|
| 362 | real rhopart(ngrid,nlayer) ! number density of a given species |
---|
| 363 | real colden(ngrid,nq) ! vertical column of tracers |
---|
[1464] | 364 | real mass(nq) ! global mass of tracers (g) |
---|
[1047] | 365 | REAL mtot(ngrid) ! Total mass of water vapor (kg/m2) |
---|
[1974] | 366 | REAL mstormdtot(ngrid) ! Total mass of stormdust tracer (kg/m2) |
---|
| 367 | REAL mdusttot(ngrid) ! Total mass of dust tracer (kg/m2) |
---|
[1047] | 368 | REAL icetot(ngrid) ! Total mass of water ice (kg/m2) |
---|
[1617] | 369 | REAL mtotco2(ngrid) ! Total mass of co2 vapor (kg/m2) |
---|
[1921] | 370 | REAL icetotco2(ngrid) ! Total mass of co2 ice (kg/m2) |
---|
[1047] | 371 | REAL Nccntot(ngrid) ! Total number of ccn (nbr/m2) |
---|
| 372 | REAL Mccntot(ngrid) ! Total mass of ccn (kg/m2) |
---|
| 373 | REAL rave(ngrid) ! Mean water ice effective radius (m) |
---|
| 374 | REAL opTES(ngrid,nlayer) ! abs optical depth at 825 cm-1 |
---|
| 375 | REAL tauTES(ngrid) ! column optical depth at 825 cm-1 |
---|
[42] | 376 | REAL Qabsice ! Water ice absorption coefficient |
---|
[1047] | 377 | REAL taucloudtes(ngrid) ! Cloud opacity at infrared |
---|
[520] | 378 | ! reference wavelength using |
---|
| 379 | ! Qabs instead of Qext |
---|
| 380 | ! (direct comparison with TES) |
---|
[719] | 381 | |
---|
[1047] | 382 | REAL dqdustsurf(ngrid) ! surface q dust flux (kg/m2/s) |
---|
| 383 | REAL dndustsurf(ngrid) ! surface n dust flux (number/m2/s) |
---|
| 384 | REAL ndust(ngrid,nlayer) ! true n dust (kg/kg) |
---|
| 385 | REAL qdust(ngrid,nlayer) ! true q dust (kg/kg) |
---|
| 386 | REAL nccn(ngrid,nlayer) ! true n ccn (kg/kg) |
---|
| 387 | REAL qccn(ngrid,nlayer) ! true q ccn (kg/kg) |
---|
[1974] | 388 | c definition tendancies of stormdust tracers |
---|
| 389 | REAL rdsdqdustsurf(ngrid) ! surface q stormdust flux (kg/m2/s) |
---|
| 390 | REAL rdsdndustsurf(ngrid) ! surface n stormdust flux (number/m2/s) |
---|
| 391 | REAL rdsndust(ngrid,nlayer) ! true n stormdust (kg/kg) |
---|
| 392 | REAL rdsqdust(ngrid,nlayer) ! true q stormdust (kg/kg) |
---|
| 393 | REAL wspeed(ngrid,nlayer+1) ! vertical speed tracer stormdust |
---|
| 394 | REAL dsodust(ngrid,nlayer) |
---|
| 395 | REAL dsords(ngrid,nlayer) |
---|
| 396 | |
---|
[1720] | 397 | REAL nccnco2(ngrid,nlayer) ! true n ccnco2 (kg/kg) |
---|
| 398 | REAL qccnco2(ngrid,nlayer) ! true q ccnco2 (kg/kg) |
---|
[42] | 399 | |
---|
[411] | 400 | c Test 1d/3d scavenging |
---|
[1047] | 401 | real h2otot(ngrid) |
---|
| 402 | REAL satu(ngrid,nlayer) ! satu ratio for output |
---|
| 403 | REAL zqsat(ngrid,nlayer) ! saturation |
---|
[1617] | 404 | REAL satuco2(ngrid,nlayer) ! co2 satu ratio for output |
---|
| 405 | REAL zqsatco2(ngrid,nlayer) ! saturation co2 |
---|
[1047] | 406 | REAL,SAVE :: time_phys |
---|
[42] | 407 | |
---|
[414] | 408 | ! Added for new NLTE scheme |
---|
| 409 | |
---|
[1047] | 410 | real co2vmr_gcm(ngrid,nlayer) |
---|
| 411 | real n2vmr_gcm(ngrid,nlayer) |
---|
| 412 | real ovmr_gcm(ngrid,nlayer) |
---|
| 413 | real covmr_gcm(ngrid,nlayer) |
---|
[1124] | 414 | integer ierr_nlte |
---|
| 415 | real*8 varerr |
---|
[414] | 416 | |
---|
[2149] | 417 | C Non-oro GW drag & Calcul of Brunt-Vaisala freq. (BV2) |
---|
| 418 | REAL ztetalev(ngrid,nlayer) |
---|
| 419 | real zdtetalev(ngrid,nlayer), zdzlev(ngrid,nlayer) |
---|
| 420 | REAL bv2(ngrid,nlayer) ! BV2 at zlev |
---|
| 421 | c Non-oro GW tendencies |
---|
| 422 | REAL d_u_hin(ngrid,nlayer), d_v_hin(ngrid,nlayer) |
---|
| 423 | REAL d_t_hin(ngrid,nlayer) |
---|
| 424 | c Diagnostics 2D of gw_nonoro |
---|
| 425 | REAL zustrhi(ngrid), zvstrhi(ngrid) |
---|
| 426 | |
---|
[267] | 427 | c Variables for PBL |
---|
[1047] | 428 | REAL zz1(ngrid) |
---|
[1236] | 429 | REAL lmax_th_out(ngrid) |
---|
[1047] | 430 | REAL pdu_th(ngrid,nlayer),pdv_th(ngrid,nlayer) |
---|
| 431 | REAL pdt_th(ngrid,nlayer),pdq_th(ngrid,nlayer,nq) |
---|
| 432 | INTEGER lmax_th(ngrid),dimout,n_out,n |
---|
[566] | 433 | CHARACTER(50) zstring |
---|
[1047] | 434 | REAL dtke_th(ngrid,nlayer+1) |
---|
| 435 | REAL zcdv(ngrid), zcdh(ngrid) |
---|
[636] | 436 | REAL, ALLOCATABLE, DIMENSION(:,:) :: T_out |
---|
[566] | 437 | REAL, ALLOCATABLE, DIMENSION(:,:) :: u_out ! Interpolated teta and u at z_out |
---|
[1047] | 438 | REAL u_out1(ngrid) |
---|
| 439 | REAL T_out1(ngrid) |
---|
[566] | 440 | REAL, ALLOCATABLE, DIMENSION(:) :: z_out ! height of interpolation between z0 and z1 [meters] |
---|
[1236] | 441 | REAL tstar(ngrid) ! friction velocity and friction potential temp |
---|
[1047] | 442 | REAL L_mo(ngrid),vhf(ngrid),vvv(ngrid) |
---|
[1974] | 443 | real qdustrds0(ngrid,nlayer),qdustrds1(ngrid,nlayer) |
---|
| 444 | real qstormrds0(ngrid,nlayer),qstormrds1(ngrid,nlayer) |
---|
| 445 | real qdusttotal0(ngrid),qdusttotal1(ngrid) |
---|
[790] | 446 | |
---|
[1711] | 447 | c sub-grid scale water ice clouds (A. Pottier 2013) |
---|
| 448 | logical clearsky |
---|
| 449 | ! flux for the part without clouds |
---|
[1972] | 450 | real zdtswclf(ngrid,nlayer) |
---|
| 451 | real zdtlwclf(ngrid,nlayer) |
---|
| 452 | real fluxsurf_lwclf(ngrid) |
---|
| 453 | real fluxsurf_swclf(ngrid,2) |
---|
| 454 | real fluxtop_lwclf(ngrid) |
---|
| 455 | real fluxtop_swclf(ngrid,2) |
---|
| 456 | real taucloudtesclf(ngrid) |
---|
[1973] | 457 | real tf_clf, ntf_clf ! tf: fraction of clouds, ntf: fraction without clouds |
---|
[1972] | 458 | real rave2(ngrid), totrave2(ngrid) ! Mean water ice mean radius (m) |
---|
[1711] | 459 | |
---|
[42] | 460 | c======================================================================= |
---|
| 461 | |
---|
| 462 | c 1. Initialisation: |
---|
| 463 | c ----------------- |
---|
| 464 | |
---|
| 465 | c 1.1 Initialisation only at first call |
---|
| 466 | c --------------------------------------- |
---|
| 467 | IF (firstcall) THEN |
---|
| 468 | |
---|
| 469 | c variables set to 0 |
---|
| 470 | c ~~~~~~~~~~~~~~~~~~ |
---|
[286] | 471 | aerosol(:,:,:)=0 |
---|
| 472 | dtrad(:,:)=0 |
---|
[674] | 473 | |
---|
| 474 | #ifndef MESOSCALE |
---|
[286] | 475 | fluxrad(:)=0 |
---|
[528] | 476 | wstar(:)=0. |
---|
[674] | 477 | #endif |
---|
[268] | 478 | |
---|
[42] | 479 | c read startfi |
---|
| 480 | c ~~~~~~~~~~~~ |
---|
[226] | 481 | #ifndef MESOSCALE |
---|
[1233] | 482 | ! GCM. Read netcdf initial physical parameters. |
---|
[226] | 483 | CALL phyetat0 ("startfi.nc",0,0, |
---|
[1047] | 484 | & nsoilmx,ngrid,nlayer,nq, |
---|
[226] | 485 | & day_ini,time_phys, |
---|
[1944] | 486 | & tsurf,tsoil,albedo,emis, |
---|
| 487 | & q2,qsurf,co2ice,tauscaling,totcloudfrac,wstar, |
---|
| 488 | & mem_Mccn_co2,mem_Nccn_co2, |
---|
[1922] | 489 | & mem_Mh2o_co2) |
---|
[185] | 490 | |
---|
[42] | 491 | if (pday.ne.day_ini) then |
---|
| 492 | write(*,*) "PHYSIQ: ERROR: bad synchronization between ", |
---|
| 493 | & "physics and dynamics" |
---|
| 494 | write(*,*) "dynamics day: ",pday |
---|
| 495 | write(*,*) "physics day: ",day_ini |
---|
| 496 | stop |
---|
| 497 | endif |
---|
| 498 | |
---|
| 499 | write (*,*) 'In physiq day_ini =', day_ini |
---|
| 500 | |
---|
[1233] | 501 | #else |
---|
| 502 | ! MESOSCALE. Supposedly everything is already set in modules. |
---|
[1579] | 503 | ! So we just check. And we fill day_ini |
---|
| 504 | print*,"check: --- in physiq.F" |
---|
[1233] | 505 | print*,"check: rad,cpp,g,r,rcp,daysec" |
---|
| 506 | print*,rad,cpp,g,r,rcp,daysec |
---|
| 507 | PRINT*,'check: tsurf ',tsurf(1),tsurf(ngrid) |
---|
| 508 | PRINT*,'check: tsoil ',tsoil(1,1),tsoil(ngrid,nsoilmx) |
---|
| 509 | PRINT*,'check: inert ',inertiedat(1,1),inertiedat(ngrid,nsoilmx) |
---|
| 510 | PRINT*,'check: midlayer,layer ', mlayer(:),layer(:) |
---|
| 511 | PRINT*,'check: tracernames ', noms |
---|
| 512 | PRINT*,'check: emis ',emis(1),emis(ngrid) |
---|
[1266] | 513 | PRINT*,'check: q2 ',q2(1,1),q2(ngrid,nlayer+1) |
---|
[1233] | 514 | PRINT*,'check: qsurf ',qsurf(1,1),qsurf(ngrid,nq) |
---|
| 515 | PRINT*,'check: co2 ',co2ice(1),co2ice(ngrid) |
---|
[1579] | 516 | !!! |
---|
[1233] | 517 | day_ini = pday |
---|
| 518 | #endif |
---|
| 519 | |
---|
[286] | 520 | c initialize tracers |
---|
| 521 | c ~~~~~~~~~~~~~~~~~~ |
---|
| 522 | IF (tracer) THEN |
---|
[1224] | 523 | CALL initracer(ngrid,nq,qsurf) |
---|
[286] | 524 | ENDIF ! end tracer |
---|
| 525 | |
---|
[42] | 526 | c Initialize albedo and orbital calculation |
---|
| 527 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1944] | 528 | CALL surfini(ngrid,co2ice,qsurf) |
---|
[42] | 529 | CALL iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
---|
| 530 | |
---|
| 531 | c initialize soil |
---|
| 532 | c ~~~~~~~~~~~~~~~ |
---|
| 533 | IF (callsoil) THEN |
---|
[833] | 534 | c Thermal inertia feedback: |
---|
| 535 | IF (tifeedback) THEN |
---|
| 536 | CALL soil_tifeedback(ngrid,nsoilmx,qsurf,inertiesoil) |
---|
| 537 | CALL soil(ngrid,nsoilmx,firstcall,inertiesoil, |
---|
| 538 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 539 | ELSE |
---|
| 540 | CALL soil(ngrid,nsoilmx,firstcall,inertiedat, |
---|
| 541 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 542 | ENDIF ! of IF (tifeedback) |
---|
[42] | 543 | ELSE |
---|
| 544 | PRINT*, |
---|
| 545 | & 'PHYSIQ WARNING! Thermal conduction in the soil turned off' |
---|
| 546 | DO ig=1,ngrid |
---|
| 547 | capcal(ig)=1.e5 |
---|
| 548 | fluxgrd(ig)=0. |
---|
| 549 | ENDDO |
---|
| 550 | ENDIF |
---|
| 551 | icount=1 |
---|
| 552 | |
---|
[226] | 553 | #ifndef MESOSCALE |
---|
| 554 | c Initialize thermospheric parameters |
---|
| 555 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[42] | 556 | |
---|
[705] | 557 | if (callthermos) then |
---|
[1266] | 558 | call fill_data_thermos |
---|
| 559 | call allocate_param_thermos(nlayer) |
---|
| 560 | call allocate_param_iono(nlayer,nreact) |
---|
[1684] | 561 | call param_read_e107 |
---|
[705] | 562 | endif |
---|
[226] | 563 | #endif |
---|
[42] | 564 | c Initialize R and Cp as constant |
---|
| 565 | |
---|
| 566 | if (.not.callthermos .and. .not.photochem) then |
---|
[1047] | 567 | do l=1,nlayer |
---|
| 568 | do ig=1,ngrid |
---|
[42] | 569 | rnew(ig,l)=r |
---|
| 570 | cpnew(ig,l)=cpp |
---|
| 571 | mmean(ig,l)=mugaz |
---|
| 572 | enddo |
---|
| 573 | enddo |
---|
| 574 | endif |
---|
| 575 | |
---|
[757] | 576 | if(callnlte.and.nltemodel.eq.2) call nlte_setup |
---|
[414] | 577 | if(callnirco2.and.nircorr.eq.1) call NIR_leedat |
---|
[1013] | 578 | if(thermochem) call chemthermos_readini |
---|
[414] | 579 | |
---|
[1047] | 580 | IF (tracer.AND.water.AND.(ngrid.NE.1)) THEN |
---|
[283] | 581 | write(*,*)"physiq: water_param Surface water ice albedo:", |
---|
| 582 | . albedo_h2o_ice |
---|
[42] | 583 | ENDIF |
---|
[900] | 584 | |
---|
| 585 | #ifndef MESOSCALE |
---|
[1047] | 586 | if (callslope) call getslopes(ngrid,phisfi) |
---|
[1130] | 587 | |
---|
| 588 | if (ngrid.ne.1) then ! no need to create a restart file in 1d |
---|
[1541] | 589 | call physdem0("restartfi.nc",longitude,latitude, |
---|
| 590 | & nsoilmx,ngrid,nlayer,nq, |
---|
| 591 | & ptimestep,pday,time_phys,cell_area, |
---|
[1974] | 592 | & albedodat,inertiedat,zmea,zstd,zsig,zgam,zthe, |
---|
[2079] | 593 | & hmons,summit,base) |
---|
[1130] | 594 | endif |
---|
[900] | 595 | #endif |
---|
[42] | 596 | |
---|
| 597 | ENDIF ! (end of "if firstcall") |
---|
| 598 | |
---|
[414] | 599 | |
---|
[42] | 600 | c --------------------------------------------------- |
---|
| 601 | c 1.2 Initializations done at every physical timestep: |
---|
| 602 | c --------------------------------------------------- |
---|
| 603 | c |
---|
| 604 | |
---|
| 605 | c Initialize various variables |
---|
| 606 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[286] | 607 | pdv(:,:)=0 |
---|
| 608 | pdu(:,:)=0 |
---|
| 609 | pdt(:,:)=0 |
---|
| 610 | pdq(:,:,:)=0 |
---|
| 611 | pdpsrf(:)=0 |
---|
| 612 | zflubid(:)=0 |
---|
| 613 | zdtsurf(:)=0 |
---|
| 614 | dqsurf(:,:)=0 |
---|
[1974] | 615 | |
---|
[1377] | 616 | #ifdef DUSTSTORM |
---|
[1375] | 617 | pq_tmp(:,:,:)=0 |
---|
[1377] | 618 | #endif |
---|
[42] | 619 | igout=ngrid/2+1 |
---|
| 620 | |
---|
| 621 | |
---|
| 622 | zday=pday+ptime ! compute time, in sols (and fraction thereof) |
---|
[1974] | 623 | ! Compute local time at each grid point |
---|
| 624 | DO ig=1,ngrid |
---|
| 625 | local_time(ig)=modulo(1.+(zday-INT(zday)) |
---|
| 626 | & +(longitude_deg(ig)/15)/24,1.) |
---|
| 627 | ENDDO |
---|
[42] | 628 | c Compute Solar Longitude (Ls) : |
---|
| 629 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 630 | if (season) then |
---|
| 631 | call solarlong(zday,zls) |
---|
| 632 | else |
---|
| 633 | call solarlong(float(day_ini),zls) |
---|
| 634 | end if |
---|
| 635 | |
---|
[883] | 636 | c Initialize pressure levels |
---|
| 637 | c ~~~~~~~~~~~~~~~~~~ |
---|
| 638 | zplev(:,:) = pplev(:,:) |
---|
| 639 | zplay(:,:) = pplay(:,:) |
---|
| 640 | ps(:) = pplev(:,1) |
---|
| 641 | |
---|
| 642 | |
---|
[42] | 643 | c Compute geopotential at interlayers |
---|
| 644 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 645 | c ponderation des altitudes au niveau des couches en dp/p |
---|
| 646 | |
---|
| 647 | DO l=1,nlayer |
---|
| 648 | DO ig=1,ngrid |
---|
| 649 | zzlay(ig,l)=pphi(ig,l)/g |
---|
| 650 | ENDDO |
---|
| 651 | ENDDO |
---|
| 652 | DO ig=1,ngrid |
---|
| 653 | zzlev(ig,1)=0. |
---|
| 654 | zzlev(ig,nlayer+1)=1.e7 ! dummy top of last layer above 10000 km... |
---|
| 655 | ENDDO |
---|
| 656 | DO l=2,nlayer |
---|
| 657 | DO ig=1,ngrid |
---|
[883] | 658 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
---|
| 659 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
---|
[42] | 660 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
| 661 | ENDDO |
---|
| 662 | ENDDO |
---|
| 663 | |
---|
| 664 | |
---|
| 665 | ! Potential temperature calculation not the same in physiq and dynamic |
---|
| 666 | |
---|
| 667 | c Compute potential temperature |
---|
| 668 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 669 | DO l=1,nlayer |
---|
| 670 | DO ig=1,ngrid |
---|
[883] | 671 | zpopsk(ig,l)=(zplay(ig,l)/zplev(ig,1))**rcp |
---|
[42] | 672 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
---|
| 673 | ENDDO |
---|
| 674 | ENDDO |
---|
| 675 | |
---|
[226] | 676 | #ifndef MESOSCALE |
---|
| 677 | c----------------------------------------------------------------------- |
---|
| 678 | c 1.2.5 Compute mean mass, cp, and R |
---|
| 679 | c -------------------------------- |
---|
[42] | 680 | |
---|
[226] | 681 | if(photochem.or.callthermos) then |
---|
[1047] | 682 | call concentrations(ngrid,nlayer,nq, |
---|
| 683 | & zplay,pt,pdt,pq,pdq,ptimestep) |
---|
[226] | 684 | endif |
---|
| 685 | #endif |
---|
[1312] | 686 | |
---|
[1313] | 687 | ! Compute vertical velocity (m/s) from vertical mass flux |
---|
[1346] | 688 | ! w = F / (rho*area) and rho = P/(r*T) |
---|
[1313] | 689 | ! but first linearly interpolate mass flux to mid-layers |
---|
| 690 | do l=1,nlayer-1 |
---|
[1312] | 691 | pw(1:ngrid,l)=0.5*(flxw(1:ngrid,l)+flxw(1:ngrid,l+1)) |
---|
[1313] | 692 | enddo |
---|
| 693 | pw(1:ngrid,nlayer)=0.5*flxw(1:ngrid,nlayer) ! since flxw(nlayer+1)=0 |
---|
| 694 | do l=1,nlayer |
---|
[1346] | 695 | pw(1:ngrid,l)=(pw(1:ngrid,l)*r*pt(1:ngrid,l)) / |
---|
[1541] | 696 | & (pplay(1:ngrid,l)*cell_area(1:ngrid)) |
---|
[1346] | 697 | ! NB: here we use r and not rnew since this diagnostic comes |
---|
[1312] | 698 | ! from the dynamics |
---|
[1313] | 699 | enddo |
---|
[1312] | 700 | |
---|
[42] | 701 | c----------------------------------------------------------------------- |
---|
| 702 | c 2. Compute radiative tendencies : |
---|
| 703 | c------------------------------------ |
---|
| 704 | |
---|
| 705 | |
---|
| 706 | IF (callrad) THEN |
---|
| 707 | IF( MOD(icount-1,iradia).EQ.0) THEN |
---|
| 708 | |
---|
| 709 | c Local Solar zenith angle |
---|
| 710 | c ~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 711 | CALL orbite(zls,dist_sol,declin) |
---|
| 712 | |
---|
| 713 | IF(diurnal) THEN |
---|
| 714 | ztim1=SIN(declin) |
---|
| 715 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
---|
| 716 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
---|
| 717 | |
---|
| 718 | CALL solang(ngrid,sinlon,coslon,sinlat,coslat, |
---|
| 719 | s ztim1,ztim2,ztim3, mu0,fract) |
---|
| 720 | |
---|
| 721 | ELSE |
---|
[1541] | 722 | CALL mucorr(ngrid,declin,latitude,mu0,fract,10000.,rad) |
---|
[42] | 723 | ENDIF |
---|
| 724 | |
---|
| 725 | c NLTE cooling from CO2 emission |
---|
| 726 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[414] | 727 | IF(callnlte) then |
---|
| 728 | if(nltemodel.eq.0.or.nltemodel.eq.1) then |
---|
[883] | 729 | CALL nltecool(ngrid,nlayer,nq,zplay,pt,pq,zdtnlte) |
---|
[414] | 730 | else if(nltemodel.eq.2) then |
---|
[705] | 731 | co2vmr_gcm(1:ngrid,1:nlayer)= |
---|
| 732 | & pq(1:ngrid,1:nlayer,igcm_co2)* |
---|
| 733 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co2) |
---|
| 734 | n2vmr_gcm(1:ngrid,1:nlayer)= |
---|
| 735 | & pq(1:ngrid,1:nlayer,igcm_n2)* |
---|
| 736 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_n2) |
---|
| 737 | covmr_gcm(1:ngrid,1:nlayer)= |
---|
| 738 | & pq(1:ngrid,1:nlayer,igcm_co)* |
---|
| 739 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co) |
---|
| 740 | ovmr_gcm(1:ngrid,1:nlayer)= |
---|
| 741 | & pq(1:ngrid,1:nlayer,igcm_o)* |
---|
| 742 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_o) |
---|
[414] | 743 | |
---|
[883] | 744 | CALL nlte_tcool(ngrid,nlayer,zplay*9.869e-6, |
---|
[414] | 745 | $ pt,zzlay,co2vmr_gcm, n2vmr_gcm, covmr_gcm, |
---|
[1124] | 746 | $ ovmr_gcm, zdtnlte,ierr_nlte,varerr ) |
---|
| 747 | if(ierr_nlte.gt.0) then |
---|
| 748 | write(*,*) |
---|
| 749 | $ 'WARNING: nlte_tcool output with error message', |
---|
| 750 | $ 'ierr_nlte=',ierr_nlte,'varerr=',varerr |
---|
| 751 | write(*,*)'I will continue anyway' |
---|
| 752 | endif |
---|
[42] | 753 | |
---|
[705] | 754 | zdtnlte(1:ngrid,1:nlayer)= |
---|
| 755 | & zdtnlte(1:ngrid,1:nlayer)/86400. |
---|
[414] | 756 | endif |
---|
[1974] | 757 | ELSE |
---|
[528] | 758 | zdtnlte(:,:)=0. |
---|
[1974] | 759 | ENDIF !end callnlte |
---|
[42] | 760 | |
---|
| 761 | c Find number of layers for LTE radiation calculations |
---|
| 762 | IF(MOD(iphysiq*(icount-1),day_step).EQ.0) |
---|
[883] | 763 | & CALL nlthermeq(ngrid,nlayer,zplev,zplay) |
---|
[42] | 764 | |
---|
[1974] | 765 | c rocketstorm : compute dust storm mesh fraction |
---|
| 766 | IF (rdstorm) THEN |
---|
| 767 | CALL calcstormfract(ngrid,nlayer,nq,pq, |
---|
| 768 | & totstormfract) |
---|
| 769 | ENDIF |
---|
| 770 | |
---|
[42] | 771 | c Note: Dustopacity.F has been transferred to callradite.F |
---|
[1410] | 772 | |
---|
| 773 | #ifdef DUSTSTORM |
---|
| 774 | !! specific case: save the quantity of dust before adding perturbation |
---|
| 775 | if (firstcall) then |
---|
| 776 | pq_tmp(1:ngrid,1:nlayer,1)=pq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 777 | pq_tmp(1:ngrid,1:nlayer,2)=pq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 778 | endif |
---|
| 779 | #endif |
---|
[42] | 780 | |
---|
| 781 | c Call main radiative transfer scheme |
---|
| 782 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 783 | c Transfer through CO2 (except NIR CO2 absorption) |
---|
| 784 | c and aerosols (dust and water ice) |
---|
[1974] | 785 | ! callradite for background dust |
---|
| 786 | clearatm=.true. |
---|
[42] | 787 | c Radiative transfer |
---|
| 788 | c ------------------ |
---|
[1711] | 789 | ! callradite for the part with clouds |
---|
| 790 | clearsky=.false. ! part with clouds for both cases CLFvarying true/false |
---|
[42] | 791 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq,albedo, |
---|
[1974] | 792 | & emis,mu0,zplev,zplay,pt,tsurf,fract,dist_sol,igout, |
---|
| 793 | & zdtlw,zdtsw,fluxsurf_lw,fluxsurf_sw,fluxtop_lw, |
---|
| 794 | & fluxtop_sw,tauref,tau,aerosol,dsodust,tauscaling, |
---|
| 795 | & taucloudtes,rdust,rice,nuice,co2ice,rstormdust, |
---|
| 796 | & totstormfract,clearatm,dsords, |
---|
| 797 | & clearsky,totcloudfrac) |
---|
| 798 | |
---|
[1711] | 799 | ! case of sub-grid water ice clouds: callradite for the clear case |
---|
| 800 | IF (CLFvarying) THEN |
---|
| 801 | ! ---> PROBLEMS WITH ALLOCATED ARRAYS |
---|
| 802 | ! (temporary solution in callcorrk: do not deallocate |
---|
| 803 | ! if |
---|
| 804 | ! CLFvarying ...) ?? AP ?? |
---|
| 805 | clearsky=.true. ! |
---|
| 806 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq, |
---|
| 807 | & albedo,emis,mu0,zplev,zplay,pt,tsurf,fract, |
---|
[1972] | 808 | & dist_sol,igout,zdtlwclf,zdtswclf,fluxsurf_lwclf, |
---|
| 809 | & fluxsurf_swclf,fluxtop_lwclf,fluxtop_swclf,tauref, |
---|
| 810 | & tau,aerosol,dsodust,tauscaling,taucloudtesclf,rdust, |
---|
[1974] | 811 | & rice,nuice,co2ice,rstormdust,totstormfract, |
---|
| 812 | & clearatm,dsords,clearsky,totcloudfrac) |
---|
[1711] | 813 | clearsky = .false. ! just in case. |
---|
| 814 | ! Sum the fluxes and heating rates from cloudy/clear |
---|
| 815 | ! cases |
---|
| 816 | DO ig=1,ngrid |
---|
[1973] | 817 | tf_clf=totcloudfrac(ig) |
---|
| 818 | ntf_clf=1.-tf_clf |
---|
| 819 | fluxsurf_lw(ig) = ntf_clf*fluxsurf_lwclf(ig) |
---|
| 820 | & + tf_clf*fluxsurf_lw(ig) |
---|
| 821 | fluxsurf_sw(ig,1) = ntf_clf*fluxsurf_swclf(ig,1) |
---|
| 822 | & + tf_clf*fluxsurf_sw(ig,1) |
---|
| 823 | fluxsurf_sw(ig,2) = ntf_clf*fluxsurf_swclf(ig,2) |
---|
| 824 | & + tf_clf*fluxsurf_sw(ig,2) |
---|
| 825 | fluxtop_lw(ig) = ntf_clf*fluxtop_lwclf(ig) |
---|
| 826 | & + tf_clf*fluxtop_lw(ig) |
---|
| 827 | fluxtop_sw(ig,1) = ntf_clf*fluxtop_swclf(ig,1) |
---|
| 828 | & + tf_clf*fluxtop_sw(ig,1) |
---|
| 829 | fluxtop_sw(ig,2) = ntf_clf*fluxtop_swclf(ig,2) |
---|
| 830 | & + tf_clf*fluxtop_sw(ig,2) |
---|
| 831 | taucloudtes(ig) = ntf_clf*taucloudtesclf(ig) |
---|
| 832 | & + tf_clf*taucloudtes(ig) |
---|
| 833 | zdtlw(ig,1:nlayer) = ntf_clf*zdtlwclf(ig,1:nlayer) |
---|
| 834 | & + tf_clf*zdtlw(ig,1:nlayer) |
---|
| 835 | zdtsw(ig,1:nlayer) = ntf_clf*zdtswclf(ig,1:nlayer) |
---|
| 836 | & + tf_clf*zdtsw(ig,1:nlayer) |
---|
[1711] | 837 | ENDDO |
---|
[42] | 838 | |
---|
[1711] | 839 | ENDIF ! (CLFvarying) |
---|
[1974] | 840 | |
---|
| 841 | ! Dustinjection |
---|
| 842 | if (dustinjection.gt.0) then |
---|
| 843 | CALL compute_dtau(ngrid,nlayer, |
---|
| 844 | & zday,pplev,tauref, |
---|
| 845 | & ptimestep,dustliftday,local_time) |
---|
| 846 | endif |
---|
| 847 | c============================================================================ |
---|
| 848 | |
---|
[1375] | 849 | #ifdef DUSTSTORM |
---|
[1410] | 850 | !! specific case: compute the added quantity of dust for perturbation |
---|
| 851 | if (firstcall) then |
---|
| 852 | pdq(1:ngrid,1:nlayer,igcm_dust_mass)= |
---|
[1974] | 853 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
[1410] | 854 | & - pq_tmp(1:ngrid,1:nlayer,1) |
---|
| 855 | & + pq(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 856 | pdq(1:ngrid,1:nlayer,igcm_dust_number)= |
---|
| 857 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 858 | & - pq_tmp(1:ngrid,1:nlayer,2) |
---|
| 859 | & + pq(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 860 | endif |
---|
[1375] | 861 | #endif |
---|
| 862 | |
---|
[234] | 863 | c Outputs for basic check (middle of domain) |
---|
| 864 | c ------------------------------------------ |
---|
[627] | 865 | write(*,'("Ls =",f11.6," check lat =",f10.6, |
---|
| 866 | & " lon =",f11.6)') |
---|
[1541] | 867 | & zls*180./pi,latitude(igout)*180/pi, |
---|
| 868 | & longitude(igout)*180/pi |
---|
[627] | 869 | write(*,'(" tauref(",f4.0," Pa) =",f9.6, |
---|
| 870 | & " tau(",f4.0," Pa) =",f9.6)') |
---|
| 871 | & odpref,tauref(igout), |
---|
[883] | 872 | & odpref,tau(igout,1)*odpref/zplev(igout,1) |
---|
[234] | 873 | c --------------------------------------------------------- |
---|
| 874 | c Call slope parameterization for direct and scattered flux |
---|
| 875 | c --------------------------------------------------------- |
---|
| 876 | IF(callslope) THEN |
---|
| 877 | print *, 'Slope scheme is on and computing...' |
---|
| 878 | DO ig=1,ngrid |
---|
| 879 | sl_the = theta_sl(ig) |
---|
| 880 | IF (sl_the .ne. 0.) THEN |
---|
| 881 | ztim1=fluxsurf_sw(ig,1)+fluxsurf_sw(ig,2) |
---|
| 882 | DO l=1,2 |
---|
[1541] | 883 | sl_lct = ptime*24. + 180.*longitude(ig)/pi/15. |
---|
[234] | 884 | sl_ra = pi*(1.0-sl_lct/12.) |
---|
[1541] | 885 | sl_lat = 180.*latitude(ig)/pi |
---|
[577] | 886 | sl_tau = tau(ig,1) !il faudrait iaerdust(iaer) |
---|
[234] | 887 | sl_alb = albedo(ig,l) |
---|
| 888 | sl_psi = psi_sl(ig) |
---|
| 889 | sl_fl0 = fluxsurf_sw(ig,l) |
---|
| 890 | sl_di0 = 0. |
---|
| 891 | if (mu0(ig) .gt. 0.) then |
---|
| 892 | sl_di0 = mu0(ig)*(exp(-sl_tau/mu0(ig))) |
---|
| 893 | sl_di0 = sl_di0*1370./dist_sol/dist_sol |
---|
| 894 | sl_di0 = sl_di0/ztim1 |
---|
| 895 | sl_di0 = fluxsurf_sw(ig,l)*sl_di0 |
---|
| 896 | endif |
---|
| 897 | ! you never know (roundup concern...) |
---|
| 898 | if (sl_fl0 .lt. sl_di0) sl_di0=sl_fl0 |
---|
| 899 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 900 | CALL param_slope( mu0(ig), declin, sl_ra, sl_lat, |
---|
| 901 | & sl_tau, sl_alb, sl_the, sl_psi, |
---|
| 902 | & sl_di0, sl_fl0, sl_flu ) |
---|
| 903 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 904 | fluxsurf_sw(ig,l) = sl_flu |
---|
| 905 | ENDDO |
---|
| 906 | !!! compute correction on IR flux as well |
---|
| 907 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
---|
| 908 | fluxsurf_lw(ig)= fluxsurf_lw(ig)*sky |
---|
| 909 | ENDIF |
---|
| 910 | ENDDO |
---|
| 911 | ENDIF |
---|
| 912 | |
---|
[42] | 913 | c CO2 near infrared absorption |
---|
| 914 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[286] | 915 | zdtnirco2(:,:)=0 |
---|
[42] | 916 | if (callnirco2) then |
---|
[883] | 917 | call nirco2abs (ngrid,nlayer,zplay,dist_sol,nq,pq, |
---|
[42] | 918 | . mu0,fract,declin, zdtnirco2) |
---|
| 919 | endif |
---|
| 920 | |
---|
| 921 | c Radiative flux from the sky absorbed by the surface (W.m-2) |
---|
| 922 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 923 | DO ig=1,ngrid |
---|
| 924 | fluxrad_sky(ig)=emis(ig)*fluxsurf_lw(ig) |
---|
| 925 | $ +fluxsurf_sw(ig,1)*(1.-albedo(ig,1)) |
---|
| 926 | $ +fluxsurf_sw(ig,2)*(1.-albedo(ig,2)) |
---|
| 927 | ENDDO |
---|
| 928 | |
---|
| 929 | |
---|
| 930 | c Net atmospheric radiative heating rate (K.s-1) |
---|
| 931 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 932 | IF(callnlte) THEN |
---|
[883] | 933 | CALL blendrad(ngrid, nlayer, zplay, |
---|
[42] | 934 | & zdtsw, zdtlw, zdtnirco2, zdtnlte, dtrad) |
---|
| 935 | ELSE |
---|
| 936 | DO l=1,nlayer |
---|
| 937 | DO ig=1,ngrid |
---|
| 938 | dtrad(ig,l)=zdtsw(ig,l)+zdtlw(ig,l) |
---|
| 939 | & +zdtnirco2(ig,l) |
---|
| 940 | ENDDO |
---|
| 941 | ENDDO |
---|
| 942 | ENDIF |
---|
| 943 | |
---|
| 944 | ENDIF ! of if(mod(icount-1,iradia).eq.0) |
---|
| 945 | |
---|
| 946 | c Transformation of the radiative tendencies: |
---|
| 947 | c ------------------------------------------- |
---|
| 948 | |
---|
| 949 | c Net radiative surface flux (W.m-2) |
---|
| 950 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 951 | c |
---|
| 952 | DO ig=1,ngrid |
---|
| 953 | zplanck(ig)=tsurf(ig)*tsurf(ig) |
---|
| 954 | zplanck(ig)=emis(ig)* |
---|
| 955 | $ stephan*zplanck(ig)*zplanck(ig) |
---|
| 956 | fluxrad(ig)=fluxrad_sky(ig)-zplanck(ig) |
---|
[234] | 957 | IF(callslope) THEN |
---|
| 958 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
---|
| 959 | fluxrad(ig)=fluxrad(ig)+(1.-sky)*zplanck(ig) |
---|
| 960 | ENDIF |
---|
[42] | 961 | ENDDO |
---|
| 962 | |
---|
| 963 | DO l=1,nlayer |
---|
| 964 | DO ig=1,ngrid |
---|
| 965 | pdt(ig,l)=pdt(ig,l)+dtrad(ig,l) |
---|
| 966 | ENDDO |
---|
| 967 | ENDDO |
---|
| 968 | |
---|
| 969 | ENDIF ! of IF (callrad) |
---|
| 970 | |
---|
[1974] | 971 | c 3. Rocket dust storm |
---|
| 972 | c ------------------------------------------- |
---|
| 973 | IF (rdstorm) THEN |
---|
| 974 | clearatm=.false. |
---|
| 975 | pdqrds(:,:,:)=0. |
---|
| 976 | qdusttotal0(:)=0. |
---|
| 977 | qdusttotal1(:)=0. |
---|
| 978 | do ig=1,ngrid |
---|
| 979 | do l=1,nlayer |
---|
| 980 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) ! updated potential |
---|
| 981 | ! temperature tendency |
---|
| 982 | ! for diagnostics |
---|
| 983 | qdustrds0(ig,l)=pq(ig,l,igcm_dust_mass)+ |
---|
| 984 | & pdq(ig,l,igcm_dust_mass)*ptimestep |
---|
| 985 | qstormrds0(ig,l)=pq(ig,l,igcm_stormdust_mass)+ |
---|
| 986 | & pdq(ig,l,igcm_stormdust_mass)*ptimestep |
---|
| 987 | qdusttotal0(ig)=qdusttotal0(ig)+(qdustrds0(ig,l)+ |
---|
| 988 | & qstormrds0(ig,l))*(zplev(ig,l)- |
---|
| 989 | & zplev(ig,l+1))/g |
---|
| 990 | enddo |
---|
| 991 | enddo |
---|
| 992 | call writediagfi(ngrid,'qdustrds0','qdust before rds', |
---|
| 993 | & 'kg/kg ',3,qdustrds0) |
---|
| 994 | call writediagfi(ngrid,'qstormrds0','qstorm before rds', |
---|
| 995 | & 'kg/kg ',3,qstormrds0) |
---|
| 996 | |
---|
| 997 | CALL rocketduststorm(ngrid,nlayer,nq,ptime,ptimestep, |
---|
| 998 | & pq,pdq,pt,pdt,zplev,zplay,zzlev, |
---|
| 999 | & zzlay,zdtsw,zdtlw, |
---|
| 1000 | c for radiative transfer |
---|
| 1001 | & clearatm,icount,zday,zls, |
---|
| 1002 | & tsurf,igout,totstormfract, |
---|
| 1003 | c input sub-grid scale cloud |
---|
| 1004 | & clearsky,totcloudfrac, |
---|
| 1005 | c output |
---|
| 1006 | & pdqrds,wspeed,dsodust,dsords) |
---|
| 1007 | |
---|
| 1008 | c update the tendencies of both dust after vertical transport |
---|
| 1009 | DO l=1,nlayer |
---|
| 1010 | DO ig=1,ngrid |
---|
| 1011 | pdq(ig,l,igcm_stormdust_mass)= |
---|
| 1012 | & pdq(ig,l,igcm_stormdust_mass)+ |
---|
| 1013 | & pdqrds(ig,l,igcm_stormdust_mass) |
---|
| 1014 | pdq(ig,l,igcm_stormdust_number)= |
---|
| 1015 | & pdq(ig,l,igcm_stormdust_number)+ |
---|
| 1016 | & pdqrds(ig,l,igcm_stormdust_number) |
---|
| 1017 | |
---|
| 1018 | pdq(ig,l,igcm_dust_mass)= |
---|
| 1019 | & pdq(ig,l,igcm_dust_mass)+ pdqrds(ig,l,igcm_dust_mass) |
---|
| 1020 | pdq(ig,l,igcm_dust_number)= |
---|
| 1021 | & pdq(ig,l,igcm_dust_number)+ |
---|
| 1022 | & pdqrds(ig,l,igcm_dust_number) |
---|
| 1023 | |
---|
| 1024 | ENDDO |
---|
| 1025 | ENDDO |
---|
| 1026 | do l=1,nlayer |
---|
| 1027 | do ig=1,ngrid |
---|
| 1028 | qdustrds1(ig,l)=pq(ig,l,igcm_dust_mass)+ |
---|
| 1029 | & pdq(ig,l,igcm_dust_mass)*ptimestep |
---|
| 1030 | qstormrds1(ig,l)=pq(ig,l,igcm_stormdust_mass)+ |
---|
| 1031 | & pdq(ig,l,igcm_stormdust_mass)*ptimestep |
---|
| 1032 | qdusttotal1(ig)=qdusttotal1(ig)+(qdustrds1(ig,l)+ |
---|
| 1033 | & qstormrds1(ig,l))*(zplev(ig,l)- |
---|
| 1034 | & zplev(ig,l+1))/g |
---|
| 1035 | enddo |
---|
| 1036 | enddo |
---|
| 1037 | |
---|
| 1038 | c for diagnostics |
---|
| 1039 | call writediagfi(ngrid,'qdustrds1','qdust after rds', |
---|
| 1040 | & 'kg/kg ',3,qdustrds1) |
---|
| 1041 | call writediagfi(ngrid,'qstormrds1','qstorm after rds', |
---|
| 1042 | & 'kg/kg ',3,qstormrds1) |
---|
| 1043 | |
---|
| 1044 | call writediagfi(ngrid,'qdusttotal0','q sum before rds', |
---|
| 1045 | & 'kg/kg ',2,qdusttotal0) |
---|
| 1046 | call writediagfi(ngrid,'qdusttotal1','q sum after rds', |
---|
| 1047 | & 'kg/kg ',2,qdusttotal1) |
---|
| 1048 | |
---|
| 1049 | ENDIF ! end of if(rdstorm) |
---|
| 1050 | |
---|
[226] | 1051 | c----------------------------------------------------------------------- |
---|
[1974] | 1052 | c 4. Gravity wave and subgrid scale topography drag : |
---|
[226] | 1053 | c ------------------------------------------------- |
---|
[42] | 1054 | |
---|
[226] | 1055 | |
---|
| 1056 | IF(calllott)THEN |
---|
| 1057 | |
---|
| 1058 | CALL calldrag_noro(ngrid,nlayer,ptimestep, |
---|
[883] | 1059 | & zplay,zplev,pt,pu,pv,zdtgw,zdugw,zdvgw) |
---|
[226] | 1060 | |
---|
| 1061 | DO l=1,nlayer |
---|
| 1062 | DO ig=1,ngrid |
---|
| 1063 | pdv(ig,l)=pdv(ig,l)+zdvgw(ig,l) |
---|
| 1064 | pdu(ig,l)=pdu(ig,l)+zdugw(ig,l) |
---|
| 1065 | pdt(ig,l)=pdt(ig,l)+zdtgw(ig,l) |
---|
| 1066 | ENDDO |
---|
| 1067 | ENDDO |
---|
| 1068 | ENDIF |
---|
[234] | 1069 | |
---|
[42] | 1070 | c----------------------------------------------------------------------- |
---|
[1974] | 1071 | c 5. Vertical diffusion (turbulent mixing): |
---|
[42] | 1072 | c ----------------------------------------- |
---|
[226] | 1073 | |
---|
[42] | 1074 | IF (calldifv) THEN |
---|
| 1075 | |
---|
| 1076 | DO ig=1,ngrid |
---|
| 1077 | zflubid(ig)=fluxrad(ig)+fluxgrd(ig) |
---|
| 1078 | ENDDO |
---|
| 1079 | |
---|
[286] | 1080 | zdum1(:,:)=0 |
---|
| 1081 | zdum2(:,:)=0 |
---|
[42] | 1082 | do l=1,nlayer |
---|
| 1083 | do ig=1,ngrid |
---|
| 1084 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
---|
| 1085 | enddo |
---|
| 1086 | enddo |
---|
[226] | 1087 | |
---|
[288] | 1088 | c ---------------------- |
---|
[284] | 1089 | c Treatment of a special case : using new surface layer (Richardson based) |
---|
| 1090 | c without using the thermals in gcm and mesoscale can yield problems in |
---|
| 1091 | c weakly unstable situations when winds are near to 0. For those cases, we add |
---|
| 1092 | c a unit subgrid gustiness. Remember that thermals should be used we using the |
---|
| 1093 | c Richardson based surface layer model. |
---|
[1236] | 1094 | IF ( .not.calltherm |
---|
| 1095 | . .and. callrichsl |
---|
| 1096 | . .and. .not.turb_resolved) THEN |
---|
[1047] | 1097 | DO ig=1, ngrid |
---|
[284] | 1098 | IF (zh(ig,1) .lt. tsurf(ig)) THEN |
---|
[528] | 1099 | wstar(ig)=1. |
---|
| 1100 | hfmax_th(ig)=0.2 |
---|
| 1101 | ELSE |
---|
| 1102 | wstar(ig)=0. |
---|
| 1103 | hfmax_th(ig)=0. |
---|
| 1104 | ENDIF |
---|
[284] | 1105 | ENDDO |
---|
| 1106 | ENDIF |
---|
[288] | 1107 | c ---------------------- |
---|
[284] | 1108 | |
---|
[544] | 1109 | IF (tke_heat_flux .ne. 0.) THEN |
---|
| 1110 | zz1(:)=(pt(:,1)+pdt(:,1)*ptimestep)*(r/g)* |
---|
[883] | 1111 | & (-alog(zplay(:,1)/zplev(:,1))) |
---|
[544] | 1112 | pdt(:,1)=pdt(:,1) + (tke_heat_flux/zz1(:))*zpopsk(:,1) |
---|
| 1113 | ENDIF |
---|
[288] | 1114 | |
---|
[42] | 1115 | c Calling vdif (Martian version WITH CO2 condensation) |
---|
| 1116 | CALL vdifc(ngrid,nlayer,nq,co2ice,zpopsk, |
---|
| 1117 | $ ptimestep,capcal,lwrite, |
---|
[883] | 1118 | $ zplay,zplev,zzlay,zzlev,z0, |
---|
[42] | 1119 | $ pu,pv,zh,pq,tsurf,emis,qsurf, |
---|
| 1120 | $ zdum1,zdum2,zdh,pdq,zflubid, |
---|
| 1121 | $ zdudif,zdvdif,zdhdif,zdtsdif,q2, |
---|
[1996] | 1122 | & zdqdif,zdqsdif,wstar,zcdv,zcdh,hfmax_th, |
---|
| 1123 | & zcondicea_co2microp,sensibFlux, |
---|
| 1124 | & dustliftday,local_time) |
---|
[1236] | 1125 | |
---|
| 1126 | DO ig=1,ngrid |
---|
| 1127 | zdtsurf(ig)=zdtsurf(ig)+zdtsdif(ig) |
---|
| 1128 | ENDDO |
---|
[529] | 1129 | |
---|
[1236] | 1130 | IF (.not.turb_resolved) THEN |
---|
| 1131 | DO l=1,nlayer |
---|
[42] | 1132 | DO ig=1,ngrid |
---|
| 1133 | pdv(ig,l)=pdv(ig,l)+zdvdif(ig,l) |
---|
| 1134 | pdu(ig,l)=pdu(ig,l)+zdudif(ig,l) |
---|
| 1135 | pdt(ig,l)=pdt(ig,l)+zdhdif(ig,l)*zpopsk(ig,l) |
---|
| 1136 | |
---|
| 1137 | zdtdif(ig,l)=zdhdif(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
| 1138 | ENDDO |
---|
[226] | 1139 | ENDDO |
---|
[42] | 1140 | |
---|
[1236] | 1141 | if (tracer) then |
---|
[42] | 1142 | DO iq=1, nq |
---|
| 1143 | DO l=1,nlayer |
---|
| 1144 | DO ig=1,ngrid |
---|
| 1145 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
---|
| 1146 | ENDDO |
---|
| 1147 | ENDDO |
---|
| 1148 | ENDDO |
---|
| 1149 | DO iq=1, nq |
---|
| 1150 | DO ig=1,ngrid |
---|
| 1151 | dqsurf(ig,iq)=dqsurf(ig,iq) + zdqsdif(ig,iq) |
---|
| 1152 | ENDDO |
---|
| 1153 | ENDDO |
---|
[1236] | 1154 | end if ! of if (tracer) |
---|
[1242] | 1155 | ELSE |
---|
| 1156 | write (*,*) '******************************************' |
---|
| 1157 | write (*,*) '** LES mode: the difv part is only used to' |
---|
| 1158 | write (*,*) '** - provide HFX and UST to the dynamics' |
---|
| 1159 | write (*,*) '** - update TSURF' |
---|
| 1160 | write (*,*) '******************************************' |
---|
| 1161 | !! Specific treatment for lifting in turbulent-resolving mode (AC) |
---|
| 1162 | IF (lifting .and. doubleq) THEN |
---|
| 1163 | !! lifted dust is injected in the first layer. |
---|
| 1164 | !! Sedimentation must be called after turbulent mixing, i.e. on next step, after WRF. |
---|
| 1165 | !! => lifted dust is not incremented before the sedimentation step. |
---|
| 1166 | zdqdif(1:ngrid,1,1:nq)=0. |
---|
| 1167 | zdqdif(1:ngrid,1,igcm_dust_number) = |
---|
| 1168 | . -zdqsdif(1:ngrid,igcm_dust_number) |
---|
| 1169 | zdqdif(1:ngrid,1,igcm_dust_mass) = |
---|
| 1170 | . -zdqsdif(1:ngrid,igcm_dust_mass) |
---|
[1266] | 1171 | zdqdif(1:ngrid,2:nlayer,1:nq) = 0. |
---|
[1242] | 1172 | DO iq=1, nq |
---|
[1974] | 1173 | IF ((iq .ne. igcm_dust_mass) |
---|
| 1174 | & .and. (iq .ne. igcm_dust_number)) THEN |
---|
| 1175 | zdqsdif(:,iq)=0. |
---|
| 1176 | ENDIF |
---|
[1242] | 1177 | ENDDO |
---|
| 1178 | ELSE |
---|
| 1179 | zdqdif(1:ngrid,1:nlayer,1:nq) = 0. |
---|
| 1180 | zdqsdif(1:ngrid,1:nq) = 0. |
---|
| 1181 | ENDIF |
---|
[790] | 1182 | ENDIF |
---|
[42] | 1183 | ELSE |
---|
| 1184 | DO ig=1,ngrid |
---|
| 1185 | zdtsurf(ig)=zdtsurf(ig)+ |
---|
[1242] | 1186 | s (fluxrad(ig)+fluxgrd(ig))/capcal(ig) |
---|
[42] | 1187 | ENDDO |
---|
[1236] | 1188 | IF (turb_resolved) THEN |
---|
| 1189 | write(*,*) 'Turbulent-resolving mode !' |
---|
[42] | 1190 | write(*,*) 'Please set calldifv to T in callphys.def' |
---|
| 1191 | STOP |
---|
| 1192 | ENDIF |
---|
| 1193 | ENDIF ! of IF (calldifv) |
---|
| 1194 | |
---|
[162] | 1195 | c----------------------------------------------------------------------- |
---|
[1974] | 1196 | c 6. Thermals : |
---|
[162] | 1197 | c ----------------------------- |
---|
[566] | 1198 | |
---|
[1236] | 1199 | if(calltherm .and. .not.turb_resolved) then |
---|
[162] | 1200 | |
---|
[1032] | 1201 | call calltherm_interface(ngrid,nlayer,nq, |
---|
| 1202 | $ tracer,igcm_co2, |
---|
[652] | 1203 | $ zzlev,zzlay, |
---|
[162] | 1204 | $ ptimestep,pu,pv,pt,pq,pdu,pdv,pdt,pdq,q2, |
---|
[883] | 1205 | $ zplay,zplev,pphi,zpopsk, |
---|
[185] | 1206 | $ pdu_th,pdv_th,pdt_th,pdq_th,lmax_th,zmax_th, |
---|
[660] | 1207 | $ dtke_th,zdhdif,hfmax_th,wstar,sensibFlux) |
---|
[633] | 1208 | |
---|
[162] | 1209 | DO l=1,nlayer |
---|
| 1210 | DO ig=1,ngrid |
---|
| 1211 | pdu(ig,l)=pdu(ig,l)+pdu_th(ig,l) |
---|
| 1212 | pdv(ig,l)=pdv(ig,l)+pdv_th(ig,l) |
---|
| 1213 | pdt(ig,l)=pdt(ig,l)+pdt_th(ig,l) |
---|
| 1214 | q2(ig,l)=q2(ig,l)+dtke_th(ig,l)*ptimestep |
---|
| 1215 | ENDDO |
---|
| 1216 | ENDDO |
---|
| 1217 | |
---|
| 1218 | DO ig=1,ngrid |
---|
| 1219 | q2(ig,nlayer+1)=q2(ig,nlayer+1)+dtke_th(ig,nlayer+1)*ptimestep |
---|
| 1220 | ENDDO |
---|
| 1221 | |
---|
| 1222 | if (tracer) then |
---|
| 1223 | DO iq=1,nq |
---|
| 1224 | DO l=1,nlayer |
---|
| 1225 | DO ig=1,ngrid |
---|
| 1226 | pdq(ig,l,iq)=pdq(ig,l,iq)+pdq_th(ig,l,iq) |
---|
| 1227 | ENDDO |
---|
| 1228 | ENDDO |
---|
| 1229 | ENDDO |
---|
| 1230 | endif |
---|
[42] | 1231 | |
---|
[277] | 1232 | lmax_th_out(:)=real(lmax_th(:)) |
---|
| 1233 | |
---|
[1236] | 1234 | else !of if calltherm |
---|
[162] | 1235 | lmax_th(:)=0 |
---|
[528] | 1236 | wstar(:)=0. |
---|
| 1237 | hfmax_th(:)=0. |
---|
[277] | 1238 | lmax_th_out(:)=0. |
---|
[1236] | 1239 | end if |
---|
[42] | 1240 | c----------------------------------------------------------------------- |
---|
[1974] | 1241 | c 7. Dry convective adjustment: |
---|
[42] | 1242 | c ----------------------------- |
---|
| 1243 | |
---|
| 1244 | IF(calladj) THEN |
---|
| 1245 | |
---|
| 1246 | DO l=1,nlayer |
---|
| 1247 | DO ig=1,ngrid |
---|
| 1248 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
---|
| 1249 | ENDDO |
---|
| 1250 | ENDDO |
---|
[286] | 1251 | zduadj(:,:)=0 |
---|
| 1252 | zdvadj(:,:)=0 |
---|
| 1253 | zdhadj(:,:)=0 |
---|
[42] | 1254 | |
---|
| 1255 | CALL convadj(ngrid,nlayer,nq,ptimestep, |
---|
[883] | 1256 | $ zplay,zplev,zpopsk,lmax_th, |
---|
[42] | 1257 | $ pu,pv,zh,pq, |
---|
| 1258 | $ pdu,pdv,zdh,pdq, |
---|
| 1259 | $ zduadj,zdvadj,zdhadj, |
---|
| 1260 | $ zdqadj) |
---|
| 1261 | |
---|
| 1262 | DO l=1,nlayer |
---|
| 1263 | DO ig=1,ngrid |
---|
| 1264 | pdu(ig,l)=pdu(ig,l)+zduadj(ig,l) |
---|
| 1265 | pdv(ig,l)=pdv(ig,l)+zdvadj(ig,l) |
---|
| 1266 | pdt(ig,l)=pdt(ig,l)+zdhadj(ig,l)*zpopsk(ig,l) |
---|
| 1267 | |
---|
| 1268 | zdtadj(ig,l)=zdhadj(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
| 1269 | ENDDO |
---|
| 1270 | ENDDO |
---|
| 1271 | |
---|
| 1272 | if(tracer) then |
---|
| 1273 | DO iq=1, nq |
---|
| 1274 | DO l=1,nlayer |
---|
| 1275 | DO ig=1,ngrid |
---|
| 1276 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqadj(ig,l,iq) |
---|
| 1277 | ENDDO |
---|
| 1278 | ENDDO |
---|
| 1279 | ENDDO |
---|
| 1280 | end if |
---|
| 1281 | ENDIF ! of IF(calladj) |
---|
| 1282 | |
---|
[2149] | 1283 | c----------------------------------------------------- |
---|
| 1284 | c 8. Non orographic Gravity waves : |
---|
| 1285 | c ------------------------------------------------- |
---|
[42] | 1286 | |
---|
[2149] | 1287 | IF (calllott_nonoro) THEN |
---|
| 1288 | |
---|
| 1289 | CALL nonoro_gwd_ran(ngrid,nlayer,ptimestep,zplay, |
---|
| 1290 | & zmax_th, ! max altitude reached by thermals (m) |
---|
| 1291 | & pt, pu, pv, |
---|
| 1292 | & pdt, pdu, pdv, |
---|
| 1293 | & zustrhi,zvstrhi, |
---|
| 1294 | & d_t_hin, d_u_hin, d_v_hin) |
---|
| 1295 | |
---|
| 1296 | ! Update tendencies |
---|
| 1297 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer) |
---|
| 1298 | & +d_t_hin(1:ngrid,1:nlayer) |
---|
| 1299 | ! d_t_hin(:,:)= d_t_hin(:,:)/ptimestep ! K/s (for outputs?) |
---|
| 1300 | pdu(1:ngrid,1:nlayer)=pdu(1:ngrid,1:nlayer) |
---|
| 1301 | & +d_u_hin(1:ngrid,1:nlayer) |
---|
| 1302 | ! d_u_hin(:,:)= d_u_hin(:,:)/ptimestep ! (m/s)/s (for outputs?) |
---|
| 1303 | pdv(1:ngrid,1:nlayer)=pdv(1:ngrid,1:nlayer) |
---|
| 1304 | & +d_v_hin(1:ngrid,1:nlayer) |
---|
| 1305 | ! d_v_hin(:,:)= d_v_hin(:,:)/ptimestep ! (m/s)/s (for outputs?) |
---|
| 1306 | |
---|
| 1307 | ENDIF ! of IF (calllott_nonoro) |
---|
| 1308 | |
---|
[42] | 1309 | c----------------------------------------------------------------------- |
---|
[2149] | 1310 | c 9. Specific parameterizations for tracers |
---|
[42] | 1311 | c: ----------------------------------------- |
---|
| 1312 | |
---|
| 1313 | if (tracer) then |
---|
| 1314 | |
---|
[2149] | 1315 | c 9a. Water and ice |
---|
[42] | 1316 | c --------------- |
---|
| 1317 | |
---|
| 1318 | c --------------------------------------- |
---|
| 1319 | c Water ice condensation in the atmosphere |
---|
| 1320 | c ---------------------------------------- |
---|
| 1321 | IF (water) THEN |
---|
| 1322 | |
---|
| 1323 | call watercloud(ngrid,nlayer,ptimestep, |
---|
[883] | 1324 | & zplev,zplay,pdpsrf,zzlay, pt,pdt, |
---|
[626] | 1325 | & pq,pdq,zdqcloud,zdtcloud, |
---|
[358] | 1326 | & nq,tau,tauscaling,rdust,rice,nuice, |
---|
[1711] | 1327 | & rsedcloud,rhocloud,totcloudfrac) |
---|
[1130] | 1328 | |
---|
[633] | 1329 | c Temperature variation due to latent heat release |
---|
[42] | 1330 | if (activice) then |
---|
[633] | 1331 | pdt(1:ngrid,1:nlayer) = |
---|
| 1332 | & pdt(1:ngrid,1:nlayer) + |
---|
| 1333 | & zdtcloud(1:ngrid,1:nlayer) |
---|
[42] | 1334 | endif |
---|
[633] | 1335 | |
---|
[42] | 1336 | ! increment water vapour and ice atmospheric tracers tendencies |
---|
[706] | 1337 | pdq(1:ngrid,1:nlayer,igcm_h2o_vap) = |
---|
| 1338 | & pdq(1:ngrid,1:nlayer,igcm_h2o_vap) + |
---|
| 1339 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_vap) |
---|
| 1340 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = |
---|
| 1341 | & pdq(1:ngrid,1:nlayer,igcm_h2o_ice) + |
---|
| 1342 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 1343 | |
---|
| 1344 | ! increment dust and ccn masses and numbers |
---|
[883] | 1345 | ! We need to check that we have Nccn & Ndust > 0 |
---|
| 1346 | ! This is due to single precision rounding problems |
---|
[706] | 1347 | if (microphys) then |
---|
| 1348 | pdq(1:ngrid,1:nlayer,igcm_ccn_mass) = |
---|
| 1349 | & pdq(1:ngrid,1:nlayer,igcm_ccn_mass) + |
---|
| 1350 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_mass) |
---|
| 1351 | pdq(1:ngrid,1:nlayer,igcm_ccn_number) = |
---|
| 1352 | & pdq(1:ngrid,1:nlayer,igcm_ccn_number) + |
---|
| 1353 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_number) |
---|
[883] | 1354 | where (pq(:,:,igcm_ccn_mass) + |
---|
| 1355 | & ptimestep*pdq(:,:,igcm_ccn_mass) < 0.) |
---|
| 1356 | pdq(:,:,igcm_ccn_mass) = |
---|
| 1357 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
| 1358 | pdq(:,:,igcm_ccn_number) = |
---|
| 1359 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
| 1360 | end where |
---|
| 1361 | where (pq(:,:,igcm_ccn_number) + |
---|
| 1362 | & ptimestep*pdq(:,:,igcm_ccn_number) < 0.) |
---|
| 1363 | pdq(:,:,igcm_ccn_mass) = |
---|
| 1364 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
| 1365 | pdq(:,:,igcm_ccn_number) = |
---|
| 1366 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
| 1367 | end where |
---|
[706] | 1368 | endif |
---|
| 1369 | |
---|
[883] | 1370 | if (scavenging) then |
---|
| 1371 | pdq(1:ngrid,1:nlayer,igcm_dust_mass) = |
---|
| 1372 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) + |
---|
| 1373 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 1374 | pdq(1:ngrid,1:nlayer,igcm_dust_number) = |
---|
| 1375 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) + |
---|
| 1376 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 1377 | where (pq(:,:,igcm_dust_mass) + |
---|
| 1378 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
---|
| 1379 | pdq(:,:,igcm_dust_mass) = |
---|
| 1380 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
| 1381 | pdq(:,:,igcm_dust_number) = |
---|
| 1382 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 1383 | end where |
---|
| 1384 | where (pq(:,:,igcm_dust_number) + |
---|
| 1385 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
---|
| 1386 | pdq(:,:,igcm_dust_mass) = |
---|
| 1387 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
| 1388 | pdq(:,:,igcm_dust_number) = |
---|
| 1389 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 1390 | end where |
---|
| 1391 | endif ! of if scavenging |
---|
[633] | 1392 | |
---|
[42] | 1393 | END IF ! of IF (water) |
---|
| 1394 | |
---|
[2149] | 1395 | c 9a bis. CO2 clouds (CL & JA) |
---|
[1617] | 1396 | c --------------------------------------- |
---|
| 1397 | c CO2 ice cloud condensation in the atmosphere |
---|
| 1398 | c ---------------------------------------- |
---|
[1818] | 1399 | c flag needed in callphys.def: |
---|
| 1400 | c co2clouds=.true. is mandatory (default is .false.) |
---|
| 1401 | c co2useh2o=.true. if you want to allow co2 condensation |
---|
| 1402 | c on water ice particles |
---|
| 1403 | c meteo_flux=.true. if you want to add a meteoritic |
---|
| 1404 | c supply of CCN |
---|
| 1405 | c CLFvaryingCO2=.true. if you want to have a sub-grid |
---|
| 1406 | c temperature distribution |
---|
| 1407 | c spantCO2=integer (i.e. 3) amplitude of the sub-grid T disti |
---|
| 1408 | c nuiceco2_sed=0.2 variance of the size distribution for the |
---|
| 1409 | c sedimentation |
---|
| 1410 | c nuiceco2_ref=0.2 variance of the size distribution for the |
---|
| 1411 | c nucleation |
---|
| 1412 | c imicroco2=50 micro-timestep is 1/50 of physical timestep |
---|
[1617] | 1413 | |
---|
[1816] | 1414 | IF (co2clouds ) THEN |
---|
[1922] | 1415 | |
---|
| 1416 | |
---|
[1617] | 1417 | call co2cloud(ngrid,nlayer,ptimestep, |
---|
| 1418 | & zplev,zplay,pdpsrf,zzlay,pt,pdt, |
---|
| 1419 | & pq,pdq,zdqcloudco2,zdtcloudco2, |
---|
| 1420 | & nq,tau,tauscaling,rdust,rice,riceco2,nuice, |
---|
[1685] | 1421 | & rsedcloudco2,rhocloudco2, |
---|
[1816] | 1422 | & rsedcloud,rhocloud,zzlev,zdqssed_co2, |
---|
[1996] | 1423 | & pdu,pu,zcondicea_co2microp) |
---|
[1617] | 1424 | |
---|
[1922] | 1425 | |
---|
[1617] | 1426 | c Temperature variation due to latent heat release |
---|
[1816] | 1427 | c if (activice) then !Maybe create activice_co2 ? |
---|
[1617] | 1428 | pdt(1:ngrid,1:nlayer) = |
---|
| 1429 | & pdt(1:ngrid,1:nlayer) + |
---|
[2009] | 1430 | & zdtcloudco2(1:ngrid,1:nlayer)! --> in co2condens |
---|
[1816] | 1431 | c endif |
---|
[1617] | 1432 | |
---|
| 1433 | |
---|
| 1434 | ! increment dust and ccn masses and numbers |
---|
| 1435 | ! We need to check that we have Nccn & Ndust > 0 |
---|
| 1436 | ! This is due to single precision rounding problems |
---|
| 1437 | |
---|
[1816] | 1438 | ! increment dust tracers tendancies |
---|
| 1439 | pdq(1:ngrid,1:nlayer,igcm_dust_mass) = |
---|
| 1440 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) + |
---|
| 1441 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 1442 | pdq(1:ngrid,1:nlayer,igcm_dust_number) = |
---|
| 1443 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) + |
---|
| 1444 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 1445 | pdq(1:ngrid,1:nlayer,igcm_co2) = |
---|
| 1446 | & pdq(1:ngrid,1:nlayer,igcm_co2) + |
---|
| 1447 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_co2) |
---|
| 1448 | pdq(1:ngrid,1:nlayer,igcm_co2_ice) = |
---|
| 1449 | & pdq(1:ngrid,1:nlayer,igcm_co2_ice) + |
---|
| 1450 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_co2_ice) |
---|
| 1451 | pdq(1:ngrid,1:nlayer,igcm_ccnco2_mass) = |
---|
| 1452 | & pdq(1:ngrid,1:nlayer,igcm_ccnco2_mass) + |
---|
| 1453 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccnco2_mass) |
---|
| 1454 | pdq(1:ngrid,1:nlayer,igcm_ccnco2_number) = |
---|
| 1455 | & pdq(1:ngrid,1:nlayer,igcm_ccnco2_number) + |
---|
| 1456 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccnco2_number) |
---|
| 1457 | !Update water ice clouds values as well |
---|
| 1458 | if (co2useh2o) then |
---|
| 1459 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = |
---|
| 1460 | & pdq(1:ngrid,1:nlayer,igcm_h2o_ice) + |
---|
| 1461 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 1462 | pdq(1:ngrid,1:nlayer,igcm_ccn_mass) = |
---|
| 1463 | & pdq(1:ngrid,1:nlayer,igcm_ccn_mass) + |
---|
| 1464 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccn_mass) |
---|
| 1465 | pdq(1:ngrid,1:nlayer,igcm_ccn_number) = |
---|
| 1466 | & pdq(1:ngrid,1:nlayer,igcm_ccn_number) + |
---|
| 1467 | & zdqcloudco2(1:ngrid,1:nlayer,igcm_ccn_number) |
---|
| 1468 | where (pq(:,:,igcm_ccn_mass) + |
---|
[1921] | 1469 | & ptimestep*pdq(:,:,igcm_ccn_mass) < 0.) |
---|
| 1470 | pdq(:,:,igcm_ccn_mass) = |
---|
[1816] | 1471 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
[1921] | 1472 | pdq(:,:,igcm_ccn_number) = |
---|
[1816] | 1473 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
[1921] | 1474 | end where |
---|
| 1475 | where (pq(:,:,igcm_ccn_number) + |
---|
| 1476 | & ptimestep*pdq(:,:,igcm_ccn_number) < 0.) |
---|
| 1477 | pdq(:,:,igcm_ccn_mass) = |
---|
| 1478 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
| 1479 | pdq(:,:,igcm_ccn_number) = |
---|
| 1480 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
| 1481 | end where |
---|
| 1482 | endif ! of if (co2useh2o) |
---|
[1720] | 1483 | c Negative values? |
---|
[1617] | 1484 | where (pq(:,:,igcm_ccnco2_mass) + |
---|
[1921] | 1485 | & ptimestep*pdq(:,:,igcm_ccnco2_mass) < 0.) |
---|
[1922] | 1486 | pdq(:,:,igcm_ccnco2_mass) = |
---|
[1617] | 1487 | & - pq(:,:,igcm_ccnco2_mass)/ptimestep + 1.e-30 |
---|
[1922] | 1488 | pdq(:,:,igcm_ccnco2_number) = |
---|
[1617] | 1489 | & - pq(:,:,igcm_ccnco2_number)/ptimestep + 1.e-30 |
---|
[1720] | 1490 | end where |
---|
| 1491 | where (pq(:,:,igcm_ccnco2_number) + |
---|
[1921] | 1492 | & ptimestep*pdq(:,:,igcm_ccnco2_number) < 0.) |
---|
[1922] | 1493 | pdq(:,:,igcm_ccnco2_mass) = |
---|
[1720] | 1494 | & - pq(:,:,igcm_ccnco2_mass)/ptimestep + 1.e-30 |
---|
[1922] | 1495 | pdq(:,:,igcm_ccnco2_number) = |
---|
[1720] | 1496 | & - pq(:,:,igcm_ccnco2_number)/ptimestep + 1.e-30 |
---|
[1921] | 1497 | end where |
---|
[1720] | 1498 | |
---|
[1617] | 1499 | c Negative values? |
---|
[1921] | 1500 | where (pq(:,:,igcm_dust_mass) + |
---|
| 1501 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
---|
[1922] | 1502 | pdq(:,:,igcm_dust_mass) = |
---|
| 1503 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
| 1504 | pdq(:,:,igcm_dust_number) = |
---|
| 1505 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
[1921] | 1506 | end where |
---|
| 1507 | where (pq(:,:,igcm_dust_number) + |
---|
| 1508 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
---|
[1922] | 1509 | pdq(:,:,igcm_dust_mass) = |
---|
| 1510 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
| 1511 | pdq(:,:,igcm_dust_number) = |
---|
| 1512 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
[1921] | 1513 | end where |
---|
[1720] | 1514 | |
---|
[1617] | 1515 | END IF ! of IF (co2clouds) |
---|
| 1516 | |
---|
[2149] | 1517 | c 9b. Aerosol particles |
---|
[42] | 1518 | c ------------------- |
---|
| 1519 | c ---------- |
---|
| 1520 | c Dust devil : |
---|
| 1521 | c ---------- |
---|
| 1522 | IF(callddevil) then |
---|
[883] | 1523 | call dustdevil(ngrid,nlayer,nq, zplev,pu,pv,pt, tsurf,q2, |
---|
[42] | 1524 | & zdqdev,zdqsdev) |
---|
| 1525 | |
---|
| 1526 | if (dustbin.ge.1) then |
---|
| 1527 | do iq=1,nq |
---|
| 1528 | DO l=1,nlayer |
---|
| 1529 | DO ig=1,ngrid |
---|
| 1530 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdev(ig,l,iq) |
---|
| 1531 | ENDDO |
---|
| 1532 | ENDDO |
---|
| 1533 | enddo |
---|
| 1534 | do iq=1,nq |
---|
| 1535 | DO ig=1,ngrid |
---|
| 1536 | dqsurf(ig,iq)= dqsurf(ig,iq) + zdqsdev(ig,iq) |
---|
| 1537 | ENDDO |
---|
| 1538 | enddo |
---|
| 1539 | endif ! of if (dustbin.ge.1) |
---|
| 1540 | |
---|
| 1541 | END IF ! of IF (callddevil) |
---|
| 1542 | |
---|
| 1543 | c ------------- |
---|
| 1544 | c Sedimentation : acts also on water ice |
---|
[1974] | 1545 | c ------------- |
---|
[42] | 1546 | IF (sedimentation) THEN |
---|
| 1547 | zdqsed(1:ngrid,1:nlayer,1:nq)=0 |
---|
| 1548 | zdqssed(1:ngrid,1:nq)=0 |
---|
| 1549 | |
---|
[1921] | 1550 | c Sedimentation for co2 clouds tracers are inside co2cloud microtimestep |
---|
| 1551 | c Zdqssed isn't |
---|
[1974] | 1552 | call callsedim(ngrid,nlayer,ptimestep, |
---|
| 1553 | & zplev,zzlev,zzlay,pt,pdt,rdust,rstormdust, |
---|
| 1554 | & rice,rsedcloud,rhocloud, |
---|
| 1555 | & pq,pdq,zdqsed,zdqssed,nq, |
---|
[411] | 1556 | & tau,tauscaling) |
---|
[1921] | 1557 | c Flux at the surface of co2 ice computed in co2cloud microtimestep |
---|
[1618] | 1558 | IF (co2clouds) THEN |
---|
| 1559 | zdqssed(1:ngrid,igcm_co2_ice)=zdqssed_co2(1:ngrid) |
---|
| 1560 | ENDIF |
---|
[833] | 1561 | |
---|
[1974] | 1562 | IF (rdstorm) THEN |
---|
| 1563 | c Storm dust cannot sediment to the surface |
---|
| 1564 | DO ig=1,ngrid |
---|
| 1565 | zdqsed(ig,1,igcm_stormdust_mass)= |
---|
| 1566 | & zdqsed(ig,1,igcm_stormdust_mass)+ |
---|
| 1567 | & zdqssed(ig,igcm_stormdust_mass) / |
---|
| 1568 | & ((pplev(ig,1)-pplev(ig,2))/g) |
---|
| 1569 | zdqsed(ig,1,igcm_stormdust_number)= |
---|
| 1570 | & zdqsed(ig,1,igcm_stormdust_number)+ |
---|
| 1571 | & zdqssed(ig,igcm_stormdust_number) / |
---|
| 1572 | & ((pplev(ig,1)-pplev(ig,2))/g) |
---|
| 1573 | zdqssed(ig,igcm_stormdust_mass)=0. |
---|
| 1574 | zdqssed(ig,igcm_stormdust_number)=0. |
---|
| 1575 | ENDDO |
---|
| 1576 | ENDIF !rdstorm |
---|
| 1577 | |
---|
[42] | 1578 | DO iq=1, nq |
---|
| 1579 | DO l=1,nlayer |
---|
| 1580 | DO ig=1,ngrid |
---|
| 1581 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqsed(ig,l,iq) |
---|
| 1582 | ENDDO |
---|
| 1583 | ENDDO |
---|
| 1584 | ENDDO |
---|
| 1585 | DO iq=1, nq |
---|
| 1586 | DO ig=1,ngrid |
---|
| 1587 | dqsurf(ig,iq)= dqsurf(ig,iq) + zdqssed(ig,iq) |
---|
| 1588 | ENDDO |
---|
| 1589 | ENDDO |
---|
[1974] | 1590 | |
---|
[42] | 1591 | END IF ! of IF (sedimentation) |
---|
[1974] | 1592 | |
---|
[1236] | 1593 | c Add lifted dust to tendancies after sedimentation in the LES (AC) |
---|
| 1594 | IF (turb_resolved) THEN |
---|
| 1595 | DO iq=1, nq |
---|
| 1596 | DO l=1,nlayer |
---|
| 1597 | DO ig=1,ngrid |
---|
| 1598 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
---|
| 1599 | ENDDO |
---|
| 1600 | ENDDO |
---|
| 1601 | ENDDO |
---|
| 1602 | DO iq=1, nq |
---|
| 1603 | DO ig=1,ngrid |
---|
| 1604 | dqsurf(ig,iq)=dqsurf(ig,iq) + zdqsdif(ig,iq) |
---|
| 1605 | ENDDO |
---|
| 1606 | ENDDO |
---|
| 1607 | ENDIF |
---|
[556] | 1608 | c |
---|
[2149] | 1609 | c 9c. Chemical species |
---|
[556] | 1610 | c ------------------ |
---|
[42] | 1611 | |
---|
[556] | 1612 | #ifndef MESOSCALE |
---|
| 1613 | c -------------- |
---|
| 1614 | c photochemistry : |
---|
| 1615 | c -------------- |
---|
| 1616 | IF (photochem .or. thermochem) then |
---|
[411] | 1617 | |
---|
[556] | 1618 | ! dust and ice surface area |
---|
[1246] | 1619 | call surfacearea(ngrid, nlayer, naerkind, |
---|
| 1620 | $ ptimestep, zplay, zzlay, |
---|
[556] | 1621 | $ pt, pq, pdq, nq, |
---|
| 1622 | $ rdust, rice, tau, tauscaling, |
---|
| 1623 | $ surfdust, surfice) |
---|
| 1624 | ! call photochemistry |
---|
[1047] | 1625 | call calchim(ngrid,nlayer,nq, |
---|
[1036] | 1626 | & ptimestep,zplay,zplev,pt,pdt,dist_sol,mu0, |
---|
[556] | 1627 | $ zzlev,zzlay,zday,pq,pdq,zdqchim,zdqschim, |
---|
[2031] | 1628 | $ zdqcloud,zdqscloud,tau(:,1),co2ice, |
---|
[556] | 1629 | $ pu,pdu,pv,pdv,surfdust,surfice) |
---|
| 1630 | |
---|
| 1631 | ! increment values of tracers: |
---|
| 1632 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
---|
| 1633 | ! tracers is zero anyways |
---|
| 1634 | DO l=1,nlayer |
---|
| 1635 | DO ig=1,ngrid |
---|
| 1636 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqchim(ig,l,iq) |
---|
| 1637 | ENDDO |
---|
| 1638 | ENDDO |
---|
| 1639 | ENDDO ! of DO iq=1,nq |
---|
| 1640 | |
---|
| 1641 | ! add condensation tendency for H2O2 |
---|
| 1642 | if (igcm_h2o2.ne.0) then |
---|
| 1643 | DO l=1,nlayer |
---|
| 1644 | DO ig=1,ngrid |
---|
| 1645 | pdq(ig,l,igcm_h2o2)=pdq(ig,l,igcm_h2o2) |
---|
| 1646 | & +zdqcloud(ig,l,igcm_h2o2) |
---|
| 1647 | ENDDO |
---|
| 1648 | ENDDO |
---|
| 1649 | endif |
---|
| 1650 | |
---|
| 1651 | ! increment surface values of tracers: |
---|
| 1652 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
---|
| 1653 | ! tracers is zero anyways |
---|
| 1654 | DO ig=1,ngrid |
---|
| 1655 | dqsurf(ig,iq)=dqsurf(ig,iq)+zdqschim(ig,iq) |
---|
| 1656 | ENDDO |
---|
| 1657 | ENDDO ! of DO iq=1,nq |
---|
| 1658 | |
---|
| 1659 | ! add condensation tendency for H2O2 |
---|
| 1660 | if (igcm_h2o2.ne.0) then |
---|
| 1661 | DO ig=1,ngrid |
---|
| 1662 | dqsurf(ig,igcm_h2o2)=dqsurf(ig,igcm_h2o2) |
---|
| 1663 | & +zdqscloud(ig,igcm_h2o2) |
---|
| 1664 | ENDDO |
---|
| 1665 | endif |
---|
| 1666 | |
---|
| 1667 | END IF ! of IF (photochem.or.thermochem) |
---|
| 1668 | #endif |
---|
| 1669 | |
---|
[2149] | 1670 | c 9d. Updates |
---|
[42] | 1671 | c --------- |
---|
| 1672 | |
---|
| 1673 | DO iq=1, nq |
---|
| 1674 | DO ig=1,ngrid |
---|
| 1675 | |
---|
| 1676 | c --------------------------------- |
---|
| 1677 | c Updating tracer budget on surface |
---|
| 1678 | c --------------------------------- |
---|
| 1679 | qsurf(ig,iq)=qsurf(ig,iq)+ptimestep*dqsurf(ig,iq) |
---|
| 1680 | |
---|
| 1681 | ENDDO ! (ig) |
---|
| 1682 | ENDDO ! (iq) |
---|
| 1683 | |
---|
| 1684 | endif ! of if (tracer) |
---|
| 1685 | |
---|
[226] | 1686 | #ifndef MESOSCALE |
---|
| 1687 | c----------------------------------------------------------------------- |
---|
[2149] | 1688 | c 10. THERMOSPHERE CALCULATION |
---|
[226] | 1689 | c----------------------------------------------------------------------- |
---|
[42] | 1690 | |
---|
[226] | 1691 | if (callthermos) then |
---|
[1047] | 1692 | call thermosphere(ngrid,nlayer,nq,zplev,zplay,dist_sol, |
---|
[226] | 1693 | $ mu0,ptimestep,ptime,zday,tsurf,zzlev,zzlay, |
---|
| 1694 | & pt,pq,pu,pv,pdt,pdq, |
---|
| 1695 | $ zdteuv,zdtconduc,zdumolvis,zdvmolvis,zdqmoldiff) |
---|
| 1696 | |
---|
| 1697 | DO l=1,nlayer |
---|
| 1698 | DO ig=1,ngrid |
---|
| 1699 | dtrad(ig,l)=dtrad(ig,l)+zdteuv(ig,l) |
---|
| 1700 | pdt(ig,l)=pdt(ig,l)+zdtconduc(ig,l) |
---|
| 1701 | & +zdteuv(ig,l) |
---|
| 1702 | pdv(ig,l)=pdv(ig,l)+zdvmolvis(ig,l) |
---|
| 1703 | pdu(ig,l)=pdu(ig,l)+zdumolvis(ig,l) |
---|
| 1704 | DO iq=1, nq |
---|
| 1705 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqmoldiff(ig,l,iq) |
---|
| 1706 | ENDDO |
---|
| 1707 | ENDDO |
---|
| 1708 | ENDDO |
---|
| 1709 | |
---|
| 1710 | endif ! of if (callthermos) |
---|
| 1711 | #endif |
---|
[42] | 1712 | c----------------------------------------------------------------------- |
---|
[2149] | 1713 | c 11. Carbon dioxide condensation-sublimation: |
---|
[1114] | 1714 | c (should be the last atmospherical physical process to be computed) |
---|
| 1715 | c ------------------------------------------- |
---|
| 1716 | |
---|
| 1717 | IF (tituscap) THEN |
---|
| 1718 | !!! get the actual co2 seasonal cap from Titus observations |
---|
| 1719 | CALL geticecover( ngrid, 180.*zls/pi, |
---|
[1541] | 1720 | . 180.*longitude/pi, 180.*latitude/pi, co2ice ) |
---|
[1114] | 1721 | co2ice = co2ice * 10000. |
---|
| 1722 | ENDIF |
---|
| 1723 | |
---|
| 1724 | |
---|
| 1725 | pdpsrf(:) = 0 |
---|
| 1726 | |
---|
| 1727 | IF (callcond) THEN |
---|
[2009] | 1728 | CALL co2condens(ngrid,nlayer,nq,ptimestep, |
---|
[1114] | 1729 | $ capcal,zplay,zplev,tsurf,pt, |
---|
| 1730 | $ pphi,pdt,pdu,pdv,zdtsurf,pu,pv,pq,pdq, |
---|
| 1731 | $ co2ice,albedo,emis, |
---|
| 1732 | $ zdtc,zdtsurfc,pdpsrf,zduc,zdvc,zdqc, |
---|
[1996] | 1733 | $ fluxsurf_sw,zls, |
---|
| 1734 | $ zdqssed_co2,zcondicea_co2microp, |
---|
| 1735 | & zdtcloudco2) |
---|
[1114] | 1736 | |
---|
| 1737 | DO l=1,nlayer |
---|
| 1738 | DO ig=1,ngrid |
---|
| 1739 | pdt(ig,l)=pdt(ig,l)+zdtc(ig,l) |
---|
| 1740 | pdv(ig,l)=pdv(ig,l)+zdvc(ig,l) |
---|
| 1741 | pdu(ig,l)=pdu(ig,l)+zduc(ig,l) |
---|
| 1742 | ENDDO |
---|
| 1743 | ENDDO |
---|
| 1744 | DO ig=1,ngrid |
---|
| 1745 | zdtsurf(ig) = zdtsurf(ig) + zdtsurfc(ig) |
---|
| 1746 | ENDDO |
---|
| 1747 | |
---|
| 1748 | IF (tracer) THEN |
---|
| 1749 | DO iq=1, nq |
---|
| 1750 | DO l=1,nlayer |
---|
| 1751 | DO ig=1,ngrid |
---|
| 1752 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqc(ig,l,iq) |
---|
| 1753 | ENDDO |
---|
| 1754 | ENDDO |
---|
| 1755 | ENDDO |
---|
| 1756 | ENDIF ! of IF (tracer) |
---|
| 1757 | |
---|
| 1758 | #ifndef MESOSCALE |
---|
| 1759 | ! update surface pressure |
---|
| 1760 | DO ig=1,ngrid |
---|
| 1761 | ps(ig) = zplev(ig,1) + pdpsrf(ig)*ptimestep |
---|
| 1762 | ENDDO |
---|
| 1763 | |
---|
| 1764 | ! update pressure levels |
---|
| 1765 | DO l=1,nlayer |
---|
| 1766 | DO ig=1,ngrid |
---|
| 1767 | zplay(ig,l) = aps(l) + bps(l)*ps(ig) |
---|
| 1768 | zplev(ig,l) = ap(l) + bp(l)*ps(ig) |
---|
| 1769 | ENDDO |
---|
| 1770 | ENDDO |
---|
| 1771 | zplev(:,nlayer+1) = 0. |
---|
| 1772 | |
---|
| 1773 | ! update layers altitude |
---|
| 1774 | DO l=2,nlayer |
---|
| 1775 | DO ig=1,ngrid |
---|
| 1776 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
---|
| 1777 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
---|
| 1778 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
| 1779 | ENDDO |
---|
| 1780 | ENDDO |
---|
| 1781 | #endif |
---|
| 1782 | |
---|
[1996] | 1783 | ENDIF ! of IF (callcond) |
---|
| 1784 | |
---|
[1114] | 1785 | c----------------------------------------------------------------------- |
---|
[2149] | 1786 | c 12. Surface and sub-surface soil temperature |
---|
[42] | 1787 | c----------------------------------------------------------------------- |
---|
| 1788 | c |
---|
| 1789 | c |
---|
[2149] | 1790 | c 12.1 Increment Surface temperature: |
---|
[42] | 1791 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1792 | |
---|
| 1793 | DO ig=1,ngrid |
---|
| 1794 | tsurf(ig)=tsurf(ig)+ptimestep*zdtsurf(ig) |
---|
| 1795 | ENDDO |
---|
| 1796 | |
---|
| 1797 | c Prescribe a cold trap at south pole (except at high obliquity !!) |
---|
| 1798 | c Temperature at the surface is set there to be the temperature |
---|
| 1799 | c corresponding to equilibrium temperature between phases of CO2 |
---|
| 1800 | |
---|
[411] | 1801 | |
---|
[1047] | 1802 | IF (tracer.AND.water.AND.(ngrid.NE.1)) THEN |
---|
[1114] | 1803 | !#ifndef MESOSCALE |
---|
[2009] | 1804 | ! if (caps.and.(obliquit.lt.27.)) then => now done in co2condens |
---|
[226] | 1805 | ! NB: Updated surface pressure, at grid point 'ngrid', is |
---|
[883] | 1806 | ! ps(ngrid)=zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep |
---|
[1114] | 1807 | ! tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095* |
---|
| 1808 | ! & (zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep))) |
---|
| 1809 | ! tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095*ps(ngrid))) |
---|
| 1810 | ! endif |
---|
| 1811 | !#endif |
---|
[42] | 1812 | c ------------------------------------------------------------- |
---|
[283] | 1813 | c Change of surface albedo in case of ground frost |
---|
[42] | 1814 | c everywhere except on the north permanent cap and in regions |
---|
| 1815 | c covered by dry ice. |
---|
[2009] | 1816 | c ALWAYS PLACE these lines after co2condens !!! |
---|
[42] | 1817 | c ------------------------------------------------------------- |
---|
| 1818 | do ig=1,ngrid |
---|
| 1819 | if ((co2ice(ig).eq.0).and. |
---|
[283] | 1820 | & (qsurf(ig,igcm_h2o_ice).gt.frost_albedo_threshold)) then |
---|
| 1821 | albedo(ig,1) = albedo_h2o_ice |
---|
| 1822 | albedo(ig,2) = albedo_h2o_ice |
---|
| 1823 | c write(*,*) "frost thickness", qsurf(ig,igcm_h2o_ice) |
---|
| 1824 | c write(*,*) "physiq.F frost :" |
---|
[1541] | 1825 | c & ,latitude(ig)*180./pi, longitude(ig)*180./pi |
---|
[42] | 1826 | endif |
---|
| 1827 | enddo ! of do ig=1,ngrid |
---|
[1047] | 1828 | ENDIF ! of IF (tracer.AND.water.AND.(ngrid.NE.1)) |
---|
[42] | 1829 | |
---|
[528] | 1830 | c |
---|
[2149] | 1831 | c 12.2 Compute soil temperatures and subsurface heat flux: |
---|
[42] | 1832 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1833 | IF (callsoil) THEN |
---|
[833] | 1834 | c Thermal inertia feedback |
---|
| 1835 | IF (tifeedback) THEN |
---|
| 1836 | CALL soil_tifeedback(ngrid,nsoilmx,qsurf,inertiesoil) |
---|
| 1837 | CALL soil(ngrid,nsoilmx,.false.,inertiesoil, |
---|
| 1838 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 1839 | ELSE |
---|
[42] | 1840 | CALL soil(ngrid,nsoilmx,.false.,inertiedat, |
---|
[833] | 1841 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 1842 | ENDIF |
---|
[42] | 1843 | ENDIF |
---|
| 1844 | |
---|
[1974] | 1845 | c To avoid negative values |
---|
| 1846 | IF (rdstorm) THEN |
---|
| 1847 | where (pq(:,:,igcm_stormdust_mass) + |
---|
| 1848 | & ptimestep*pdq(:,:,igcm_stormdust_mass) < 0.) |
---|
| 1849 | pdq(:,:,igcm_stormdust_mass) = |
---|
| 1850 | & - pq(:,:,igcm_stormdust_mass)/ptimestep + 1.e-30 |
---|
| 1851 | pdq(:,:,igcm_stormdust_number) = |
---|
| 1852 | & - pq(:,:,igcm_stormdust_number)/ptimestep + 1.e-30 |
---|
| 1853 | end where |
---|
| 1854 | where (pq(:,:,igcm_stormdust_number) + |
---|
| 1855 | & ptimestep*pdq(:,:,igcm_stormdust_number) < 0.) |
---|
| 1856 | pdq(:,:,igcm_stormdust_mass) = |
---|
| 1857 | & - pq(:,:,igcm_stormdust_mass)/ptimestep + 1.e-30 |
---|
| 1858 | pdq(:,:,igcm_stormdust_number) = |
---|
| 1859 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 1860 | end where |
---|
| 1861 | |
---|
| 1862 | where (pq(:,:,igcm_dust_mass) + |
---|
| 1863 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
---|
| 1864 | pdq(:,:,igcm_dust_mass) = |
---|
| 1865 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
| 1866 | pdq(:,:,igcm_dust_number) = |
---|
| 1867 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 1868 | end where |
---|
| 1869 | where (pq(:,:,igcm_dust_number) + |
---|
| 1870 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
---|
| 1871 | pdq(:,:,igcm_dust_mass) = |
---|
| 1872 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
| 1873 | pdq(:,:,igcm_dust_number) = |
---|
| 1874 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 1875 | end where |
---|
| 1876 | ENDIF !(rdstorm) |
---|
| 1877 | |
---|
[42] | 1878 | c----------------------------------------------------------------------- |
---|
[2149] | 1879 | c 13. Write output files |
---|
[42] | 1880 | c ---------------------- |
---|
| 1881 | |
---|
| 1882 | c ------------------------------- |
---|
| 1883 | c Dynamical fields incrementation |
---|
| 1884 | c ------------------------------- |
---|
| 1885 | c (FOR OUTPUT ONLY : the actual model integration is performed in the dynamics) |
---|
| 1886 | ! temperature, zonal and meridional wind |
---|
| 1887 | DO l=1,nlayer |
---|
| 1888 | DO ig=1,ngrid |
---|
| 1889 | zt(ig,l)=pt(ig,l) + pdt(ig,l)*ptimestep |
---|
| 1890 | zu(ig,l)=pu(ig,l) + pdu(ig,l)*ptimestep |
---|
| 1891 | zv(ig,l)=pv(ig,l) + pdv(ig,l)*ptimestep |
---|
| 1892 | ENDDO |
---|
| 1893 | ENDDO |
---|
| 1894 | |
---|
| 1895 | ! tracers |
---|
| 1896 | DO iq=1, nq |
---|
| 1897 | DO l=1,nlayer |
---|
| 1898 | DO ig=1,ngrid |
---|
| 1899 | zq(ig,l,iq)=pq(ig,l,iq) +pdq(ig,l,iq)*ptimestep |
---|
| 1900 | ENDDO |
---|
| 1901 | ENDDO |
---|
| 1902 | ENDDO |
---|
| 1903 | |
---|
| 1904 | ! Density |
---|
| 1905 | DO l=1,nlayer |
---|
| 1906 | DO ig=1,ngrid |
---|
| 1907 | rho(ig,l) = zplay(ig,l)/(rnew(ig,l)*zt(ig,l)) |
---|
| 1908 | ENDDO |
---|
| 1909 | ENDDO |
---|
| 1910 | |
---|
[269] | 1911 | ! Potential Temperature |
---|
| 1912 | |
---|
[1047] | 1913 | DO ig=1,ngrid |
---|
| 1914 | DO l=1,nlayer |
---|
[528] | 1915 | zh(ig,l) = zt(ig,l)*(zplev(ig,1)/zplay(ig,l))**rcp |
---|
[269] | 1916 | ENDDO |
---|
| 1917 | ENDDO |
---|
| 1918 | |
---|
| 1919 | |
---|
[226] | 1920 | c Compute surface stress : (NB: z0 is a common in surfdat.h) |
---|
[42] | 1921 | c DO ig=1,ngrid |
---|
[226] | 1922 | c cd = (0.4/log(zzlay(ig,1)/z0(ig)))**2 |
---|
[42] | 1923 | c zstress(ig) = rho(ig,1)*cd*(zu(ig,1)**2 + zv(ig,1)**2) |
---|
| 1924 | c ENDDO |
---|
| 1925 | |
---|
| 1926 | c Sum of fluxes in solar spectral bands (for output only) |
---|
| 1927 | DO ig=1,ngrid |
---|
[226] | 1928 | fluxtop_sw_tot(ig)=fluxtop_sw(ig,1) + fluxtop_sw(ig,2) |
---|
| 1929 | fluxsurf_sw_tot(ig)=fluxsurf_sw(ig,1) + fluxsurf_sw(ig,2) |
---|
[42] | 1930 | ENDDO |
---|
| 1931 | c ******* TEST ****************************************************** |
---|
[835] | 1932 | ztim1 = 999 |
---|
| 1933 | DO l=1,nlayer |
---|
| 1934 | DO ig=1,ngrid |
---|
| 1935 | if (pt(ig,l).lt.ztim1) then |
---|
| 1936 | ztim1 = pt(ig,l) |
---|
| 1937 | igmin = ig |
---|
| 1938 | lmin = l |
---|
| 1939 | end if |
---|
| 1940 | ENDDO |
---|
| 1941 | ENDDO |
---|
| 1942 | if(min(pt(igmin,lmin),zt(igmin,lmin)).lt.70.) then |
---|
| 1943 | write(*,*) 'PHYSIQ: stability WARNING :' |
---|
| 1944 | write(*,*) 'pt, zt Tmin = ', pt(igmin,lmin), zt(igmin,lmin), |
---|
| 1945 | & 'ig l =', igmin, lmin |
---|
| 1946 | end if |
---|
[42] | 1947 | c ******************************************************************* |
---|
| 1948 | |
---|
| 1949 | c --------------------- |
---|
| 1950 | c Outputs to the screen |
---|
| 1951 | c --------------------- |
---|
| 1952 | |
---|
| 1953 | IF (lwrite) THEN |
---|
| 1954 | PRINT*,'Global diagnostics for the physics' |
---|
| 1955 | PRINT*,'Variables and their increments x and dx/dt * dt' |
---|
| 1956 | WRITE(*,'(a6,a10,2a15)') 'Ts','dTs','ps','dps' |
---|
| 1957 | WRITE(*,'(2f10.5,2f15.5)') |
---|
| 1958 | s tsurf(igout),zdtsurf(igout)*ptimestep, |
---|
[883] | 1959 | s zplev(igout,1),pdpsrf(igout)*ptimestep |
---|
[42] | 1960 | WRITE(*,'(a4,a6,5a10)') 'l','u','du','v','dv','T','dT' |
---|
| 1961 | WRITE(*,'(i4,6f10.5)') (l, |
---|
| 1962 | s pu(igout,l),pdu(igout,l)*ptimestep, |
---|
| 1963 | s pv(igout,l),pdv(igout,l)*ptimestep, |
---|
| 1964 | s pt(igout,l),pdt(igout,l)*ptimestep, |
---|
| 1965 | s l=1,nlayer) |
---|
| 1966 | ENDIF ! of IF (lwrite) |
---|
| 1967 | |
---|
[566] | 1968 | c ---------------------------------------------------------- |
---|
| 1969 | c ---------------------------------------------------------- |
---|
| 1970 | c INTERPOLATIONS IN THE SURFACE-LAYER |
---|
| 1971 | c ---------------------------------------------------------- |
---|
| 1972 | c ---------------------------------------------------------- |
---|
| 1973 | |
---|
[657] | 1974 | n_out=0 ! number of elements in the z_out array. |
---|
[636] | 1975 | ! for z_out=[3.,2.,1.,0.5,0.1], n_out must be set |
---|
| 1976 | ! to 5 |
---|
| 1977 | IF (n_out .ne. 0) THEN |
---|
[566] | 1978 | |
---|
[636] | 1979 | IF(.NOT. ALLOCATED(z_out)) ALLOCATE(z_out(n_out)) |
---|
| 1980 | IF(.NOT. ALLOCATED(T_out)) ALLOCATE(T_out(ngrid,n_out)) |
---|
| 1981 | IF(.NOT. ALLOCATED(u_out)) ALLOCATE(u_out(ngrid,n_out)) |
---|
[566] | 1982 | |
---|
[636] | 1983 | z_out(:)=[3.,2.,1.,0.5,0.1] |
---|
| 1984 | u_out(:,:)=0. |
---|
| 1985 | T_out(:,:)=0. |
---|
[566] | 1986 | |
---|
[636] | 1987 | call pbl_parameters(ngrid,nlayer,ps,zplay,z0, |
---|
[566] | 1988 | & g,zzlay,zzlev,zu,zv,wstar,hfmax_th,zmax_th,tsurf,zh,z_out,n_out, |
---|
[657] | 1989 | & T_out,u_out,ustar,tstar,L_mo,vhf,vvv) |
---|
[1242] | 1990 | ! pourquoi ustar recalcule ici? fait dans vdifc. |
---|
[566] | 1991 | |
---|
| 1992 | #ifndef MESOSCALE |
---|
| 1993 | IF (ngrid .eq. 1) THEN |
---|
| 1994 | dimout=0 |
---|
| 1995 | ELSE |
---|
| 1996 | dimout=2 |
---|
| 1997 | ENDIF |
---|
| 1998 | DO n=1,n_out |
---|
[636] | 1999 | write(zstring, '(F8.6)') z_out(n) |
---|
| 2000 | call WRITEDIAGFI(ngrid,'T_out_'//trim(zstring), |
---|
| 2001 | & 'potential temperature at z_out','K',dimout,T_out(:,n)) |
---|
[566] | 2002 | call WRITEDIAGFI(ngrid,'u_out_'//trim(zstring), |
---|
| 2003 | & 'horizontal velocity norm at z_out','m/s',dimout,u_out(:,n)) |
---|
[636] | 2004 | ENDDO |
---|
[566] | 2005 | call WRITEDIAGFI(ngrid,'u_star', |
---|
| 2006 | & 'friction velocity','m/s',dimout,ustar) |
---|
| 2007 | call WRITEDIAGFI(ngrid,'teta_star', |
---|
| 2008 | & 'friction potential temperature','K',dimout,tstar) |
---|
[1377] | 2009 | ! call WRITEDIAGFI(ngrid,'L', |
---|
| 2010 | ! & 'Monin Obukhov length','m',dimout,L_mo) |
---|
[566] | 2011 | call WRITEDIAGFI(ngrid,'vvv', |
---|
| 2012 | & 'Vertical velocity variance at zout','m',dimout,vvv) |
---|
| 2013 | call WRITEDIAGFI(ngrid,'vhf', |
---|
| 2014 | & 'Vertical heat flux at zout','m',dimout,vhf) |
---|
[636] | 2015 | #else |
---|
| 2016 | T_out1(:)=T_out(:,1) |
---|
| 2017 | u_out1(:)=u_out(:,1) |
---|
[566] | 2018 | #endif |
---|
| 2019 | |
---|
| 2020 | ENDIF |
---|
| 2021 | |
---|
| 2022 | c ---------------------------------------------------------- |
---|
| 2023 | c ---------------------------------------------------------- |
---|
| 2024 | c END OF SURFACE LAYER INTERPOLATIONS |
---|
| 2025 | c ---------------------------------------------------------- |
---|
| 2026 | c ---------------------------------------------------------- |
---|
| 2027 | |
---|
[42] | 2028 | IF (ngrid.NE.1) THEN |
---|
| 2029 | |
---|
[226] | 2030 | #ifndef MESOSCALE |
---|
[42] | 2031 | c ------------------------------------------------------------------- |
---|
| 2032 | c Writing NetCDF file "RESTARTFI" at the end of the run |
---|
| 2033 | c ------------------------------------------------------------------- |
---|
| 2034 | c Note: 'restartfi' is stored just before dynamics are stored |
---|
| 2035 | c in 'restart'. Between now and the writting of 'restart', |
---|
| 2036 | c there will have been the itau=itau+1 instruction and |
---|
| 2037 | c a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
---|
| 2038 | c thus we store for time=time+dtvr |
---|
| 2039 | |
---|
[999] | 2040 | IF( ((ecritstart.GT.0) .and. |
---|
| 2041 | . (MOD(icount*iphysiq,ecritstart).EQ.0)) |
---|
| 2042 | . .or. lastcall ) THEN |
---|
| 2043 | |
---|
| 2044 | ztime_fin = pday + ptime + ptimestep/(float(iphysiq)*daysec) |
---|
| 2045 | . - day_ini - time_phys |
---|
| 2046 | print*, pday,ptime,day_ini, time_phys |
---|
| 2047 | write(*,'(A,I7,A,F12.5)') |
---|
| 2048 | . 'PHYSIQ: Ecriture du fichier restartfi ; icount=', |
---|
| 2049 | . icount,' date=',ztime_fin |
---|
| 2050 | |
---|
| 2051 | |
---|
[1047] | 2052 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq, |
---|
[999] | 2053 | . ptimestep,ztime_fin, |
---|
[1944] | 2054 | . tsurf,tsoil,co2ice,albedo,emis, |
---|
| 2055 | . q2,qsurf,tauscaling,totcloudfrac,wstar, |
---|
| 2056 | . mem_Mccn_co2,mem_Nccn_co2,mem_Mh2o_co2) |
---|
[999] | 2057 | |
---|
[226] | 2058 | ENDIF |
---|
| 2059 | #endif |
---|
[42] | 2060 | |
---|
| 2061 | c ------------------------------------------------------------------- |
---|
| 2062 | c Calculation of diagnostic variables written in both stats and |
---|
| 2063 | c diagfi files |
---|
| 2064 | c ------------------------------------------------------------------- |
---|
| 2065 | |
---|
| 2066 | if (tracer) then |
---|
[719] | 2067 | |
---|
| 2068 | if(doubleq) then |
---|
| 2069 | do ig=1,ngrid |
---|
| 2070 | dqdustsurf(ig) = |
---|
[756] | 2071 | & zdqssed(ig,igcm_dust_mass)*tauscaling(ig) |
---|
[719] | 2072 | dndustsurf(ig) = |
---|
[756] | 2073 | & zdqssed(ig,igcm_dust_number)*tauscaling(ig) |
---|
| 2074 | ndust(ig,:) = |
---|
[1720] | 2075 | & zq(ig,:,igcm_dust_number)*tauscaling(ig) |
---|
[756] | 2076 | qdust(ig,:) = |
---|
[1720] | 2077 | & zq(ig,:,igcm_dust_mass)*tauscaling(ig) |
---|
[719] | 2078 | enddo |
---|
| 2079 | if (scavenging) then |
---|
| 2080 | do ig=1,ngrid |
---|
| 2081 | dqdustsurf(ig) = dqdustsurf(ig) + |
---|
[756] | 2082 | & zdqssed(ig,igcm_ccn_mass)*tauscaling(ig) |
---|
[719] | 2083 | dndustsurf(ig) = dndustsurf(ig) + |
---|
[756] | 2084 | & zdqssed(ig,igcm_ccn_number)*tauscaling(ig) |
---|
| 2085 | nccn(ig,:) = |
---|
[1720] | 2086 | & zq(ig,:,igcm_ccn_number)*tauscaling(ig) |
---|
[756] | 2087 | qccn(ig,:) = |
---|
[1720] | 2088 | & zq(ig,:,igcm_ccn_mass)*tauscaling(ig) |
---|
[719] | 2089 | enddo |
---|
| 2090 | endif |
---|
[1921] | 2091 | endif ! of (doubleq) |
---|
[1974] | 2092 | |
---|
| 2093 | if (rdstorm) then ! diagnostics of stormdust tendancies for 1D and 3D |
---|
| 2094 | mstormdtot(:)=0 |
---|
| 2095 | mdusttot(:)=0 |
---|
| 2096 | qdusttotal(:,:)=0 |
---|
| 2097 | do ig=1,ngrid |
---|
| 2098 | rdsdqdustsurf(ig) = |
---|
| 2099 | & zdqssed(ig,igcm_stormdust_mass)*tauscaling(ig) |
---|
| 2100 | rdsdndustsurf(ig) = |
---|
| 2101 | & zdqssed(ig,igcm_stormdust_number)*tauscaling(ig) |
---|
| 2102 | rdsndust(ig,:) = |
---|
| 2103 | & pq(ig,:,igcm_stormdust_number)*tauscaling(ig) |
---|
| 2104 | rdsqdust(ig,:) = |
---|
| 2105 | & pq(ig,:,igcm_stormdust_mass)*tauscaling(ig) |
---|
| 2106 | do l=1,nlayer |
---|
| 2107 | mstormdtot(ig) = mstormdtot(ig) + |
---|
| 2108 | & zq(ig,l,igcm_stormdust_mass) * |
---|
| 2109 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
| 2110 | mdusttot(ig) = mdusttot(ig) + |
---|
| 2111 | & zq(ig,l,igcm_dust_mass) * |
---|
| 2112 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
| 2113 | qdusttotal(ig,l) = qdust(ig,l)+rdsqdust(ig,l) !calculate total dust |
---|
| 2114 | enddo |
---|
| 2115 | enddo |
---|
| 2116 | endif !(rdstorm) |
---|
| 2117 | |
---|
[1720] | 2118 | if (co2clouds) then |
---|
| 2119 | do ig=1,ngrid |
---|
| 2120 | nccnco2(ig,:) = |
---|
| 2121 | & zq(ig,:,igcm_ccnco2_number)*tauscaling(ig) |
---|
| 2122 | qccnco2(ig,:) = |
---|
| 2123 | & zq(ig,:,igcm_ccnco2_mass)*tauscaling(ig) |
---|
| 2124 | enddo |
---|
[1921] | 2125 | c D. BARDET compute integrated CO2 vapor and ice content |
---|
| 2126 | mtotco2(:)=0 |
---|
| 2127 | icetotco2(:)=0 |
---|
| 2128 | do ig=1,ngrid |
---|
| 2129 | do l=1,nlayer |
---|
| 2130 | mtotco2(ig) = mtotco2(ig) + |
---|
| 2131 | & zq(ig,l,igcm_co2) * |
---|
| 2132 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
| 2133 | icetotco2(ig) = icetotco2(ig) + |
---|
| 2134 | & zq(ig,l,igcm_co2_ice) * |
---|
| 2135 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
| 2136 | enddo |
---|
| 2137 | enddo |
---|
| 2138 | endif ! of if (co2clouds) |
---|
[1974] | 2139 | |
---|
[42] | 2140 | if (water) then |
---|
[286] | 2141 | mtot(:)=0 |
---|
| 2142 | icetot(:)=0 |
---|
| 2143 | rave(:)=0 |
---|
| 2144 | tauTES(:)=0 |
---|
[42] | 2145 | do ig=1,ngrid |
---|
[1047] | 2146 | do l=1,nlayer |
---|
[42] | 2147 | mtot(ig) = mtot(ig) + |
---|
| 2148 | & zq(ig,l,igcm_h2o_vap) * |
---|
[883] | 2149 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[42] | 2150 | icetot(ig) = icetot(ig) + |
---|
| 2151 | & zq(ig,l,igcm_h2o_ice) * |
---|
[883] | 2152 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[42] | 2153 | c Computing abs optical depth at 825 cm-1 in each |
---|
| 2154 | c layer to simulate NEW TES retrieval |
---|
| 2155 | Qabsice = min( |
---|
| 2156 | & max(0.4e6*rice(ig,l)*(1.+nuice_ref)-0.05 ,0.),1.2 |
---|
| 2157 | & ) |
---|
| 2158 | opTES(ig,l)= 0.75 * Qabsice * |
---|
| 2159 | & zq(ig,l,igcm_h2o_ice) * |
---|
[883] | 2160 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[42] | 2161 | & / (rho_ice * rice(ig,l) * (1.+nuice_ref)) |
---|
| 2162 | tauTES(ig)=tauTES(ig)+ opTES(ig,l) |
---|
| 2163 | enddo |
---|
[669] | 2164 | c rave(ig)=rave(ig)/max(icetot(ig),1.e-30) ! mass weight |
---|
| 2165 | c if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
---|
[42] | 2166 | enddo |
---|
[1996] | 2167 | |
---|
[1047] | 2168 | call watersat(ngrid*nlayer,zt,zplay,zqsat) |
---|
[669] | 2169 | satu(:,:) = zq(:,:,igcm_h2o_vap)/zqsat(:,:) |
---|
[42] | 2170 | |
---|
[669] | 2171 | if (scavenging) then |
---|
| 2172 | Nccntot(:)= 0 |
---|
| 2173 | Mccntot(:)= 0 |
---|
| 2174 | rave(:)=0 |
---|
| 2175 | do ig=1,ngrid |
---|
[1047] | 2176 | do l=1,nlayer |
---|
[669] | 2177 | Nccntot(ig) = Nccntot(ig) + |
---|
| 2178 | & zq(ig,l,igcm_ccn_number)*tauscaling(ig) |
---|
[883] | 2179 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[669] | 2180 | Mccntot(ig) = Mccntot(ig) + |
---|
| 2181 | & zq(ig,l,igcm_ccn_mass)*tauscaling(ig) |
---|
[883] | 2182 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[669] | 2183 | cccc Column integrated effective ice radius |
---|
| 2184 | cccc is weighted by total ice surface area (BETTER than total ice mass) |
---|
| 2185 | rave(ig) = rave(ig) + |
---|
| 2186 | & tauscaling(ig) * |
---|
| 2187 | & zq(ig,l,igcm_ccn_number) * |
---|
[883] | 2188 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
---|
[669] | 2189 | & rice(ig,l) * rice(ig,l)* (1.+nuice_ref) |
---|
| 2190 | enddo |
---|
| 2191 | rave(ig)=(icetot(ig)/rho_ice+Mccntot(ig)/rho_dust)*0.75 |
---|
| 2192 | & /max(pi*rave(ig),1.e-30) ! surface weight |
---|
| 2193 | if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
---|
| 2194 | enddo |
---|
[833] | 2195 | else ! of if (scavenging) |
---|
| 2196 | rave(:)=0 |
---|
| 2197 | do ig=1,ngrid |
---|
[1047] | 2198 | do l=1,nlayer |
---|
[833] | 2199 | rave(ig) = rave(ig) + |
---|
| 2200 | & zq(ig,l,igcm_h2o_ice) * |
---|
[883] | 2201 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
---|
[833] | 2202 | & rice(ig,l) * (1.+nuice_ref) |
---|
| 2203 | enddo |
---|
| 2204 | rave(ig) = max(rave(ig) / |
---|
| 2205 | & max(icetot(ig),1.e-30),1.e-30) ! mass weight |
---|
| 2206 | enddo |
---|
[669] | 2207 | endif ! of if (scavenging) |
---|
| 2208 | |
---|
[1711] | 2209 | !Alternative A. Pottier weighting |
---|
| 2210 | rave2(:) = 0. |
---|
| 2211 | totrave2(:) = 0. |
---|
| 2212 | do ig=1,ngrid |
---|
| 2213 | do l=1,nlayer |
---|
| 2214 | rave2(ig) =rave2(ig)+ zq(ig,l,igcm_h2o_ice)*rice(ig,l) |
---|
| 2215 | totrave2(ig) = totrave2(ig) + zq(ig,l,igcm_h2o_ice) |
---|
| 2216 | end do |
---|
| 2217 | rave2(ig)=max(rave2(ig)/max(totrave2(ig),1.e-30),1.e-30) |
---|
| 2218 | end do |
---|
| 2219 | |
---|
[42] | 2220 | endif ! of if (water) |
---|
[1617] | 2221 | |
---|
| 2222 | |
---|
[1629] | 2223 | endif ! of if (tracer) |
---|
[42] | 2224 | |
---|
[1212] | 2225 | #ifndef MESOSCALE |
---|
[42] | 2226 | c ----------------------------------------------------------------- |
---|
| 2227 | c WSTATS: Saving statistics |
---|
| 2228 | c ----------------------------------------------------------------- |
---|
| 2229 | c ("stats" stores and accumulates 8 key variables in file "stats.nc" |
---|
| 2230 | c which can later be used to make the statistic files of the run: |
---|
| 2231 | c "stats") only possible in 3D runs ! |
---|
| 2232 | |
---|
[695] | 2233 | IF (callstats) THEN |
---|
[42] | 2234 | |
---|
[695] | 2235 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
| 2236 | call wstats(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
| 2237 | call wstats(ngrid,"co2ice","CO2 ice cover", |
---|
[575] | 2238 | & "kg.m-2",2,co2ice) |
---|
[758] | 2239 | call wstats(ngrid,"tauref","reference dod at 610 Pa","NU", |
---|
| 2240 | & 2,tauref) |
---|
[695] | 2241 | call wstats(ngrid,"fluxsurf_lw", |
---|
[575] | 2242 | & "Thermal IR radiative flux to surface","W.m-2",2, |
---|
| 2243 | & fluxsurf_lw) |
---|
[695] | 2244 | call wstats(ngrid,"fluxsurf_sw", |
---|
[575] | 2245 | & "Solar radiative flux to surface","W.m-2",2, |
---|
| 2246 | & fluxsurf_sw_tot) |
---|
[695] | 2247 | call wstats(ngrid,"fluxtop_lw", |
---|
[575] | 2248 | & "Thermal IR radiative flux to space","W.m-2",2, |
---|
| 2249 | & fluxtop_lw) |
---|
[695] | 2250 | call wstats(ngrid,"fluxtop_sw", |
---|
[575] | 2251 | & "Solar radiative flux to space","W.m-2",2, |
---|
| 2252 | & fluxtop_sw_tot) |
---|
[695] | 2253 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
---|
| 2254 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
---|
| 2255 | call wstats(ngrid,"v","Meridional (North-South) wind", |
---|
[575] | 2256 | & "m.s-1",3,zv) |
---|
[705] | 2257 | call wstats(ngrid,"w","Vertical (down-up) wind", |
---|
| 2258 | & "m.s-1",3,pw) |
---|
[695] | 2259 | call wstats(ngrid,"rho","Atmospheric density","kg/m3",3,rho) |
---|
[883] | 2260 | call wstats(ngrid,"pressure","Pressure","Pa",3,zplay) |
---|
[758] | 2261 | call wstats(ngrid,"q2", |
---|
| 2262 | & "Boundary layer eddy kinetic energy", |
---|
| 2263 | & "m2.s-2",3,q2) |
---|
| 2264 | call wstats(ngrid,"emis","Surface emissivity","w.m-1",2, |
---|
| 2265 | & emis) |
---|
[226] | 2266 | c call wstats(ngrid,"ssurf","Surface stress","N.m-2", |
---|
| 2267 | c & 2,zstress) |
---|
| 2268 | c call wstats(ngrid,"sw_htrt","sw heat.rate", |
---|
| 2269 | c & "W.m-2",3,zdtsw) |
---|
| 2270 | c call wstats(ngrid,"lw_htrt","lw heat.rate", |
---|
| 2271 | c & "W.m-2",3,zdtlw) |
---|
[42] | 2272 | |
---|
[758] | 2273 | if (calltherm) then |
---|
| 2274 | call wstats(ngrid,"zmax_th","Height of thermals", |
---|
| 2275 | & "m",2,zmax_th) |
---|
| 2276 | call wstats(ngrid,"hfmax_th","Max thermals heat flux", |
---|
| 2277 | & "K.m/s",2,hfmax_th) |
---|
| 2278 | call wstats(ngrid,"wstar", |
---|
| 2279 | & "Max vertical velocity in thermals", |
---|
| 2280 | & "m/s",2,wstar) |
---|
| 2281 | endif |
---|
| 2282 | |
---|
[226] | 2283 | if (tracer) then |
---|
| 2284 | if (water) then |
---|
[1047] | 2285 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
---|
| 2286 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
---|
[719] | 2287 | call wstats(ngrid,"vmr_h2ovap", |
---|
[520] | 2288 | & "H2O vapor volume mixing ratio","mol/mol", |
---|
| 2289 | & 3,vmr) |
---|
[1047] | 2290 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 2291 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
---|
[520] | 2292 | call wstats(ngrid,"vmr_h2oice", |
---|
| 2293 | & "H2O ice volume mixing ratio","mol/mol", |
---|
| 2294 | & 3,vmr) |
---|
[1278] | 2295 | ! also store vmr_ice*rice for better diagnostics of rice |
---|
| 2296 | vmr(1:ngrid,1:nlayer)=vmr(1:ngrid,1:nlayer)* |
---|
[1502] | 2297 | & rice(1:ngrid,1:nlayer) |
---|
[1278] | 2298 | call wstats(ngrid,"vmr_h2oice_rice", |
---|
| 2299 | & "H2O ice mixing ratio times ice particule size", |
---|
| 2300 | & "(mol/mol)*m", |
---|
| 2301 | & 3,vmr) |
---|
[1047] | 2302 | vmr=zqsat(1:ngrid,1:nlayer) |
---|
| 2303 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
---|
[669] | 2304 | call wstats(ngrid,"vmr_h2osat", |
---|
| 2305 | & "saturation volume mixing ratio","mol/mol", |
---|
| 2306 | & 3,vmr) |
---|
[226] | 2307 | call wstats(ngrid,"h2o_ice_s", |
---|
| 2308 | & "surface h2o_ice","kg/m2", |
---|
| 2309 | & 2,qsurf(1,igcm_h2o_ice)) |
---|
[758] | 2310 | call wstats(ngrid,'albedo', |
---|
| 2311 | & 'albedo', |
---|
[1013] | 2312 | & '',2,albedo(1,1)) |
---|
[226] | 2313 | call wstats(ngrid,"mtot", |
---|
| 2314 | & "total mass of water vapor","kg/m2", |
---|
| 2315 | & 2,mtot) |
---|
| 2316 | call wstats(ngrid,"icetot", |
---|
| 2317 | & "total mass of water ice","kg/m2", |
---|
| 2318 | & 2,icetot) |
---|
[520] | 2319 | call wstats(ngrid,"reffice", |
---|
| 2320 | & "Mean reff","m", |
---|
| 2321 | & 2,rave) |
---|
[669] | 2322 | call wstats(ngrid,"Nccntot", |
---|
[520] | 2323 | & "condensation nuclei","Nbr/m2", |
---|
[669] | 2324 | & 2,Nccntot) |
---|
| 2325 | call wstats(ngrid,"Mccntot", |
---|
| 2326 | & "condensation nuclei mass","kg/m2", |
---|
| 2327 | & 2,Mccntot) |
---|
[520] | 2328 | call wstats(ngrid,"rice", |
---|
| 2329 | & "Ice particle size","m", |
---|
| 2330 | & 3,rice) |
---|
[226] | 2331 | if (.not.activice) then |
---|
| 2332 | call wstats(ngrid,"tauTESap", |
---|
| 2333 | & "tau abs 825 cm-1","", |
---|
| 2334 | & 2,tauTES) |
---|
[520] | 2335 | else |
---|
[1047] | 2336 | call wstats(ngrid,'tauTES', |
---|
[520] | 2337 | & 'tau abs 825 cm-1', |
---|
| 2338 | & '',2,taucloudtes) |
---|
[226] | 2339 | endif |
---|
| 2340 | |
---|
| 2341 | endif ! of if (water) |
---|
[719] | 2342 | |
---|
| 2343 | |
---|
| 2344 | if (dustbin.ne.0) then |
---|
| 2345 | |
---|
[1047] | 2346 | call wstats(ngrid,'tau','taudust','SI',2,tau(1,1)) |
---|
[719] | 2347 | |
---|
| 2348 | if (doubleq) then |
---|
[1047] | 2349 | c call wstats(ngrid,'qsurf','qsurf', |
---|
[719] | 2350 | c & 'kg.m-2',2,qsurf(1,igcm_dust_mass)) |
---|
[1047] | 2351 | c call wstats(ngrid,'Nsurf','N particles', |
---|
[719] | 2352 | c & 'N.m-2',2,qsurf(1,igcm_dust_number)) |
---|
[1047] | 2353 | c call wstats(ngrid,'dqsdev','ddevil lift', |
---|
[719] | 2354 | c & 'kg.m-2.s-1',2,zdqsdev(1,1)) |
---|
[1047] | 2355 | c call wstats(ngrid,'dqssed','sedimentation', |
---|
[719] | 2356 | c & 'kg.m-2.s-1',2,zdqssed(1,1)) |
---|
[1047] | 2357 | c call wstats(ngrid,'dqsdif','diffusion', |
---|
[719] | 2358 | c & 'kg.m-2.s-1',2,zdqsdif(1,1)) |
---|
[1047] | 2359 | call wstats(ngrid,'dqsdust', |
---|
[719] | 2360 | & 'deposited surface dust mass', |
---|
| 2361 | & 'kg.m-2.s-1',2,dqdustsurf) |
---|
[1047] | 2362 | call wstats(ngrid,'dqndust', |
---|
[719] | 2363 | & 'deposited surface dust number', |
---|
| 2364 | & 'number.m-2.s-1',2,dndustsurf) |
---|
[1047] | 2365 | call wstats(ngrid,'reffdust','reffdust', |
---|
[719] | 2366 | & 'm',3,rdust*ref_r0) |
---|
[1047] | 2367 | call wstats(ngrid,'dustq','Dust mass mr', |
---|
[756] | 2368 | & 'kg/kg',3,qdust) |
---|
[1047] | 2369 | call wstats(ngrid,'dustN','Dust number', |
---|
[756] | 2370 | & 'part/kg',3,ndust) |
---|
[1974] | 2371 | if (rdstorm) then |
---|
| 2372 | call wstats(ngrid,'reffstormdust','reffdust', |
---|
| 2373 | & 'm',3,rstormdust*ref_r0) |
---|
| 2374 | call wstats(ngrid,'rdsdustq','Dust mass mr', |
---|
| 2375 | & 'kg/kg',3,rdsqdust) |
---|
| 2376 | call wstats(ngrid,'rdsdustN','Dust number', |
---|
| 2377 | & 'part/kg',3,rdsndust) |
---|
| 2378 | end if |
---|
[719] | 2379 | else |
---|
| 2380 | do iq=1,dustbin |
---|
| 2381 | write(str2(1:2),'(i2.2)') iq |
---|
[1047] | 2382 | call wstats(ngrid,'q'//str2,'mix. ratio', |
---|
[719] | 2383 | & 'kg/kg',3,zq(1,1,iq)) |
---|
[1047] | 2384 | call wstats(ngrid,'qsurf'//str2,'qsurf', |
---|
[719] | 2385 | & 'kg.m-2',2,qsurf(1,iq)) |
---|
| 2386 | end do |
---|
| 2387 | endif ! (doubleq) |
---|
[226] | 2388 | |
---|
[719] | 2389 | if (scavenging) then |
---|
[1047] | 2390 | call wstats(ngrid,'ccnq','CCN mass mr', |
---|
[756] | 2391 | & 'kg/kg',3,qccn) |
---|
[1047] | 2392 | call wstats(ngrid,'ccnN','CCN number', |
---|
[756] | 2393 | & 'part/kg',3,nccn) |
---|
[719] | 2394 | endif ! (scavenging) |
---|
| 2395 | |
---|
[1464] | 2396 | endif ! (dustbin.ne.0) |
---|
[719] | 2397 | |
---|
[1464] | 2398 | if (thermochem .or. photochem) then |
---|
| 2399 | do iq=1,nq |
---|
| 2400 | if (noms(iq) .ne. "dust_mass" .and. |
---|
| 2401 | $ noms(iq) .ne. "dust_number" .and. |
---|
| 2402 | $ noms(iq) .ne. "ccn_mass" .and. |
---|
[1617] | 2403 | $ noms(iq) .ne. "ccn_number" .and. |
---|
| 2404 | $ noms(iq) .ne. "ccnco2_mass" .and. |
---|
| 2405 | $ noms(iq) .ne. "ccnco2_number") then |
---|
[719] | 2406 | |
---|
[1464] | 2407 | ! volume mixing ratio |
---|
| 2408 | |
---|
[705] | 2409 | vmr(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
---|
[1464] | 2410 | & *mmean(1:ngrid,1:nlayer)/mmol(iq) |
---|
| 2411 | |
---|
| 2412 | call wstats(ngrid,"vmr_"//trim(noms(iq)), |
---|
| 2413 | $ "Volume mixing ratio","mol/mol",3,vmr) |
---|
| 2414 | if ((noms(iq).eq."o") |
---|
| 2415 | $ .or. (noms(iq).eq."co2") |
---|
| 2416 | $ .or. (noms(iq).eq."o3") |
---|
| 2417 | $ .or. (noms(iq).eq."ar") |
---|
| 2418 | $ .or. (noms(iq).eq."o2") |
---|
| 2419 | $ .or. (noms(iq).eq."h2o_vap") ) then |
---|
| 2420 | call writediagfi(ngrid,"vmr_"//trim(noms(iq)), |
---|
| 2421 | $ "Volume mixing ratio","mol/mol",3,vmr) |
---|
| 2422 | end if |
---|
| 2423 | |
---|
| 2424 | ! number density (molecule.cm-3) |
---|
| 2425 | |
---|
[705] | 2426 | rhopart(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
---|
| 2427 | & *rho(1:ngrid,1:nlayer)*n_avog/ |
---|
| 2428 | & (1000*mmol(iq)) |
---|
[1464] | 2429 | |
---|
[705] | 2430 | ! call wstats(ngrid,"rho_"//trim(noms(iq)), |
---|
[1464] | 2431 | ! $ "Number density","cm-3",3,rhopart) |
---|
[705] | 2432 | ! call writediagfi(ngrid,"rho_"//trim(noms(iq)), |
---|
[1464] | 2433 | ! $ "Number density","cm-3",3,rhopart) |
---|
[226] | 2434 | |
---|
[1464] | 2435 | ! vertical column (molecule.cm-2) |
---|
| 2436 | |
---|
| 2437 | do ig = 1,ngrid |
---|
| 2438 | colden(ig,iq) = 0. |
---|
| 2439 | end do |
---|
| 2440 | do l=1,nlayer |
---|
| 2441 | do ig=1,ngrid |
---|
| 2442 | colden(ig,iq) = colden(ig,iq) + zq(ig,l,iq) |
---|
| 2443 | $ *(zplev(ig,l)-zplev(ig,l+1)) |
---|
| 2444 | $ *6.022e22/(mmol(iq)*g) |
---|
| 2445 | end do |
---|
| 2446 | end do |
---|
| 2447 | |
---|
| 2448 | call wstats(ngrid,"c_"//trim(noms(iq)), |
---|
| 2449 | $ "column","mol cm-2",2,colden(1,iq)) |
---|
| 2450 | call writediagfi(ngrid,"c_"//trim(noms(iq)), |
---|
| 2451 | $ "column","mol cm-2",2,colden(1,iq)) |
---|
| 2452 | |
---|
| 2453 | ! global mass (g) |
---|
| 2454 | |
---|
| 2455 | call planetwide_sumval(colden(:,iq)/6.022e23 |
---|
[1541] | 2456 | $ *mmol(iq)*1.e4*cell_area(:),mass(iq)) |
---|
[1464] | 2457 | |
---|
| 2458 | call writediagfi(ngrid,"mass_"//trim(noms(iq)), |
---|
| 2459 | $ "global mass","g",0,mass(iq)) |
---|
| 2460 | |
---|
| 2461 | end if ! of if (noms(iq) .ne. "dust_mass" ...) |
---|
| 2462 | end do ! of do iq=1,nq |
---|
| 2463 | end if ! of if (thermochem .or. photochem) |
---|
| 2464 | |
---|
[334] | 2465 | end if ! of if (tracer) |
---|
[226] | 2466 | |
---|
| 2467 | IF(lastcall) THEN |
---|
| 2468 | write (*,*) "Writing stats..." |
---|
| 2469 | call mkstats(ierr) |
---|
| 2470 | ENDIF |
---|
| 2471 | |
---|
[42] | 2472 | ENDIF !if callstats |
---|
| 2473 | |
---|
| 2474 | c (Store EOF for Mars Climate database software) |
---|
| 2475 | IF (calleofdump) THEN |
---|
| 2476 | CALL eofdump(ngrid, nlayer, zu, zv, zt, rho, ps) |
---|
| 2477 | ENDIF |
---|
[1212] | 2478 | #endif |
---|
| 2479 | !endif of ifndef MESOSCALE |
---|
[42] | 2480 | |
---|
[1236] | 2481 | #ifdef MESOSCALE |
---|
| 2482 | |
---|
| 2483 | !! see comm_wrf. |
---|
| 2484 | !! not needed when an array is already in a shared module. |
---|
| 2485 | !! --> example : hfmax_th, zmax_th |
---|
[234] | 2486 | |
---|
[1590] | 2487 | CALL allocate_comm_wrf(ngrid,nlayer) |
---|
| 2488 | |
---|
[1236] | 2489 | !state real HR_SW ikj misc 1 - h "HR_SW" "HEATING RATE SW" "K/s" |
---|
| 2490 | comm_HR_SW(1:ngrid,1:nlayer) = zdtsw(1:ngrid,1:nlayer) |
---|
| 2491 | !state real HR_LW ikj misc 1 - h "HR_LW" "HEATING RATE LW" "K/s" |
---|
| 2492 | comm_HR_LW(1:ngrid,1:nlayer) = zdtlw(1:ngrid,1:nlayer) |
---|
| 2493 | !state real SWDOWNZ ij misc 1 - h "SWDOWNZ" "DOWNWARD SW FLUX AT SURFACE" "W m-2" |
---|
| 2494 | comm_SWDOWNZ(1:ngrid) = fluxsurf_sw_tot(1:ngrid) |
---|
| 2495 | !state real TAU_DUST ij misc 1 - h "TAU_DUST" "REFERENCE VISIBLE DUST OPACITY" "" |
---|
| 2496 | comm_TAU_DUST(1:ngrid) = tauref(1:ngrid) |
---|
| 2497 | !state real RDUST ikj misc 1 - h "RDUST" "DUST RADIUS" "m" |
---|
| 2498 | comm_RDUST(1:ngrid,1:nlayer) = rdust(1:ngrid,1:nlayer) |
---|
| 2499 | !state real QSURFDUST ij misc 1 - h "QSURFDUST" "DUST MASS AT SURFACE" "kg m-2" |
---|
[308] | 2500 | IF (igcm_dust_mass .ne. 0) THEN |
---|
[1236] | 2501 | comm_QSURFDUST(1:ngrid) = qsurf(1:ngrid,igcm_dust_mass) |
---|
| 2502 | ELSE |
---|
| 2503 | comm_QSURFDUST(1:ngrid) = 0. |
---|
[308] | 2504 | ENDIF |
---|
[1236] | 2505 | !state real MTOT ij misc 1 - h "MTOT" "TOTAL MASS WATER VAPOR in pmic" "pmic" |
---|
| 2506 | comm_MTOT(1:ngrid) = mtot(1:ngrid) * 1.e6 / rho_ice |
---|
| 2507 | !state real ICETOT ij misc 1 - h "ICETOT" "TOTAL MASS WATER ICE" "kg m-2" |
---|
| 2508 | comm_ICETOT(1:ngrid) = icetot(1:ngrid) * 1.e6 / rho_ice |
---|
| 2509 | !state real VMR_ICE ikj misc 1 - h "VMR_ICE" "VOL. MIXING RATIO ICE" "ppm" |
---|
| 2510 | IF (igcm_h2o_ice .ne. 0) THEN |
---|
| 2511 | comm_VMR_ICE(1:ngrid,1:nlayer) = 1.e6 |
---|
| 2512 | . * zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 2513 | . * mmean(1:ngrid,1:nlayer) / mmol(igcm_h2o_ice) |
---|
| 2514 | ELSE |
---|
| 2515 | comm_VMR_ICE(1:ngrid,1:nlayer) = 0. |
---|
[81] | 2516 | ENDIF |
---|
[1236] | 2517 | !state real TAU_ICE ij misc 1 - h "TAU_ICE" "CLOUD OD at 825 cm-1 TES" "" |
---|
[1292] | 2518 | if (activice) then |
---|
| 2519 | comm_TAU_ICE(1:ngrid) = taucloudtes(1:ngrid) |
---|
| 2520 | else |
---|
| 2521 | comm_TAU_ICE(1:ngrid) = tauTES(1:ngrid) |
---|
| 2522 | endif |
---|
[1236] | 2523 | !state real RICE ikj misc 1 - h "RICE" "ICE RADIUS" "m" |
---|
| 2524 | comm_RICE(1:ngrid,1:nlayer) = rice(1:ngrid,1:nlayer) |
---|
[1242] | 2525 | |
---|
| 2526 | !! calculate sensible heat flux in W/m2 for outputs |
---|
| 2527 | !! -- the one computed in vdifc is not the real one |
---|
| 2528 | !! -- vdifc must have been called |
---|
| 2529 | if (.not.callrichsl) then |
---|
| 2530 | sensibFlux(1:ngrid) = zflubid(1:ngrid) |
---|
| 2531 | . - capcal(1:ngrid)*zdtsdif(1:ngrid) |
---|
| 2532 | else |
---|
| 2533 | sensibFlux(1:ngrid) = |
---|
| 2534 | & (pplay(1:ngrid,1)/(r*pt(1:ngrid,1)))*cpp |
---|
| 2535 | & *sqrt(pu(1:ngrid,1)*pu(1:ngrid,1)+pv(1:ngrid,1)*pv(1:ngrid,1) |
---|
| 2536 | & +(log(1.+0.7*wstar(1:ngrid) + 2.3*wstar(1:ngrid)**2))**2) |
---|
| 2537 | & *zcdh(1:ngrid)*(tsurf(1:ngrid)-zh(1:ngrid,1)) |
---|
| 2538 | endif |
---|
| 2539 | |
---|
[226] | 2540 | #else |
---|
[528] | 2541 | #ifndef MESOINI |
---|
[42] | 2542 | |
---|
[226] | 2543 | c ========================================================== |
---|
| 2544 | c WRITEDIAGFI: Outputs in netcdf file "DIAGFI", containing |
---|
| 2545 | c any variable for diagnostic (output with period |
---|
| 2546 | c "ecritphy", set in "run.def") |
---|
| 2547 | c ========================================================== |
---|
| 2548 | c WRITEDIAGFI can ALSO be called from any other subroutines |
---|
| 2549 | c for any variables !! |
---|
[835] | 2550 | c call WRITEDIAGFI(ngrid,"emis","Surface emissivity","w.m-1",2, |
---|
| 2551 | c & emis) |
---|
| 2552 | c call WRITEDIAGFI(ngrid,"pplay","Pressure","Pa",3,zplay) |
---|
| 2553 | c call WRITEDIAGFI(ngrid,"pplev","Pressure","Pa",3,zplev) |
---|
[226] | 2554 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",2, |
---|
| 2555 | & tsurf) |
---|
| 2556 | call WRITEDIAGFI(ngrid,"ps","surface pressure","Pa",2,ps) |
---|
[769] | 2557 | call WRITEDIAGFI(ngrid,"co2ice","co2 ice thickness" |
---|
| 2558 | & ,"kg.m-2",2,co2ice) |
---|
[284] | 2559 | |
---|
[719] | 2560 | call WRITEDIAGFI(ngrid,"temp7","temperature in layer 7", |
---|
| 2561 | & "K",2,zt(1,7)) |
---|
| 2562 | call WRITEDIAGFI(ngrid,"fluxsurf_lw","fluxsurf_lw","W.m-2",2, |
---|
| 2563 | & fluxsurf_lw) |
---|
| 2564 | call WRITEDIAGFI(ngrid,"fluxsurf_sw","fluxsurf_sw","W.m-2",2, |
---|
| 2565 | & fluxsurf_sw_tot) |
---|
| 2566 | call WRITEDIAGFI(ngrid,"fluxtop_lw","fluxtop_lw","W.m-2",2, |
---|
| 2567 | & fluxtop_lw) |
---|
| 2568 | call WRITEDIAGFI(ngrid,"fluxtop_sw","fluxtop_sw","W.m-2",2, |
---|
| 2569 | & fluxtop_sw_tot) |
---|
[1640] | 2570 | call WRITEDIAGFI(ngrid,"temp","temperature","K",3,zt) |
---|
[1955] | 2571 | call WRITEDIAGFI(ngrid,"Sols","Time","sols",0,zday) |
---|
[2141] | 2572 | call WRITEDIAGFI(ngrid,"Ls","Solar longitude","deg", |
---|
| 2573 | & 0,zls*180./pi) |
---|
[719] | 2574 | call WRITEDIAGFI(ngrid,"u","Zonal wind","m.s-1",3,zu) |
---|
| 2575 | call WRITEDIAGFI(ngrid,"v","Meridional wind","m.s-1",3,zv) |
---|
| 2576 | call WRITEDIAGFI(ngrid,"w","Vertical wind","m.s-1",3,pw) |
---|
[2149] | 2577 | call WRITEDIAGFI(ngrid,"rho","density","kg.m-3",3,rho) |
---|
[226] | 2578 | c call WRITEDIAGFI(ngrid,"q2","q2","kg.m-3",3,q2) |
---|
[520] | 2579 | c call WRITEDIAGFI(ngrid,'Teta','T potentielle','K',3,zh) |
---|
[758] | 2580 | call WRITEDIAGFI(ngrid,"pressure","Pressure","Pa",3,zplay) |
---|
[226] | 2581 | c call WRITEDIAGFI(ngrid,"ssurf","Surface stress","N.m-2",2, |
---|
| 2582 | c & zstress) |
---|
[1047] | 2583 | c call WRITEDIAGFI(ngrid,'sw_htrt','sw heat. rate', |
---|
[835] | 2584 | c & 'w.m-2',3,zdtsw) |
---|
[1047] | 2585 | c call WRITEDIAGFI(ngrid,'lw_htrt','lw heat. rate', |
---|
[835] | 2586 | c & 'w.m-2',3,zdtlw) |
---|
[1974] | 2587 | |
---|
[520] | 2588 | if (.not.activice) then |
---|
[1047] | 2589 | CALL WRITEDIAGFI(ngrid,'tauTESap', |
---|
[520] | 2590 | & 'tau abs 825 cm-1', |
---|
| 2591 | & '',2,tauTES) |
---|
| 2592 | else |
---|
[1047] | 2593 | CALL WRITEDIAGFI(ngrid,'tauTES', |
---|
[520] | 2594 | & 'tau abs 825 cm-1', |
---|
| 2595 | & '',2,taucloudtes) |
---|
| 2596 | endif |
---|
[42] | 2597 | |
---|
[528] | 2598 | #else |
---|
| 2599 | !!! this is to ensure correct initialisation of mesoscale model |
---|
| 2600 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",2, |
---|
| 2601 | & tsurf) |
---|
| 2602 | call WRITEDIAGFI(ngrid,"ps","surface pressure","Pa",2,ps) |
---|
| 2603 | call WRITEDIAGFI(ngrid,"co2ice","co2 ice thickness","kg.m-2",2, |
---|
| 2604 | & co2ice) |
---|
| 2605 | call WRITEDIAGFI(ngrid,"temp","temperature","K",3,zt) |
---|
| 2606 | call WRITEDIAGFI(ngrid,"u","Zonal wind","m.s-1",3,zu) |
---|
| 2607 | call WRITEDIAGFI(ngrid,"v","Meridional wind","m.s-1",3,zv) |
---|
[299] | 2608 | call WRITEDIAGFI(ngrid,"emis","Surface emissivity","w.m-1",2, |
---|
| 2609 | & emis) |
---|
| 2610 | call WRITEDIAGFI(ngrid,"tsoil","Soil temperature", |
---|
| 2611 | & "K",3,tsoil) |
---|
| 2612 | call WRITEDIAGFI(ngrid,"inertiedat","Soil inertia", |
---|
| 2613 | & "K",3,inertiedat) |
---|
| 2614 | #endif |
---|
[42] | 2615 | |
---|
[299] | 2616 | |
---|
[226] | 2617 | c ---------------------------------------------------------- |
---|
| 2618 | c Outputs of the CO2 cycle |
---|
| 2619 | c ---------------------------------------------------------- |
---|
[1922] | 2620 | |
---|
[226] | 2621 | if (tracer.and.(igcm_co2.ne.0)) then |
---|
| 2622 | ! call WRITEDIAGFI(ngrid,"co2_l1","co2 mix. ratio in 1st layer", |
---|
| 2623 | ! & "kg/kg",2,zq(1,1,igcm_co2)) |
---|
[719] | 2624 | call WRITEDIAGFI(ngrid,"co2","co2 mass mixing ratio", |
---|
| 2625 | & "kg/kg",3,zq(1,1,igcm_co2)) |
---|
[1921] | 2626 | if (co2clouds) then |
---|
| 2627 | CALL WRITEDIAGFI(ngrid,'mtotco2', |
---|
| 2628 | & 'total mass of CO2 vapor', |
---|
| 2629 | & 'kg/m2',2,mtotco2) |
---|
| 2630 | CALL WRITEDIAGFI(ngrid,'zdtcloudco2', |
---|
| 2631 | & 'temperature variation of CO2 latent heat', |
---|
| 2632 | & 'K/s',3,zdtcloudco2) |
---|
| 2633 | |
---|
| 2634 | CALL WRITEDIAGFI(ngrid,'icetotco2', |
---|
| 2635 | & 'total mass of CO2 ice', |
---|
| 2636 | & 'kg/m2',2,icetotco2) |
---|
[1922] | 2637 | |
---|
[1921] | 2638 | call WRITEDIAGFI(ngrid,'ccnqco2','CCNco2 mass mr', |
---|
| 2639 | & 'kg/kg',3,qccnco2) |
---|
| 2640 | call WRITEDIAGFI(ngrid,'ccnNco2','CCNco2 number', |
---|
| 2641 | & 'part/kg',3,nccnco2) |
---|
| 2642 | call WRITEDIAGFI(ngrid,'co2_ice','co2_ice','kg/kg', |
---|
| 2643 | & 3,zq(:,:,igcm_co2_ice)) |
---|
[1996] | 2644 | call WRITEDIAGFI(ngrid,'precip_co2_ice', |
---|
| 2645 | & 'surface deposition of co2 ice', |
---|
| 2646 | & 'kg.m-2.s-1',2, |
---|
| 2647 | & zdqssed(1:ngrid,igcm_co2_ice)) |
---|
| 2648 | endif ! of if (co2clouds) |
---|
[226] | 2649 | endif ! of if (tracer.and.(igcm_co2.ne.0)) |
---|
[1660] | 2650 | ! Output He tracer, if there is one |
---|
| 2651 | if (tracer.and.(igcm_he.ne.0)) then |
---|
| 2652 | call WRITEDIAGFI(ngrid,"he","helium mass mixing ratio", |
---|
| 2653 | & "kg/kg",3,zq(1,1,igcm_he)) |
---|
| 2654 | vmr=zq(1:ngrid,1:nlayer,igcm_he) |
---|
| 2655 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_he) |
---|
| 2656 | call WRITEDIAGFI(ngrid,'vmr_he','helium vol. mixing ratio', |
---|
| 2657 | & 'mol/mol',3,vmr) |
---|
| 2658 | endif |
---|
| 2659 | |
---|
[226] | 2660 | c ---------------------------------------------------------- |
---|
| 2661 | c Outputs of the water cycle |
---|
| 2662 | c ---------------------------------------------------------- |
---|
| 2663 | if (tracer) then |
---|
| 2664 | if (water) then |
---|
| 2665 | |
---|
[299] | 2666 | #ifdef MESOINI |
---|
| 2667 | !!!! waterice = q01, voir readmeteo.F90 |
---|
[1047] | 2668 | call WRITEDIAGFI(ngrid,'q01',noms(igcm_h2o_ice), |
---|
[299] | 2669 | & 'kg/kg',3, |
---|
[1047] | 2670 | & zq(1:ngrid,1:nlayer,igcm_h2o_ice)) |
---|
[299] | 2671 | !!!! watervapor = q02, voir readmeteo.F90 |
---|
[1047] | 2672 | call WRITEDIAGFI(ngrid,'q02',noms(igcm_h2o_vap), |
---|
[299] | 2673 | & 'kg/kg',3, |
---|
[1047] | 2674 | & zq(1:ngrid,1:nlayer,igcm_h2o_vap)) |
---|
[299] | 2675 | !!!! surface waterice qsurf02 (voir readmeteo) |
---|
[1047] | 2676 | call WRITEDIAGFI(ngrid,'qsurf02','surface tracer', |
---|
[299] | 2677 | & 'kg.m-2',2, |
---|
[1047] | 2678 | & qsurf(1:ngrid,igcm_h2o_ice)) |
---|
[299] | 2679 | #endif |
---|
[1047] | 2680 | CALL WRITEDIAGFI(ngrid,'mtot', |
---|
[226] | 2681 | & 'total mass of water vapor', |
---|
| 2682 | & 'kg/m2',2,mtot) |
---|
[1047] | 2683 | CALL WRITEDIAGFI(ngrid,'icetot', |
---|
[226] | 2684 | & 'total mass of water ice', |
---|
| 2685 | & 'kg/m2',2,icetot) |
---|
[1047] | 2686 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 2687 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
---|
[1974] | 2688 | CALL WRITEDIAGFI(ngrid,'vmr_h2oice','h2o ice vmr', |
---|
[719] | 2689 | & 'mol/mol',3,vmr) |
---|
[1047] | 2690 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
---|
| 2691 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
---|
[1974] | 2692 | CALL WRITEDIAGFI(ngrid,'vmr_h2ovap','h2o vap vmr', |
---|
[719] | 2693 | & 'mol/mol',3,vmr) |
---|
[1047] | 2694 | CALL WRITEDIAGFI(ngrid,'reffice', |
---|
[669] | 2695 | & 'Mean reff', |
---|
| 2696 | & 'm',2,rave) |
---|
[1922] | 2697 | |
---|
[1921] | 2698 | call WRITEDIAGFI(ngrid,'h2o_ice','h2o_ice','kg/kg', |
---|
| 2699 | & 3,zq(:,:,igcm_h2o_ice)) |
---|
| 2700 | call WRITEDIAGFI(ngrid,'h2o_vap','h2o_vap','kg/kg', |
---|
| 2701 | & 3,zq(:,:,igcm_h2o_vap)) |
---|
| 2702 | |
---|
[1922] | 2703 | |
---|
[1711] | 2704 | !A. Pottier |
---|
| 2705 | CALL WRITEDIAGFI(ngrid,'rmoym', |
---|
| 2706 | & 'alternative reffice', |
---|
| 2707 | & 'm',2,rave2) |
---|
[1467] | 2708 | call WRITEDIAGFI(ngrid,'saturation', |
---|
| 2709 | & 'h2o vap saturation ratio','dimless',3,satu) |
---|
[1130] | 2710 | if (scavenging) then |
---|
| 2711 | CALL WRITEDIAGFI(ngrid,"Nccntot", |
---|
[669] | 2712 | & "condensation nuclei","Nbr/m2", |
---|
| 2713 | & 2,Nccntot) |
---|
[1130] | 2714 | CALL WRITEDIAGFI(ngrid,"Mccntot", |
---|
[719] | 2715 | & "mass condensation nuclei","kg/m2", |
---|
| 2716 | & 2,Mccntot) |
---|
[1130] | 2717 | endif |
---|
[1047] | 2718 | call WRITEDIAGFI(ngrid,'rice','Ice particle size', |
---|
[719] | 2719 | & 'm',3,rice) |
---|
[1047] | 2720 | call WRITEDIAGFI(ngrid,'h2o_ice_s', |
---|
[226] | 2721 | & 'surface h2o_ice', |
---|
| 2722 | & 'kg.m-2',2,qsurf(1,igcm_h2o_ice)) |
---|
[1047] | 2723 | CALL WRITEDIAGFI(ngrid,'albedo', |
---|
[833] | 2724 | & 'albedo', |
---|
[1013] | 2725 | & '',2,albedo(1,1)) |
---|
[833] | 2726 | if (tifeedback) then |
---|
[1047] | 2727 | call WRITEDIAGSOIL(ngrid,"soiltemp", |
---|
[833] | 2728 | & "Soil temperature","K", |
---|
| 2729 | & 3,tsoil) |
---|
[1047] | 2730 | call WRITEDIAGSOIL(ngrid,'soilti', |
---|
[833] | 2731 | & 'Soil Thermal Inertia', |
---|
| 2732 | & 'J.s-1/2.m-2.K-1',3,inertiesoil) |
---|
| 2733 | endif |
---|
[1711] | 2734 | !A. Pottier |
---|
| 2735 | if (CLFvarying) then !AP14 nebulosity |
---|
| 2736 | call WRITEDIAGFI(ngrid,'totcloudfrac', |
---|
| 2737 | & 'Total cloud fraction', |
---|
| 2738 | & ' ',2,totcloudfrac) |
---|
| 2739 | endif !clf varying |
---|
| 2740 | |
---|
[226] | 2741 | endif !(water) |
---|
| 2742 | |
---|
| 2743 | |
---|
| 2744 | if (water.and..not.photochem) then |
---|
| 2745 | iq=nq |
---|
| 2746 | c write(str2(1:2),'(i2.2)') iq |
---|
[1047] | 2747 | c call WRITEDIAGFI(ngrid,'dqs'//str2,'dqscloud', |
---|
[226] | 2748 | c & 'kg.m-2',2,zdqscloud(1,iq)) |
---|
[1047] | 2749 | c call WRITEDIAGFI(ngrid,'dqch'//str2,'var chim', |
---|
[226] | 2750 | c & 'kg/kg',3,zdqchim(1,1,iq)) |
---|
[1047] | 2751 | c call WRITEDIAGFI(ngrid,'dqd'//str2,'var dif', |
---|
[226] | 2752 | c & 'kg/kg',3,zdqdif(1,1,iq)) |
---|
[1047] | 2753 | c call WRITEDIAGFI(ngrid,'dqa'//str2,'var adj', |
---|
[226] | 2754 | c & 'kg/kg',3,zdqadj(1,1,iq)) |
---|
[1047] | 2755 | c call WRITEDIAGFI(ngrid,'dqc'//str2,'var c', |
---|
[226] | 2756 | c & 'kg/kg',3,zdqc(1,1,iq)) |
---|
| 2757 | endif !(water.and..not.photochem) |
---|
| 2758 | endif |
---|
| 2759 | |
---|
| 2760 | c ---------------------------------------------------------- |
---|
| 2761 | c Outputs of the dust cycle |
---|
| 2762 | c ---------------------------------------------------------- |
---|
| 2763 | |
---|
[1047] | 2764 | call WRITEDIAGFI(ngrid,'tauref', |
---|
[758] | 2765 | & 'Dust ref opt depth','NU',2,tauref) |
---|
[226] | 2766 | |
---|
| 2767 | if (tracer.and.(dustbin.ne.0)) then |
---|
[1264] | 2768 | |
---|
[1047] | 2769 | call WRITEDIAGFI(ngrid,'tau','taudust','SI',2,tau(1,1)) |
---|
[1264] | 2770 | |
---|
| 2771 | #ifndef MESOINI |
---|
[226] | 2772 | if (doubleq) then |
---|
[1047] | 2773 | c call WRITEDIAGFI(ngrid,'qsurf','qsurf', |
---|
[411] | 2774 | c & 'kg.m-2',2,qsurf(1,igcm_dust_mass)) |
---|
[1047] | 2775 | c call WRITEDIAGFI(ngrid,'Nsurf','N particles', |
---|
[411] | 2776 | c & 'N.m-2',2,qsurf(1,igcm_dust_number)) |
---|
[1047] | 2777 | c call WRITEDIAGFI(ngrid,'dqsdev','ddevil lift', |
---|
[226] | 2778 | c & 'kg.m-2.s-1',2,zdqsdev(1,1)) |
---|
[1047] | 2779 | c call WRITEDIAGFI(ngrid,'dqssed','sedimentation', |
---|
[411] | 2780 | c & 'kg.m-2.s-1',2,zdqssed(1,1)) |
---|
[1047] | 2781 | c call WRITEDIAGFI(ngrid,'dqsdif','diffusion', |
---|
[411] | 2782 | c & 'kg.m-2.s-1',2,zdqsdif(1,1)) |
---|
[1208] | 2783 | c call WRITEDIAGFI(ngrid,'sedice','sedimented ice', |
---|
| 2784 | c & 'kg.m-2.s-1',2,zdqssed(:,igcm_h2o_ice)) |
---|
| 2785 | c call WRITEDIAGFI(ngrid,'subice','sublimated ice', |
---|
| 2786 | c & 'kg.m-2.s-1',2,zdqsdif(:,igcm_h2o_ice)) |
---|
[1047] | 2787 | call WRITEDIAGFI(ngrid,'dqsdust', |
---|
[719] | 2788 | & 'deposited surface dust mass', |
---|
| 2789 | & 'kg.m-2.s-1',2,dqdustsurf) |
---|
[1047] | 2790 | call WRITEDIAGFI(ngrid,'dqndust', |
---|
[719] | 2791 | & 'deposited surface dust number', |
---|
| 2792 | & 'number.m-2.s-1',2,dndustsurf) |
---|
[1047] | 2793 | call WRITEDIAGFI(ngrid,'reffdust','reffdust', |
---|
[719] | 2794 | & 'm',3,rdust*ref_r0) |
---|
[1047] | 2795 | call WRITEDIAGFI(ngrid,'dustq','Dust mass mr', |
---|
[756] | 2796 | & 'kg/kg',3,qdust) |
---|
[1047] | 2797 | call WRITEDIAGFI(ngrid,'dustN','Dust number', |
---|
[756] | 2798 | & 'part/kg',3,ndust) |
---|
[1353] | 2799 | call WRITEDIAGFI(ngrid,'dsodust', |
---|
[1974] | 2800 | & 'density scaled optcial depth', |
---|
| 2801 | & 'm2.kg-1',3,dsodust) |
---|
| 2802 | call WRITEDIAGFI(ngrid,'dso', |
---|
| 2803 | & 'density scaled optcial depth', |
---|
| 2804 | & 'm2.kg-1',3,dsodust+dsords) |
---|
[226] | 2805 | else |
---|
| 2806 | do iq=1,dustbin |
---|
| 2807 | write(str2(1:2),'(i2.2)') iq |
---|
[1047] | 2808 | call WRITEDIAGFI(ngrid,'q'//str2,'mix. ratio', |
---|
[226] | 2809 | & 'kg/kg',3,zq(1,1,iq)) |
---|
[1047] | 2810 | call WRITEDIAGFI(ngrid,'qsurf'//str2,'qsurf', |
---|
[226] | 2811 | & 'kg.m-2',2,qsurf(1,iq)) |
---|
| 2812 | end do |
---|
| 2813 | endif ! (doubleq) |
---|
[358] | 2814 | |
---|
[1974] | 2815 | if (rdstorm) then ! writediagfi tendencies stormdust tracers |
---|
| 2816 | call WRITEDIAGFI(ngrid,'reffdust','reffdust', |
---|
| 2817 | & 'm',3,rdust*ref_r0) |
---|
| 2818 | call WRITEDIAGFI(ngrid,'reffstormdust','reffstormdust', |
---|
| 2819 | & 'm',3,rstormdust*ref_r0) |
---|
| 2820 | call WRITEDIAGFI(ngrid,'mstormdtot', |
---|
| 2821 | & 'total mass of stormdust only', |
---|
| 2822 | & 'kg.m-2',2,mstormdtot) |
---|
| 2823 | call WRITEDIAGFI(ngrid,'mdusttot', |
---|
| 2824 | & 'total mass of dust only', |
---|
| 2825 | & 'kg.m-2',2,mdusttot) |
---|
| 2826 | call WRITEDIAGFI(ngrid,'rdsdqsdust', |
---|
| 2827 | & 'deposited surface stormdust mass', |
---|
| 2828 | & 'kg.m-2.s-1',2,rdsdqdustsurf) |
---|
| 2829 | call WRITEDIAGFI(ngrid,'rdsdustq','storm Dust mass mr', |
---|
| 2830 | & 'kg/kg',3,rdsqdust) |
---|
| 2831 | call WRITEDIAGFI(ngrid,'rdsdustqmodel','storm Dust massmr', |
---|
| 2832 | & 'kg/kg',3,pq(:,:,igcm_stormdust_mass)) |
---|
| 2833 | call WRITEDIAGFI(ngrid,'rdsdustN','storm Dust number', |
---|
| 2834 | & 'part/kg',3,rdsndust) |
---|
| 2835 | call WRITEDIAGFI(ngrid,"stormfract", |
---|
| 2836 | & "fraction of the mesh, with stormdust","none", |
---|
| 2837 | & 2,totstormfract) |
---|
| 2838 | call WRITEDIAGFI(ngrid,'qsurf', |
---|
| 2839 | & 'stormdust injection', |
---|
| 2840 | & 'kg.m-2',2,qsurf(:,igcm_stormdust_mass)) |
---|
| 2841 | call WRITEDIAGFI(ngrid,'pdqsurf', |
---|
| 2842 | & 'tendancy stormdust mass at surface', |
---|
| 2843 | & 'kg.m-2',2,dqsurf(:,igcm_stormdust_mass)) |
---|
| 2844 | call WRITEDIAGFI(ngrid,'wspeed','vertical speed stormdust', |
---|
| 2845 | & 'm/s',3,wspeed(:,1:nlayer)) |
---|
| 2846 | call WRITEDIAGFI(ngrid,'zdqsed_dustq' |
---|
| 2847 | & ,'sedimentation q','kg.m-2.s-1',3, |
---|
| 2848 | & zdqsed(:,:,igcm_dust_mass)) |
---|
| 2849 | call WRITEDIAGFI(ngrid,'zdqssed_dustq' |
---|
| 2850 | & ,'sedimentation q','kg.m-2.s-1',2, |
---|
| 2851 | & zdqssed(:,igcm_dust_mass)) |
---|
| 2852 | call WRITEDIAGFI(ngrid,'zdqsed_rdsq' |
---|
| 2853 | & ,'sedimentation q','kg.m-2.s-1',3, |
---|
| 2854 | & zdqsed(:,:,igcm_stormdust_mass)) |
---|
| 2855 | call WRITEDIAGFI(ngrid,'rdust','rdust', |
---|
| 2856 | & 'm',3,rdust) |
---|
| 2857 | call WRITEDIAGFI(ngrid,'rstormdust','rstormdust', |
---|
| 2858 | & 'm',3,rstormdust) |
---|
| 2859 | call WRITEDIAGFI(ngrid,'totaldustq','total dust mass', |
---|
| 2860 | & 'kg/kg',3,qdusttotal) |
---|
| 2861 | call WRITEDIAGFI(ngrid,'dsords', |
---|
| 2862 | & 'density scaled opacity of stormdust', |
---|
| 2863 | & 'm2.kg-1',3,dsords) |
---|
| 2864 | endif ! (rdstorm) |
---|
| 2865 | |
---|
[358] | 2866 | if (scavenging) then |
---|
[1047] | 2867 | call WRITEDIAGFI(ngrid,'ccnq','CCN mass mr', |
---|
[756] | 2868 | & 'kg/kg',3,qccn) |
---|
[1047] | 2869 | call WRITEDIAGFI(ngrid,'ccnN','CCN number', |
---|
[756] | 2870 | & 'part/kg',3,nccn) |
---|
[1974] | 2871 | call WRITEDIAGFI(ngrid,'surfccnq','Surf nuclei mass mr', |
---|
| 2872 | & 'kg.m-2',2,qsurf(1,igcm_ccn_mass)) |
---|
| 2873 | call WRITEDIAGFI(ngrid,'surfccnN','Surf nuclei number', |
---|
| 2874 | & 'kg.m-2',2,qsurf(1,igcm_ccn_number)) |
---|
[358] | 2875 | endif ! (scavenging) |
---|
| 2876 | |
---|
[226] | 2877 | c if (submicron) then |
---|
[1047] | 2878 | c call WRITEDIAGFI(ngrid,'dustsubm','subm mass mr', |
---|
[226] | 2879 | c & 'kg/kg',3,pq(1,1,igcm_dust_submicron)) |
---|
| 2880 | c endif ! (submicron) |
---|
[1264] | 2881 | |
---|
| 2882 | #else |
---|
| 2883 | ! !!! to initialize mesoscale we need scaled variables |
---|
| 2884 | ! !!! because this must correspond to starting point for tracers |
---|
| 2885 | ! call WRITEDIAGFI(ngrid,'dustq','Dust mass mr', |
---|
| 2886 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_mass)) |
---|
| 2887 | ! call WRITEDIAGFI(ngrid,'dustN','Dust number', |
---|
| 2888 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_number)) |
---|
| 2889 | ! call WRITEDIAGFI(ngrid,'ccn','Nuclei mass mr', |
---|
| 2890 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_mass)) |
---|
| 2891 | ! call WRITEDIAGFI(ngrid,'ccnN','Nuclei number', |
---|
| 2892 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_number)) |
---|
| 2893 | if (freedust) then |
---|
| 2894 | call WRITEDIAGFI(ngrid,'dustq','Dust mass mr', |
---|
| 2895 | & 'kg/kg',3,qdust) |
---|
| 2896 | call WRITEDIAGFI(ngrid,'dustN','Dust number', |
---|
| 2897 | & 'part/kg',3,ndust) |
---|
| 2898 | call WRITEDIAGFI(ngrid,'ccn','CCN mass mr', |
---|
| 2899 | & 'kg/kg',3,qccn) |
---|
| 2900 | call WRITEDIAGFI(ngrid,'ccnN','CCN number', |
---|
| 2901 | & 'part/kg',3,nccn) |
---|
| 2902 | else |
---|
| 2903 | call WRITEDIAGFI(ngrid,'dustq','Dust mass mr', |
---|
| 2904 | & 'kg/kg',3,pq(1,1,igcm_dust_mass)) |
---|
| 2905 | call WRITEDIAGFI(ngrid,'dustN','Dust number', |
---|
| 2906 | & 'part/kg',3,pq(1,1,igcm_dust_number)) |
---|
| 2907 | call WRITEDIAGFI(ngrid,'ccn','Nuclei mass mr', |
---|
| 2908 | & 'kg/kg',3,pq(1,1,igcm_ccn_mass)) |
---|
| 2909 | call WRITEDIAGFI(ngrid,'ccnN','Nuclei number', |
---|
| 2910 | & 'part/kg',3,pq(1,1,igcm_ccn_number)) |
---|
| 2911 | endif |
---|
| 2912 | #endif |
---|
| 2913 | |
---|
[226] | 2914 | end if ! (tracer.and.(dustbin.ne.0)) |
---|
| 2915 | |
---|
[2149] | 2916 | c ---------------------------------------------------------- |
---|
| 2917 | c GW non-oro outputs |
---|
| 2918 | c ---------------------------------------------------------- |
---|
[705] | 2919 | |
---|
[2149] | 2920 | if(calllott_nonoro) then |
---|
| 2921 | call WRITEDIAGFI(ngrid,"dugwno","GW non-oro dU","m/s2", |
---|
| 2922 | $ 3,d_u_hin/ptimestep) |
---|
| 2923 | call WRITEDIAGFI(ngrid,"dvgwno","GW non-oro dV","m/s2", |
---|
| 2924 | $ 3,d_v_hin/ptimestep) |
---|
| 2925 | endif !(calllott_nonoro) |
---|
| 2926 | |
---|
[226] | 2927 | c ---------------------------------------------------------- |
---|
[705] | 2928 | c Thermospheric outputs |
---|
[267] | 2929 | c ---------------------------------------------------------- |
---|
[705] | 2930 | |
---|
| 2931 | if(callthermos) then |
---|
| 2932 | |
---|
[1047] | 2933 | call WRITEDIAGFI(ngrid,"q15um","15 um cooling","K/s", |
---|
[705] | 2934 | $ 3,zdtnlte) |
---|
[1047] | 2935 | call WRITEDIAGFI(ngrid,"quv","UV heating","K/s", |
---|
[705] | 2936 | $ 3,zdteuv) |
---|
[1047] | 2937 | call WRITEDIAGFI(ngrid,"cond","Thermal conduction","K/s", |
---|
[705] | 2938 | $ 3,zdtconduc) |
---|
[1047] | 2939 | call WRITEDIAGFI(ngrid,"qnir","NIR heating","K/s", |
---|
[705] | 2940 | $ 3,zdtnirco2) |
---|
| 2941 | |
---|
| 2942 | endif !(callthermos) |
---|
| 2943 | |
---|
| 2944 | c ---------------------------------------------------------- |
---|
| 2945 | c ---------------------------------------------------------- |
---|
[267] | 2946 | c PBL OUTPUS |
---|
| 2947 | c ---------------------------------------------------------- |
---|
| 2948 | c ---------------------------------------------------------- |
---|
| 2949 | |
---|
| 2950 | c ---------------------------------------------------------- |
---|
[226] | 2951 | c Outputs of thermals |
---|
| 2952 | c ---------------------------------------------------------- |
---|
| 2953 | if (calltherm) then |
---|
| 2954 | |
---|
| 2955 | ! call WRITEDIAGFI(ngrid,'dtke', |
---|
| 2956 | ! & 'tendance tke thermiques','m**2/s**2', |
---|
| 2957 | ! & 3,dtke_th) |
---|
| 2958 | ! call WRITEDIAGFI(ngrid,'d_u_ajs', |
---|
| 2959 | ! & 'tendance u thermiques','m/s', |
---|
| 2960 | ! & 3,pdu_th*ptimestep) |
---|
| 2961 | ! call WRITEDIAGFI(ngrid,'d_v_ajs', |
---|
| 2962 | ! & 'tendance v thermiques','m/s', |
---|
| 2963 | ! & 3,pdv_th*ptimestep) |
---|
| 2964 | ! if (tracer) then |
---|
| 2965 | ! if (nq .eq. 2) then |
---|
| 2966 | ! call WRITEDIAGFI(ngrid,'deltaq_th', |
---|
| 2967 | ! & 'delta q thermiques','kg/kg', |
---|
| 2968 | ! & 3,ptimestep*pdq_th(:,:,2)) |
---|
| 2969 | ! endif |
---|
| 2970 | ! endif |
---|
| 2971 | |
---|
[1047] | 2972 | call WRITEDIAGFI(ngrid,'zmax_th', |
---|
[523] | 2973 | & 'hauteur du thermique','m', |
---|
| 2974 | & 2,zmax_th) |
---|
[1047] | 2975 | call WRITEDIAGFI(ngrid,'hfmax_th', |
---|
[226] | 2976 | & 'maximum TH heat flux','K.m/s', |
---|
| 2977 | & 2,hfmax_th) |
---|
[1047] | 2978 | call WRITEDIAGFI(ngrid,'wstar', |
---|
[226] | 2979 | & 'maximum TH vertical velocity','m/s', |
---|
[528] | 2980 | & 2,wstar) |
---|
[226] | 2981 | |
---|
| 2982 | endif |
---|
| 2983 | |
---|
| 2984 | c ---------------------------------------------------------- |
---|
[267] | 2985 | c ---------------------------------------------------------- |
---|
| 2986 | c END OF PBL OUTPUS |
---|
| 2987 | c ---------------------------------------------------------- |
---|
| 2988 | c ---------------------------------------------------------- |
---|
| 2989 | |
---|
| 2990 | |
---|
| 2991 | c ---------------------------------------------------------- |
---|
[226] | 2992 | c Output in netcdf file "diagsoil.nc" for subterranean |
---|
| 2993 | c variables (output every "ecritphy", as for writediagfi) |
---|
| 2994 | c ---------------------------------------------------------- |
---|
| 2995 | |
---|
| 2996 | ! Write soil temperature |
---|
| 2997 | ! call writediagsoil(ngrid,"soiltemp","Soil temperature","K", |
---|
| 2998 | ! & 3,tsoil) |
---|
| 2999 | ! Write surface temperature |
---|
| 3000 | ! call writediagsoil(ngrid,"tsurf","Surface temperature","K", |
---|
| 3001 | ! & 2,tsurf) |
---|
| 3002 | |
---|
| 3003 | c ========================================================== |
---|
| 3004 | c END OF WRITEDIAGFI |
---|
| 3005 | c ========================================================== |
---|
| 3006 | #endif |
---|
[1212] | 3007 | ! of ifdef MESOSCALE |
---|
[226] | 3008 | |
---|
[42] | 3009 | ELSE ! if(ngrid.eq.1) |
---|
| 3010 | |
---|
[1212] | 3011 | #ifndef MESOSCALE |
---|
[627] | 3012 | write(*,'("Ls =",f11.6," tauref(",f4.0," Pa) =",f9.6)') |
---|
| 3013 | & zls*180./pi,odpref,tauref |
---|
[42] | 3014 | c ---------------------------------------------------------------------- |
---|
| 3015 | c Output in grads file "g1d" (ONLY when using testphys1d) |
---|
| 3016 | c (output at every X physical timestep) |
---|
| 3017 | c ---------------------------------------------------------------------- |
---|
| 3018 | c |
---|
| 3019 | c CALL writeg1d(ngrid,1,fluxsurf_lw,'Fs_ir','W.m-2') |
---|
| 3020 | c CALL writeg1d(ngrid,1,tsurf,'tsurf','K') |
---|
| 3021 | c CALL writeg1d(ngrid,1,ps,'ps','Pa') |
---|
[1617] | 3022 | |
---|
[42] | 3023 | c CALL writeg1d(ngrid,nlayer,zt,'T','K') |
---|
| 3024 | c CALL writeg1d(ngrid,nlayer,pu,'u','m.s-1') |
---|
| 3025 | c CALL writeg1d(ngrid,nlayer,pv,'v','m.s-1') |
---|
| 3026 | c CALL writeg1d(ngrid,nlayer,pw,'w','m.s-1') |
---|
| 3027 | |
---|
[226] | 3028 | ! THERMALS STUFF 1D |
---|
| 3029 | if(calltherm) then |
---|
| 3030 | |
---|
[1047] | 3031 | call WRITEDIAGFI(ngrid,'lmax_th', |
---|
[226] | 3032 | & 'hauteur du thermique','point', |
---|
| 3033 | & 0,lmax_th_out) |
---|
[1047] | 3034 | call WRITEDIAGFI(ngrid,'zmax_th', |
---|
[528] | 3035 | & 'hauteur du thermique','m', |
---|
| 3036 | & 0,zmax_th) |
---|
[1047] | 3037 | call WRITEDIAGFI(ngrid,'hfmax_th', |
---|
[226] | 3038 | & 'maximum TH heat flux','K.m/s', |
---|
| 3039 | & 0,hfmax_th) |
---|
[1047] | 3040 | call WRITEDIAGFI(ngrid,'wstar', |
---|
[226] | 3041 | & 'maximum TH vertical velocity','m/s', |
---|
[528] | 3042 | & 0,wstar) |
---|
[226] | 3043 | |
---|
| 3044 | co2col(:)=0. |
---|
| 3045 | if (tracer) then |
---|
[1047] | 3046 | do l=1,nlayer |
---|
[226] | 3047 | do ig=1,ngrid |
---|
| 3048 | co2col(ig)=co2col(ig)+ |
---|
[883] | 3049 | & zq(ig,l,1)*(zplev(ig,l)-zplev(ig,l+1))/g |
---|
[226] | 3050 | enddo |
---|
| 3051 | enddo |
---|
| 3052 | |
---|
| 3053 | end if |
---|
| 3054 | call WRITEDIAGFI(ngrid,'co2col','integrated co2 mass' & |
---|
| 3055 | & ,'kg/m-2',0,co2col) |
---|
[722] | 3056 | endif ! of if (calltherm) |
---|
| 3057 | |
---|
[226] | 3058 | call WRITEDIAGFI(ngrid,'w','vertical velocity' & |
---|
| 3059 | & ,'m/s',1,pw) |
---|
| 3060 | call WRITEDIAGFI(ngrid,"q2","q2","kg.m-3",1,q2) |
---|
| 3061 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",0, |
---|
| 3062 | & tsurf) |
---|
[277] | 3063 | call WRITEDIAGFI(ngrid,"u","u wind","m/s",1,zu) |
---|
| 3064 | call WRITEDIAGFI(ngrid,"v","v wind","m/s",1,zv) |
---|
[226] | 3065 | |
---|
| 3066 | call WRITEDIAGFI(ngrid,"pplay","Pressure","Pa",1,zplay) |
---|
| 3067 | call WRITEDIAGFI(ngrid,"pplev","Pressure","Pa",1,zplev) |
---|
[358] | 3068 | call WRITEDIAGFI(ngrid,"rho","rho","kg.m-3",1,rho) |
---|
[1380] | 3069 | call WRITEDIAGFI(ngrid,"dtrad","rad. heat. rate", & |
---|
| 3070 | & "K.s-1",1,dtrad) |
---|
| 3071 | call WRITEDIAGFI(ngrid,'sw_htrt','sw heat. rate', |
---|
| 3072 | & 'w.m-2',1,zdtsw) |
---|
| 3073 | call WRITEDIAGFI(ngrid,'lw_htrt','lw heat. rate', |
---|
| 3074 | & 'w.m-2',1,zdtlw) |
---|
[769] | 3075 | call WRITEDIAGFI(ngrid,"co2ice","co2 ice thickness" |
---|
| 3076 | & ,"kg.m-2",0,co2ice) |
---|
[544] | 3077 | |
---|
[1617] | 3078 | call co2sat(ngrid*nlayer,zt,zplay,zqsatco2) |
---|
| 3079 | do ig=1,ngrid |
---|
| 3080 | do l=1,nlayer |
---|
| 3081 | satuco2(ig,l) = zq(ig,l,igcm_co2)* |
---|
| 3082 | & (mmean(ig,l)/44.01)*zplay(ig,l)/zqsatco2(ig,l) |
---|
| 3083 | |
---|
| 3084 | c write(*,*) "In PHYSIQMOD, pt,zt,time ",pt(ig,l) |
---|
| 3085 | c & ,zt(ig,l),ptime |
---|
| 3086 | enddo |
---|
| 3087 | enddo |
---|
| 3088 | |
---|
| 3089 | c CALL writeg1d(ngrid,nlayer,zt,'temp','K') |
---|
| 3090 | c CALL writeg1d(ngrid,nlayer,riceco2,'riceco2','m') |
---|
| 3091 | c CALL writeg1d(ngrid,nlayer,satuco2,'satuco2','satu') |
---|
| 3092 | |
---|
| 3093 | |
---|
[1629] | 3094 | c call WRITEDIAGFI(ngrid,"satuco2","vap in satu","kg/kg",1, |
---|
| 3095 | c & satuco2) |
---|
| 3096 | c call WRITEdiagfi(ngrid,"riceco2","ice radius","m" |
---|
| 3097 | c & ,1,riceco2) |
---|
[226] | 3098 | ! or output in diagfi.nc (for testphys1d) |
---|
[1047] | 3099 | call WRITEDIAGFI(ngrid,'ps','Surface pressure','Pa',0,ps) |
---|
[1617] | 3100 | call WRITEDIAGFI(ngrid,'temp','Temperature ', |
---|
[1629] | 3101 | & 'K JA',1,zt) |
---|
[1617] | 3102 | c call WRITEDIAGFI(ngrid,'temp2','Temperature ', |
---|
| 3103 | c & 'K JA2',1,pt) |
---|
| 3104 | |
---|
[226] | 3105 | if(tracer) then |
---|
| 3106 | c CALL writeg1d(ngrid,1,tau,'tau','SI') |
---|
| 3107 | do iq=1,nq |
---|
| 3108 | c CALL writeg1d(ngrid,nlayer,zq(1,1,iq),noms(iq),'kg/kg') |
---|
[1047] | 3109 | call WRITEDIAGFI(ngrid,trim(noms(iq)), |
---|
[226] | 3110 | & trim(noms(iq)),'kg/kg',1,zq(1,1,iq)) |
---|
| 3111 | end do |
---|
[358] | 3112 | if (doubleq) then |
---|
[1047] | 3113 | call WRITEDIAGFI(ngrid,'rdust','rdust', |
---|
[358] | 3114 | & 'm',1,rdust) |
---|
[1974] | 3115 | endif ! doubleq 1D |
---|
| 3116 | if (rdstorm) then |
---|
| 3117 | call writediagfi(1,'aerosol_dust','opacity of env. dust','' |
---|
[2081] | 3118 | & ,1,aerosol(:,:,iaer_dust_doubleq)) |
---|
[1974] | 3119 | call writediagfi(1,'aerosol_stormdust', |
---|
| 3120 | & 'opacity of storm dust','' |
---|
[2081] | 3121 | & ,1,aerosol(:,:,iaer_stormdust_doubleq)) |
---|
[1974] | 3122 | call WRITEDIAGFI(ngrid,'dqsdifdustq','diffusion', |
---|
| 3123 | & 'kg.m-2.s-1',0,zdqsdif(1,igcm_dust_mass)) |
---|
| 3124 | call WRITEDIAGFI(ngrid,'dqsdifrdsq','diffusion', |
---|
| 3125 | & 'kg.m-2.s-1',0,zdqsdif(1,igcm_stormdust_mass)) |
---|
| 3126 | call WRITEDIAGFI(ngrid,'mstormdtot', |
---|
| 3127 | & 'total mass of stormdust only', |
---|
| 3128 | & 'kg.m-2',0,mstormdtot) |
---|
| 3129 | call WRITEDIAGFI(ngrid,'mdusttot', |
---|
| 3130 | & 'total mass of dust only', |
---|
| 3131 | & 'kg.m-2',0,mdusttot) |
---|
| 3132 | call WRITEDIAGFI(ngrid,'tauref', |
---|
| 3133 | & 'Dust ref opt depth','NU',0,tauref) |
---|
| 3134 | call WRITEDIAGFI(ngrid,'rdsdqsdust', |
---|
| 3135 | & 'deposited surface stormdust mass', |
---|
| 3136 | & 'kg.m-2.s-1',0,rdsdqdustsurf) |
---|
| 3137 | call WRITEDIAGFI(ngrid,'rdsdustq','storm Dust mass mr', |
---|
| 3138 | & 'kg/kg',1,rdsqdust) |
---|
| 3139 | call WRITEDIAGFI(ngrid,"stormfract", |
---|
| 3140 | & "fraction of the mesh,with stormdust", |
---|
| 3141 | & "none",0,totstormfract) |
---|
| 3142 | call WRITEDIAGFI(ngrid,'rdsqsurf', |
---|
| 3143 | & 'stormdust at surface', |
---|
| 3144 | & 'kg.m-2',0,qsurf(:,igcm_stormdust_mass)) |
---|
| 3145 | call WRITEDIAGFI(ngrid,'qsurf', |
---|
| 3146 | & 'dust mass at surface', |
---|
| 3147 | & 'kg.m-2',0,qsurf(:,igcm_dust_mass)) |
---|
| 3148 | call WRITEDIAGFI(ngrid,'wspeed','vertical speed stormdust', |
---|
| 3149 | & 'm/s',1,wspeed) |
---|
| 3150 | call WRITEDIAGFI(ngrid,'totaldustq','total dust mass', |
---|
| 3151 | & 'kg/kg',1,qdusttotal) |
---|
| 3152 | call WRITEDIAGFI(ngrid,'dsords', |
---|
| 3153 | & 'density scaled opacity of stormdust', |
---|
| 3154 | & 'm2.kg-1',1,dsords) |
---|
| 3155 | call WRITEDIAGFI(ngrid,'zdqsed_dustq' |
---|
| 3156 | & ,'sedimentation q','kg.m-2.s-1',1, |
---|
| 3157 | & zdqsed(1,:,igcm_dust_mass)) |
---|
| 3158 | call WRITEDIAGFI(ngrid,'zdqsed_rdsq' |
---|
| 3159 | & ,'sedimentation q','kg.m-2.s-1',1, |
---|
| 3160 | & zdqsed(1,:,igcm_stormdust_mass)) |
---|
| 3161 | endif !(rdstorm 1D) |
---|
| 3162 | |
---|
[833] | 3163 | if (water.AND.tifeedback) then |
---|
[1047] | 3164 | call WRITEDIAGFI(ngrid,"soiltemp", |
---|
[833] | 3165 | & "Soil temperature","K", |
---|
| 3166 | & 1,tsoil) |
---|
[1047] | 3167 | call WRITEDIAGFI(ngrid,'soilti', |
---|
[833] | 3168 | & 'Soil Thermal Inertia', |
---|
| 3169 | & 'J.s-1/2.m-2.K-1',1,inertiesoil) |
---|
| 3170 | endif |
---|
[226] | 3171 | end if |
---|
[358] | 3172 | |
---|
[520] | 3173 | cccccccccccccccccc scavenging & water outputs 1D TN ccccccccccccccc |
---|
[358] | 3174 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
[520] | 3175 | IF (water) THEN |
---|
[722] | 3176 | |
---|
| 3177 | if (.not.activice) then |
---|
| 3178 | |
---|
| 3179 | tauTES=0 |
---|
[1047] | 3180 | do l=1,nlayer |
---|
[722] | 3181 | Qabsice = min( |
---|
| 3182 | & max(0.4e6*rice(1,l)*(1.+nuice_ref)-0.05 ,0.),1.2 |
---|
| 3183 | & ) |
---|
| 3184 | opTES(1,l)= 0.75 * Qabsice * |
---|
| 3185 | & zq(1,l,igcm_h2o_ice) * |
---|
[883] | 3186 | & (zplev(1,l) - zplev(1,l+1)) / g |
---|
[722] | 3187 | & / (rho_ice * rice(1,l) * (1.+nuice_ref)) |
---|
| 3188 | tauTES=tauTES+ opTES(1,l) |
---|
| 3189 | enddo |
---|
[1047] | 3190 | CALL WRITEDIAGFI(ngrid,'tauTESap', |
---|
[358] | 3191 | & 'tau abs 825 cm-1', |
---|
[520] | 3192 | & '',0,tauTES) |
---|
[722] | 3193 | else |
---|
| 3194 | |
---|
[1047] | 3195 | CALL WRITEDIAGFI(ngrid,'tauTES', |
---|
[520] | 3196 | & 'tau abs 825 cm-1', |
---|
| 3197 | & '',0,taucloudtes) |
---|
[722] | 3198 | endif |
---|
[520] | 3199 | |
---|
| 3200 | mtot = 0 |
---|
| 3201 | icetot = 0 |
---|
| 3202 | h2otot = qsurf(1,igcm_h2o_ice) |
---|
[722] | 3203 | |
---|
[358] | 3204 | do l=1,nlayer |
---|
[520] | 3205 | mtot = mtot + zq(1,l,igcm_h2o_vap) |
---|
[883] | 3206 | & * (zplev(1,l) - zplev(1,l+1)) / g |
---|
[520] | 3207 | icetot = icetot + zq(1,l,igcm_h2o_ice) |
---|
[883] | 3208 | & * (zplev(1,l) - zplev(1,l+1)) / g |
---|
[722] | 3209 | end do |
---|
| 3210 | h2otot = h2otot+mtot+icetot |
---|
| 3211 | |
---|
[1047] | 3212 | CALL WRITEDIAGFI(ngrid,'h2otot', |
---|
[722] | 3213 | & 'h2otot', |
---|
| 3214 | & 'kg/m2',0,h2otot) |
---|
[1047] | 3215 | CALL WRITEDIAGFI(ngrid,'mtot', |
---|
[722] | 3216 | & 'mtot', |
---|
| 3217 | & 'kg/m2',0,mtot) |
---|
[1047] | 3218 | CALL WRITEDIAGFI(ngrid,'icetot', |
---|
[722] | 3219 | & 'icetot', |
---|
| 3220 | & 'kg/m2',0,icetot) |
---|
| 3221 | |
---|
| 3222 | if (scavenging) then |
---|
| 3223 | |
---|
| 3224 | rave = 0 |
---|
| 3225 | do l=1,nlayer |
---|
[669] | 3226 | cccc Column integrated effective ice radius |
---|
| 3227 | cccc is weighted by total ice surface area (BETTER) |
---|
[722] | 3228 | rave = rave + tauscaling(1) * |
---|
| 3229 | & zq(1,l,igcm_ccn_number) * |
---|
[883] | 3230 | & (zplev(1,l) - zplev(1,l+1)) / g * |
---|
[722] | 3231 | & rice(1,l) * rice(1,l)* (1.+nuice_ref) |
---|
| 3232 | enddo |
---|
| 3233 | rave=icetot*0.75/max(rave*pi*rho_ice,1.e-30) ! surface weight |
---|
| 3234 | |
---|
| 3235 | Nccntot= 0 |
---|
[1047] | 3236 | call watersat(ngrid*nlayer,zt,zplay,zqsat) |
---|
| 3237 | do l=1,nlayer |
---|
[669] | 3238 | Nccntot = Nccntot + |
---|
[520] | 3239 | & zq(1,l,igcm_ccn_number)*tauscaling(1) |
---|
[883] | 3240 | & *(zplev(1,l) - zplev(1,l+1)) / g |
---|
[520] | 3241 | satu(1,l) = zq(1,l,igcm_h2o_vap)/zqsat(1,l) |
---|
| 3242 | satu(1,l) = (max(satu(1,l),float(1))-1) |
---|
| 3243 | ! & * zq(1,l,igcm_h2o_vap) * |
---|
[883] | 3244 | ! & (zplev(1,l) - zplev(1,l+1)) / g |
---|
[520] | 3245 | enddo |
---|
[722] | 3246 | call WRITEDIAGFI(ngrid,"satu","vap in satu","kg/kg",1, |
---|
| 3247 | & satu) |
---|
[1047] | 3248 | CALL WRITEDIAGFI(ngrid,'Nccntot', |
---|
[669] | 3249 | & 'Nccntot', |
---|
| 3250 | & 'nbr/m2',0,Nccntot) |
---|
[411] | 3251 | |
---|
[1047] | 3252 | call WRITEDIAGFI(ngrid,'zdqsed_dustq' |
---|
[769] | 3253 | & ,'sedimentation q','kg.m-2.s-1',1,zdqsed(1,:,igcm_dust_mass)) |
---|
[1047] | 3254 | call WRITEDIAGFI(ngrid,'zdqsed_dustN' |
---|
[769] | 3255 | &,'sedimentation N','Nbr.m-2.s-1',1, |
---|
| 3256 | & zdqsed(1,:,igcm_dust_number)) |
---|
[722] | 3257 | |
---|
| 3258 | else ! of if (scavenging) |
---|
| 3259 | |
---|
| 3260 | cccc Column integrated effective ice radius |
---|
| 3261 | cccc is weighted by total ice mass (LESS GOOD) |
---|
| 3262 | rave = 0 |
---|
| 3263 | do l=1,nlayer |
---|
| 3264 | rave = rave + zq(1,l,igcm_h2o_ice) |
---|
[883] | 3265 | & * (zplev(1,l) - zplev(1,l+1)) / g |
---|
[722] | 3266 | & * rice(1,l) * (1.+nuice_ref) |
---|
| 3267 | enddo |
---|
| 3268 | rave=max(rave/max(icetot,1.e-30),1.e-30) ! mass weight |
---|
| 3269 | endif ! of if (scavenging) |
---|
| 3270 | |
---|
[1617] | 3271 | |
---|
[1047] | 3272 | CALL WRITEDIAGFI(ngrid,'reffice', |
---|
[722] | 3273 | & 'reffice', |
---|
| 3274 | & 'm',0,rave) |
---|
| 3275 | |
---|
[1711] | 3276 | !Alternative A. Pottier weighting |
---|
| 3277 | rave2 = 0. |
---|
| 3278 | totrave2 = 0. |
---|
| 3279 | do l=1,nlayer |
---|
| 3280 | rave2 =rave2+ zq(1,l,igcm_h2o_ice)*rice(1,l) |
---|
| 3281 | totrave2 = totrave2 + zq(1,l,igcm_h2o_ice) |
---|
| 3282 | end do |
---|
| 3283 | rave2=max(rave2/max(totrave2,1.e-30),1.e-30) |
---|
| 3284 | CALL WRITEDIAGFI(ngrid,'rmoym', |
---|
| 3285 | & 'reffice', |
---|
| 3286 | & 'm',0,rave2) |
---|
| 3287 | |
---|
[722] | 3288 | do iq=1,nq |
---|
[1047] | 3289 | call WRITEDIAGFI(ngrid,trim(noms(iq))//'_s', |
---|
[722] | 3290 | & trim(noms(iq))//'_s','kg/kg',0,qsurf(1,iq)) |
---|
| 3291 | end do |
---|
[358] | 3292 | |
---|
[1047] | 3293 | call WRITEDIAGFI(ngrid,'zdqcloud_ice','cloud ice', |
---|
[633] | 3294 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_h2o_ice)) |
---|
[1047] | 3295 | call WRITEDIAGFI(ngrid,'zdqcloud_vap','cloud vap', |
---|
[633] | 3296 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_h2o_vap)) |
---|
[1047] | 3297 | call WRITEDIAGFI(ngrid,'zdqcloud','cloud ice', |
---|
[633] | 3298 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_h2o_ice) |
---|
| 3299 | & +zdqcloud(1,:,igcm_h2o_vap)) |
---|
[411] | 3300 | |
---|
[1711] | 3301 | call WRITEDIAGFI(ngrid,"rice","ice radius","m",1, |
---|
[411] | 3302 | & rice) |
---|
[1711] | 3303 | |
---|
| 3304 | if (CLFvarying) then |
---|
| 3305 | call WRITEDIAGFI(ngrid,'totcloudfrac', |
---|
| 3306 | & 'Total cloud fraction', |
---|
| 3307 | & ' ',0,totcloudfrac) |
---|
| 3308 | endif !clfvarying |
---|
| 3309 | |
---|
[520] | 3310 | ENDIF ! of IF (water) |
---|
[411] | 3311 | |
---|
[358] | 3312 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 3313 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 3314 | |
---|
| 3315 | |
---|
[883] | 3316 | zlocal(1)=-log(zplay(1,1)/zplev(1,1))* Rnew(1,1)*zt(1,1)/g |
---|
[226] | 3317 | |
---|
| 3318 | do l=2,nlayer-1 |
---|
| 3319 | tmean=zt(1,l) |
---|
| 3320 | if(zt(1,l).ne.zt(1,l-1)) |
---|
| 3321 | & tmean=(zt(1,l)-zt(1,l-1))/log(zt(1,l)/zt(1,l-1)) |
---|
| 3322 | zlocal(l)= zlocal(l-1) |
---|
[883] | 3323 | & -log(zplay(1,l)/zplay(1,l-1))*rnew(1,l)*tmean/g |
---|
[226] | 3324 | enddo |
---|
| 3325 | zlocal(nlayer)= zlocal(nlayer-1)- |
---|
[883] | 3326 | & log(zplay(1,nlayer)/zplay(1,nlayer-1))* |
---|
[226] | 3327 | & rnew(1,nlayer)*tmean/g |
---|
[1212] | 3328 | #endif |
---|
[226] | 3329 | |
---|
[42] | 3330 | END IF ! if(ngrid.ne.1) |
---|
| 3331 | |
---|
| 3332 | icount=icount+1 |
---|
[1974] | 3333 | |
---|
[1549] | 3334 | |
---|
| 3335 | END SUBROUTINE physiq |
---|
| 3336 | |
---|
| 3337 | END MODULE physiq_mod |
---|